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Abstract

In wireless broadband communications, orthogonal frequency division multiplex-

ing (OFDM) has been adopted as a promising technique to mitigate multi-path

fading and provide high spectral efficiency. In addition, cooperative communi-

cation can explore spatial diversity where several users or nodes share their re-

sources and cooperate through distributed transmission. The concatenation of

the OFDM technique with relaying systems can enhance the overall performance

in terms of spectral efficiency and improve robustness against the detrimental

effects of fading.

Hybrid relay selection is proposed to overcome the drawbacks of conventional

forwarding schemes. However, exciting hybrid relay protocols may suffer some

limitations when used for transmission over frequency-selective channels. The

combination of cooperative protocols with OFDM systems has been extensively

utilized in current wireless networks, and have become a promising solution for fu-

ture high data rate broadband communication systems including 3D video trans-

mission. This thesis covers two areas of high data rate networks. In the first part,

several techniques using cooperative OFDM systems are presented including relay

selection, space time block codes, resource allocation and adaptive bit and power

allocation to introduce diversity.

Four (4) selective OFDM relaying schemes are studied over wireless networks;

selective OFDM; selective OFDMA; selective block OFDM and selective unequal

block OFDM. The closed-form expression of these schemes is derived. By ex-

ploiting the broadcast nature, it is demonstrated that spatial diversity can be

improved. The upper bound of outage probability for the protocols is derived.

A new strategy for hybrid relay selection is proposed to improve the system



ii

performance by removing the sub-carriers that experience deep fading. The per-

subcarrier basis selection is considered with respect to the predefined threshold

signal-to-noise ratio. The closed-form expressions of the proposed protocol in

terms of bit error probability and outage probability are derived and compared

with conventional hybrid relay selection. Adaptive bit and power allocation is

also discussed to improve the system performance.

Distributed space frequency coding applied to hybrid relay selection to ob-

tain full spatial and full data rate transmission is explored. Two strategies, single

cluster and multiple clusters, are considered for the Alamouti code at the desti-

nation by using a hybrid relay protocol. The power allocation with and without

sub-carrier pairing is also investigated to mitigate the effect of multipath error

propagation in frequency-selective channels.

The second part of this thesis investigates the application of cooperative

OFDM systems to high data rate transmission. Recently, there has been growing

attention paid to 3D video transmission over broadband wireless channels. Two

strategies for relay selection hybrid relay selection and first best second best are

proposed to implement unequal error protection in the physical layer over error-

prone channels. The closed-form expressions of bit error probability and outage

probability for both strategies are examined. The peak signal-to-noise ratio is

presented to show the quality of reconstruction of the left and right views.
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Chapter 1

Introduction

The growing demand for high data rate wireless communication systems over

broadband channels necessitates a system re-design to increase compatibility with

the wireless environment. System performance can be significantly limited by

channel defects such as channel fading and inter-symbol interference (ISI). An

important technique to mitigate the detrimental effects of fading in a wireless

system is the use of diversity techniques including temporal, spatial, or frequency

diversity or their hybrids. Diversity provides the destination with multiple copies

of the source signal. Several techniques have been previously investigated in the

literature to achieve diversity including multiple-input multiple-output systems

(MIMO) [1], OFDM modulation, space time-frequency block codes [2, 3], relay

selection [4] and adaptive bit and power allocation [5].

The evolution of wireless broadband networks, such as WiMax, Wi-Fi, LTE

and 3GPP, has created an important need for research into video transmis-

sion. Video transmission over wireless networks is one of the most popular meth-

ods for future generations of wireless systems. Recently, three-dimensional (3D)

video transmission has attracted much interest [6–8] and it is anticipated to grow

significantly in wireless multimedia applications. However, transmitting 3D video

over wireless networks is a challenging task due to the inherent high error proba-

bility and bandwidth constraints. Cooperative communications offer the potential

to overcome these challenges by transforming the link between transmitter and

receiver into multiple hops with shorter, more reliable links.
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Conventional relaying amplify-and-forward (AF) and decode-and-forward (DF)

schemes have suffered from noise amplification and error propagation [4,9,10]. The

hybrid relay protocol (HRP) overcomes these drawbacks [11–13]. Many different

forms of HRP approaches have been proposed although there is still potential for

future improvement.

In order to achieve the benefits of the aforementioned techniques, there is con-

siderable active research in cooperative networks over broadband wireless com-

munication channels. The first part of this thesis contributes to this research

through an investigation of the potential improvements in system performance

by adopting diversity techniques. The second part investigates the advantages of

cooperative communications and induced diversity to serve high data rate systems

such as 3D video transmission.

1.1 Research Motivations

The main purpose of communication systems is to broadcast information from

the source to the destination over a reliable channel with maximum through-

put. Recently, cooperative communications have been developed to achieve this

through the creation of multiple communication paths between the source and

the destination. These links are mutually independent. As a result, the destina-

tion receives multiple versions of the source information, thus providing spatial

diversity. In the past, multiple-input multiple-output (MIMO) systems have been

proposed as an efficient technique to achieve transmission and reception diversity

by using several antennas at the transmitter and/or receiver [1, 2]. It can obtain

a potential high spectral efficiency to overcome the drawbacks caused by channel

fading. The use of multiple antennae in small wireless terminals may, however,

be impractical due to size, cost, or hardware restrictions. It has proven that the

cooperative (relaying) communications can realize the benefits of conventional

MIMO systems and provide cooperative diversity gains without any reliance on

multiple antennae [4].
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1.1.1 Cooperative Systems

The underlying concept of a cooperative system is that the client devices share re-

sources and cooperate through distributed transmission to form virtual antenna

arrays (VAA) that can reap the benefits of conventional MIMO systems with-

out the additional hardware requirements. Moreover, it can enlarge the service

footprint area covered by the system and enhance throughput by utilizing inter-

mediate nodes and short links. This also enhances system reliability by exploiting

spatial diversity.

In general, cooperative protocols are classified into two broad schemes named

amplify-and-forward (AF) and decode-and-forward (DF). In the AF protocol, the

relay amplifies and forwards the signals received from the source. However, it not

only amplifies the signal received from the source, but also any noise received by

the relay node. Alternatively, in the DF protocol, the relay attempts to decode

the received signal, which may introduce error propagation, then re-encodes and

forwards it to the destination. Various types of cooperative protocols have been

proposed to overcome the shortcomings of the AF and DF schemes. The authors

in [14–17] proposed an adaptive DF (ADF) scheme. An alternative protocol is

proposed in [11], [18] known as hybrid relay protocol (HRP), and is designed

to overcome the disadvantages of conventional relaying protocols. However, the

signal may be corrupted when transmitted over sub-carriers that experience deep

fading. In order to avoid this problem a new paradigm of HRP with multi-carrier

technique is presented known as multi-carrier adaptive hybrid relay protocol (MC-

AHRP).

Multiple cooperative communication systems can drastically increasing the

cooperative diversity gains [4]. However, this can make degradation in the spec-

tral efficiency due to the relays must transmit on orthogonal channels to avoid the

interference. Relay selection is one of the most popular techniques has adopted to

overcome this problem [14, 19–21]. In relay selection protocol, the relay that has

best channel condition forwards the source signal toward the destination. There-

fore, the communication protocol requires only two orthogonal channels. As a

result, the bandwidth efficiency can be improved without any lost in cooperative
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diversity.

1.1.2 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is considered a physical

layer technology in broadband wireless networks. It has been adopted as an effec-

tive technique to capture multi-path energy, mitigate ISI caused by multi-path

propagation, and offer high spectral efficiency in broadband communications. In

addition, OFDM is a transmission technique that transforms frequency-selective

fading channels into several independent flat fading sub-channels. Therefore it

is suitable for high data rate communication systems over frequency selective

fading channels and has been widely accepted for commercial broadband wire-

less network standards such as IEEE 802.11 (WiFi) [22] and 802.16 (WiMax)

[23]. It has also been proposed for the long-term-evolution (LTE) of universal

mobile telecommunications systems (UMTS). Cooperative communication com-

bined with OFDM is a promising technique to enhance the performance and

enlarge the coverage area of high data rate communication systems.

Design and analysis of selective OFDM in cooperative communications have

recently attracted considerable attention. OFDM-based relay systems have been

adopted by the current wireless standard IEEE 802.16j. In general, there are

two main strategies for selective OFDM relaying. The first strategy is to select an

entire OFDM symbol by single relay, which is referred to as selective OFDM. The

second way is to select a single relay for each subcarrier or group of sub-carriers

and this is referred to as selective orthogonal frequency division multiple access

(OFDMA) (per-subcarrier basis). Channel power gain suffers different attenua-

tion according to the circumstance of the channel environments. An active area

of research is using resource allocation [24] and adaptive bit and power allocation

(ABPA) [25] for the OFDM-based relaying systems in an effort to overcome these

drawbacks in channel environments.

Optimizing resource allocation or adaptive bit and power allocation (ABPA)

are effective approaches to mitigating the detrimental effects of wireless channels

in broadband communication systems. They offer multi-path diversity and there-
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fore significant performance improvements can be achieved when implemented in

a cooperative OFDM relay system. This can play a vital role in enhancing system

performance by making full use of the channel parameters. A number of papers

have discussed resource allocation in single hop OFDM systems to maximize the

capacity or to minimize error performance [5,26–34]. For OFDM relay protocols,

the task of resource allocation is to allocate the amount of power per symbol not

only for the source and the relay terminals but also for each sub-carrier on both

hops. In addition, the ABPA consists of bit loading (BL) and power allocation

(PA). The general idea of the BL algorithm is that the number of bits per sym-

bol for each sub-carrier at source and relay will vary according to the channel

state information (CSI) of the first and second hops. Therefore, it can reduce the

transmission power from the source and relay as well as increasing data rates. In

the PA algorithm, the amount of power assigned to each sub-carrier depends on

the quality of the channel. As a result, sub-carriers that experience deep fading

are assigned minimal or no power and vice versa for good sub-channel conditions.

Subcarrier permutation (pairing) (SP) can further improve the spectrum ef-

ficiency of OFDM-based relay systems by allowing the relay to reassign the sub-

carriers in both hops. In the SP scheme, the nth subcarrier in the first hop joins

with the mth subcarrier in the second hop based on the channel power quality of

both links. The simplest method of employing SP is by arranging the sub-carriers

in the first and second hops in descending or ascending order [35, 36]. However

this technique might not provide an optimal solution especially when the relay is

close to or far from the source. To cope with this, the sub-carriers in the relay are

partitioned into two groups according to the forwarding scheme. Then an efficient

SP can be implemented to achieve better capacity performance.

Space time coding (STC) schemes can provide spatial diversity by deliver-

ing the destination with a replica of the original signal via independent fading

links. It has been proven that STC schemes can achieve full spatial diversity

for MIMO [1], and for cooperative communications [14]. This is known as a dis-

tributed STC (DSTC) system due to the fact that the received signals arrive si-

multaneously at their destination from multiple users. As a result, it can achieve
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the full transmission rate. This technique is efficient when used with flat fading

channels. However, broadband communication systems suffer from severe multi-

path fading and delay spread, which destroys their orthogonality when applied

with STC. OFDM technique has ability to overcome this problem by dividing

the wideband channel into numerous narrowband subchannels. Space frequency

coding (SFC) combined with OFDM modulation has been investigated in order

to explore multi-path and frequency diversities in MIMO systems [37] as well as

cooperative diversity [38]. Moreover, it can reduce the harmful effects of fading

in the frequency domains for OFDM systems.

1.1.3 High Data Rate Applications

Three dimensional video transmission has become one of the interesting ar-

eas of research in wireless communication systems. The video coding standard

H.264/AVC (Advanced Video Coding) achieves high compression efficiency [39]. It

has been widely accepted as a suitable video coding standard for wireless video

transmission. H.264/AVC employs variable length coding, so the transmitted bit

stream, which experiences unequal bit error sensitivity, may suffer severe degra-

dation due to error-prone channels. To cope with this problem, unequal error

protection (UEP) was proposed where the video bitstreams are partitioned into

several layers of different levels of importance [40]. In UEP, the most important

bits are protected with higher priority than less important bits. Several techniques

of UEP have been studied for transmitting multimedia data over single-carrier

MIMO systems [41–43] and over multi-carrier (OFDM) systems [8]. The extent

to which performance of 3D video transmission can be further improved with

depth image based rendering (DIBR) was investigated in [44]. To increase the ro-

bustness of transmitting 3D video scenes over wireless environments, cooperative

communication, which exhibits high diversity gain can be used. A combination of

OFDM relaying systems with DIBR technique can provide significant improve-

ment in video transmission.
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1.2 Research Problem

The previous discussion shows that diversity can take many forms according to

the physical layer scheme used. The objective of this research is to design and

analyse new techniques for diversity concatenated with OFDM relaying systems

to overcome the drawbacks of conventional protocols. The approach is to mod-

ify the protocol by utilizing techniques such as relay selection, adaptive resource

allocation, sub-carrier permutation and space time frequency coding in order to

increase the robustness of channel variations. The research tasks in this thesis

are:

Subproblem 1:

To investigate the outage probability performance of selective OFDM relaying

with, and then without direct transmission over frequency-selective Rayleigh fad-

ing channels. Unequal block-OFDM relaying is proposed to provide a unified

scheme.

Subproblem 2:

To investigate a new type of hybrid relay protocol concatenated with multi-carrier

(OFDM) technique called a multi-carrier adaptive hybrid relay protocol, which

avoids the sub-carriers that experience deep fading over frequency-selective chan-

nels. For comparison purposes a conventional hybrid relay selection will be ex-

tended from a single carrier system to multi-carrier system. An efficient algorithm

of adaptive bit and power allocation with, and then without subcarrier pairing is

proposed.

Subproblem 3:

To investigate the use of a DSFC based hybrid relay protocol with relay se-

lection to overcome the drawbacks of multi-path fading in frequency-selective

channels. Full-rate and full diversity order can be achieved by exploiting the ad-

vantages of DSFC and relay selection. Power allocation optimization, with and

without subcarrier permutation, is investigated to further improve system per-

formance.
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Subproblem 4:

To investigate unequal error protection (UEP) in the physical layer based on re-

lay selection to deliver 3D video scenes to the end user with useful improvements

in error resilience and reliability. Two strategies for UEP are proposed based on

hybrid relay selection and first best second best relay selection. The proposed

schemes take into account the protection level of the 3D video sequences.

1.3 Summary of Original Contributions

The main contribution of this thesis can be summarized as follows:

• Selective OFDM(A) Relaying Scheme: The selective OFDM(A) schemes,

where the AF approach is used at the relay node is investigated in Chapter 3. It

was shown that selective OFDM is less complex than selective OFDMA, whereas

selective OFDMA has better outage probability performance. To achieve a flexible

tradeoff between complexity and diversity gain, selective unequal block OFDM

is proposed and developed. The closed-form expression of outage probability is

analyzed when the direct link is assumed to be absent. The proposed protocol

was published in [45].

• Selective Per-sub-carriers OFDM-based HRP: The conventional hy-

brid protocol is extended from a single carrier to a multi-carrier system. As a

result of the selectivity of channels, some sub-carriers experience deep fading,

which degrades system performance. To solve this problem an adaptive hybrid

relay protocol based OFDM is proposed where an adaptive DF scheme is used

to distinguish the corrupted sub-carriers as described in Chapter 4. The selec-

tion per-subcarrier for a single relay is considered. The closed-form expression of

bit error probability and outage probability for both protocols are derived over

frequency-selective Rayleigh fading channels. Adaptive bit and power allocation

techniques with low computational complexity is adopted to achieve better perfor-

mance. The proposed MC-AHRP and power allocation algorithm was published

in [46] and [47].
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• Space-Frequency Coding in Conjunction with HRP Scheme: The

distributed space frequency code (DSFC) is implemented in the selected relay to

obtain spatial diversity and full transmission rate in Chapter 5. The hybrid relay

selection is utilized to overcome the inherent drawbacks of conventional relaying

strategies. The selected relays are organized into clusters to reduce complexity

without any loss in performance. Power allocation was applied optimally with

and without sub-carrier pairing to further improve system performance. The sim-

ulation results demonstrated that the proposed scheme has better performance

in terms of bit error probability and capacity than conventional schemes and

the hybrid relay protocol using orthogonal channels. The proposed DSFC and

power allocation algorithm over frequency selective channel was published in [48]

and [49].

• 3D Video Transmission Over Cooperative OFDM Relaying Systems:

The proposed UEP of 3D video transmission based on relay selection is inves-

tigated in Chapter 6. Two schemes are proposed: hybrid relay protocol (HRP)

and first-best second-best (FBSB) relay selection. Closed-form expression of both

schemes is investigated in terms of bit error probability and outage probability

based on moment generation function. The peak signal-to-noise ratio (PSNR)

results show that the HRP outperforms the FBSB at low SNR due to its higher

gain. Whereas, FBSB obtains better PSNR at high SNR than HRP due to it

providing higher diversity. The proposed UEP based cooperative communication

system was published in [50] and [51].

1.4 Structure of the thesis

This thesis is composed of two fundamental parts. The first part of this disserta-

tion studies system performance of the OFDM relaying protocols and consists of

Chapter 3, 4, and 5. The second part considers 3D video transmission protocols

based on cooperative OFDM system and is addressed in Chapter 6.

Chapter 2: presents background on a cooperative communication, OFDM tech-

niques and its application in multimedia transmission. Diverse techniques that
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could be used to improve the performance of OFDM-relaying system are also

addressed including resource allocation, relay selection, distributed space time

coding, sub-carrier pairing as well as unequal error protection for 3D video trans-

mission.

Chapter 3: selective OFDM performance in terms of outage probability is ad-

dressed and a new approach that can provide a unified scheme is proposed.

Chapter 4: demonstrates a new scheme of hybrid relay protocol is proposed and

analyzed in order to decrease system complexity and overcome drawbacks in the

conventional scheme. Adaptive bit and power allocation to maximize the system

capacity under individual power constraint is proposed. Sub-carrier pairing is also

investigated to further improve system performance.

Chapter 5: investigates distributed space frequency codes over selective OFDM

relaying based on hybrid relay selection. Resource allocation and sub-carrier pair-

ing techniques are addressed to provide a substantial improvement in system per-

formance.

Chapter 6: presents cooperative communication based on OFDM techniques in

multimedia applications. Taking advantage of cooperative diversity, a new tech-

nique is proposed using potentially unequal error protection to enhance 3D video

transmission over error-prone channels. A closed-form expression of the bit error

probability and outage probability are investigated for two particular relay selec-

tion schemes; hybrid relay selection and first best second best schemes.

Chapter 7: concludes the dissertation with a discussion of future directions in

this area of research.
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Background

2.1 Introduction

This chapter is dedicated to presents a brief review of prior work for two related ar-

eas of communication. The first is the cooperative OFDM relaying systems involv-

ing resource allocation, subcarrier permutation, and distributed space-frequency

coding. It begins in Section 2.2 by introducing cooperative relaying networks em-

ployed in single-carrier and multi-carriers transmissions. There are two notable

relaying strategies and another secondary strategy created by modifying or com-

bining these strategies. A brief background on these strategies is provided. Section

2.3 discusses prior work for selective OFDM-based relaying protocols including

resource allocation, adaptive bit and power allocation and subcarrier pairing. Dis-

tribution space-frequency coding in broadband communication with and without

resource allocation is discussed in Section 2.4. The later area is the 3D video

transmission over OFDM relaying protocols is reviewed in Section 2.5. Section

2.6 concludes the chapter.

2.2 Cooperative Relaying

The main aim of communication systems are to broadcast information from the

source to the destination via a reliable channel with maximum throughput. Cur-
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rently, cooperative relaying is emerging as an effective protocol for next gener-

ation of wireless networks. The classical relay channel model was examined by

Van der Meulen [52,53] and involves three nodes known as source, relay and des-

tination as illustrated in Figure 2.1. Later, Cover and El Gamal [54] evaluated

the channel capacity for discrete memoryless and Gaussian relay channels. Relay-

ing or cooperative communications techniques can achieve a cooperative spatial

diversity by allowing users to cooperate in their transmissions [4, 55, 56]. This

enlarges the coverage area and further improves the system performance and re-

liability. In [4] and [14], Laneman et al. proposed several cooperative diversity

schemes and analyzed outage behavior performance. The concepts of fixed re-

laying such as amplify-and-forward, decode-and-forward, selective relaying, and

incremental relaying schemes have been investigated. User cooperation diversity

was introduced by Sendonaris et al. in [55] and [57]. In this series of papers,

the authors implemented a two-user code division multiple access (CDMA) co-

operative system, where both users are active and use orthogonal codes to avoid

multiple access interference. Another technique to achieve diversity that incor-

porates error-control-coding into cooperation was introduced by Hunter et al.

in [58]. In [59], Boyer et al. introduced the concept of multihop diversity, in

which each relay combines the signals received from all of the previous transmis-

sions. This kind of spatial diversity is especially applicable in multihop ad hoc

networks. In cooperative communication systems, relaying protocols are desig-

nated in accordance with their functions. Consequently in the next sub-sections

type will be summarized.
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Most of research work in cooperative relaying has employed OFDM techniques

to overcome inherent problems in frequency-selective channels by exploiting the

advantage of converting frequency-selective channel into several frequency-flat

sub-channels. In OFDM system, the total bandwidth of the wideband signal is

divided into N narrowband sub-channels with bandwidth W
N

. The bandwidth of

each sub-channel should be less than the channel coherence bandwidth to ensure

its experience flat fading. Figure 2.2 illustrated the the spectrum of OFDM symbol

in frequency domain where the spectra of sub-carriers are overlapped for band-

width efficiency due to orthogonality. Practically inverse discrete Fourier trans-

form (IDFT) and discrete Fourier transform (DFT) can be used at the transmitter

and receiver respectively to implement these orthogonal signal efficiently [60].

2.2.1 Amplify-and-Forward (AF)

Amplify-and-forward (non-regenerative) relaying is extremely attractive in coop-

erative communications due to its easy implementation at the relay terminal and

does not utilize any form of decoding. As a result the hardware complexity can
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Figure 2.3: Block diagram of the AF-OFDM relaying with adaptive power loading.

be reduced at the relay. The block diagram of the AF relay node is illustrated in

Figure 2.3. In the AF scheme, the relay node broadcasts a scale version of source

signals under a power constraint to the destination node [4]. In general, there are

two different ways to amplify the output of the relay signal according to the relay

ability to estimate the first hop channel [4, 61].

The performance of AF-OFDM relaying schemes have attracted some atten-

tion in the literature regarding dual hops. Megumi et al. investigated the outage

probability for several allocation schemes [62]. In [63–65], a multiple AF-OFDM

relaying protocol was considered. The relays transmit in orthogonal channels

in [65], while in [63,64], relay selection was considered. Two types of relay selection

involving a “per-subcarrier basis” and an “all-subcarrier basis” were investigated

to obtain diversity gain [63].

2.2.2 Decode-and-Forward (DF)

In a decode-and-forward scheme, the relay node fully decodes the received signal

and then re-encodes and retransmits it to the destination. However if the channel

quality is weak or in deep fade, the relay fails to decode the received signal suc-

cessfully. Therefore it experiences error propagation which leads to deterioration

of the received signal at the destination. Decode-and-forward may be classified

into two schemes according to the decoding style: fixed and adaptive. The main
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difference between them is that fixed DF always decodes the received signal, while

adaptive DF only decodes for sufficient received signal quality.

2.2.2.1 Fixed Decode-and-Forward (DF)

In fixed DF relay schemes, the relay always decodes what it receives from the

source in the first time slot regardless whether it can decode the received signal

correctly or not [4]. It then forwards the decoded signals to the destination in

the second time slot. If however the relay fails to decode the received signal

successfully, it induces errors at the destination because the relay retransmits

the erroneous version of the original signals. This has been extensively studied in

single carrier systems over frequency-flat fading channels [4, 58, 66–68].

DF forwarding schemes have been widely investigated in cooperative com-

munications over frequency-selective channels by exploiting the advantages of

OFDM modulation [69–74]. In these papers, the authors were considered the re-

lay selection and studied the diversity order that can be achieved by the network

in frequency selective fading channels.

2.2.2.2 Adaptive Decode-and-Forward (ADF)

The main advantage of the ADF scheme is to eliminate the error propagation

induced by the forwarding relay [4,15,16,75]. The underlaying concept of ADF is

that the relay forwards the received signal to the destination only when it fully

decodes the source message successfully, as shown in Figure 2.4. There are two
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modes to verify if the relay has successfully decoded the received signal: “ideal

mode” and “outage mode”. In the ideal mode, the symbol is appended with cyclic

redundancy check (CRC) code [76], while in outage mode the SNR threshold

value is considered [15]. Without loss of generality, if the relay detects the check

sum correctly in ideal mode or if the received SNR is greater than threshold

value, the relay decodes the received signal. Otherwise it refrains from doing

so. Ritesh et al. [77] proposed a relay selection scheme utilizing the Shannon’s

capacity formula to evaluate the threshold value (γth = 2r − 1), where r is the

rate (capacity). The basic idea of this protocol is that the relays estimate the

instantaneous SNR of the first hop and compares it with the SNR threshold. The

relays which have an instantaneous SNR larger than the threshold are included in

the decoding set and all participate in the second phase (beamforming technique)

or the destination selects the best relay (incremental relay selection). The authors

in [16], investigated the outage probability of parallel DF relay system in Rayleigh

fading channels with dissimilar fading parameters. They represented the end-

to-end SNR of the indirect links (S − Ri − D) by a random variable denoted

ξi. Subsequently, the authors in [75,78] proposed an adaptive decode-and-forward

in which the relay forwards the source signal only if decoded correctly. Therefore

the probability density function (PDF) is given as

fξi(x) =fξi|decoded incorrectly(x)Pe[decoded incorrectly]

+ fξi|decoded correctly(x)Pe[decoded correctly]
(2.1)

To date, all mentioned work on ADF have assumed the channel is flat-fading. At

the timing of writing there appears to have been no discovered work considering

the OFDM technique incorporated with ADF over frequency-selective channel.

2.2.3 Hybrid Relay Protocol (HRP)

As mentioned in the previous subsections, the AF and DF protocols experience

noise amplification and error propagation, respectively. In order to overcome the

inherent problems in both protocols, a hybrid relay protocol has been recently

proposed [11,18]. In general, the channels used in the single carrier systems are flat
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fading channels. The authors in [18] and [79] proposed a relay selection scheme

based on hybrid relay protocol by adopting CRC codes to ensure whether the

codeword is decoded correctly or not, as shown in Figure 2.5. The fundamen-

tal idea of the protocol is to classify all the relays into two groups, either the

“AF”, or “DF” group according to the instantaneous received signal to noise ra-

tio (SNR). The relays that are able to decode the received signal from the source

successfully are included in the DF group, otherwise they are included in the

AF group. In [18] the authors studied the frame error rate (FER) performance

of hybrid relay selection (HRS) with adopted relay selection, while in [79] an

all-participate scheme is considered. A dynamic optimal combination was pro-

posed in [80] by discarding the relays which undergo the deep fading. Liu et. al.

modified the relay selection by using SNR threshold value to improve the sys-

tem performance [81–84]. The closed-form symbol error rate (SER) expression of

HRS scheme was derived in [85], and the optimum power allocation under fixed

total transmit power is consider. The authors of [86], introduced the hybrid for-

warding protocol and derived a closed-form expression of analytical solution of

the outage probability over Rayleigh fading channels. The system model is based

on a single relay where it can choose a forwarding strategy between AF and

DF. If the received SNR at the relay exceeds the predetermined threshold, then

the AF protocol is used. Otherwise, the relay performs the DF protocol. Outage

probability under optimal power allocation was investigated in [87] based upon

opportunistic hybrid forward cooperation. In this protocol the transmitted power
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is restricted. The authors assumed that the perfect CSI is available at both the

source and the destination. The power assigned at the source and relay can be

written as

Ps = εPtotal

Pr = (1− ε)Ptotal

(2.2)

where ε, (1− ε) indicate the proportions of Ptotal allocated to the source and the

selected relay. The authors of [88] proposed a static hybrid AF and DF relaying

protocol. In this protocol, the AF relaying group is composed by the relays that

are close to the source and the DF group contains of the remaining relays. The

BER performance for both all-participating and opportunistic hybrid AF-DF

relaying was considered. In [89], the authors proposed a hybrid decode-amplify-

forward (HDAF) protocol in which the relay performs DF if the decoding process

succeeds. If the relay cannot decode the received signal successfully, it performs

the AF scheme instead of remaining silent. The main shortcoming of this protocol

is that the relay has always to decode the received signal in order to decide

which scheme to use. Therefore, the authors of [90] proposed SNR-HDAF that

selected the protocol to be used at the relay based on the SNR of its received

signal. The basic idea of this protocol is that if the received SNR is greater

than the threshold SNR the relay performs DF scheme, while it performs the

AF scheme in the other case. The authors derived the closed-form expression

for the outage probability and error probability over independent non-identical

flat Rayleigh fading channels. When the channel parameters between the source

and relay are substantially good, the received signal at the relay not corrupted

and in this case it is better to use the AF scheme. According to this concept

the authors in [91] propose a new adaptive relaying protocol called threshold-

based adaptive decode-amplify-forward relaying protocol (T-ADAF). In addition,

outage probability and average channel capacity for incremental hybrid decode-

amplify-forward were investigated in [12].

In this protocol, the relay compares the received SNR to the average SNR of

the source relay link. If the SNR of the received signal is greater than the average

SNR of the source-relay link, then the relay performs the AF scheme. On the
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other hand, if the SNR of the received signal does not exceed the average SNR of

the source-relay link, then the relay performs ADF. The closed-form expression

of symbol error probability (SER) of single relay and multiple-relay scenarios was

derived and compared with other protocols (e.g AF, ADF, and SNR-HDAF). The

authors in [92] investigated the optimization of channel capacity by choosing an

optimal relay depending on adaptive relay table (ART). In order to prolong the

network lifetime, Heo proposed in [93], [94], an adaptive relay selection based

on individual and total power constraint for hybrid relay system. In this proto-

col, the relays are divided into two groups and two relays are selected according to

instantaneous channel conditions. In [93], the optimization problem to maximize

the received SNR at the destination with total transmission power constraint of

one communication and individual residual power of each relay was considered.

All of above researches on hybrid forwarding scheme have aimed at single-

carrier systems. However, Hybrid relay protocol combined with OFDM has re-

ceived less attention so far. The earlier work was done by Can et.al [11] where

each sub-carrier in the relay chooses the forwarding scheme according to the qual-

ity of the channel gains. Subsequently system capacity under power allocation for

OFDM based hybrid forward relay with two selection criterion was investigated

in [95]. The schematic diagram of these protocols are shown in Figures 2.6 and

2.7. In Figure 2.6, Pe,DF , Pe,AF and Pe,DT denote the probability of error for the

DF, AF and DT protocols. While in Figure 2.7, αsr,n, µrd,n and βsd,n represent the

channel power gains of the source-relay, relay-destination and direct transmission

links respectively. γsr,n and γth are the instantaneous SNR for the first hop and

the threshold value respectively. In these protocols the relay should possess all

the subcarrier parameters (direct and indirect) in the network in order to give

a forwarding scheme for each sub-carrier. This leads to an increase the overhead

signals which can be increased the complexity and reduced the channel capac-

ity. The authors in [80] proposed a dynamic optimal combination strategy for the

hybrid relay protocol and evaluated the system BER. The relays are reordered

in descending order of the SNR between the source and relays. The first relay

performs the DF protocol if the SNR of the S-R link is greater than threshold
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Figure 2.6: Block diagram of hybrid forwarding relay for OFDM system.

AF

DF

asr,n>βsd,n

gsr,n>gth

AF

DF

µrd,n≤ βsd,n

asr,n>βsd,n

DT
No

Yes

Yes

Yes

No
No

No

Yes

(a) (b)

Data Data 

Figure 2.7: Block diagram of hybrid forwarding relay with different selection style

a) Selection criterion I b) Selection criterion II.

value. The rest of relays follow the AF protocol and discard the relays which

satisfied the dynamic optimal combination strategy. This protocol has a high loss

in spectral efficiency due to all relays participating in the communication phase.

2.3 Adaptive Techniques for OFDM Relaying

Systems

The channel fading in broadband wireless communication systems is generally

frequency-selective. The OFDM relaying systems can provide an additional de-

gree of freedom due to the OFDM channel being composed of N sub-channels

with the relay using a half-duplex transmission. The same subcarrier in the first

and second slots experience different fading. Even if the subcarrier experiences

high gain in the first hop, it is possible to experience deep fade in the second
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hop, and vice versa. Under these circumstances resource allocation and subcarrier

pairing may increase efficiency. It has been proven that these techniques provide

substantial improvements to the OFDM relaying systems over frequency-selective

channels. The most important result of this strategy is that the sub-carrier per-

mutation achieves much better performance than adaptive resource allocation.

2.3.1 Resource Allocation (RA)

Power allocation for single-carrier relaying systems and multi-carrier systems have

been intensively investigated to further increase system performance. Prior work

has studied power allocation issues in single-carrier systems to yielded higher

system transmission rates [96–98]. The authors in [96] considered optimal power

allocation algorithms for both AF and DF schemes in order to minimize the

outage probability under overall power constraints. Optimal power allocation to

maximize the system capacity was investigated in [97] for DF protocol, while for

AF relaying scheme in [98] and taking into account direct transmission. These

pioneering works considered either maximizing system capacity, or minimizing

outage probability under power constraint in single-carrier systems. However,

for OFDM systems each subcarrier experiences independent channel fades and

can carry different numbers of bits/symbols, therefore they should be allocated

transmission power levels independently. These optimizations either maximize

the channel capacity which refers to rate adaptive or minimizing the transmission

power refers to margin adaptive. It has been proven that these techniques can en-

hance the performance of the communication networks [25,99–105]. The objective

of the margin adaptive protocol is to minimize overall transmission power under

fixed data rate and fixed target BER constraints [25, 99, 100]. Mathematically,

can be formulated as

PT = Min
N∑
n=1

Pn

Subject to
N∑
n=1

Cn = C

(2.3)
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where PT and Pn are the total transmit power and the power assigns to nthe

sub-carrier respectively. C and Cn denote the overall channel capacity and the

individual throughput in each sub-carrier respectively. In rate adaptive, the ob-

jective is to maximize sum capacity under an aggregate transmit power con-

straint [101,102,106,107].

C = Max
N∑
n=1

Cn

Subject to
N∑
n=1

Pn = PT

(2.4)

The work in [99], and [101] considered a multiuser OFDM in single hop trans-

missions. The authors of [25, 100, 102, 106, 107] investigated OFDM cooperative

systems. Their results shown that the system performance can be substantially

enhanced when the overall power is distributed to the source and relay optimally.

For multi-hop systems, the optimum power allocation was calculated in [108–

113] in order to maximize system capacity for DF-OFDM systems while in [24,

35,114–116], the AF-OFDM systems were considered. Power allocation based on

RA for DF-OFDM relaying system was discussed under individual and global

power constraint in [110]. The quality of the channel parameters of the direct

and indirect links were taken into account and a modified water-filling algorithm

was proposed. However, sub-optimal power allocation may converse to an optimal

solution with some improvements to the system complexity [117]. The closed-form

expression of symbol error rate (SER) expression was derived in [118] for HRS and

the optimum power allocation (OPA) is presented. In order to reduce the overhead

signals in a multi-relay AF-OFDM system, suboptimal power allocation with

and without sub-channel selection were proposed in [119], which are known as

cooperative channel equalization (CCE) and CCE-S, respectively. The substance

of CCE algorithm is to distribute the source power uniformly for the sub-carriers

and the total relay power is set to be equal to all sub-carriers as

Ps,n =
Ps

N

Pn =
PT

N

(2.5)
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where Ps,n and Ps are the transmit power of the nth sub-carrier and the overall

power at the source. Pn and PT are the transmit power at the nth sub-carrier in

all relays and the total power budget for relays, while N is the number of sub-

carriers in the OFDM symbol. Eventually the power assigned to each individual

sub-carrier is distributed optimally between the relays.

2.3.2 Adaptive Bit and Power Allocation

Adaptive bit and power allocation (power allocation (PA) with bit loading (BL))

has been regarded as an efficient way to enhance the system capacity in a coop-

erative wireless network. The main task of the BL algorithm is to assign an ap-

propriate number of bits in each subcarrier taking into account the channel qual-

ities. Adaptive BL utilizes prior knowledge of channel state information (CSI) to

improve the system performance by allocating more bits to sub-carriers that have

higher SNR. Without any loss of generality, each subcarrier has a variable number

of bits which can be achieved by using different modulation schemes. Therefore,

sub-carriers with high channel gains are assigned more bits and employ higher

order modulation schemes, whereas sub-carriers experience deeps fade or lower

channel quality may carry less or zero bits. However, in equal bit loading (EBL),

the modulation scheme is constant over all the sub-carriers in the OFDM symbol.

In single-link OFDM communication systems, ABPA techniques have been

intensively investigated by utilizing a feedback channel. The block diagram of the

OFDM transceiver is illustrated in Figure 2.8. The most important approaches

were water-filling [5, 27–29] and greedy [26, 31] algorithms which have proven

to be the optimal solution for resource allocation. The main objective of these

algorithms is to either maximize system capacity or to minimize system errors

(error and outage probability).

The basic structure of the greedy (successive bit allocation) algorithm is to

initialize the number of bits allocated to all sub-carriers with a zero. Then the

additional transmit power of each sub-carrier is computed and one bit is added

to the subcarrier with the least additional transmit power. The process continues

until the total capacity has satisfied the information rate constraint.
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Figure 2.8: Block diagram of the OFDM transceiver with adaptive resource allo-

cation.

As the result, optimization of resource allocation can enhance the system per-

formance substantially. Another method of bit loading algorithm is based on mode

switching level. This approach selects a suitable modulation scheme for each sub-

carrier based on the predetermined SNR threshold for fixed target (BER). This

can reduce the computational complexity of BL implementation at the source and

decrease the overhead signals. The simply selects the number of bits assigned to

each subcarrier (e.g, 0, 1, 2, 4, 6 and 8). These being no transmission, BPSK and

M-QAM, where M = 2bi as shown in Figure 2.9. However, for relaying transmis-

sion the main question is how to allocate the limited power among the source and

relay and further among all sub-carriers efficiently. Several papers have demon-

strated that combined adaptive modulation with OFDM system can provide a

substantial improvement in the system performance [106,107]. Integrated design

of resource allocation and OFDM relaying gained extensive interest recently. Since

square QAM with gray mapping is an efficient modulation technique and easy to

implements [120].
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Figure 2.9: Bit and power allocation.

2.3.3 Subcarrier Permutation (SP)

In OFDM relaying systems, each time slot is composed of several parallel chan-

nels. Since these channels experience frequency-selective fading, the end-to-end

subcarrier capacity is limited by the worst one. Figure 2.10 illustrates the chan-

nel power gain of the first and second time slot. Thus, the subcarrier capacity

decreases when the source information is retransmitted on the same subcarrier

in the second hop. The issue is resolved by using an additional degree of freedom

provided by OFDM relaying systems that is subcarrier permutation as proposed

in [117]. The underlying concept of subcarrier permutation is that the information

bearing symbol on the ith sub-carrier in the first hop may be retransmitted on

the same or different sub-carrier in the second hop depending on the CSI. In this

work, the authors studied the subcarrier permutation technique for a regenerative
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Figure 2.10: Channel coefficients for the first and second hops.

relay system based on OFDM modulation. The Hungarian algorithm was used for

subcarrier permutation and the water-filling algorithm was used over selected sub-

carrier pair for optimal power allocation. The authors in [36, 60, 108] proposed a

sorted subcarrier pairing algorithm by matching the subcarrier with highest chan-

nel gain at the first slot with the highest one in the second slot which is known as

best to best algorithm (BTB) [121] or ordered subcarrier pairing (OSP). The re-

sults proved that the system capacity is maximized. However, it does not provide

an optimal solution when the direct transmission is available. Therefore, [122]

modified the sorted pairing algorithm by selecting the pairing either ascending-

sorted or descending-sorted depending on the channel conditions of the S-D and

S-R links.

The system capacity of the OFDM based AF multi-relay system with joint

relay selection and subcarrier coupling was investigated in [123–125]. The brute

force search was investigated in [123] while an opportunistic relay protocol with

limited overhead signals was adopted in [125]. Authors in [126] investigated

the symbol error probability of an AF-OFDM relaying network with SP and

variable-gain of the relay over Rayleigh fading channels. They proved that the

system performance can be significantly improved when discarding the worst sub-
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carriers. In [127,128], the authors derived the closed-form expressions of average

end-to-end SNR and throughput for multi-user downlink OFDMA systems us-

ing sub-carrier pairing. In [127] the AF protocol was considered while in [128]

performed the DF protocol. The opposite subcarrier pairing scheme is presented

in [129] by matching the sub-carrier possesses highest SNR in the first hop with

the sub-carrier possesses lowest SNR in the second hop. Following this the closed-

form expressions of BER for BTB and best-to-worse (BTW) subcarrier mapping

were derived in [121] for the uncoded dual-hop OFDM AF relaying system.

Subcarrier pairing performance appears to has only been investigated either

for AF or DF schemes in the literature.

2.3.4 Joint Subcarrier Permutation (SP) and Resource

Allocation

Since resource allocation and subcarrier permutation have been proven to im-

prove the system performance when employed independently, it is no surprise

that a joint power allocation and sub-carrier pairing scheme proposed in [117]

can further improve the system performance. The objective of this paper was to

maximize the transmission rate under an aggregate power constraint of the source

and relay terminals. The authors of [117] studied sub-optimal power allocation

algorithm of an AF-OFDM scheme by evaluating an equivalent channel gain to

perform SP and then using water-filling approach for power allocation. In [35], the

authors investigated the optimal power allocation of an OFDM-based AF relay

system under individual power constraints by dividing the optimization prob-

lem in to two sub-optimal problems at the source and relay nodes. The power

optimization at the source assumed uniform power allocation at the relay and

the power optimization at the relay assumed uniform power allocation at the

source. Then ordered subcarrier pairing was considered to perform the subcarrier

matching. Optimal power allocation with OSP approach for two-hop regenerative

relay system based on OFDM was proposed in [108] with and without diversity

(the destination combines signals from the source and the relay). The authors
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in [130, 131] were proposed joint SP and PA with total system power constraint

while in [132] under individual power constraint by formulating the optimization

problem into a mixed binary integer programming problem. The OSP scheme was

adopted for sub-carrier matching and the water-filling algorithm was considered

for power allocation.The authors in [60] derived an equivalent channel gain model

for each sub-carrier pair and employed water-filling algorithm to optimize the to-

tal power in the first step. Then in the second step, the allocated power over each

sub-carrier pair was partitioned between the source and the relay optimally. The

multi-hop OFDM system was considered using a DF scheme in [104, 133] and

AF and DF protocols with and without diversity were adopted in [60]. In [134]

combined adaptive bit and power allocation (ABPA) with the sub-carrier pair-

ing were investigated in AF-OFDM relaying system. The greedy algorithm and

discrete-rate adaptation were adopted for bit loading technique. The performance

of BER and system throughput were discussed and the authors concluded that

the proposed algorithm obtained an evident improvement compared to conven-

tional fixed modulation. In [135], resource allocation was investigated with and

without sub-carrier pairing for a multi-relay DF-OFDM cooperative network to

minimizing the total transmit power under a target rate constraint. Several bit

loading algorithms were devised by utilizing an equivalent channel gain. The au-

thors in [136] studied multiple relay OFDMA based DF cooperative networks and

decomposed the optimization problem into sub-optimal solutions by using uni-

form PA and an equivalent channel gain for SP approach. The objective was to

maximize the aggregate throughput under joint overall transmission power and

sub-channels occupation constraints, whereas maintaining the maximum fairness

among all relay terminals. They have proven that the maximum capacity of any

sub-carrier when the product of power allocation and channel power gain for both

hops are equal and mathematically can be expressed as,

Ps,k(n)Gs,k(n) = Pr,k(n)Gr,k(n), (2.6)

where Ps,k(n), Gs,k(n) are the power allocation and channel power gain in nth sub-

carrier for kth relay in the first hop and Pr,k(n), Gr,k(n) are the power allocation
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and channel power gain in nth sub-carrier for kth relay in the second hop.

In [24], sub-carrier pairing and resource allocation for downlink transmission

using multi-relay AF-OFDM systems were investigated jointly under separate

power constraints. The authors proposed a suboptimal algorithm by employing

equal power allocation to assist in sub-carrier assignment and then an iterative

water-filling algorithm was executed for power allocation at the source and for all

relays. The authors in [131,137] investigated a joint optimal subcarrier assignment

and power-allocation policy for the multiuser cooperative OFDM AF Multi-Relay

Networks. While single user single DF relay is considered in [138].

To date, most identified research has focussed on resource allocation and sub-

carrier pairing in OFDM cooperative systems by exploiting either AF or DF

approaches. However, there are still several unresolved problems of sub-carrier

permutation and resource allocation in hybrid cooperative relay systems. Most of

the algorithms mentioned above are based on an exhaustive sorting scheme.

2.4 Distributed Space-Frequency Coding (DSFC)

for OFDM Technique

During the last decade, the combination of space time coding (STC) with MIMO

systems has been proposed to provide full spatial diversity and increase the system

capacity. The spatial diversity can be achieved by providing the receiver with

multiple versions of the transmitted signal through independent fading links [1,

2]. In a MIMO system, the transmitter and the receiver are deployed with multiple

antennae to provide different paths. Therefore, the probability of all the links

suffering deep fades is reduced significantly. The space between antennae should

be few wavelengths in order to avoid the interference. However, it should noted

that a requirement of multiple antennae on small size devices such as ad hoc

or sensor is difficult, if not impossible. To cope with this problem, cooperative

diversity (CD) was proposed.

Cooperative communication can provide cooperative diversity by the collab-

oration of multiple single antenna relays. The authors in [4] proposed an efficient
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strategy to achieve CD known as repetition-based when the relays contribute on

orthogonal channels. However, this can reduce the spectral efficiency to a great

extent with high number of relays. Diverse strategies have been investigated to

improve the spectral efficiency, such as cooperative beamforming [139], relay se-

lection and distributed space time codes [14]. Among these strategies DSTCs

is powerful technique due to it being able to provide full rate transmission in

addition to high throughput. The main conclusion of [14] was that the spatial

diversity is equal to the available relays in the system not just the number of

decoding relays. The outage capacity in a high-SNR regime was analyzed. The

authors in [140] derived the pairwise error probability (PEP) for DSTC using a

single relay AF mode, while in [141] a large number of relays were considered. The

construction of DSTC in [142] has been done by exploiting the broadcast nature of

the wireless communication and the optimal maximum likelihood (ML) decoder

was proposed. The authors in [143] considered a time-reversal STC for multi-hop

cooperative AF and DF relaying communications to achieve spatial diversity over

flat and frequency-selective fading channels. In order to exploit DSTC, each AF

relay node in the system encodes the received signal from the previous hop and

then forwards it to the next hop. Jing and Hassibi [144] derived diversity and

coding gains for multiple DF relay utilizing linear dispersion (LD) space-time

code. In [145], the STC has been done at the source by dividing the encoded data

into two consecutive vectors, each of them N symbols in length. Then at each

relay node, the received vector is multiplied by a unique signature vector. The

symbol error rate (SER) was derived for a non-orthogonal AF (NAF) scheme. The

authors in [146] investigated opportunistic DSTC (O-DSTC) with full and half

duplex mode. The system cooperative diversity considered that consisted of two

users using DF scheme, collaborating with each other in transmitting their data

to the same receiver. An incremental relaying strategy based on DF scheme in

conjunction with DSTC was investigated in [147] and the closed-form of PEP was

derived. All the aforementioned techniques were considered narrowband applica-

tions (systems) where the channels experience flat-fading.

In broadband systems, combined STC trellis with MIMO-OFDM systems were
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first explored in [148] over quasi-static broadband channels while [149] takes into

consideration the high doppler spread and interleaving across the OFDM sub-

carriers. Then STBC based Alamoti was considered into MIMO-OFDM system

in [150–153]. The prior work all used coding in time domain so an alternatives

the coding being done in frequency domain. The so-called space-frequency code

(SFC) investigated in [154–156]. The authors in [157] improved the STF-OFDM

system by dividing the OFDM sub-carriers into groups, then employed linear

constellation precoding. In [3], the authors considered a STF code to achieved

higher diversity gain over MIMO frequency-selective block-fading channels. This

was extended in [158] by applying space-time, space-frequency and space-time-

frequency (STF) coding. They showed that the ST-coded OFDM cannot achieve

multi-path diversity while SF and STF-coded OFDM can achieve the maximum

diversity and full rate over multipath fading channels, at the expense of a high de-

coding complexity. The previous works have deployed co-located antennas in the

terminals to construct MIMO systems over frequency-selective channels, which

are difficult to place in the design of small mobile nodes.

Recently, cooperative OFDM systems have received considerable attention for

high data rates systems. Distributed OFDM-STBC based on DF mode has been

first introduced in [142] by utilizing a single relay and two consecutive OFDM

symbols. The source broadcasts the data to the source and destination in the

first time slot, then both nodes (source and relay) use a precoded matrix and

forward their information to the destination simultaneously. Later, Hakam and

Mural [159] investigated the PEP performance of D-OFDM-STBC using an AF

single relay which ignored the broadcast nature of wireless transmissions in the

first time slot.

Combinations of DSTC with OFDM have been proposed as a way to combat

timing errors, [160] assuming multiple perfect DF schemes. Whereas in [161], the

authors considered the same scheme to combat both timing errors and frequency

offsets for asynchronous communications with a dual fixed DF protocol. The

authors in [162] proposed space time code by employing OFDM at the source

node and the relay composed of time reversal and complex conjugate. The authors
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in [163, 164], demonstrated that full frequency and cooperative diversity as well

as full rate transmission can be achieved using DSFC approach. In [163] both

erroneous DF and AF protocols are considered for synchronous systems. For

the DF scheme, each relay in decoding set forwards the coded symbol to the

destination. In the AF protocol, the source data is divided into subblocks, each

of which is transmitted by individual relay with a different encoder. Then the

relays normalized the received signal on each sub-carrier and assigned null to the

rest of sub-carriers. In [164], the multiple AF relay protocol was applied and a

circular shift was employed at the relays to form SF codes. They showed that the

proposed scheme can achieve a diversity gain of min(ML1,ML2), where M is the

number of relay terminals, and L1 and L2 are the number of taps of the S-R and

R-D multipath channels, respectively. The authors in [165,166] propose a DSFC

scheme to achieve both spatial and multi-path diversity based on erroneous DF

relay protocols.

2.5 3D Video Transmission in Wireless Networks

Recently, the communication technologies have received a great development in

hardware and software which result in substantial enhancements of bandwidth

and reliability. The end user can deliver a high data rate applications with rea-

sonable quality of service. Three dimensional video transmission has been gaining

attention in wireless systems over different types of channels due to its emergence

in new communication technologies. 3D transmission over wireless channels has

been suffered from several issues such as the appropriate coding technique, error

resilience, display factors etc [167]. The quality of the received signal at the display

side can be severely degraded when transmitted over broadband channel. This

requires efficient techniques in both application and physical layers to make 3D

video transmission reliable in inherently noisy error-prone environments.

Error-resilience is one of the most popular technology to overcome the short-

falls of 3D video transmission. In addition, 3D video sequence can be partitioned

into different fractions according to the relative importance of the data and visa
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verse. Unequal error protection (UEP) is one of the most popular kind of error-

resilience uses in 3D video transmission where assign high protection level for a

high-priority sequence and low-priority. It takes an important consideration in

high data rate application systems due to provides different level of protection

for data according to the system requirements.

Various strategies to realize the UEP have been investigated that implemented

at the transmitter such as Forward Error Correction (FEC) [44,167], Hierarchical

Modulation (HM) [6,168] and MIMO Systems [6,7,41,42]. There has been a con-

siderable research activity for multimedia transmission over MIMO system due to

provides spatial diversity. The systems in [41–43,169] treated frequency-flat fading

channels while in [6–8], frequency-selective channels were considered. However,

this techniques introduce more overhead signals to the encoded bit-stream result

in the loss in bandwidth efficiency or increase the system complexity especially

for small terminals. Recently, a new kind of UEP knows as cooperative commu-

nication systems exhibits the spatial diversity [50,51,170–173]. In this technique,

the relay with good channel power gain retransmits the most important coded

data and low protection data retransmits with low channel gain. In the following,

briefly addressed this techniques. However the single-carrier system is consid-

ered. It is clearly notice from the literature that the UEP has received much less

attention in cooperative networks in broadband wireless channels. As a result,

the 3D video transmission over OFDM-based relay system is an open issues.

2.6 Conclusion

This chapter is dedicated to reviewing the existing works on the cooperative-

OFDM systems and its application in multimedia transmission. Various types

of relaying protocols were reviewed. The important techniques that can imple-

mented efficiently in the OFDM systems including: resource allocation and adap-

tive bit and bower allocation. These techniques also can be used in OFDM-based

cooperative network to further enhance the system performance. Some specific

techniques where only employed in OFDM relaying system including: sub-carrier
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pairing and distributed space time block code were addressed. Finally, the major

3D video coding techniques and standards in the literature were discussed.



Chapter 3

Selective OFDM Relaying

3.1 Introduction

Recently, the use of high data rate applications has increased rapidly in ad hoc

and infrastructure-based wireless networks. The main obstacles in these networks

are interference, channel attenuation and fading caused by negative impacts of

multi-path signals on the received signal. OFDM-based cooperative systems can

provide higher data rates and mitigate the effect of fading as well as achieve spa-

tial diversity. Moreover, spectral efficiency can be improved by exploiting relay

selection algorithms which have been widely studied in the literature [4,10,62]. In

this chapter selective OFDM, selective OFDMA, and selective block-OFDM re-

laying protocols are presented and discussed. As a tradeoff between complexity

and diversity gain a new relaying protocol, unequal block OFDM using amplify-

and-forward (AF) relay is proposed.

The contributions of this chapter are two-fold:

• Propose the unequal block-OFDM relaying protocol that can represent the

unique solution of the selective OFDM relaying.

• The closed-form and upper bound expressions of outage probability for se-

lective unequal block-OFDM relaying over frequency selective Rayleigh fad-

ing channels is tackled and the comparison results with the other protocols

are summarized, taking into consideration the broadcast nature.
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Two cases are studied in this chapter. First of all, when the destination not able

to receive the source signal directly due to the obstacles or distance between both

terminals. Finally, the direct transmission is existing to exhibit the broadcast

nature advantages.

The rest of this chapter is organized as follows. Motivation and related works

are discussed in Section 3.2. In section 3.3, the system model is discussed. Section

3.4 reviews the outage probability analysis of existing protocols and proposed

protocol. Numerical and simulation results are presented in section 3.5. Section

3.6 concludes the chapter.

3.2 Motivation and Related Work

The design and analysis of selective OFDM in cooperative communications have

recently attracted considerable attention in broadband transmission. In general,

there are two main strategies for selective OFDM relaying. The first strategy is

to select the single best relay for all OFDM sub-carriers, referred to as selective

OFDM relaying “all-subcarrier basis” [69,174]. The second strategy is to select a

single relay for each sub-carrier, which is well known as selective OFDMA relaying

“per-subcarrier basis” [70]. In [69] and [70], the authors studied these protocols

for dual-hop and multi-hop systems respectively, based on the DF relaying pro-

tocol. It is shown that selective OFDMA yields much better performance than

the selective OFDM at the cost of system complexity. The outage probability

performance of these two OFDM relaying strategies using the AF protocol was

analyzed in [62]. The authors in [175] investigated the outage probability per-

formance of joint optimal power allocation and relay selection for AF and DF

relay protocols using equal bit allocation at source and relay nodes. In frequency-

selective channels, different sub-carriers may experience different level of fad-

ing. Data transmitted on the sub-carriers which experience deep fade will have a

high probability of being lost at the destination. The main shortcoming of selec-

tive OFDM is the difficulty in finding the relay which has an uncorrupted signal

over all of the sub-carriers. Selective OFDMA offers high performance. However,
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Figure 3.1: System model of selective OFDM relaying.

because it uses a single relay per sub-carrier, it become practically impossible to

locate a relay for each of the sub-carriers when the OFDM symbol consists of a

large number of sub-carriers. The authors in [176, 177] proposed a block-based

OFDM over DF relay system to overcome this problem. The underlying concept

of this protocol is that an OFDM symbol is divided into blocks and each block is

transmitted independently over a single relay. Each relay uses the same number

of sub-carriers. In practice, due to load balancing, the available sub-carriers with

high channel condition at each relay might be unequal. In this case, each relay

selects a block which has different number of sub-carriers.

3.3 System Model

The system considered here is illustrated in Figure 3.1. It consists of a single

source (S), single destination (D), and M relay terminals Ri, i = 1, 2, ...,M . Each

node in the system is assumed to be equipped with a single antenna, and use half-

duplex transmission. Perfect time and frequency synchronization are considered

at each node. The source broadcasts an OFDM symbol with N sub-carriers to

destination through M relay nodes. The channel is assumed to be slow fading

frequency-selective between any two nodes in the network. Therefore, acquiring

the channel parameters at the destination are relatively simple. The relay selec-

tion process and subcarrier allocation are conducted at the beginning of each
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transmitted block by sending a preamble symbol to the relay nodes and des-

tination from the source as proposed in [19, 178]. The relay nodes convey the

received signal from the source to the destination. The destination can compute

the individual end-to-end SNR for all links of relay nodes in the network. Then it

selects the sub-carriers that has the maximum SNR among {γ1,n, ....γM,n}, where

n ∈ {N}. The destination sends a feedback signal in the safety channel that

instructs the selected relays with its corresponding block of sub-carriers to par-

ticipate in the communication protocol.

The channel fading gains between the source-relays and relays-destination for

each subcarrier are denoted as hsri,n and hrid,n respectively, where i = 1, 2, ...,M, n =

1, 2, ..., N . These channels are independent and the power gains follow exponen-

tial random variables. The communications time is divided equally between the

source and the relay according to half-duplex transmission, thus there are two

time slots. In the first time slot, the source broadcasts the information-bearing

symbols to the relay nodes. The received signals of the ith relay on the nth

subcarrier can be written as

ysri,n =
√

Ps,nhsri,nx(n) + wri , (i = 1, 2, .....,M) (3.1)

where Ps,n is the amount of power allocated to subcarrier n and the total source

power is Ps =
∑N

n=1 Ps,n, and x(n) and wri are a unit energy symbol to be trans-

mitted from the source and additive white Gaussian noise (AWGN). In the second

time slot, the relay simply amplifies the received noisy signal by an amplification

factor βi,n and forwards it to the destination [179]. The amplification factor for

each sub-carrier that satisfies the power constraints is E(|xri(n)|2) ≤ Pri and it

can be expressed as

βi,n =

√
Pri,n

|hsri,n|2Ps,n + σ2
r

, (3.2)

where Pri,n is the transmitted power of the nth subcarrier for the ith relay node

and σ2
r denotes the variance of AWGN at the relay node. The received signal at

the destination from the ith relay node for nth subcarrier can be denoted as

yrid,n = βi,nhrid,nysri,n + wd

= βi,nhrid,n(
√

Psri,nhsri,nx(n) + wri) + wd

(3.3)
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where wd is the AWGN at the destination. The instantaneous SNR at the desti-

nation of the ith relay on the nth subcarrier can be evaluated as

γi,n =
|βi,n

√
Ps,nhsri,nhrdi,n|2

|βi,nhrdi,nwr + wd|2

=

Ps,n|hsri,n|2
σ2
r

Pri,n|hrdi,n|2
σ2
d

Ps,n|hsri,n|2
σ2
r

+
Pri,n|hrdi,n|2

σ2
d

+ 1

=
γsri,nγrdi,n

γsri,n + γrdi,n + 1
,

(3.4)

where γsri,n and γrid,n are the instantaneous SNR for S-R, R-D links for the nth

subcarrier respectively and can be defined by

γsri,n =
Ps,n | hsri,n |2

σ2
r

= γ̄ | hsri,n |2

γrid,n =
Pri,n | hridi,n |2

σ2
d

= γ̄ | hridi,n |2,
(3.5)

where γ̄ is the average SNR. From all the relays located between the source and

destination, the destination selects the best relay(s) with suitable sub-carriers

according to the selective protocol.

3.4 Outage Probability Analysis

In wireless communication systems an essential performance measure is the out-

age probability. Before evaluating the outage probability of the proposed scheme,

the end-to-end outage performance of selective OFDM, selective OFDMA and

selective block-OFDM schemes are analyzed. Each OFDM symbol consists of N

sub-carriers which can represent N independent source to destination links. In

order to simplifies the following analysis, the end-to-end analysis of single sub-

carrier will study. Then the system performance is analyzed when the direct link

is assumed to be absent due to either the long distance between the source and

the destination or high shadowing caused by obstacles. In equal bit loading, the

data is divided uniformly across all sub-carriers so that each sub-carrier has the

same number of bits. Therefore, the relay is in outage if any of sub-carriers has

a rate below the target rate (r) where r = total data/N . Thereafter, the direct
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link is taken into account in order to improve the diversity gain by exploiting the

broadcast nature of communication networks.

3.4.1 Outage Probability of End-to-end Single Sub-carrier

The outage probability is defined as the probability that the channel mutual in-

formation (I) between the source and destination for the nth sub-carrier in the

ith relay falls below a predefined threshold value γout. The mutual information

depends on the amount of the channel state information available at the desti-

nation and as a result of the end-to-end signal to noise ratio (SNR). The mutual

information of any subcarrier in ith relay between the source and destination can

be expressed as

Ii,n =
1

2
log2(1 + γi,n), (3.6)

where 1
2

factor indicates that the data transmitting requires two time slots (or

orthogonal channels). Ii,n denotes the maximum mutual information in a particu-

lar information transmission procedure for nthe sub-carrier in i relay. The outage

probability can be represented mathematically as

Pout = Pr(I < r) = Pr(
1

2
log2(1 + γi,n) < r) = Pr(γi,n < 22r − 1), (3.7)

where γout = 22r − 1, r is the target rate of each subcarrier.

The outage probability formula in (3.7) is actually corresponding to the cumu-

lative density function of γi,n evaluated at 22r − 1. The CDF Fγi,n of γi,n can be

derived as [180]

Fγi,n(γ) = Pr(γi,n ≤ γ) = Pr(
γsri,nγrid,n

γsri,n + γrid,n + 1
≤ γ)

=

∫ ∞
0

Pr(
γsri,ny

γsri,n + y + 1
≤ γ)fγrid,n(y)dy

=

∫ γ

0

Pr(γsri,n >
γy + γ

y − γ
)fγrid,n(y)dy

+

∫ ∞
γ

Pr(γsri,n ≤
γy + γ

y − γ
)fγrid,n(y)dy

(3.8)

The value of Pr(γsri,n > γy+γ
y−γ ) = 1, Pr(γsri,n ≤

γy+γ
y−γ ) = 1 − e

− γy+γ
γ̄sri,n(y−γ) and

fγrid,n(y) = 1
γ̄rid,n

e
− y
γ̄rid,n . Then substituting in (3.7), the Fγi,n(γ) can be rewritten
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as

Fγi,n(γ) =

∫ γ

0

1

γ̄rid,n
e
− y
γ̄rid,n dy +

∫ ∞
γ

(1− e−
γy+γ

γ̄sri,n(y−γ) )
1

γ̄rid,n
e
− y
γ̄rid,n dy

=

∫ γ

0

1

γ̄rid,n
e
− y
γ̄rid,n dy +

∫ ∞
γ

1

γ̄rid,n
e
− y
γ̄rid,n dy

− 1

γ̄rid,n

∫ ∞
γ

(e
− γy+γ
γ̄sri,n(y−γ) )e

− y
γ̄rid,n dy

= 1− 1

γ̄rid,n

∫ ∞
γ

(e
− γy+γ
γ̄sri,n(y−γ) )e

− y
γ̄rid,n dy

(3.9)

letting z = y − γ, the CDF of γi can be rewritten as

Fγi,n(γ) = 1− 1

γ̄rid,n

∫ ∞
0

e
γ(z+γ+1)
γ̄sri z e

− 1
γ̄rid,n

(z+γ)
dz

= 1− 1

γ̄rid,n
e
−γ
(

1
γ̄sri,n

+ 1
γ̄rid,n

) ∫ ∞
0

e
−
(

(γ2+γ)
γ̄sri,nz

+ 1
γ̄rid,n

z

)
dz

= 1− 2

√
(γ2 + γ)

γ̄sri,nγ̄rid,n
e
−γ
(

1
γ̄sri

+ 1
γ̄rid,n

)
×K1

(
2

√
(γ2 + γ)

γ̄sri γ̄rid

) (3.10)

where K1 is the first order modified bessel function of the second kind. The

approximation value of Fγi,n(γ) represents the upper bound and can be expressed

by using the approximation K1(x) ≈ 1
x

[181] Eq. [9.6.9] as

Fγi,n(γ) = 1− e
−γ
(

1
γ̄sri,n

+ 1
γ̄rid,n

)

= 1− e−
γ

γ̄i,eq

(3.11)

where 1
γ̄i,eq

= 1
γsri,n

+ 1
γrid,n

. Therefore, the approximate of the PDF which is the

derivative of the CDF with respect to γ and can be evaluated as

fγi,n(γ) =
1

γ̄i,eq
e
− γ
γ̄i,eq . (3.12)

This approximate form can be used to calculate the protocol performance and it

is further assumed that all the channel coefficients of the sub-carriers are inde-

pendent. In the rest of this chapter, two transmission schemes are considered :

without diversity (absent direct link) and with diversity (the direct link is avail-

able).

3.4.2 Selective OFDM

In this scheme the destination selects the relay that has maximum end-to-end

SNR and broadcasts the index of the selected relay to all the relays by a feedback
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Figure 3.2: Frame structure of selective OFDM relaying where i ∈ {1, · · · ,M} and

the selected relay forwards the entire sub-carriers of the OFDM symbol.

channel. Then, the selected relay retransmits the entire OFDM symbol received

from the source to the destination in the second time interval. The frame struc-

ture of selective OFDM is illustrated in Figure 3.2. The received SNR at the

destination node can be expressed as

γS = max
i=1,..M

{γri,n}Nn=1. (3.13)

The end-to-end outage probability of selective OFDM relaying is given by

POFDM
out (γout) =

M∏
i=1

POFDM
out,ri

(γout), (3.14)

where POFDM
out,ri

is the outage probability of the ith relay.

Since the relay conveys the entire OFDM symbol to the destination, it is in a

state of outage if any subcarrier is in outage.Therefore, the outage probability of

the ith relay can be written as [69]

POFDM
out,ri

(γout) = 1− Pr(γri,1 > γri,2 > ... > γri,N > γout)

= 1−
N∏
n=1

(1− Pri,n(γout)) .
(3.15)

where Pri,n is the outage probability of the nth sub-carrier in the ith relay, which

is equivalent to the CDF evaluated in (3.11) after substituting γ = γout.

By substituting (3.11) into (3.15), the outage probability of the ith relay can

be rewritten as

POFDM
out,ri

(γout) = 1−
N∏
n=1

(
1−

(
1− e−

γout
γ̄i,n,eq

))
= 1− e−N

γout
γ̄i,n,eq , (3.16)
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The overall system outage probability can be expressed by substituting (3.16)

into (3.14) as

POFDM
out (γout) =

(
1− e−N

γout
γ̄i,n,eq

)M
. (3.17)

From (3.17), the full diversity order (M-fold) can be achieved, which is represented

by the number of relays in the network. However, the gain is drastically affected

by the number of sub-carriers N .

When the direct link is available, the destination combines the SNRs from the

direct link and the best relay for each sub-carrier by using MRC. Therefore, the

relay is in outage if the received signal from the relay and source after combining

of any sub-carrier is in outage. The end-to-end SNR at the destination can be

written as

γS = max
i=1,..M

{γsd,n + γri,n}Nn=1 (3.18)

The probability of two random variables with convolution formula of probability

density function can be evaluated as

Pr(x+ y < u) =

∫ u

0

[∫ u−x

0

fy(y)dy

]
fx(x)dx

=

∫ u

0

Fy(u− x)fx(x)dx =

∫ u

0

Pr(y < u− x)fx(x)dx

(3.19)

Since the sub-carriers are independent, the end-to-end outage probability can be

given as

POFDM1
out (γout) = 1−

N∏
n=1

(
1− Pr

(
max
i=1,..M

(γsd,n + γri,n) < γout

))

= 1−
N∏
n=1

(
1− Pr

(
α0 + max

i=1,..M

γαiβi
γαi + γβi + 1

<
22r − 1

γ

))

= 1−
N∏
n=1

(
1−

∫ γout

0

Pr

(
max
i=1,..M

γαiβi
γαi + γβi + 1

< γout − α0

)
1

γ̄sd,n
e
− x
γ̄sd,n dα0

)
(3.20)
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Let γoutz = γout − α0 =⇒ α0 = γout(1− z), dα0 = −γoutdz

POFDM1
out (γout)

= 1−
N∏
n=1

(
1−

∫ 1

0

M∏
i=1

Pr

(
γαiβi

γαi + γβi + 1
< γoutz

)
γth
γ̄sd,n

e
− γout(1−z)

γ̄sd,n dz

)

= 1−
N∏
n=1

1−
∫ 1

0

M∏
i=1

Pr
(

γαiβi
γαi+γβi+1

< γoutz
)

γoutz

 (γout)
(M+1)

γ̄sd,n
zMe

− γout(1−z)
γ̄sd,n dz


(3.21)

For high SNR values, lim
γ−→∞

e
− γout(1−z)

γ̄sd,n = 1 and
∫ 1

0
zMdz = 1

M+1
. By using Lemma

1 of [4], The upper bound can be evaluated as

lim sup
γout−→0

Pr
(

γαiβi
γαi+γβi+1

< γoutz
)

(γoutz)M
≤

M∏
i=1

(
1

γ̄sri,n
+

1

γ̄rid,n
) (3.22)

The upper bound can be obtained as

POFDM1
UBout (γout) = 1−

N∏
n=1

(
1− (γout)

(M+1)

γ̄sd,n(M + 1)

M∏
i=1

(
1

γ̄sri,n
+

1

γ̄rid,n

))
(3.23)

It can be seen from (3.23) that the diversity order is (M+1)-fold and outperforms

the diversity obtained in (3.17) because the system exhibits direct transmission

that enhances the diversity order.

3.4.3 Selective OFDMA

In this scheme, each relay in the system selects a single subcarrier, which has the

maximum SNR as illustrated in Figure 3.3.The received SNR at the destination

is given by

γS =

{(
max
n=1,..N

γri,n

)}M
i=1

. (3.24)

The relay is in outage when all sub-carriers are in outage. Therefore, the

average outage probability can be written as

POFDMA
out (γout) = 1−

N∏
n=1

(
1− POFDMA

n (γout)
)
, (3.25)
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Figure 3.3: Frame structure of selective OFDMA relaying where i ∈ {1, · · · ,M}.

where POFDMA
n (γout) is the outage probability of the nth subcarrier, which is

equivalent to the CDF of a selective relay in M multiple nodes and can be given

as

POFDMA
out (n) = Pr

(
max
i=1,..M

(γi,1, ....., γi,N) < γout

)
=

M∏
i=1

(
Fγi,n(γout)

)
=

M∏
i=1

(
1− e−

γout
γ̄i,n,eq

)
.

(3.26)

Finally, by substituting (3.26) into (3.25), the overall outage probability can be

obtained as

POFDMA
out (γout) = 1−

N∏
n=1

(
1−

M∏
i=1

(
1− e−

γout
γ̄i,n,eq

))

= 1−

(
1−

M∏
i=1

(
1− e−

γout
γ̄i,n,eq

))N

= 1−
(

1−
(

1− e−
γout
γ̄i,n,eq

)M)N
.

(3.27)

It can also be seen from (3.27) that the diversity gain depends on the number of

sub-carriers in the OFDM symbol and the relay nodes.

When the direct link is exists, the destination combines the SNRs from the

direct link and the best sub-carrier in each relay by using MRC. Therefore the

relay is in outage if the received signal from the relay and source after the com-

bining of any sub-carrier is in outage. The end-to-end SNR at the destination can
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be written as

γS =

{(
γsd,n + max

n=1,..N
γri,n

)}M
i=1

. (3.28)

Similarly as in selective OFDM relaying, the end-to-end outage probability can

be given as

POFDMA1
out (γout) = 1−

M∏
i=1

(
1− Pr

(
γsd,n + max

n=1,..N
γri,n < γout

))

= 1−
M∏
i=1

(
1− Pr

(
α0 + max

n=1,..N

γαiβi
γαi + γβi + 1

<
22r − 1

γ

))

= 1−
M∏
i=1

(
1−

∫ γout

0

Pr

(
max
n=1,..N

γαiβi
γαi + γβi + 1

< γout − α0

)
1

γ̄sd,n
e
− x
γ̄sd,n dα0

)
(3.29)

and the upper bound can be obtained as

POFDMA1
UBout (γout) = 1−

M∏
i=1

(
1− (γout)

(N+1)

γ̄sd,n(N + 1)

N∏
n=1

(
1

γ̄sri,n
+

1

γ̄rid,n

))
(3.30)

It is also observed that the diversity order presented in (3.30) equal to (M+1) due

to the number of relays M in the selective OFDMA is the same as the number

of sub-carriers N .

3.4.4 Selective Block-OFDM Relaying

In this scheme, each relay selects a single block of sub-carriers as shown in Figure

3.4 and is performed independently for each block, Therefore, the overall system

is in outage if any block is in outage. The overall received SNR at the destination

can be given as

γS = max
b=1,..B

{
{γri,n}

N
n=1,.,Nb

}B
b=1

. (3.31)

The outage probability of selective block-OFDM can be given as in [176]

PBlock
out (γout) = 1−

B∏
b=1

(
1− PBlock

out,b (γout)
)
, (3.32)

where B is the number of blocks and PBlock
out,b (γout) is the end-to-end outage prob-

ability of block b, since each relay independently selects the single block which
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Figure 3.4: Frame structure of selective block OFDM relaying where i ∈

{1, · · · ,M}.

has the maximum SNR. Thus, PBlock
out,b (γout) can be expressed as

PBlock
out,b (γout) =

M∏
i=1

PBlock,b
out (γout), (3.33)

where PBlock,b
out (γout) is the outage probability of block b. Each block consists of

Nb of sub-carriers
(
Nb = N

B

)
and the relay retransmits the information to the

destination in the second time interval. Therefore the block (relay) is in outage

if any subcarrier in block b is in outage. The outage probability of block b can

be evaluated as

PBlock,b
out (γout) = 1−

Nb∏
n=1

(1− Pr(γi,n < γout))

= 1−
Nb∏
n=1

(
1− Fγi,n(γout)

)
= 1−

Nb∏
n=1

(
1−

(
1− e−

γout
γ̄i,n,eq

))
= 1− e−Nb

γout
γ̄i,n,eq .

(3.34)

Substituting (3.34) into (3.33) the probability of PBlock
out,b (γout) can be rewritten as

PBlock
out,b (γout) =

M∏
i=1

(
1− e−Nb

γout
γ̄i,n,eq

)
. (3.35)

Substituting (3.35) into (3.32), the expression for PBlock
out (γout) can be obtained as
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PBlock
out (γout) = 1−

B∏
b=1

(
1−

M∏
i=1

(
1− e−Nb

γout
γ̄eq

))

= 1−

(
1−

M∏
i=1

(
1−

(
e
−Nb

γout
γ̄i,n,eq

)))B

.

(3.36)

It can also be seen from (3.36) that the diversity gain depends on the number of

blocks and relay nodes.

Following the same procedure in the previous subsections, in the case of the

direct transmission being available, the end-to-end SNR at the destination can

be written as

γS = max
b=1,..B

{
{(γsd,n + γri,n)}Nn=1,.,Nb

}B
b=1

. (3.37)

The destination selects the best group of sub-carriers from each relay in the

network, then combines with the direct link. Therefore, the system is in outage

when any sub-carrier in the network is in outage. Mathematically this can be

expressed as

PBOFDM1
out (γout) = 1−

B∏
b=1

[
1−

Nb∏
n=1

(
1− Pr

(
γsd,n + max

i=1,..M
γri,n < γout

))]

= 1−
B∏
b=1

[
1−

Nb∏
n=1

(
1− Pr

(
α0 + max

i=1,..M

γαiβi
γαi + γβi + 1

<
22r − 1

γ

))]

= 1−
B∏
b=1

×

[
1−

Nb∏
n=1

(
1−

∫ γth

0

Pr

(
max
i=1,..M

γαiβi
γαi + γβi + 1

< γout − α0

)
e
− x
γ̄sd,n

γ̄sd,n
dα0

)]
.

(3.38)

The upper bound can be obtained as

POFDM2
UBout (γout) = 1−

B∏
b=1

[
1−

Nb∏
n=1

(
1− (γth)

(M+1)

γ̄sd,n(M + 1)

M∏
i=1

(
1

γ̄sri,n
+

1

γ̄rid,n

))]
.

(3.39)

3.4.5 Selective Unequal Block-OFDM Relaying

In this scheme, the overall number of sub-carriers are divided into several groups

(B) where each group has a different number of sub-carriers as shown in Figure
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Subcarrier N-1
Subcarrier N

Figure 3.5: Frame structure of selective Unequal block OFDM relaying where

i ∈ {1, · · · ,M}.

3.5. Thus, the overall system is in outage if any sub-carrier in any block is in

outage. The end-to-end SNR at the destination can be expressed as

γS = max
j=1,..B

{
{γri,n}

N
n=1,.,Nbj

}B
j=1

. (3.40)

The outage probability of this protocol can be evaluated as

PUblock
out (γout) = 1−

(
1− PUblock

out,b1
(γout)

) (
1− PUblock

out,b2
(γout)

)
× ....

×
(
1− PUblock

out,bB
(γout)

)
,

(3.41)

where B is the number of blocks and PUblock
out,bj

(γout) j = 1, .., B is the end-to-end

outage probability of each block bj. Since each relay selects the individual block

which has maximum SNR, the PUblock
out,bj

(γout) can be written as

PUblock
out,bj

(γout) =
M∏
j=1

P
Ublock,bj
out (γout) j = 1, ..., B. (3.42)

where P
Ublock,bj
out (γout) is the outage probability of jth block. Each block consist of

a different number of sub-carriers Nblockj j = 1, ..., B, where

(Nb1 +Nb2 + ...+NbB = N). Therefore, the jth block is in outage if any subcar-

rier in jth block is in outage. The outage probability of jth block can be evaluated



50 Selective OFDM Relaying

as

P
Ublock,bj
out (γout) = 1−

Nbj∏
n=1

(1− Pr(γi,n < γout)) j = 1, .., B

= 1−
Nbj∏
n=1

(
1− Fγi,n(γout

)
= 1−

Nbj∏
n=1

(
1−

(
1− e−

γout
γ̄i,n,eq

))
= 1− e−Nbj

γout
γ̄i,n,eq .

(3.43)

Substituting (3.43) into (3.42) gives

PUblock
out (bj) =

M∏
i=1

(
1− e−Nbj

γth
γ̄i,n,eq

)
j = 1, .., B. (3.44)

Finally by substituting (3.44) into (3.41), the outage probability can be expressed

as

PUblock
out (γout) = 1−

(
1−

M∏
i=1

(
1− e−Nb1

γout
γ̄i,n,eq

))(
1−

M∏
i=1

(
1− e−Nb2

γout
γ̄i,n,eq

))
...

×

(
1−

M∏
i=1

(
1− e−NbB

γout
γ̄i,n,eq

))
,

(3.45)

when b1 = b2 = ... = bB and Nb1 = Nb2 = ... = NbB = Nb and substituting into

(3.45) results in:

PUblock
out (γout) = 1−

(
1−

M∏
i=1

(
1− e−Nb

γout
γ̄i,n,eq

))(
1−

M∏
i=1

(
1− e−Nb

γout
γ̄i,n,eq

))
...

×

(
1−

M∏
i=1

(
1− e−Nb

γout
γ̄i,n,eq

))

= 1−

(
1−

M∏
i=1

(
1− e−Nb

γout
γ̄i,n,eq

))B

.

(3.46)

It is observed that (3.46) is completely identical to (3.17), (3.27) and (3.36), which

means that selective block-OFDM is a special case from selective unequal block-

OFDM.
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Following the same analysis for selective block OFDM relaying with direct

transmission, the overall outage probability of unequal block OFDM relaying

can be evaluated. The end-to-end SNR at the destination when the direct link

presents between the source and the destination can be written as

γS = max
j=1,..B

{
{(γsd,n + γri,n)}Nn=1,.,Nbj

}B
j=1

. (3.47)

Similarly as in Selective Block-OFDM Relaying, the system is in outage when

any sub-carrier in the network is in outage and can be written as

PUBOFDM1
out (γout) = 1−

1−
Nb1∏
n=1

(
1− Pr

(
γsd,n + max

i=1,..M
γri,n < γout

))
×

1−
Nb2∏
n=1

(
1− Pr

(
γsd,n + max

i=1,..M
γri,n < γout

))
× ...

×

1−
NbB∏
n=1

(
1− Pr

(
γsd,n + max

i=1,..M
γri,n < γout

)) ,

(3.48)

The upper bound can be obtained as

POFDM2
UBout (γ) = 1−

1−
Nb1∏
n=1

(
1− (γth)

(M+1)

γ̄sd,n(M + 1)

M∏
i=1

(
1

γ̄sri,n
+

1

γ̄rid,n

))
× ...

×

1−
NbB∏
n=1

(
1− (γout)

(M+1)

γ̄sd,n(M + 1)

M∏
i=1

(
1

γ̄sri,n
+

1

γ̄rid,n

)) .
(3.49)

It can be seen that the diversity order obtained from selective OFDMA as de-

picted in (3.36) is much higher than that obtained from other protocols due to its

dependence on the number of relays and sub-carriers in OFDM symbol. In addi-

tion, (3.49) represents a unified equation of outage probability for all protocols.

3.5 Results and discussions

In this section, the numerical and simulation results of the outage probability

for the proposed selective-OFDM system is presented and compared with con-

ventional systems. The number of sub-carriers in each OFDM symbol is 16 and
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Table 3.1: Scenarios for Sub-carriers Distribution

Number of sub-carriers

block 1 block 2 block 3 block 4

Scenario 1 1 1 1 rest of sub-carriers

Scenario 2 3 3 5 5

Scenario 4 4 4 4 4

the target rate transmitted by each subcarrier is configured to 1 bps/Hz. The

path-loss exponent is assumed to be set to 4. The channel is assumed to be block

fading channel (slow fading). The Monte Carlo simulation results are validated

with analytical results. In order to understand the behavior of system performance

against the distribution of the sub-carriers in each block of ith relay. The number

of blocks are assumed to be four and three scenarios for sub-carrier distribution

considered as shown in table Table 3.1.

Figures 3.6 and 3.7 show the outage performance of present protocols for

different values of the system SNR with M=10, B=4 and N=16 without and

with direct transmission. The analytical results of the outage probability are

achieved using (3.17), (3.27), (3.36) and (3.46) for the direct transmission and

(3.23), (3.30), (3.39) and (3.49) for absence of the direct transmission. The re-

sults demonstrate that scenario 1 performs very poorly compared to scenarios

2 and 3 and it is close to being a selective-OFDM protocol because most sub-

carriers are allocated in one relay. In addition, the performance of scenario 1 and

scenario 2 are located between the performance of selective OFDM relaying and

selective block relaying. However, the selective equal block relaying is a special

case of unequal block relaying, being the optimal case. Without loss of general-

ity, the performance of selective block using either equal or unequal blocks will

be measured as between selective OFDM and selective OFDMA. It can also be

seen from both Figures that the system with direct transmission outperforms the

one without direct transmission for all protocols due to exploiting the diversity

of broadcast nature. The results demonstrates that employing direct transmis-
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Figure 3.6: Outage probability versus SNR with M=10 and N=16 without direct

transmission.
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Figure 3.7: Outage probability versus SNR with M=10 and N=16 with direct
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the simulation results.



54 Selective OFDM Relaying

sion can provide substantial improvement in the diversity order and gain for all

considered protocols except selective OFDMA.

It is worth pointing out that the diversity order is defined as the slope of the

outage probability in log-scale in the high SNR regime [14]. It can be seen from

Figure 3.6 that the diversity order of selective OFDM, selective block-OFDM and

selective unequal block-OFDM have the same diversity order which approximately

equal to 10 that equivalent to the number of relays. While in Figure 3.7 the

diversity order is slightly higher due to exploiting the broadcast nature. For both

figures the diversity order of selective OFDMA is higher than other protocols due

to the number of relays should be equal to the number of sub-carriers and each

sub-carrier using single relay. The selective OFDMA relaying already provides

high performance due to taking advantage of the full diversity order available in

the system as illustrated in Figure 3.6.

Figure 3.8 demonstrates the outage performance of present protocols versus

the number of relays with SNR=8 dB, B=4 and N=16. The results demonstrate

that the performance of all protocols is directly proportional to the number of re-

lays and that selective OFDM exhibits the worst performance. Selective OFDMA

shows the best performance compared with other protocols, with selective block

relaying performance located between selective OFDMA relaying and selective

OFDM relaying. Selective unequal block relaying performance ranges between

selective block relaying and selective OFDM relaying.

Figure 3.9 illustrates the performance of protocols versus the number of sub-

carriers allocated in each relay with SNR=10, B=4, and M=8. In general, the

results demonstrate that the outage probability degrades slowly for selective

OFDMA but it deteriorates rapidly for the other protocols when the number

of sub-carriers increases. Furthermore, the performance of all scenarios is located

between selective OFDM and selective OFDMA. Scenario 3 obtains better per-

formance than scenarios 1 and 2.
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Figure 3.8: Outage probability versus M with SNR=10 dB and N=16 without

direct transmission.
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3.6 Conclusion

In this chapter, the selective OFDM relaying protocol that consists of several

scenarios is analyzed and the outage probability performance is presented. To

overcome the load balancing, selective unequal block has been proposed. Selective

block OFDM relaying is a special case of selective unequal block-OFDM relaying

when the number of sub-carriers are equal in each block. Selective block-OFDM

achieved better performance than selective unequal block-OFDM with versus

SNR, M, and N. By applying direct transmission, the performance of selective

OFDMA is slightly improved because its originally performs best performance. All

of the other protocols achieved a significant improvement in both diversity and

gain.



Chapter 4

Selective Per-subcarrier

OFDM-based HRP

4.1 Introduction

As mentioned in previous chapters, high data rate applications require an efficient

technique to combat the variations of the channel parameters when transmitting

over broadband wireless environments. Several techniques have been proposed in

literature such as MIMO, OFDM and relaying, which exploit the diversity gain

of these systems to overcome performance deterioration. Undoubtedly, the most

prominent technique is a combination of OFDM and relaying, especially in small

size mobile nodes. However, the proposed schemes are based on “all-subcarrier

basis” relay selection which require CRC codes to ensure correct decoding. This

requires that the relay always decodes the received signal. SNR threshold met-

rics have been investigated recently to modify the “per-subcarrier” relay selection

scheme [90]. This work uses the SNR threshold on a “per-subcarrier” relay selec-

tion to select the best forwarding protocol without unnecessary calculations.

Adaptive bit and power allocation (ABPA) has been investigated as one of

the most attractive techniques to provide high system capacity in OFDM relay

networks. There are two popular strategies used to allocate power and bits to

each subcarrier in the OFDM relay systems, these being uniform and adaptive

bit and power allocation [25,134]. In uniform bit and power allocation, the same
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number of bits and the same amount of power assigned to each subcarrier in the

OFDM symbol. On the other hand, different rates and powers are allocated to

each sub-carrier in adaptive BPA to maximize the system capacity.

In this chapter, two schemes based on hybrid relay protocol and the OFDM

technique will be investigated. These are multi-carrier hybrid relay protocol (MC-

HRP) and multi-carrier adaptive hybrid relay protocol (MC-AHRP).

The MC-HRP is an extension of the conventional single-carrier hybrid relay

protocol [81–83,89,90] to a multi-carrier system. In MC-HRP scheme, the nth sub-

carrier performs the DF scheme when the received SNR is greater than threshold

SNR value. Otherwise, the nth sub-carrier performs the AF scheme. Transmitted

signals over the low SNR sub-carriers may be corrupted the received signal at the

destination due to selectivity in the frequency-selective channels. By exploiting

the fact that when the source-relay channel power gain is sufficiently high enough,

AF and DF schemes can offer the same performance and by avoiding sub-carriers

that suffer deep fading, MC-AHRP deal with this aspects. In the MC-AHRP the

nth subcarrier utilizes AF when the instantaneous SNR is larger than threshold

value. Otherwise, it performs adaptive decode-and-forward (ADF) scheme. For

any subcarrier of the ADF scheme that fails to be decoded, the destination selects

the subcarrier from the direct transmission path instead. Performance results

show that MC-AHRP outperforms all the relaying protocols including MC-HRP.

The main contribution of this chapter can be summarized as follows:

• A conventional HRP scheme is extended from the single carrier system to

multi-carrier system, which is termed MC-HRP.

• A new scheme termed MC-AHRP, based on the combination of OFDM

technique with AF-ADF relaying schemes that aims to reduce the problems

associated with amplifying low SNR sub-carriers, is proposed.

• The theoretical error probability, outage probability and capacity are ana-

lyzed and evaluated for both proposed protocols.
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• Suboptimal joint ABPA and SP with OFDM based AHRP are proposed

with low computational complexity to further improve the system capacity.

The remainder of this chapter is organized as follows. In Section 4.2, related

works are discussed. A system model is presented in Section 4.3. In Section 4.4, a

cumulative density function is investigated. In Section 4.5, the bit and power allo-

cation at the source is presented and at the relay in Section 4.6. The performance

analysis of the proposed protocols in terms of bit error probability and outage

probability is derived in Section 4.7. Numerical and simulation results are given

and discussed in Section 4.8. Finally, concluding remarks are drawn in Section

4.9.

4.2 Related Work

It should be noted that significant effort has been placed to study of the per-

formance hybrid relay protocol over single carrier systems (ie. flat fading) [81–

83]. The authors in [90], [91] and [182] investigated threshold metrics to modify

the relay selection scheme, thus improving the system performance. The authors

of [90] proposed signal-to-noise ratio hybrid relay selection (SNR-HDAF), where

the forwarding scheme of each sub-carrier is based on the quality of the received

signal. The basic idea of this protocol is that if the received SNR is greater than

the threshold SNR, the relay performs the DF scheme and utilizes the AF scheme

in the other case. The closed-form expressions for the outage probability and er-

ror probability were derived over independent non-identical Rayleigh flat-fading

channels.

The authors in [14–17], investigated an adaptive DF (ADF) scheme to over-

come the drawbacks of the conventional DF protocol. The relay in this protocol

utilizes the DF protocol if the decoded received signal is correct, otherwise it re-

mains silent. The closed-form expression of outage probability was derived in [14]

for all participate (repetition-based) protocol while the relay selection is intro-

duced in [15] and [16].
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There appears to have been less work considering the OFDM technique incor-

porated with HRP. For example, in the protocol proposed in [11], the forwarding

scheme is based on per-subcarrier basis, that each subcarrier in the relay node

will use either AF or the DF forwarding schemes or direct transmission according

to analytical bit error rate (BER). However, the relay requires full knowledge of

the CSI of the both direct and indirect links, which imposes high computational

complexity and requires a large signalling overhead. The BER performance for

all-participate hybrid DF-AF relaying is presented in [80] with a selective OFDM

scheme adopted by retransmitting the entire OFDM symbol. Since the OFDM

technique is active over frequency-selective channels, some sub-carriers will expe-

rience deep fading. Thus the received signal at the destination may be corrupted

by using the AF scheme where it is difficult for the relay to decode all sub-carriers

correctly. To avoid sub-carriers that experience deep fading, a new scheme of hy-

brid relay protocol based on a combined OFDM technique with AF-ADF relaying

schemes is proposed and introduced here as MC-AHRP.

Adaptive bit and power allocation (ABPA) has been regarded as an efficient

way to enhance system capacity in cooperative wireless networks [183]. ABPA for

OFDM techniques, with and without relaying protocols, has been addressed in

several recent papers [25, 184]. Subcarrier permutation (SP) has also been pro-

posed as an efficient way to improve system performance [117]. In the SP scheme,

the nth subcarrier in the first hop joins with the mth subcarrier in the second

hop based on the channel state information (CSI) of both links. ABPA and SP

conjunction with OFDM modulation have been well documented in the litera-

ture for conventional protocols [35, 104, 108, 185, 186]. The existing strategies for

adaptive bit and power allocation mentioned before are considered either AF or

DF relaying schemes. However, the computational requirement for searching for

the best sub-carrier in the second time slot to matched with the best sub-carrier

in the first time slot is high. ABPA has received much less attention for conven-

tional hybrid relay protocols [187] which outperforms the conventional AF and

DF schemes in terms of normalized capacity. To further improve the throughput

of the proposed protocol, adaptive bit and power allocation is considered.
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4.3 System Model

The system model is composed of a single source/destination (S, D) pair and a sin-

gle relay (R). The transceiver block diagram of the relay node is depicted in Figure

4.1. All nodes in the system are equipped with a single antenna, and time division

multiplexing (TDM) is applied, so that the source and relay cannot transmit si-

multaneously. All system terminals are composed of OFDM transceivers with N

sub-carriers and perfect time and frequency synchronization assumed. The chan-

nel is assumed to be slow frequency-selective where the channel coefficients remain

unchanged throughout one block but change independently from one block to the

next.

The channels between each pair of nodes are independent and identical (i.i.d)

with L independent delay paths. The impulse response and frequency response

of the channel between any pair of nodes are given by

hij(τ) =
L−1∑
l=0

αij(l)δ(τ − τl), i ∈ {S,R} and j ∈ {R,D}, (4.1)

and

Hij(f) =
L−1∑
l=0

αij(l)e
−j2πτlf , (4.2)

where αij(l) is the lth path complex amplitude of the source to the ith relay

and ith relay to the destination channels and modeled as zero-mean complex

Gaussian random variables with variance σ2(l) and normalized power such that∑L−1
l=0 σ

2
l,ij = 1. τl and δ(.) denote the delay of the lth path and the Dirac delta

function respectively.

The complete channel state information are known at the relay. The relay

computes the instantaneous SNR of each sub-carrier in the network. The SNR of

the nth subcarrier can be expressed as

SNR(n) =
E{| Hsr,n |2| X(n) |2}

E{| W (n) |2}
,

= Es
E{| Hsr,n |2}

σ2
r,n

,

(4.3)

where E{| X(n) |2} and E{| W (n) |2} denote the average symbol energy and
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the additive white Gaussian noise (AWGN) variance respectively. In practice, the

variance of AWGN at the relay can be replaced by σ2
r,n for each sub-carrier.

In general there are two methods for relay selection, either CRC or SNR

threshold. The authors in [82, 83] reported that the SNR threshold provided

smarter forwarding decisions than the CRC strategy due to its depending only

on the channel state information of the first hop. However, the CRC method

requires the relay always decodes the received signal to ensure correct decoding,

which imposes a calculation overhead and introduces a delay. In the current study

the SNR threshold method is used based on a “per-subcarrier” relay selection

to select the best forwarding protocol for each subcarrier without unnecessary

calculations. This illustrated in Figures 4.1(a) and 4.1(b). After the relay has

calculated the instantaneous SNR for all sub-carriers of the first hop, it then

compares them with a threshold SNR value. Then, the relay selects the forward

scheme for each sub-carrier according to the quality of the received signal and

the type of protocol. On one hand, using the CRC method, all sub-carriers are

used by the relay. However, if the worst sub-carriers are utilized the fade may

result in deterioration of the received signal at the relay and subsequently at the

destination. On the other hand, the SNR threshold method can provide more flex-

ibility by identifying which sub-carriers are experiencing deep fade. As a result,

while SNR threshold method may not be the optimal choice, it may be the most

practical choice because the optimum choice will take longer to calculate, which

adds a delay to the time taken to make a decision. The forwarding scheme used

by any sub-carrier feds to the destination only in case without adaptive bit and

power allocation. However, when the system performs ABPA the complete CSI

and forwarding scheme for all sub-carriers should be known at the transmitter

and the receiver.

In order to capture the path-loss effects on the system performance by taking

into consideration the location of relay nodes, the channel model can be repre-

sented by: E(h2
ij) ∝ dαij where dij i ∈ {S,R}, j ∈ {R,D} is the distance between

terminals i and j, α is the power exponent, and E(.) is the statistical average

operation. Without loss of generality, the relative distance between S − R and



4.3 System Model 63

OFDM 

Demodulator

DF

DF

AF

CSI

CSI

Encoder 

process

.

.

.

.

.

.

Amplification 

factor

0

N-1

OFDM 

Modulator 

.

.

.

.

Threshold SNR

AF

DF

AF

CSI

TxRx

.

.

(a)

OFDM 

Demodulator

ADF

ADF

AF

CSI

CSI

Encoder 

process

.

.

.

.

.

.

Amplification 

factor

0

N-1

OFDM 

Modulator 

.

.

.

.

Threshold SNR

AF

Decode decision 
(based on preamble 

symbol)
CSI

DF

Discard

DF

Discard

DF

Discard

ADF

AF

CSI

TxRx

(b)

Figure 4.1: Transceiver block diagram of the relay node a) MC-HRP b) MC-AHRP.

R − D links can be calculated by normalizing the distance between the source

and relay (dsr) and the relay and destination (drd) to the distance between the

source and destination (dsd). It can be donated as dr = dsr
drd

. For both schemes,

the communications time is divided equally between the source and the relay

according to half-duplex transmission, thus there are two time slots.
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4.3.1 MC-HRP Strategy

In the MC-HRP scheme illustrated in Figure 4.1(a), the direct link is assumed to

be absent due to either the long distance between the source and the destination

or high shadowing caused by obstacles [126, 185]. After the relay has calculated

the instantaneous SNRs for all sub-carriers of the first hop, it then compares them

with a threshold SNR value γth. The γth is the average value of the instantaneous

received SNR at the relay which is defined as γth =
∑N
n=1 γsr,n
N

. If the instantaneous

SNR of any subcarrier exceeds the threshold value, the DF scheme is used, oth-

erwise the subcarrier utilizes the AF scheme. The communication process of this

protocol can be described as follows: the source broadcasts an OFDM symbol to

the relay node in the first time slot. Therefore, the received signals at the relay

for the nth subcarrier, can be written as

yr,n =
√

Ps,nhsr,nx(n) + wr. (4.4)

Depending on the amplitude of the received signal relative to the threshold

value, the relay either scales the version of the received noisy signal by an ampli-

fication factor βn as in equation (3.2) or detects and re-encodes the receive signal

and forwards it to the destination. The instantaneous SNR at the relay node is

expressed as

γsr,n =
Ps,n | hsr,n |2

N0

= γ̄ | hsr,n |2, (4.5)

where γ̄ is the average SNR and is defined by

γ̄ =
Ps,n

N0

. (4.6)

In the second time slot, the relay node broadcasts the received signal from the

source to the destination. It uses either the AF or DF scheme corresponding to

the quality of the received signal. Therefore, the received signal at the destination

from the nth subcarrier can be denoted as

yd,n =

βnhrd,n(
√

Psr,nhsr,nx(n) + wr) + wd, if n ∈ AF

hrd,nx(n) + wd, if n ∈ DF.

(4.7)
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Then the overall instantaneous SNR between the source and the destination for

nth subcarrier can be written as

γn =


γsr,nγrd,n

γsr,n+γrd,n+1
, if γsr,n ≤ γth

min{γsr,n, γrd,n}, if γsr,n > γth,

(4.8)

where γrd,n is the instantaneous SNR of the nth subcarrier between the relay and

the destination nodes defined by

γrd,n =
Pr,n | hrd,n |2

N0

= γ̄ | hrd,n |2 . (4.9)

4.3.2 Proposed MC-AHRP Strategy

In the following, the proposed MC-AHRP scheme is described. The block dia-

gram of the MC-AHRP transceiver at the relay is illustrated in Figure 4.1(b). The

frequency-selective channel in an OFDM system consists ofN parallel sub-channels,

each of which experience flat-fading. Therefore, whilst the power channel gain of

some sub-channels is sufficient, it is still possible there are other sub-carriers ex-

periencing deep fade. If the worst sub-carriers are utilized, the fade may result in

deterioration of the received signal at the relay, and subsequently at the destina-

tion. Thus the MC-HRP is inefficient because it always amplifies the sub-carriers

with a very low SNR. To overcome this dilemma and to identify which sub-carriers

are experiencing deep fade, the existing ADF scheme can be improved upon.

In contrast to MC-HRP presented in page 58, MC-AHRP reduces the prob-

lems associated with amplifying low SNR sub-carriers, by discarding the sub-

carriers that have low SNR. If the instantaneous SNR of any subcarrier is greater

than the predetermined threshold, then the AF forwarding scheme is used. This

ensures that only uncorrupted sub-carrier signals are amplified by the AF scheme,

particularly when the specified threshold value is high enough. Alternatively,

when the instantaneous SNR of any subcarrier is less than the threshold value,

the subcarrier implements the ADF scheme [17]. In the ADF scheme, any sub-

carrier which correctly decodes the received signal uses the DF scheme, otherwise

the subcarrier is discarded. The channel power gains for both direct and indirect

links are mutually independent. The sub-carriers experiencing deep fading in the
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source-relay link may not be in deep fade in direct transmission. Therefore, the

destination selects the sub-carriers that have been discarded by the relay from

the direct transmission instead.

In MC-AHRP the source broadcasts an OFDM symbol to the relay and the

destination nodes in the first time slot. The received signal of the nth sub-carrier

at the relay and the destination during the broadcasting phase can be expressed

as

yr,n =
√

Ps,nhsr,nx(n) + wr

yd,n =
√

Ps,nhsd,nx(n) + wd.
(4.10)

In the second time slot, the received signal at the destination from the nth sub-

carrier can be denoted as

yd,n =


βnhrd,n

(√
Psr,nhsr,nx(n) + wr

)
+ wd, if n ∈ AF

hrd,nx(n) + wd, if n ∈ DF

hsd,nx(n) + wd, if n ∈ DT.

(4.11)

Then, the end-to-end instantaneous SNR received at the destination can be ex-

pressed as

γn =


γsr,nγrd,n

γsr,n+γrd,n+1
, if γsr,n > γth

γrd,n, if subcarrier decoded correctly

γsd,n, if subcarrier fail to decode.

(4.12)

where γsd,n is the instantaneous SNR of the nth subcarrier between the source

and the destination defined by

γsd,n =
Ps,n | hsd,n |2

N0

= γ̄ | hsd,n |2 . (4.13)

4.4 Cumulative Density Function Derivation

The aim of this section is to calculate the cumulative density function (CDF) of

the end-to-end instantaneous SNR at the destination for both schemes. Since the

channel coefficient for the nth subcarrier between any two nodes follows Rayleigh
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fading distribution and the instantaneous SNRs hsr,n, hrd,n, and hrd,n follow ex-

ponential distributions, the CDF and PDF can be written as

Fγij,n(γ) = 1− e−
γ

γ̄ij,n , i ∈ {S,R}, j ∈ {R,D}

fγij,n(γ) =
1

γ̄ij,n
e
− γ
γ̄ij,n , i ∈ {S,R}, j ∈ {R,D}.

(4.14)

The conditional PDF and CDF of γn =
γsr,nγrd,n

γsr,n+γrd,n+1
is very complicated to de-

rive. Therefore, a tight upper bound (as in [188]) can be used, which is more math-

ematically tractable and in a form suitable for analysis. Moreover, it is shown to

be quite accurate at medium and high SNR values [19]. An upper bound equiva-

lent to approximate value of the end-to-end instantaneous SNR at the destination

is given by

γn ≤
γsr,nγrd,n
γsr,n + γrd,n

≤ min{γsr,n, γrd,n}. (4.15)

4.4.1 MC-HRP Scheme

The destination has the ability to distinguish whether the nth subcarrier is part

of the AF or DF group by receiving a single bit from the relay. The CDF of γn

at the destination can be expressed as [12,84,90,189]

Fγn = Pr(γsr,n ≤ γth)Pr(n ∈ GAF ) + Pr(γsr,n > γth)Pr(n ∈ GDF ), (4.16)

where Pr(γsr,n > γth) is the probability of the instantaneous SNR at the nth

subcarrier being greater than a specified threshold value. Pr(n ∈ GAF ), and

Pr(n ∈ GDF ) are the probability of the nth subcarrier related to AF or DF

groups. Since the instantaneous SNR for the sub-carriers between the source and

relay follow the exponential distribution, it is straightforward to get that

Pr(γsr,n > γth) = e
− γth
γ̄sr,n

Pr(γsr,n ≤ γth) = 1− e−
γth
γ̄sr,n .

(4.17)

The corresponding conditional CDF of γn given γsr,n ≤ γth (or n ∈ GAF ) is

expressed as

Fγn(γ | γsr,n ≤ γth) ≈ Pr(min{γsr,n, γrd,n} < γ | γsr,n ≤ γth)

= 1− Pr(γ | γsr,n ≤ γth)Pr(γrd,n > γ)

= 1− (1− Fγsr,n(γ | γsr,n ≤ γth))(1− Fγrd,n(γ)).

(4.18)
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The conditional CDF of Fγsr,n(γ | γsr,n ≤ γth) can be calculated by using the

method presented in [190] as

Fγsr,n(γ | γsr,n ≤ γth) =


Pr(γsr,n<γ,γsr,n<γth)

Pr(γsr,n≤γth)
, if γ ≤ γth

1, if γ > γth

=


1−e

− γ
γ̄sr,n

1−e
− γth
γ̄sr,n

, if γ ≤ γth

1. if γ > γth

(4.19)

To evaluate the corresponding conditional CDF of γn by substituting (4.19) into

(4.18) and noting that Fγrd,n(γ) = 1− e−
γ

γ̄rd,n , it may be shown that

Fγn(γ | γsr,n ≤ γth) =


1− e

− γ
γ̄sr,n −e

− γth
γ̄sr,n

1−e
− γth
γ̄sr,n

e
− γ
γ̄rd,n , if γ ≤ γth

1. if γ > γth

(4.20)

and the PDF is obtained by differentiating (4.20) with respect to γ as

fγn(γ | γsr,n ≤ γth) =


1

γ̄eq,n
e
− γ
γ̄eq,n − 1

γ̄rd,n
e
− γth
γ̄sr,n e

− γ
γ̄rd,n

1−e
− γth
γ̄sr,n

, if γ ≤ γth

0. if γ > γth

(4.21)

The corresponding conditional CDF of γn given γsr,n > γth (or n ∈ GDF ) can be

expressed as

Fγn(γ | γsr,n ≥ γth) = 1− e−
γ

γ̄rd,n

fγn(γ | γsr,n ≥ γth) =
1

γ̄rd,n
e
− γ
γ̄rd,n .

(4.22)

By substituting (4.17), (4.20), and (4.22) into (4.16), the CDF of γn can be

rewritten as

Fγn = (1−e−
γth
γ̄sr,n )

(
1− e

− γ
γ̄sr,n − e−

γth
γ̄sr,n

1− e−
γth
γ̄sr,n

e
− γ
γ̄rd,n

)
+e
− γth
γ̄sr,n

(
1− e−

γ
γ̄rd,n

)
. (4.23)

4.4.2 MC-AHRP Scheme

In this section, the CDF of the MC-AHRP scheme for independent identical

Rayleigh fading channels is derived. Previously it was mentioned that the nth

sub-carrier used the AF scheme when the received SNR at the relay was larger
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than the threshold value. Therefore, the CDF of the end-to-end instantaneous

SNR γn at the destination is given by [78,191]

FMC-AHRP
γn (γ) = Pr(γsr,n > γth)Pr(n ∈ GAF ) + Pr(γsr,n ≤ γth)Pr(n ∈ GADF ),

(4.24)

where Pr(n ∈ GADF ) is the probability of nth sub-carrier being related to the

ADF scheme. It can be evaluated by following the method presented in [16]. Let

the random variable ζn represent the received instantaneous SNR on the nth sub-

carrier at the destination. The unconditional CDF of ζn can be given as [16,192]

Fζn(γ) = Fζn|nth−err(γ)Pr(nth− err)Fζn|nth−corr(γ)Pr(nth− corr), (4.25)

where Pr(nth − err) denotes the probability that the nth sub-carrier will not

be in the decoding set. Pr(nth − corr) represents the probability that the nth

sub-carrier can decode the received signal correctly. The Fζn|nth−err(γ) represents

the conditional CDF of the instantaneous SNR between the source and relay and

can be expressed as [190]

Fγsr,n(γ | γsr,n ≤ γth) =


1−e−(γ/γ̄sr,n)

(1−e−(γth/γ̄sr,n))
, if γ ≤ γth

1, if γ > γth.

(4.26)

Furthermore, Pr(nth− err) and Pr(nth− corr) can be expressed as

Pr(nth− err) = 1− e−
γ

γ̄sd,n

Pr(nth− corr) = 1− e−
γ

γ̄rd,n

(4.27)

The CDF of ζi can be evaluated by substituting (4.26) and (4.27) into (4.25) as

Fζn(γ) =
1− e−(γ/γ̄sr,n)

(1− e−(γth/γ̄sr,n))
(1− e−

γ
γ̄sd,n ) + (1− 1− e−(γ/γ̄sr,n)

(1− e−(γth/γ̄sr,n))
)(1− e−

γ
γ̄rd,n ),

(4.28)

and the PDF of ζi can be obtained by differentiating (4.28) with respect to γ as

fζn(γ) =
1

(1− e−(γth/γ̄sr,n))

[
1

γ̄sd,n
e
− γ
γ̄sd,n − γ̄sr,nγ̄sd,n

γ̄sr,n + γ̄sd,n
e
−γ( 1

γ̄sr,n
+ 1
γ̄sd,n

)
]

+
1

(1− e−(γth/γ̄sr,n))

[
1

γ̄eq,n
e
− γ
γ̄eq,n − 1

γ̄rd,n
e
− γ
γ̄rd,n e

− γth
γ̄sr,n

]
.

(4.29)
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The corresponding conditional CDF of γn given γsr,n > γth can be expressed as

Fγn(γ | γsr,n > γth) ≈ Pr(min{γsr,n, γrd,n} < γ | γsr,n > γth)

= 1− Pr(γ | γsr,n > γth)Pr(γrd,n > γ)

= 1− (1− Fγsr,n(γ | γsr,n > γth))(1− Fγrd,n(γ)).

(4.30)

Using the same method as in (4.19), the conditional CDF of Fγsr,n(γ | γsr,n > γth)

can be written as

Fγsr,n(γ | γsr,n > γth) =


Pr(γsr,n<γ,γsr,n>γth)

Pr(γsr,n>γth)
, if γ > γth

1, if γ ≤ γth

=


1−e

− γ
γ̄sr,n

e
− γth
γ̄sr,n

, if γ > γth

1, if γ ≤ γth.

(4.31)

Substituting (4.31) into (4.30) gives

Fγn(γ | γsr,n > γth) =


1− (1− 1−e

− γ
γ̄sr,n

e
− γth
γ̄sr,n

)e
− γ
γ̄rd,n , if γ > γth

1, if γ ≤ γth

(4.32)

and the PDF of γn can be obtained by differentiating (4.32) with respect to γ to

give

fγsr,n(γ | γsr,n > γth) =


1

γ̄rd,n
(e
− γ
γ̄rd,n −

e
− γ
γ̄rd,n − 1

γ̄sr,n
e
− γ
γ̄eq,n

e
− γth
γ̄sr,n

), if γ > γth

0, if γ ≤ γth.

(4.33)

Finally the CDF of the scheme can be evaluated by substituting (4.17), (4.28)

and (4.32) into (4.24) as

FAHRP
γn (γ) =e

− γth
γ̄sr,n

[
1−

(
1− 1− e−

γ
γ̄sr,n

e
− γth
γ̄sr,n

)
e
− γ
γ̄rd,n

]
+
(

1− e−
γ

γ̄sr,n

)(
1− e−

γ
γ̄sd,n

)
+
(

1− e−
γth
γ̄sr,n

)(
1− 1− e−(γ/γ̄sr,n)

1− e−(γth/γ̄sr,n)

)(
1− e−

γ
γ̄rd,n

)
.

(4.34)
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4.5 Bit and Power Allocation at the Source

The objective in this section is to maximize the aggregate system capacity under

given individual power constraints at the source and the relay. The instantaneous

capacity for each subcarrier at the destination can be expressed as

Cn =
1

2
log2(1 + γn), (4.35)

where γn is the end-to-end instantaneous SNR and can be expressed as

γn =


Gsr,nPs,nGrd,nPr,n

σ2
rσ

2
d

Gsr,nPs,n

σ2
r

+
Grd,nPr,n

σ2
d

+1
if n ∈ GAF

Grd,nPr,n
σ2
d

, if n ∈ GADF

(4.36)

where Ps and Pr are the total power at the source and the relay respectively. Gsr,n

and Grd,n are the channel power gain coefficients for n sub-carrier links, source-

relay and relay-destination respectively. In this protocol the optimization problem

will be split into two sub-optimal problems at the relay by diving the sub-carriers

into two groups. Then each group will be optimized independently.

For the first hop, the source knows the channel power gains. In the uniform bit

and power allocation algorithm, the number of bits assigned to each sub-carrier

is fixed (for example, BPSK modulation). Furthermore, the transmission power

allocated to different sub-carriers are distributed uniformly and can be written

as

Pn =
Ps

N
. (4.37)

To implement adaptive BPA at the source. The transmit power is assumed

to be known. In this scheme, the main task is how to distribute the total power

over sub-carriers optimally. Firstly, the selection of a suitable modulation scheme

for each sub-carrier is carried out based on the predetermined SNR threshold

when the bit error rate (BER ) is equal to 10−3 as shown in Table 4.1 [193]. This

can reduce the computational complexity of bit loading implementation at the

source. Accordingly the source can restrict the number of bits assigned to each

subcarrier to either 0, 1, 2, 4, 6, or 8 for no-transmission, BPSK, and MQAM,
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Table 4.1: SNR threshold values of modulation scheme

Modulation Scheme SNR Threshold (dB)

No-Modulation <5

BPSK 5

QPSK 8

16QAM 12

64QAM 18

256QAM 24

respectively. Finally a water-filling algorithm is employed to evaluate the power

allocated to each subcarrier established in [194]

Pn =
(PS +

∑N
n=1

Γσ2
r

Gsr,n
)

N
− Γσ2

n

Gsr,n

, (4.38)

where Γ is the SNR gap, which is a function of the target BER and a channel

coding scheme and can be expressed as [102]

Γ = − ln(5BER)

1.5
. (4.39)

4.6 Bit and Power Allocation at the Relay

In this section, the proposed adaptive bit and power allocation for OFDM-based

HRP relaying with and without sub-carrier permutation at the relay node is

introduced.

4.6.1 Without Subcarrier Permutation

In this protocol, fixed pairing is considered where the sub-carrier on the second

hop retransmits the data on the same sub-carrier index used in the first hop. Be-

cause there are two sub-carrier groups (AF and DF), the resource allocation can

be implemented independently. Due to the fact that the sub-carriers in the AF

group does not require demodulation, decoding and re-encoding processes, the
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number of bits carried by the nth sub-carrier is the same at both hops. In addi-

tion, the amplification factor already relies on the channel power gain in the first

hop. The amount of power allocated to each sub-carrier in the AF group at the

relay can be written as

Pn =
Γσ2

Grd,n

(2bn − 1), n ∈ GAF. (4.40)

The overall power consumption of the AF group is the sum of the individual

power allocations of each sub-carrier. The residual power at the relay can be

expressed as

PDF = Pr −
∑

n∈GAF

Pn. (4.41)

In the same context, the power allocation for each subcarrier in the DF group

depends heavily on the channel power gain in the second hop. Therefore, the

residual power is allocated to the sub-carriers in the DF group according to the

water-filling algorithm as a single in-single out (SISO) system.

4.6.2 With Subcarrier Permutation

Subcarrier permutation is considered to further improve the system performance

by exploiting the independence of the channel power gains in both hops. There-

fore, the relay can use the same or different sub-carriers to retransmit the infor-

mation bearing symbol from the source to the destination. The block diagram of

the MC-AHRP scheme is illustrated in Figure 4.2

This scheme can be implemented in two parts. In the first, resource allocation

and sub-carrier permutation are done on the sub-carriers in the AF group. The

overall subcarrier capacity is limited by the worst subcarrier of the first and sec-

ond hop. Therefore, maximum capacity can only be achieved when the channel

power gains are the same at both hops [108,130]. The residual power is equal to

the overall power for the AF group subtracted from the total power available at

the relay. The residual power is optimally distributed to the sub-carriers in the

DF group in the second part. The proposed algorithm can be summarized as:
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Figure 4.2: Transceiver block diagram of the relay node with sub-carrier pairing.

Part 1) For all using sub-carriers, calculate the channel power gains at both

hops.

S={1,...,N}

for n ∈ GAF do

for j ∈ S do

∆n,j = Gsr,n −Grd,j

end for

n̂, ĵ= arg min ∆n,j

Pĵ = Γσ2

Grd,ĵ
(2bn̂ − 1)

S = S − {j}

end for

Part 2)

1. Calculate the residual power

PDF = Pr −
∑

n∈GAF Pn,

2. The channel power gains for the remaining sub-carriers S for the second hop

are arranged in descending order, i.e Grd,j ≥ Grd,j+1... ≥ Grd,N−K , where K
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is the number of sub-carriers in the AF group. The relay chooses the best

sub-carriers corresponding to the number of sub-carriers in the DF group

and discards the rest of the sub-carriers.

3. The sub-optimal water-filling algorithm is performed on the selected sub-

carriers to allocate the power and assign a corresponding number of bits

over the residual power constraint.

This technique reduces the computational complexity and increases the through-

put of the DF group. The sub-carriers at the relay are divided into two groups. Each

group has different number of sub-carrier where NAF is the number of subcar-

rier in AF group, while NDF is the number of sub-carrier in the DF group. The

AF implements sub-carrier pairing independently by seeking the sub-carriers in

the second hop have the same number of bits in the first hop. Then the rest of

sub-carriers are sorted in descending order. Then the DF group chooses the best

NDF sub-carriers. Therefore the complexity of doing a sub-carrier match is equal

to NAFN + 1. It can be seen that the complexity in this protocol is quite low.

4.7 Performance Analysis

In this section the performance analysis in terms of bit error probability, outage

probability and throughput are discussed for MC-HRP and MC-AHRP schemes.

4.7.1 Bit Error Probability Performance

In this section, the closed-form expression of BEP performance is derived over

independent identical Rayleigh fading channels. For both MC-HRP and MC-

AHRP schemes the relay retransmits the entire OFDM symbols received from

the source to the destination in the second time interval. Each OFDM symbol

consists of N independent links (sub-carriers). Therefore the total average BEP

of the OFDM relaying system can be expressed as in [195]

Pe =
1

N

N∑
1

Pe(n), (4.42)
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where Pe(n) is the average error probability of the nth sub-carrier at the destina-

tion. The average BEP of the nth sub-carrier can be computed by averaging the

conditional error probability in AWGN over the PDF as presented in [196]

Pe(n) =

∫ ∞
0

Q(
√
cγ)fγ(n)dγ, (4.43)

where c is a modulation constant and Q(x) = a erfc(bx) is the Gaussian Q-

function given by (1/
√

2π)
∫∞
x
exp(−t

2

2
)dt. a and b are constants that depend on

the type of modulation scheme (e.g. for BPSK a = 0.5 and b = 1, QPSK a = 1

and b = 0.5,). In order to evaluate the average BEP of each protocol, it should

first calculate the instantaneous probability density function fγ(n) of the system

under consideration as illustrated in (4.43).

4.7.1.1 MC-HRP Scheme

The average error probability on each sub-carrier of the MC − HRP can be

formulated by

PHRP
e (n) = Pr(γsr,n ≤ γth)P

AF
e (n) + Pr(γsr,n > γth)P

DF
e (n)

= Pr(γsr,n ≤ γth)

∫ γth

0

Q(
√

2γ)fγn(γ | γsr,n ≤ γth)dγ

+ Pr(γsr,n > γth)

∫ ∞
γth

Q(
√

2γ)fγn(γ | γsr,n > γth)dγ

(4.44)

Substituting (4.17), along with (4.21) and (4.22) into (4.44) yields

PHRP
e (n) = (1− e−

γth
γ̄sr,n )

∫ γth

0

Q(
√

2γ)(

1
γ̄eq,n

e
− γ
γ̄eq,n − 1

γ̄rd,n
e
− γth
γ̄sr,n e

− γ
γ̄rd,n

1− e−
γth
γ̄sr,n

)dγ

+ e
− γth
γ̄sr,n

∫ ∞
γth

Q(
√

2γ)(
1

γ̄rd,n
e
− γ
γ̄rd,n )dγ

=

∫ ∞
0

Q(
√

2γ)(
1

γ̄eq,n
e
− γ
γ̄eq,n − 1

γ̄rd,n
e
− γth
γ̄sr,n e

− γ
γ̄rd,n )dγ

−
∫ ∞
γth

Q(
√

2γ)(
1

γ̄eq,n
e
− γ
γ̄eq,n − 1

γ̄rd,n
e
− γth
γ̄sr,n e

− γ
γ̄rd,n )dγ

+ e
− γth
γ̄sr,n

∫ ∞
γth

Q(
√

2γ)(
1

γ̄rd,n
e
− γ
γ̄rd,n )dγ

(4.45)
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By applying the integration by part gives∫ ∞
γth

Q(
√

2γ)

(
1

γ̄rd,n
e
− γ
γ̄rd,n

)
dγ∫

u(x)v′(x)dx = u(x)v(x)−
∫
u′(x)v(x)dx

u = Q(
√

2γ) dv =
1

γ̄rd,n
e
− γ
γ̄rd,n

du =
1√
2π
e−γdγ v = e

− γth
γ̄rd,n

= Q(
√

2γ)e
− γth
γ̄rd,n −

∫ ∞
γth

1√
2π
e−γe

− γth
γ̄rd,n dγ

= Q
(√

2γ
)
e
− γth
γ̄rd,n −

√
γ̄rd,n

1 + γ̄rd,n
Q

(√
2γth(1 + γ̄rd,n)

γ̄rd,n

)

= Q
(√

2γ
)
e
− γth
γ̄rd,n −

√
λrd,nQ

(√
2γth
λrd,n

)

(4.46)

where λrd,n =
γ̄rd,n

1+γ̄rd,n
. It is shown in [196] that the integration of Q-function over

PDF represents the average error probability. Therefore∫ ∞
0

Q(
√

2γ)
1

γ̄rd,n
e
− γ
γ̄rd,n dγ = 0.5

(
1−

√
γ̄rd,n

1 + γ̄rd,n

)
(4.47)

Substituting the results of (4.46) and (4.47) into (4.45), the result would be

PMC-HRP
e (n) = 0.5

[
1−

√
γ̄eq,n

1 + γ̄eq,n

]
− 0.5e

− γth
γ̄sr,n

[
1−

√
γ̄rd,n

1 + γ̄rd,n

]
−

[
Q
(√

2γth

)
e
− γth
γ̄eq,n −

√
γ̄eq,n

1 + γ̄eq,n
Q

(√
2γth(1 + γ̄eq,n)

γ̄eq,n

)]

+ e
− γth
γ̄sr,n

[
Q
(√

2γth

)
e
− γth
γ̄rd,n −

√
γ̄rd,n

1 + γ̄rd,n
Q

(√
2γth(1 + γ̄rd,n)

γ̄rd,n

)]

+ e
− γth
γ̄sr,n

[
Q
(√

2γth

)
e
− γth
γ̄rd,n −

√
γ̄rd,n

1 + γ̄rd,n
Q

(√
2γth(1 + γ̄rd,n)

γ̄rd,n

)]
= 0.5

[
1−

√
λeq,n

]
− 0.5e

− γth
γ̄sr,n

[
1−

√
λrd,n

]
−

[
Q
(√

2γth

)
e
− γth
γ̄eq,n −

√
λeq,nQ

(√
2γth
λeq,n

)]

+ 2e
− γth
γ̄sr,n

[
Q
(√

2γth

)
e
− γth
γ̄rd,n −

√
λrd,nQ

(√
2γth
λrd,n

)]
(4.48)
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where λeq,n = γ̄eq,n
1+γ̄eq,n

. Finally, the closed form expression of the error probability

of the MC-HRP can be calculated by substituting (4.48) into (4.42).

4.7.1.2 MC-AHRP Scheme

The average error probability on each subcarrier at the destination can be ex-

pressed as [17]

PAHRP
e (n) = Pr(γsr,n > γth)P

AF
e + Pr(γsr,n ≤ γth)P

ADF
e , (4.49)

where PAF
e is the error probability of the received signal at the destination when

the nth subcarrier uses an ADF protocol and can be formulated as [75,78]

PADF
e = Pe(nth− err)PADF

error + (1− Pe(nth− err))PADF
succ . (4.50)

When the sub-carrier at the relay cannot decode the received signal successfully,

the destination selects the same sub-carrier from the direct link. Therefore, the

probability of error and the subcarrier incorrectly detects the received signal at

the relay can be given as

PADF
error =

∫ γth

0

Q(
√

2γ)fγSdn (γ | γsr,n ≤ γth)dγ

=

∫ ∞
0

Q(
√

2γ)fγSdn (γ | γsr,n ≤ γth)dγ −
∫ ∞
γth

Q(
√

2γ)fγSdn (γ | γsr,n ≤ γth)dγ

(4.51)

where fγSdn (γ | γsr,n ≤ γth) represents the instantaneous SNR between the source

and the destination given as fγSdn (γ | γsr,n ≤ γth) = 1
γ̄sd,n

e
− γ
γ̄sd,n . Therefore the

PADF
error can be rewritten as

PADF
error =

∫ ∞
0

Q(
√

2γ)
1

γ̄sd,n
e
− γ
γ̄sd,n dγ −

∫ ∞
γth

Q(
√

2γ)
1

γ̄sd,n
e
− γ
γ̄sd,n dγ

= 0.5

[
1−

√
γ̄sd,n

1 + γ̄sd,n

]
−Q(

√
2γth)e

− γ
γ̄sd,n

+

√
γ̄sd,n

1 + γ̄sd,n
Q

(√
2γth(1 + γ̄sd,n)

γ̄sd,n

)

= 0.5
[
1−

√
λsd,n

]
−Q(

√
2γth)e

− γ
γ̄sd,n +

√
λsd,nQ

(√
2γth
λsd,n

)
.

(4.52)
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where λsd,n =
γ̄sd,n

1+γ̄sd,n
. Similarly the error probability PADF

succ can be evaluated as

PADF
succ =

∫ ∞
0

Q(
√

2γ)fγrdn (γ | γsr,n ≤ γth)dγ

=

∫ ∞
0

Q(
√

2γ)fγrdn (γ | γsr,n ≤ γth)dγ −
∫ ∞
γth

Q(
√

2γ)fγrdn (γ | γsr,n ≤ γth)dγ

=

∫ ∞
0

Q(
√

2γ)
1

γ̄rd,n
e
− γ
γ̄rd,n dγ −

∫ ∞
γth

Q(
√

2γ)
1

γ̄rd,n
e
− γ
γ̄rd,n dγ

= 0.5

[
1−

√
γ̄rd,n

1 + γ̄rd,n

]
−Q(

√
2γth)e

− γ
γ̄rd,n

+

√
γ̄rd,n

1 + γ̄rd,n
Q

(√
2γth(1 + γ̄rd,n)

γ̄rd,n

)

= 0.5
[
1−

√
λrd,n

]
−Q(

√
2γth)e

− γ
γ̄rd,n +

√
λrd,nQ

(√
2γth
λrd,n

)
.

(4.53)

By substituting (4.26) into (4.43) and doing the integration by part, the Pe(nth−

err) can be rewritten as

Pe(nth− err) =

∫ γth

0

Q(
√

2γ)
e−(γ/γ̄sr,n)

γ̄sr,n (1− e−(γth/γ̄sr,n))
dγ

=
1

1− e−(γth/γ̄sr,n)

(∫ ∞
0

Q(
√

2γ)
e−(γth/γ̄sr,n)

γ̄sr,n
dγ −

∫ ∞
γth

Q(
√

2γ)
e−(γ/γ̄sr,n)

γ̄sr,n
dγ

)
=

1

1− e−
γth
γ̄sr,n

[
0.5

(
1−

√
γ̄sr,n

1 + γ̄sr,n

)
−Q(

√
2γth)e

− γth
γ̄sr,n

]

+
1

1− e−
γth
γ̄sr,n

[√
γ̄sr,n

1 + γ̄sr,n
Q

(√
2γth(1 + γ̄sr,n)

γ̄sr,n

)]

=
1

1− e−
γth
γ̄sr,n

[
0.5
(

1−
√
λsr,n

)
−Q(

√
2γth)e

− γth
γ̄sr,n +

√
λsr,nQ

(√
2γth
λrd,n

)]
.

(4.54)

where λsr,n = γ̄sr,n
1+γ̄sr,n

. The closed-form expression of the error probability of the

PADF
e can be calculated by substituting (4.52), (4.53), and (4.54) into (4.50), and
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the result is presented following.

PADF
e

=
1

1− e−
γth
γ̄sr,n

[
0.5
(

1−
√
λsr,n

)
−Q(

√
2γth)e

− γth
γ̄sr,n +

√
λsr,nQ

(√
2γth
λrd,n

)]

×

[
0.5
(

1−
√
λsd,n

)
−Q(

√
2γth)e

− γth
γ̄sd,n +

√
λsd,nQ

(√
2γth
λsd,n

)]

+

[
1− 1

1− e−
γth
γ̄sr,n

(
0.5
(

1−
√
λsr,n

)
− Q(

√
2γth)

e
γth
γ̄sr,n

+
√
λsr,nQ

(√
2γth
λrd,n

))]

×

[
0.5
[
1−

√
λrd,n

]
−Q(

√
2γth)e

− γth
γ̄rd,n +

√
λrd,nQ

(√
2γth
λrd,n

)]
.

(4.55)

The PDF of the nth subcarrier consists of AF group can be expressed as

fγAFn (n ∈ GAF ) =
1

γ̄eq,n
e
− γ
γ̄eq,n . (4.56)

The error probability when the nth subcarrier uses the AF scheme can be calcu-

lated after substituting (4.56) into (4.43) and doing the integration by part as

PAF
e =

∫ ∞
γth

Q(
√

2γ)fγAFn (n ∈ GAF )dγ

=

∫ ∞
γth

Q(
√

2γ)
1

γ̄eq,n
e
− γ
γ̄eq,n dγ

= Q(
√

2γth)e
− γth
γ̄eq,n −

√
γ̄eq,n

1 + γ̄eq,n
Q

(√
2γth(1 + γ̄eq,n)

γ̄eq,n

)

= Q(
√

2γth)e
− γth
γ̄eq,n −

√
λeq,nQ

(√
2γth
λeq,n

)
.

(4.57)

Similarly procedure presented in the previous subsection can be used to solve
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(4.49), the PMC-AHRP
e (n) is given by

PMC-AHRP
e (n)

= e
−γth
γ̄sr,n

[
Q(
√

2γth)e
− γth
γ̄eq,n −

√
λeq,nQ

(√
2γth
λeq,n

)]

+

[
0.5
(

1−
√
λsr,n

)
−Q(

√
2γth)e

− γth
γ̄sr,n +

√
λsr,nQ

(√
2γth
λrd,n

)]

×

[
0.5
(

1−
√
λsd,n

)
−Q(

√
2γth)e

− γth
γ̄sd,n +

√
λsd,nQ

(√
2γth
λsd,n

)]

+

[
1− e−

γth
γ̄sr,n −

(
0.5
(

1−
√
λsr,n

)
− Q(

√
2γth)

e
γth
γ̄sr,n

+
√
λsr,nQ

(√
2γth
λrd,n

))]

×

[
0.5
[
1−

√
λrd,n

]
−Q(

√
2γth)e

− γth
γ̄rd,n +

√
λrd,nQ

(√
2γth
λrd,n

)]
.

(4.58)

Substituting (4.58) into (4.42), the aggregate error probability of the proposed

protocol can be evaluated.

4.7.2 Outage Probability

In wireless communication systems an essential performance measure is outage

probability. This is defined as the probability that the mutual information be-

tween the source and destination falls below a predefined threshold value γth.

Pout = Fγi,n(γout) (4.59)

where Fγi,n is the CDF of the received SNR , γout = 22r − 1 and r is the number

of bits in each subcarrier. Since the relay retransmits the entire OFDM symbol

from the source, it is in a state of outage if any subcarrier has an outage. The

overall system outage probability can be expressed as in [196]

POFDM
out = 1−

N∏
n=1

(1− Fγn(γout)) . (4.60)
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The CDF for γn of MC-HRP scheme can be expressed as

Pout(γout) =
(

1− e−
γth
γ̄sr,n

)1− e
− γout
γ̄sr,n − e−

γth
¯γoutsr,n

1− e−
γth
γ̄sr,n

e
− γout
γ̄rd,n


+ e

− γth
γ̄sr,n

(
1− e−

γout
γ̄rd,n

)
.

(4.61)

Similarly, the CDF of the MC-AHRP scheme can be calculated by substituting

γ by γout into (4.38)

Pout(γout) =e
− γth
γ̄sr,n

[
1−

(
1− 1− e−

γout
γ̄sr,n

e
− γth
γ̄sr,n

)
e
− γout
γ̄rd,n

]
+
(

1− e−
γout
γ̄sr,n

)(
1− e−

γout
γ̄sd,n

)
+
(

1− e−
γth
γ̄sr,n

)(
1− 1− e−(γout/γ̄sr,n)

1− e−(γth/γ̄sr,n)

)(
1− e−

γout
γ̄rd,n

)
.

(4.62)

By substituting (4.61) and (4.62) into (4.60), the overall outage probability for

both protocols can be evaluated.

4.7.3 System Capacity

As mentioned in the previous section, the relay is capable of choosing different

forwarding schemes for each subcarrier based on the instantaneous SNR. For

the MC-HRP scheme, the N sub-carriers are divided into two groups (AF and

DF) whereas for the MC-AHRP scheme, they are divided into three groups (AF,

DF, and direct transmission). According to the instantaneous SNRs calculated in

(4.36) and (4.12), the instantaneous capacity for each subcarrier in both schemes

can be described as in [35,108]. For the MC-HRP this gives:

Cn =


1
2
log(1 +

γsr,nγrd,n
γsr,n+γrd,n+1

), if n ∈ GAF

1
2
log(1 + min{γsr,n, γrd,n}), if n ∈ GDF.

(4.63)

and for the MC-AHRP scheme:

Cn =


1
2
log(1 +

γsr,nγrd,n
γsr,n+γrd,n+1

), if n ∈ GAF

1
2
log(1 + γrd,n), if n ∈ GDF

1
2
log(1 + γsd,n), Otherwise.

(4.64)
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Therefore the throughput of the system using MC-HRP scheme can be written

as:

CMC-HRP =
∑

n∈GAF

Cn +
∑

n∈GDF

Cn

=
1

2N

∑
n∈GAF

log(1 +
γsr,nγrd,n

γsr,n + γrd,n + 1
)

+
1

2N

∑
n∈GDF

log(1 + min{γsr,n, γrd,n}),

(4.65)

and for the MC-AHRP scheme:

CMC-AHRP =
∑

n∈GAF

Cn +
∑

n∈GDF

Cn +
∑
n∈DT

Cn

=
1

2N

∑
n∈GAF

log

(
1 +

γsr,nγrd,n
γsr,n + γrd,n + 1

)

+
1

2N

[ ∑
n∈GDF

log (1 + γrd,n) +
∑
n∈DT

log (1 + γsd,n)

]
.

(4.66)

Comparing (4.65) and (4.66), it can be seen that the capacity of the MC-AHRP

scheme is higher than the MC-HRP due to its avoidance of the weak sub-carriers

at the relay.

4.8 Simulation Results

In this section, the simulation and numerical results are presented to demonstrate

the BEP performance of the proposed protocol and make comparisons to the

conventional protocols. BPSK modulation is performed for all simulations and

the path-loss exponent is assumed to be equal to 3. The channel between any two

nodes in the system is modeled as quasi-static frequency-selective fading channels

(pedestrian ITU-R model). A frame size of 100 symbols is used. It is assumed that

the OFDM system combined with N = 64 Sub-carriers and a CP length of 16. It

is also assumed that perfect CSI is available at the relay and the destination.

Figures 4.3 and 4.4 show the effect of threshold value on the system per-

formance with the performance of both schemes compared using different relay

locations. From Figure 4.3, it can be observed that the MC-HRP scheme out-

performs the MC-AHRP scheme when the relay is located closer to the source
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Figure 4.3: Numerical results of the error probability versus different values of

SNR threshold of the MC-AHRP and the MC-HRP schemes (proposed by Li) for

different values of dr = dsr
dsd

and SNR=15 dB.
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Figure 4.4: Numerical results of the error probability versus different values of SNR

threshold of MC-AHRP for different values of dr and average SNR.
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Table 4.2: Optimum Threshold of the Given Range of Channel Simulation Param-

eters

Optimal Threshold Value

SNR dr = 0.3 dr = 0.5 dr = 0.7

10 4.3 3 1

15 5.5 4.1 2.9

20 6.6 5.2 4.2

25 7.7 6.3 5.3

30 8.8 7.4 6.4

35 9.9 8.4 7.5

for very low values of SNR threshold because most of sub-carriers in MC-AHRP

perform the AF scheme. On the other hand, the MC-AHRP provides better per-

formance than the MC-HRP scheme at medium-to-high values of SNR threshold

irrespective of relay location because a high threshold value leads to an increase

the sub-carriers using the ADF scheme. Figure 4.4 shows that the MC-AHRP

scheme performance improves when the SNR increases regardless of the SNR

threshold values. The optimal threshold is the value which can achieve the best

performance (minimum bit error probability) and it depends on the received

SNRs at the relay. It can be calculated by taking the first derivative of the bit

error probability formula and then setting this to zero [197]. Due to difficulties

to calculate the first derivative of BEP in Equation (4.58), the optimal threshold

value with the chosen range of simulation parameters can be done by drawing the

BEP as a function of SNR threshold with different values of SNR and calculate

the minimum value of BEP. Table 4.2 shows the optimal threshold values for

different relay locations. It can be seen that the threshold value increases with

increasing of SNR.

For the validation, the simulation results have been evaluated and compared

withe the mathematical results. The simulation and mathematical results are

presented to demonstrate the bit error probability (BEP) performance of the
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Figure 4.5: The bit error probability of the MC-AHRP and the MC-HRP schemes

versus different values of SNR for dr = 0.5 and γth = 1, the theoretical results

(solid line) and the simulation results (dashed line).

proposed protocol and make comparisons to the conventional protocols. Figure 4.5

compares the BEP performance of the MC-AHRP and MC-HRP schemes versus

SNR for dr = 0.5 and γth = 1 dB. It is observed that the MC-AHRP outperforms

the MC-HRP scheme over the range of SNRs. As can be seen from the figure,

MC-AHRP can achieve an approximately 4 dB gain in comparison with MC-HRP

at the bit error probability of 10−4. It also can seen the the performance of both

protocols improve as SNR increase. One can see there is a high agreement between

the mathematical modeling results and the simulation result, e.g. at the 25 SNR,

the mathematical value (MC-HRP) of the BEP 0.5× 10−4 and simulation value

10−4. At the same SNR value of 25, the BEP value is 5× 10−5 using MC-AHRP

and the mathematical 6× 10−5. These differences in the values are considered to

be small and can be accepted.

Figure 4.6 shows the BEP performance of the MC-AHRP protocol for var-

ious SNRs when the threshold γth value is set to 1dB. The analysis considers

three normalized relay locations at dr = 0.3, 0.5, and 0.7. The results demon-
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Figure 4.6: The bit error probability of the MC-AHRP scheme versus different

values of SNR for different values of dr and γth = 1, the theoretical results (solid

line) and the simulation results (dashed line).

strate that when the relay is closer to the destination, the scheme gives a better

performance. In this figure, the results of the mathematical models and the simu-

lation are almost matched since there are no remarkable differences in the results

especially at high vales of SNR. This can validate the developed mathematical

model. It can also be observed for both figures that there are difference in simula-

tion results when compared with the numerical results for low to moderate SNR

values. This is due to the approximation of the numerical results.

Figure 4.7 compares the average BEP performance of both schemes. It presents

the performance results for γth = 1, 2, and 3 dB when the relay is located cen-

trally between the source and the destination. The results demonstrate that the

MC-AHRP scheme outperforms the MC-HRP scheme irrespective of the SNR

threshold value. The MC-HRP performance is relatively unchanged for different

threshold values over the range of SNRs. On the other hand, the MC-AHRP

performance decreased at lower SNRs when the threshold value increased while

giving better performance at medium-to-high SNR values. The reason behind this



88 Selective Per-subcarrier OFDM-based HRP

0 5 10 15 20 25 30 35 40 45
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

P

 

 
γ
th

=1 dB

γ
th

=2 dB

γ
th

=3 dB

Figure 4.7: The bit error probability of the MC-AHRP (solid line) and the MC-

HRP (dashed line) schemes versus different values of SNR for different values of

γth and dr = 0.5 .

is that when the threshold value increases, it leads to an increased probability

of sub-carriers performing perfect DF (decoding the received signal correctly) at

high SNR, while at low SNR, most of sub-carriers perform direct transmission.

Figure 4.8 compares the BEP performance for different values of SNR and

various dr. The performance was significantly improved when the SNR value

increased across the range of distance. The results demonstrate that the best

location for the relay changed according to the SNR value with optimal placement

being near the destination for high SNR values. The main reasons for this are a

reduction in the corrupted signal at the AF sub-carriers, and an increase in the

perfect DF sub-carriers leading to reduction in the direct sub-carriers.

Figures 4.9 and 4.10 show that the numerical results of outage probability

of the MC-AHRP scheme outperform the MC-HRP scheme regardless of relay

location or SNR threshold value. The results also demonstrate that the perfor-

mance of the MC-AHRP scheme improves when the relay location is closer to the

destination and when the threshold SNR is increased. The diversity gain of both
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Figure 4.8: Numerical results of the error probability of MC-AHRP versus different

values of SNR for different values of dr and γth = 1dB.
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Figure 4.9: Outage probability of the MC-AHRP (solid line) and the MC-HRP

(dashed line) schemes versus SNR for both schemes for different values of dr with

γth = 2dB.
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Figure 4.10: Outage probability of the MC-AHRP (solid line) and the MC-HRP

(dashed line) schemes versus SNR for both schemes for different values of SNR

threshold with dr = 0.5.

schemes is equal to one due to the single relay being used in the system.

Figure 4.11 plots the capacity performance (in bps/Hz) of various protocols

over a range of SNRs when the relay position is close to the source (relative dis-

tance dr = 0.3). In this instance, the power is chosen to be Pt = 5dB and is

uniformly distributed between the source and relay nodes (Ps = Pr). Addition-

ally, the distance between the source and relay nodes is normalized by the source

to destination distance (i.e., dr = dsr/drd). Figure 4.11 shows that adaptive bit

and power allocation results in a capacity gain of approximately 0.2 bps/Hz com-

pared with uniform rate and power allocation. After performing the sub-carrier

permutation the capacity gain is again improved and it can be observed that

ABPA with SP yields the best capacity performance.

In order to evaluate the effects of relay location on the system capacity per-

formance, comparisons can be made of the proposed protocol at various relative

distances dr for different values of γth as shown in Figure 4.12, and for different

protocols as shown in in Figure 4.13.
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Figure 4.11: Capacity performance versus different values of SNR with and without

RA and SP for dr=0.3.
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Figure 4.13: Capacity performance of MC-AHRP protocol versus relative distance

dr = dsr/dsd with and without RA and SP for SNR=15 dB.

In Figure 4.12, the results show that the proposed scheme with uniform bit

and power allocation provides better performance than the DF scheme at middle

and high SNR range while it exhibits worse performance at low SNR values. Of

note is that when the threshold value is increased, the capacity also increases

again rapidly, especially when the relay is close to the destination.

From Figure 4.13, it can be seen that there is an increased system through-

put with respect to relay locations when performing ABPA and SP, and that

the capacity of each protocol increases significantly with dr. This is because the

sub-carriers in the AF group retransmit the received signal with the same num-

ber of bits as assigned by the source and should consequently be allocated the

appropriate amount of power corresponding to the number of bits. In the same

context, the channel power gain for the second hop when the relay is close to

the destination is satisfied. This then reduces the power allocation required for

each sub-carrier in the AF group. As a result, the amount of power that can be

assigned to the DF group is increased, hence improving system capacity.
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Subcarrier permutation attempts to match each sub-carrier in the first hop

with a sub-carrier in the second hop which has a similar channel power gain. Since

the AF group is composed of sub-carriers with the highest channel power gain,

low power can be correspondingly assigned to the AF group, and the power

assigned to the DF group will be increased. As a result the system performance

achieves significant capacity improvement as demonstrated in Figures 4.11, 4.12

and 4.13, due to appropriate power assigned increasingly to the DF group with

lower optimized power gain distributed to the AF group.

4.9 Conclusion

This chapter proposed a new scheme of HRP in conjunction with the OFDM tech-

nique based on per-subcarrier selection over frequency-selective channels. The

performance of MC-HRP was established by extending the conventional HRP

protocols from a single carrier to a multi-carrier system. Bit error probability,

outage probability, and capacity performances have been analyzed and compared

for both schemes considering multiple relay locations. It has been shown that the

MC-AHRP scheme yields a significant improvement in performance compared

with MC-HRP over the range of SNR values, particularly when the relay is lo-

cated closer to the destination and at high SNR values. The results show that the

proposed protocol can achieve performance very close to the perfect DF scheme

(error-free delivery) with a reasonable computational complexity. Results demon-

strate that the system performance can be further improved by applying adaptive

bit and power allocation and sub-carrier pairing.





Chapter 5

Space-Frequency Coding with

OFDM-HRP Systems

5.1 Introduction

Multipath fading is one of the major limitations in a wireless communication

systems. Diversity is an efficient technique to overcome the detrimental effects of

multipath fading at the receiver [1]. Diversity is achieved by providing the receiver

with several copies of the original signal through independent links. By doing so,

the probability that all the replicas arriving at the receiver have experienced se-

vere fading simultaneously is reduced significantly [4]. There are several kinds of

diversity includes; spatial, temporal and frequency. Spatial diversity has received

great attention due to it being simplest to implement in multiple antennae de-

vices. However, in small devices (e.g. mobile, ad hoc and sensor) it is difficult to

implement multiple antennae due to cost and hardware limitations.

Cooperative diversity has been proposed recently to exploit the benefits of spa-

tial diversity by collaborating and sharing resources of multiple single antenna

terminals (relays) [4, 55]. This can drastically increase the cooperative diversity

gains but at the expense of a decrease in the spectral efficiency as in an orthogonal

channel implementation only one relay is allowed to transmit in each time slot. It

is well-known as “repetition-based” [4]. Relay selection [14, 19], and DSFC [159]

techniques have emerged as promising solutions to overcome this problem. Re-
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lay selection can reap the potential benefits of multiple-relay systems with less

complexity. In a relay selection scheme only a single relay forwards the source

signal while in a DSFC protocol all relay nodes broadcast the source signal to

the destination simultaneously. In addition, OFDM technique has been proven

to provide multipath and frequency diversity and can enhance the system perfor-

mance when the power allocation employing optimally. For OFDM cooperative

systems, sub-carrier permutation can be maximized the system capacity if the

sub-carriers of the two hops are coupled according to their channel gain.

Meanwhile, cooperative OFDM systems have received considerable attention

due to their ability to mitigate the impairment of multipath fading in frequency-

selective channels. DSFC combined with OFDM modulation was investigated

in [198] to explore multipath diversity and cooperative diversity for perfect DF

protocol whereas in [163], both erroneous DF and AF protocols were consid-

ered. There have been some recent efforts on implementations of DSFC with

AF or DF schemes. In the course of the literature review, published work on

the implementation of DSFC in HRP over frequency-selective channels was not

discovered. The concept seems worthy and could offer further improvement in

system performance with low complexity because the DSFC implements at the

source and the DF relay.

This chapter focuses on distributed space frequency codes with HRP over

frequency-selective channels. In the context of the HRP, the relays are classified

into two groups based on how the relays process the received signal from the

source. The relays that have the ability to decode the received signal correctly

are included in the DF group and the rest are included in the AF group. There-

after, the destination selects the best relay with maximum SNR from each group

independently. Then each couple of relays are combined in one cluster to reduce

the implementation complexity of DSFC. Power allocation can be optimized with

and then without sub-carrier permutation between the source and relay nodes to

further improve system capacity. The optimum problem is divided into two sub-

optimal problems. The first one is to optimize the power allocation between the

source and relay nodes under a sum power constraint. Then the relay power is
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optimized for the selected relay nodes according to the channel power gain of the

second time slot.

To summarize the contributions of this chapter:

• Propose an OFDM and DSFC based cooperative system using hybrid relay

protocols over frequency-selective fading channels, where full rate transmis-

sion and full spatial diversity are achieved.

• Power allocation and sub-carrier pairing are investigated under global power

constraint in order to further improve system performance.

• The system performance for the different schemes concatenated with the

proposed protocol are evaluated, and the comparison results are summa-

rized.

The rest of this chapter is organized as follows. Motivation and related works

are discussed in Section 5.2. The system model is discussed in section 5.3. Section

5.4 is addressed the power allocation and sub-carrier pairing algorithms. Simula-

tion results are presented in section 5.5. Section 5.6 concludes the chapter.

5.2 Related Work

The growing popularity of both cooperative communication and OFDM systems

have created the requirement for an efficient technique to reap the benefits of

temporal, spatial and frequency components together. Space-time coding schemes

can achieve full spatial diversity for MIMO systems [1], [2] and for cooperative

communications [199]. This is known as distributed STC [14], due to the fact

that the received signals simultaneously arrive at the destination. This technique

is efficient when used over flat fading channels. However, as mentioned before,

broadband communication systems suffer from severe multi-path fading and delay

spread, which destroy the orthogonality when its applied with STC. Therefore,

the OFDM technique has been adopted as an effective technique to overcome this
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issue by transforming frequency-selective fading channel into multiple flat fading

sub-channels [148].

There has been extensive research efforts on STC combined with OFDM sys-

tem to realize the benefits of coding and modulation [148, 150–153]. In these

schemes, the coding has been done in the time domain while in [150, 156] the

frequency domain was considered which refers to space-frequency code. The au-

thors showed that the space-frequency code can provide full spatial and frequency

diversity.

Hakam et al. [159] proposed DSTC concatenated with OFDM and then de-

rived the symbol error probability for an AF single relay protocol. They considered

two consecutive blocks. The source broadcasts the first block to the relay only in

the first time slot. Then the source sends the second block and the relay retrans-

mits the first block to the destination simultaneously in the second time slot. The

same procedure was repeated for the third and fourth time slots but the source

transmits the complex conjugate of the first and second blocks respectively. As

a result the Alamouti code can be performed at the destination, resulting in full

cooperative diversity. However, when there are obstacles between the transmitter

and receiver nodes, the receiver is not necessarily able to receive the source sig-

nal. The authors in [198] considered perfect DF protocol with multi-relay nodes

system where all nodes participate in second time slot. They performed SFC at

the relay nodes by dividing the OFDM block into several sub-blocks. Then each

sub-block was encoded independently.

In wireless fading channels, however it is difficult to have multiple relay nodes

decode the received signal correctly due to selectivity in the channel. Therefore,

Karim et al. in [163] designed a distributed space frequency code for both DF

and AF protocols for synchronous systems. In the DF scheme, the relays that

have correctly decoded the received information will collaborate to design DSFC

and the rest of relays remain silent. The AF protocol divides the source data

into sub-blocks, each of which is transmitted by individual relay with deferent

encoder. The results show that full diversity can be achieved, but comes at the

expense of high complexity.
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In [200], the AF protocol is applied in a multiple relays system and a circular

shift is employed at the relays. The symbol error rate was derived over frequency-

selective channels. The authors in [165] propose a DSFC scheme to achieve both

spatial and multi-path diversity based on erroneous DF relay protocols. Most of

the previous work on cooperative SFC-OFDM systems has considered either AF

or DF protocols. Implementation of DSFC at the AF relay node adds complexity

to the relay while a perfect DF relay may not always be possible in the network.

In frequency-selective channels, the frequency response of the channel can

drastically affect the bit error probability due to some sub-carriers experiencing

deep fade. Power allocation algorithms has been investigated as an potential

approach to overcome shortcoming in the system performance where more bits

with less power are allocated in sub-carriers with a larger channel gain, and

vise versa. It was initially investigated in single-hop OFDM systems [27, 201],

however it has recently received much attention in cooperative OFDM systems

[36, 107, 110, 183, 202] due to its ability to provide multi-path diversity, offering

substantial gains to system performance. The optimal power allocation for AF

single relay scheme was investigated in [117] where an aggregate power constraint

was imposed. The water-filling algorithm was adopted as an optimal solution

for power allocation which can result in a fractional number of bits/symbol. As

a result, the encoder and decoder complexity will be increased. To reduce the

complexity while maintaining the same performance, the number of bits can be

forced to 0, 1, 2, 4 or 8 depending on the SNR and target BER [184]. In addition,

it can reduce the overhead signals during the channel estimation stage.

In OFDM relaying systems, the fading gains for different channels are mu-

tually independent, so a sub-carrier experiencing deep fading during the first

time interval may not be in deep fade in the second time interval. By exploiting

this context the sub-carrier permutation can further enhance the system perfor-

mance [117, 136, 185]. The efficient and simplest method to implement SP is by

ordering the sub-carriers in both hops in descending order [121,203] or ascending

order [204]. Then the strongest sub-carrier in the first hop matched with best sub-

carrier in the second hop and so and so for the rest of sub-carriers. In addition,
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Figure 5.1: Cooperative system architecture

joint power allocation and sub-carrier permutation can reap the benefits of both

techniques and then obtain a substantial improvement in system performance.

5.3 System Model

The DSF-coded cooperative OFDM system shown in Figure 5.1, consists of one

source, one destination and M relay nodes Ri(i = 1, 2, ...,M). All the nodes

are equipped with a single antenna and operate in half-duplex mode. Therefore,

two time slots are required to transmit the information from the source to the

destination. It is assumed that a direct link between the source and destination is

not available. This configuration has been reported previously in [185,205] where

the destination is unable to receive the original signal directly from the source due

to substantial obstacles or the sizeable distance between both terminal nodes. The

relays are divided into two groups such that any relay which can correctly decode

the received signal are included in the DF group and the rest are included in

the AF group. In practical, the source appended the transmitted information

with cyclic redundancy check code to ensure the code word is able to decoded at

the relay or not. The relay selection is done at the destination when it takes into

consideration the instantaneous SNR over all sub-carriers for all relay nodes. Then

it chooses the relay with highest SNR from each group.

The channel is assumed to be quasi-static frequency-selective fading with L in-

dependent delay paths. The time domain impulse response of the channel between

any pair of nodes was given in (4.1). The space-frequency code is implemented
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at the source and the selected relays as:

• Implementation at the source

A stream of information bits is first mapped where any linear modulation

can be implemented (e.g binary phase shift keying (BPSK) modulation), and

divided into K blocks, where each block has N symbols. Then each block is

divided into sub-blocks where each sub-block consists of b sub-carriers where b

is the number of selected relay nodes. The kth block of data can be denoted

by Xk(n) = [Xk(0), Xk(1), · · · , Xk(N − 1)], where N is the number of OFDM

sub-carriers. The information sequence of the kth block is encoded at the source

by Sk(n) = [Sk(bn) , · · · , Sk(bn + b − 1)]T n = 0, · · · , N
b
, where (.)T denotes

the transpose operation. For a single cluster (b = 2), the encoded vector can

be represented as Sk(n) = Xk(n), if n is even, Sk(n)) = −X∗k(n) if n is odd,

n = 0, · · · , N−1, k = 1, · · · , K, where (.)∗ denotes complex conjugate. Then each

block is fed through the serial to parallel convertor and into the N -point inverse

fast Fourier transform (IFFT) and appended with a cyclic prefix (CP). The length

of the CP must be longer than the channel delay spread to eliminate inter-symbol

interference (ISI).

• Implementation at the Relay Nodes

The OFDM symbols are transmitted to the relay nodes in the first time

slot. Therefore, the received signal in the frequency domain at the ith relay node

can be written as

Ys,ri,n =
√
Ps,nHs,ri,nSn +Wri,n (5.1)

where Ps,n and Sn are the source transmission power, which is distributed uni-

formly over the sub-carriers, and the data symbol for the nth subcarrier in fre-

quency domain, respectively. Wri,n represents the additive white Gaussian noise

for the nth subcarrier of ith relay with zero-mean and unit variance. The vari-

ance of noise is assumed to be identical for all sub-carriers and relay nodes in the

system. The channel coefficients are supposed to be constant for two consecutive

OFDM symbol intervals. The relays are classified into two groups, referred to

as the AF and DF relay groups. The relays that can decode the received signal

correctly are included in the DF group and the rest are included in the AF group.
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Table 5.1: Transmission sequence for each relay node for single cluster

Time AF Relay DF Relay

t βnY1,k(n) −S∗1,k(n+ 1)

t+T βnY1,k(n+ 1) S∗1,k(n)

• AF Group

The AF group consists of all the relays which are unable to decode the re-

ceived signal correctly. The AF relays will simply amplify the received noisy signal

from the source by a factor of βi is defined in (3.2) and forward it to the destina-

tion. Since the variance of wri(n) between the source and relay nodes is unity, the

mean power of the received signal at the relay nodes is Ps + 1. The transmitted

signal from the AF relay in the second time slot can be written as

Sri,n(k) =
√
Pri,nβi,nYs,ri,n(k), i ∈ 1, · · · , q (5.2)

where q is the number of relay nodes in the AF group and Pri,n is the transmitted

power from the ith relay for the nth sub-carrier.

• DF Group

The DF group consists of all the relays with error-free decoding. A selected

relay will process a few simple steps of the received signal before forwarding it to

the destination. First of all, the CP is discarded from the received OFDM symbol

to eliminate the ISI. After conversion to the frequency domain by the N -point

FFT, the signal is decoded to obtain the original data and the N data symbols

are coded as follows

S2,k(n) = −S∗1,k(n+ 1) = X1,k(n+ 1)

S2,k(n+ 1) = S∗1,k(n) = X∗1,k(n) n = 0, · · · , N − 1
(5.3)

where the subscripts 1 and 2 denote the first and second hop respectively. Next, the

coded vector, SDF (k) = [S2,bn(k) , · · · , S2,bn+b−1(k)]T n = 0, · · · , N
b
− 1 is mod-

ulated by the N-point IFFT and preceded with proper CP.

The destination has perfect knowledge of all parameters of links in the system

and this can be estimated by sending training sequences. Then, the relay that
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Figure 5.2: System model for the distributed Alamouti code with: a) 2 relay nodes

and b) 4 relay nodes.

maximizes the destination SNR will be selected from the relays for each of the

AF and DF groups as proposed in [94]. Then the selected relay nodes are divided

into clusters with each one having a pair of relay nodes as presented in [206].

• DSFC with Single Cluster

As mentioned above, a single cluster consists of AF and DF relays as shown

in Figure 5.2 a. Then the relays rearrange the received signal from the source

according to the Alamouti code. The AF relay amplifies the received signal as in

(4.2) and the DF relay retransmits the signal as in (5.1). The transmitted signals

from both relays in relaying phase are illustrated in Table (5.1). The equivalent

channel matrix for the two successive symbols duration can be written as [207,208]

H = H12 =

 h1 h2

−h∗2 h∗1


where h1 and h2 represent the the equivalent channel of the AF and DF relay

nodes respectively.

• DSFC with Multiple Cluster

In this scheme, all the selected relays are broken up into clusters where each

cluster has two relays as described for DSFC with a single cluster. The system
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Table 5.2: Transmission sequence for each relay node for two clusters

Time Relay Cluster 1 Relay Cluster 2

AF Relay DF Relay AF Relay DF Relay

t βnY1,k(n) −S∗1,k(n+ 1) - -

t+T βnY1,k(n+ 1) S∗1,k(n) - -

t+2T - - βnY1,k(n+ 2) −S∗1,k(n+ 3)

t+3T - - βnY1,k(n+ 3) S∗1,k(n+ 2)

model is shown in Figure 5.2 b where two clusters are considered. In this case b

is set to be 4 and the encoded sequence at the source can be represented as

S1,k(n) =



Xk(n), for n = 0, 4, · · · , N − 4

−X∗k(n), for n = 1, 5, · · · , N − 3

Xk(n), for n = 2, 6, · · · , N − 2

−X∗k(n), for n = 3, 7, · · · , N − 1

(5.4)

As for the single cluster, Table (5.2) illustrates the transmitted signals for all

relay in the relaying phase.

In the second time slot, both relay nodes broadcast their information to the

destination simultaneously. Therefore, the destination receives the combined sig-

nals from the relays. The equivalent channel matrix for the four successive symbols

duration can be expressed as [207,208]

H =

 H12 0

0 H34


where H12 is the equivalent channel of the first cluster given above and H23 is

the equivalent channel of the second cluster which consists of second AF and DF

relay nodes.

• Implementation at the Destination Node

At the destination, perfect time and frequency synchronization for each hop

are assumed, and perfect channel state information (CSI) is known. Since the

adaptation process is based on a subband-by-subband basis, the power channel
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gain of the b adjacent sub-carriers are the same. The destination evaluates the

instantaneous SNR of all sub-carriers in the system. The instantaneous SNR

received from both groups can be given as

γn =


γsri,nγrid,n

γsri,n+γrid,n+1
=

Ps,nPAFri,nαi,nµi,n

Ps,nαi,n+PAFri,nµi,n+1
, if i ∈ AF

γrjd,n = PDF
rj ,n

νj,n, if j ∈ DF
(5.5)

where αi,n =
|hsri,n|

2

Γσ2 , µi,n =
|hrid,n|

2

Γσ2 and νj,n =
|hrjd,n|

2

Γσ2 . Γ is the SNR gap which is

defined in (4.39).

Thereafter, the destination selects the relay from each group which has the highest

SNR. This process is completed before the communication phase. The destination

employs the MRC technique to enhance the overall received SNR. The received

signal from the selected relays is taken and the CP discarding then the received

signal is fed into the DFT modulator. The received signal of the (bn, · · · , bn+b−1)

sub-carriers in the frequency domain at the destination can be expressed as

Yd,2n = HAF
rid,2n

β2nY1,2n +HDF
ri,d,n

SDF2n +Wd,2n

= HAF
ri,d,2n

(
√
Ps,riβ2nH

AF
s,ri
SAF2n +Wri,2n) +HDF

ri,d,2n
SDF2n +Wd,2n

=

√
Ps,ri,2nPri,d,2n
Ps,ri,2n + 1

HAF
2n S

AF
2n +HDF

2n SDF2n +W2n

(5.6)

Yd,2n+1 = HAF
rid,2n+1β2nY1,2n+1 +HDF

ri,d,n
SDF2n+1 +Wd,2n+1

= HAF
ri,d,2n+1(

√
Ps,riβ2n+1H

AF
s,ri
SAF2n+1 +Wri,2n+1) +HDF

ri,d,2n+1S
DF
2n+1 +Wd,2n+1

=

√
Ps,ri,2n+1Pri,d,2n+1

Ps,ri,2n+1 + 1
HAF

2n+1S
AF
2n+1 +HDF

2n+1S
DF
2n+1 +W2n+1

(5.7)

where W2n =
√

Pri,d,2n
Ps,ri,2n+1

Wri,2n + Wd,2n and W2n+1 =
√

Pri,d,2n+1

Ps,ri,2n+1+1
Wri,2n+1 +

Wd,2n+1, HAF
n = HAF

s,ri,n
HAF
ri,d,n

and HDF = HDF
ri,d,n

.

By substituting the values of SAF2n , S
AF
2n+1, S

DF
2n and SDF2n=1 into (5.6) and (5.7),

then (5.6) and (5.7) can be rewritten in the following Alamouti code form on each
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two adjacent sub-carriers in k block. Yd,2n

Yd,2n+1

 =

 λX2n X2n+1

−λX∗2n+1 X∗2n

 HAF
2n HAF

2n+1

HDF
2n HDF

2n+1

+

 W2n

W2n+1


where λ =

√
Ps,ri,2n+1Pri,d,2n+1

Ps,ri,2n+1+1
.

Similarly for two clusters shown in Figure 5.3a. The received signal at the

destination for four consecutive sub-carriers can be expressed as

Yd,2n = λHAF
2n S

AF
2n +HDF

2n SDF2n +W2n

Yd,2n+1 = λHAF
2n+1S

AF
2n+1 +HDF

2n+1S
DF
2n+1 +W2n+1

Yd,2n+2 = λHAF
2n+2S

AF
2n+2 +HDF

2n+2S
DF
2n+2 +W2n+2

Yd,2n+3 = λHAF
2n+3S

AF
2n+3 +HDF

2n+3S
DF
2n+3 +W2n+3

(5.8)


Yd,1

Yd,2

Yd,3

Yd,4

 =


λX1 X2 0 0

−λX∗2 X∗1 0 0

0 0 λX3 X4

0 0 −λX∗4 X∗3




HAF

1 HAF
2 0 0

HDF
1 HDF

2 0 0

0 0 HAF
3 HAF

4

0 0 HDF
3 HDF

4



+


W1

W2

W3

W4


The channel coefficients for any adjacent sub-carriers are assumed to be ap-

proximately constant. The estimate vector at the SF decoder can be written as [1]

X̂2n =
(
HAF

2n

)∗
Yri,d,2n +HDF

2n Y ∗ri,d,2n+1

X̂2n+1 =
(
HDF

2n

)∗ −HAF
2n Y

∗
ri,d,2n+1.

(5.9)

Substituting (5.6) and (5.7) into (5.9), then the estimate vector can be rewrit-
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Figure 5.3: DSFC-OFDM transceiver architecture.
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ten as

X̂2n =

(√
Ps,riPri,d
Ps,ri + 1

|HAF |2 + |HDF |2
)
X2n

+ Z(2n)

X̂2n+1 =

(√
Ps,riPri,d
Ps,ri + 1

|HAF |2 + |HDF |2
)
X2n+1

+ Z(2n+ 1)

(5.10)

where Z(2n) = H∗AFW (2n) + HDFW
∗(2n + 1), Z(2n + 1) = H∗DFW (2n) −

HAFW
∗(2n+ 1).

Finally, the OFDM symbols are forward to the destination. The block diagram

of the proposed SFBC-OFDM system is illustrated in Fig. 5.3.

5.4 Power Allocation and Sub-carrier Pairing

for DSFC-OFDM

In this section, power allocation, sub-carrier permutation and joint power al-

location and sub-carrier permutation are studied to improve the throughput of

the system. The optimization of power allocation with and without sub-carrier

pairing is investigated under global power constraints.

5.4.1 Power allocation

In this section, the sub-carriers pairing technique is not used where the same sub-

carrier in the second hop retransmits the information received from the source. It

has been proven that adaptive power allocation can provide a significant im-

provement in data rates over non-adaptive by exploiting the complete knowledge

of the CSI at the transmitter [107, 111, 209, 210]. The main reason behind this

improvement is that the algorithm excludes the sub-carriers experiencing deep

fading by assigning these sub-carriers zero while allocates high power level for

good sub-carriers. It is assumed that the power channel parameters are perfectly

estimated at the receiver and fed back to the source node. Subsequently the source
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evaluates the SNRs and assigns each sub-carrier a modulation constellation cor-

respondingly.

A power loading algorithm determines the power assigned to each node as well

as the required power of each sub-carrier in the network. this has been intensively

investigated either to provide high capacity which is referred to as rate adaptive

or to improve BER performance which is denoted as margin adaptive. The rate

adaptive approach is considered where the objective is to maximize the data rate

under a total power constraint. Since the end-to-end SNR for each sub-carrier in

both relays are known at the destination, the overall data rate can be expressed

as

Cn =
1

2
log2

(
1 + γAFn + γDFn

)
=

1

2
log2

(
1 +

Ps,nP
AF
ri,n
αi,nµi,n

Ps,nαi,n + PAF
ri,n
µi,n + 1

+ PDF
rj ,n

νj,n

)
(5.11)

Since the best relay in both AF and DF groups forward the same data to the

destination. It is very easy to combine the SNRs from both relays at the desti-

nation using MRC. The use of this formula is widely accepted in the literature,

e.g., [35,95,110]. A tight upper bound of (5.11) can be used, which is more math-

ematically tractable and in a suitable form for analysis and can be rewritten as

Cn =
1

2
log2

(
1 +

Ps,nP
AF
ri,n
αi,nµi,n

Ps,nαi,n + PAF
ri,n
µi,n

+ PDF
rj ,n

νj,n

)
(5.12)

The factor 1
2

denotes that the system considered half-duplex and there are two

time slots to complete the transmission of one symbol. The rate of an DSFC

measures how many symbols per time slot (T) it transmits on average over the

course of one block. In single-input single-output (SISO) system, the code rate

equal to symbols
T

, however in relaying systems it is equal to symbols
2T

. The rate of

the DSFC is equal to 0.5 due to the protocol has two time slots regardless how

many relays in the system. Since OFDM symbols consist of N sub-carriers and

the relay nodes retransmit the data over entire sub-carriers, the instantaneous

information rate from source to destination can be expressed as

C =
N∑
n=1

Cn (5.13)
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The optimal power allocation can be achieved by maximizing the overall system

capacity C under aggregate power constraint. Thus the problem of maximizing

throughput can be formulated as

arg max
N∑
n=1

Cn (5.14)

subject to
N∑
n=1

Ps,n +
N∑
n=1

PAF
r,n +

N∑
n=1

PDF
r,n = PT

Ps,n, P
AF
r,n , P

DF
r,n ≥ 0

(5.15)

where PT is the total power budget.

As reported in the previous section, the DF relay was error free. In order

to realize with this context and also to minimize the noise induced at the AF

relay. The source should be allocated sufficient amounts of power. Therefore the

optimization problem can be divided into two suboptimal problems. The first one

is to divide the total power optimally between the source and the relay nodes tak-

ing into account the complete CSI in the system. Then the relays power allocation

of the the relay nodes can be optimized to maximize the channel capacity of the

second hop under relay power constraint. Let the total relay power be equal to

the algebraic sum of the AF and DF relay nodes

PR =
N∑
n=1

PR,n =
N∑
n=1

PAF
r,n +

N∑
n=1

PDF
r,n . (5.16)

The maximum throughput can be obtained when the power PR is distributes

optimally between both relays according to the power channel gains of the second

hop subject to the constraint in (5.16). Therefore the capacity of the second hop

in the nth sub-carrier can be expressed as

C̄n = min{log2(PAF
ri,n
µi,n), log2((PDF

ri,n
νj,n))}, (5.17)

It should also meet the condition of [108,136] to achieve the maximum capacity

PAF
r,n µi,n = PDF

r,n νi,n, (5.18)
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The suboptimal problem can be written as

max C̄ =
N∑
n=1

log2

(
1 +

µi,nνj,n
µi,n + νj,n

)

s.t

N∑
n=1

PR,n
2

= PR

PR,n ≥ 0,

(5.19)

It is worth to point out that the solution of (5.19) can be obtained by using water-

filing algorithm, the transmit power assigned to each sub-carrier in the second

hop gives as

PR,n =

[
η − µi,nνj,n

µi,n + νj,n
PR

]+

, (5.20)

where [a]+ = max(a, 0) and η is the Lagrange multiplier that satisfies the power

constraints in (5.16). The transmit power of each sub-carrier in AF and DF relay

nodes is given by

PAF
R,n =

νi,n
µi,n + νi,n

PR,n = ψnPR,n

PDF
R,n =

µi,n
µi,n + νi,n

PR,n = (1− ψn)PR,n.
(5.21)

By substituting 5.21 into 5.12, the system capacity can be expressed as

C =
1

2

N∑
n=1

log2

(
1 +

Ps,nψnPR,nαi,nµi,n
Ps,nαi,n + ψnPR,nµi,n

+ (1− ψn)PR,nνj,n

)
(5.22)

and substituting 5.16 into 5.15, the optimization problem can be rewritten as

arg max C

subject to
N∑
n=1

Ps,n +
N∑
n=1

PR,n = PT

Ps,n, PR,n ≥ 0

(5.23)

The suboptimal power allocation at the source and relay nodes can be obtained

by applying Lagrange multiplier method and considering Karush-Kuhn-Tucker

(KKT) conditions [211]. The Lagrangian function of the problem expressed in

5.23 can be formulated as

L =
1

2

N∑
n=1

log2

(
1 +

Ps,nψnPR,nαi,nµi,n
Ps,nαi,n + ψnPR,nµi,n

+ (1− ψn)PR,nνj,n

)

− η(
N∑
n=1

Ps,n +
N∑
n=1

PR,n − PT )

(5.24)
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calculating the partial derivative of 5.24 with respect to the variables Ps,n, PR,n

and η, results

∂L[Ps,n, PR,n, η]

∂Ps,n
=

1(
1 +

Ps,nψnPR,nαi,nµi,n
Ps,nαi,n+ψnPR,nµi,n

+ (1− ψn)PR,nνj,n

)
× (Ps,nαi,n + ψnPR,nµi,n)(ψnPR,nαi,nµi,n)− Ps,nψnPR,n(αi,n)2µi,n

(Ps,nαi,n + ψnPR,nµi,n)2
− η = 0

∂L[Ps,n, PR,n, η]

∂PR,n
=

1(
1 +

Ps,nψnPR,nαi,nµi,n
Ps,nαi,n+ψnPR,nµi,n

+ (1− ψn)PR,nνj,n

)
× (Ps,nαi,n + ψnPR,nµi,n)(Ps,nψnαi,nµi,n)− Ps,nαi,nPR,n(ψnµi,n)2

(Ps,nαi,n + ψnPR,nµi,n)2

+
(1− ψn)νj,n(

1 +
Ps,nψnPR,nαi,nµi,n
Ps,nαi,n+ψnPR,nµi,n

+ (1− ψn)PR,nνj,n

) − η = 0

∂L[Ps,n, PR,n, η]

∂η
= Ps,n + PR,n − PT = 0

(5.25)

From 5.25, it can be determined that

(ψnPR,nµi,n)2αi,n − η
(
(Ps,nαi,n + ψnPR,nµi,n)2 (1 + (1− ψn)PR,nνj,n)

)
− η ((Ps,nψnPR,nαi,nµi,n)(Ps,nαi,n + ψnPR,nµi,n)) = 0

(PR,nαi,n)2ψnµi,n + (1− ψn)νj,n(Ps,nαi,n + ψnPR,nµi,n)2

− η
(
(Ps,nαi,n + ψnPR,nµi,n)2 (1 + (1− ψn)PR,nνj,n)

)
− η ((Ps,nψnPR,nαi,nµi,n)(Ps,nαi,n + ψnPR,nµi,n)) = 0

Ps,n + PR,n − PT = 0

(5.26)

Further manipulation of 5.26 yields

Ps,n =

κPR,n when µi,n 6= νj,n

PR,n, when µi,n = νj,n

(5.27)

where κ =
(1−ψn)ψnµi,nνj,n+(1−ψn)νj,n

√
(1−ψn)ψnµi,nνj,n+αi,n(|ψnµi,n−(1−ψn)νj,n|)

αi,n(|ψnµi,n−(1−ψn)νj,n|) .

The solution of the optimization problem as shown in 5.28 and 5.29

Ps,n =


κ

1+κ
PT , when µi,n 6= νj,n

PT
2
, when µi,n = νj,n

(5.28)
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PR,n =


1

1+κ
PT , when µi,n 6= νj,n

PT
2
, when µi,n = νj,n

(5.29)

By substituting 5.28 and 5.29 into 5.21, the following results can be achieved

PAF
R,n =


νi,n

(1+κ)(µi,n+νi,n)
PT , when µi,n 6= νj,n

PT
4
, when µi,n = νj,n

(5.30)

PDF
R,n =


µi,n

(1+κ)(µi,n+νi,n)
PT , when µi,n 6= νj,n

PT
4
, when µi,n = νj,n

(5.31)

It can be seen from 5.30 and 5.31 that the power assigned to each sub-carrier

in both relays depends directly to the power channel gains of the second hop. The

algorithm allocates more power to the sub-carrier experiencing high attenuation

at one relay and the rest of the nth sub-carrier transmit power assigns to the

second relay and Vice versa. It also can be seen that if the channel power gain for

the sub-carrier in the DF group is high, the assigned power will be low and vice

versa. As a result by allocating power appropriately in this manner, the issues

of very close relays is overcome. The practicality of the proposed scheme was

examined against the available protocols and the results are illustrated in Figure

5.7 on page 118. The results demonstrate that the proposed protocol outperform

the available protocols for different range of SNR.

5.4.2 Sub-carrier Pairing

In this section the power allocation for all sub-carriers are assumed to be uni-

formly distributed in the transmitter and both relay nodes, thus each sub-carrier

allocates Pn = PT
3N

. The power channel gains for the same sub-carrier in the multi-

hop protocols are independent and the end to end system performance depends

on the weakest channel gain. However the system throughput may be greatly

degraded when the nth sub-carrier retransmits the received data from the source

with the same sub-carrier in the second hop to the destination.
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On the other hand, sub-carrier permutation can be implemented in multi-

hop OFDM relaying systems to further enhance system performance. In a sub-

carrier permutation algorithm, the nth sub-carrier in the first hop is matched

with another sub-carrier in the second hop based on quality of the channel power

gain. Practically this can be done by ordering the sub-carriers in both hops in

descending order according to the CSI [108, 121]. Then the sub-carrier with the

maximum channel power gain in the first hop is matched with the sub-carrier has

maximum channel gain in the second hop. This process is repeated for the second

best and so on until the worst sub-carrier in the first hop is allocated with the

worst sub-carrier in the second hop.

5.4.3 Joint Power Allocation and Sub-carrier Pairing

In this subsection, the joint sub-carrier pairing and resource allocation will be

analyzed for HRP. In this scheme, the sub-carrier pairing is considered at the

beginning by using the best to best algorithm as presented in the previous sub-

section. Since the system consists of two relays participating in communication

time interval. Therefore the sub-carrier pairing should be implemented in both

relays independently. In the AF relay, the sub-carriers in both hops are ordered

in descending according to the quality of the power channel gains. Whereas the

DF relay uses error-free decoding, the sub-carriers in the second hop will de gor-

gonised in descending order. The end-to-end SNR of each sub-carrier in both

relays can be expressed as

γn =


γsri,nγrid,ń

γsri,ń+γrid,n+1
=

Ps,nPAFri,ń
αi,nµi,ń

Ps,nαi,n+PAFri,ń
µi,ń+1

, if i ∈ AF

γrjd,ǹ = PDF
rj ,ǹ

νj,ǹ, if j ∈ DF
(5.32)

where ń and ǹ denote the sub-carrier used by AF and DF relays in the second time

slot respectively. Then the optimal power allocation will be adopted as presented

in Section 5.4.1. Therefore the optimization problem can be expressed as

C =
1

2

N∑
n=1

log2

(
1 + ρn,ń

Ps,nψnPR,ńαi,nµi,ń
Ps,nαi,n + ψnPR,ńµi,n

+ ρn,ǹ(1− ψn)PR,nνj,ǹ

)
(5.33)
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subject to
N∑
n=1

Ps,n +
N∑
n=1

PR,n = PT

Ps,n, PR,n ≥ 0

ρn,ń, ρn,ǹ = 0, 1

N∑
n=1

ρn,ń = 1

N∑
n=1

ρn,ǹ = 1

(5.34)

where ρn,ń and ρn,ǹ represent the indicator that the nth sub-carrier in the first

hop retransmits the received data on the ńth sub-carrier by AF and ǹth by DF

relays and can takes 0 or 1 values.

The same procedure follows as in Section 5.4.1 to solve the optimization prob-

lem which is given as

Ps,n =


κn,n

1+κn,n
PT , when µi,ǹ 6= νj,ǹ

PT
2
, when µi,n = νj,ǹ

(5.35)

PAF
R,ń =


νi,ǹ

(1+κn,n)(µi,ń+νi,ǹ)
PT , when µi,ń 6= νj,ǹ

PT
4
, when µi,n = νj,ǹ

(5.36)

PDF
R,ǹ =


µi,ń

(1+κn,n)(µi,n+νi,ń)
PT , when µi,ń 6= νj,ǹ

PT
4
, when µi,ń = νj,ǹ

(5.37)

where κn,n =
(1−ψn)ψnµi,ńνj,ǹ+(1−ψn)νj,ń

√
(1−ψn)ψnµi,ńνj,ǹ+αi,n(|ψnµi,ǹ−(1−ψn)νj,ǹ|)

αi,n(|ψnµi,ń−(1−ψn)νj,ǹ|)
and

ψn =
νi,ǹ

µi,ń+νi,ǹ
.

It is worth remarking that the half of the aggregate transmit power is assigned

to the source and the rest is distributed between the selected relay nodes. The

power allocation on each subcarrier at the source and selected relays is strongly

depends on the sub-carrier pairing as shown in equations (5.35), (5.36) and

(5.37). As a result the system capacity can gradely improve when the sub-carrier

matched in both hops as illustrated in Figure 5.8.
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5.5 Simulation Results

In this section, simulation results to demonstrate the BER and system capacity

performance of the proposed protocol is presented with a varying number of relay

nodes, and compare it to the conventional protocol. The BPSK modulation are

performed for all simulations for fixed resource allocation and a frame size of

100 symbols. The channel between any two nodes in the system is modeled as a

quasi-static frequency-selective fading channels (Pedestrian ITU-R model). The

subcarriers is assumed to be set to N = 64 and CP length of 16. The total power

is set to 15 W. It is also assumed that perfect CSI is available at the nodes

in the system. In order to simplify the SFC implementation and achieve full

diversity and transmission rate, the distributed transmission pattern as proposed

in [208] is considered. Two schemes: single cluster and dual clusters is simulateed

as illustrated in Figure 5.2. Each cluster has a pair of relay nodes (AF and DF).

Figure 5.4 plots the bit error probability performance of the protocols for

various SNRs with a single cluster. The results demonstrate that the HRP scheme

outperforms the AF scheme irrespective of the number of relay nodes in the

network. This is due to noise amplification at the AF relay nodes. As can be seen

from the figure, in the case of 2 relay nodes, the HRP performs better than the

AF protocol at medium to high SNRs and both achieve a diversity order of 2. It

can also be seen that the performance is substantially improved and the diversity

order increases linearly with the number of the relays (2, 3, and 4). It is thus

concluded that selective HRP has a diversity order equal to the number of the

available relay nodes in the network instead of the number of the selected relays.

Figure 5.5 depicts the BEP performance with two clusters for different values

of SNR. It can be seen that the diversity order of 2, when the relay selection

is not taken into consideration (without relay selection WoRS), is similar to the

performance of the single cluster. It can also notice that the diversity order of

4 in both schemes when relay selection (with relay selection WRS) is taken into

account. It is again shown that the diversity order increases linearly with the

number of the relays.
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Figure 5.4: BEP performance of the DSFC-OFDM based on HRP for single cluster.

Figure 5.6 shows the bit error probability versus SNR under different adaptive

algorithms. The system consists of 4 relay nodes organized into two clusters. It can

be seen that the joint resource allocation and sub-carrier pairing outperforms the

uniform resource allocation, uniform resource allocation with sub-carrier pairing

and power allocation without SP. It also can be seen that the resource allocation

provides better performance than the sub-carrier permutation at high SNR values.

Figure 5.7 illustrates the capacity of several protocols for various SNR val-

ues. The throughput of the proposed protocol is better than the convention proto-

cols. Figure 5.7 also compares the proposed scheme with the hybrid relay protocol

repetition based proposed (e.g., three orthogonal time slot). It can be observed

that the proposed scheme outperforms the hybrid relay protocol over the entire

SNR range. The improvement in the system capacity is linearly proportional with

the SNR which provides a gain over the DF scheme about 0.5 bps/Hz at 30 dB

and about 0.15 bps/Hz at 5dB.

The effect of the adaptive resource allocation and sub-carrier pairing on the
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Figure 5.5: BEP performance of the DSFC-OFDM based on HRP for two clusters.
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Figure 5.6: BEP performance of the DSFC-OFDM based on HRP versus SNR with

and without adaptive techniques when M=6 and N=64.
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system capacity of the proposed scheme is illustrated in Figure 5.8. The power

allocation can provide better performance than sub-carrier pairing while joint

resource allocation and sub-carrier permutation provides the best throughput as

expected.

5.6 Conclusion

In this chapter, a hybrid relay selection protocol based upon DSFC and OFDM

has been proposed. The system performance can be enhanced by using adap-

tive power allocation and sub-carrier permutation. The DSFC is obtained at the

destination with a very simple operation at the relay nodes. Previous work com-

prised: time reversal, circular shift, and encoding of the received symbols at the

AF relay nodes whereas here the selected AF relay nodes simply amplify the

received noisy signals. Moreover, very simple processes (complex conjugate) are

implemented at the selected DF relay nodes. The computer simulations show that

the proposed scheme achieves full spatial diversity and significant improvement

in terms of BEP as the number of relay nodes increases. The additional gains

of the spectral efficiency are not only due to usage of DSFC, power allocation

and subcarrier permutation but also due to the use of hybrid relay selection. The

proposed protocol also demonstrate that a full transmission rate is attainable.



Chapter 6

3D Video Transmission Over

Cooperative OFDM Relaying

Systems

6.1 Introduction

Three dimensional video communication over wireless network is a significant

challenge for current multimedia technology. As it is well known, wireless chan-

nels often suffer from multi-path fading, shadowing and inter-symbol interfer-

ence. A digital video sequence is composed of many frames with a potentially

large amount of data. The design issue of communication system is posed as

follows: how to transmit 3D video sequences with high fidelity over drastically

limited channel bandwidth?. In order to solve this problem a new field in sig-

nal processing has been applied to represent 3D scenes proposed with a minimal

amount of data while maintaining an acceptable quality at the destination. Data

compression is generally used to make the high data rate sequence more compat-

ible for transmission over wireless channels.

Several standards for video data compression have been released in order to

reduce the storage space and bandwidth to make them more appropriate with

broadband channels. These included the H263, MPEG-2 and Advanced Video

Coding (H.264/AVC) standard [212,213]. Recently (in April 2013) a new standard
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for video compression has been released known as high-efficiency video coding

(HEVC)/ H.265 [214].

H.264/AVC is still use due to it was created to provide better compression of

video and error robustness compared to previous standards. However bit streams

of the video compression standard are very sensitive to channel errors with some

types of bits, in the bit stream, requiring higher levels of error protection than

others. Therefore, unequal error protection (UEP) was proposed to cope with this

problem by providing different levels of protection [40]. Numerous works have

examined UEP performance based on forward error correction [167], hierarchical

modulation [168, 215] and MIMO systems [41]. However these techniques may

result in a reduction of throughput delivered at the destination, and increase

in transmitter complexity and are often difficult to implement in small sized

devices. Cooperative communications can provide different levels of robustness

with convenient implementation by exploiting the relay nodes over error-prone

channels.

In this chapter, UEP is implemented in the physical layer by exploiting the ad-

vantages of cooperative diversity introduced by cooperative system over frequency-

selective channels. The most popular technique in cooperative communications

that can provides full diversity gain is relay selection [14]. The proposed system

combines relay selection with OFDM technique to further improve system perfor-

mance. Two kinds of relay selection are considered, being hybrid relay selection

and first-best second-best selection. In the relay selection schemes, the color se-

quence is transmitted through the relay that has the best channel gain in order

to provide more protection than for the depth sequence.

The main contribution of this chapter can be summarized as follows:

• An improved relay selection scheme based on a dual relay selection protocol

is investigated to assign more protection to the color sequence than depth

sequence through DF and AF relays respectively.

• proposed two UEP based 3-D video transmission schemes using first-best

second-best and hybrid relay selection over frequency-selective fading chan-

nels.
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• The theoretical error and outage probabilities are analyzed and evaluated

for both protocols.

The remainder of this chapter is organized as follows. In Section 6.2, Motiva-

tion and related works are discussed. Section 6.3 will describe 3D video coding

and DIBR representation briefly. A system model is presented in Section 6.4. In

Section 6.5, the probability density function of the proposed protocols is de-

rived. The end-to-end performance analysis of the proposed protocols in terms of

bit error probability and outage probability are investigated in Section 6.6. Nu-

merical and simulation results are given and discussed in Section 6.7. Finally,

concluding remarks are drawn in Section 6.8.

6.2 Motivation and Related Work

Recently, 3D video multimedia transmission has been gaining increasing atten-

tion in wireless systems over different types of channels. This requires efficient

techniques in both application and physical layers to make 3D video transmission

reliable in error-prone environments. Error-resilience is one of the most popular

application-layer technologies to overcome the shortcoming of 3D video transmis-

sion. 3D scenes can be demonstrated using several methods, with video plus depth

being a popular approach for representing 3D video transmission [216, 217]. It

consists of a conventional 2D video with an associated per-pixel depth map rep-

resented with luma component. In order to represent 3D based on a stereoscope

video, depth image-based rendering (DIBR) was proposed in [218]. In this tech-

nique, depth maps are required to generated good quality 3D video but they do

not need to be of significantly high resolution to render 3D scenes, unlike the

color sequence.

Color and depth images need to be transmitted over communication channels

to the end user for display. However, the color sequence is directly viewed by

the user. Therefore, if the color sequence is lost in transmission, it will result in

more degradation of 3D video quality than the loss of the depth sequence. In

[44] the authors proposed a joint source channel coding (JSCC) for 3D video
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based DIBR to overcome the effect of source and channel distortion. In this

method, different channel coding rates have been implemented to protect color

and depth sequences. The results obtained show that the quality of depth image

does not significantly affect the reconstructed quality. As a result, lower priority

to protection can be used for depth sequence relative to color. The bit streams

of the video compression standards are very sensitive to channel errors and each

type of bits in the bit stream necessitates different error protection. Therefore,

unequal error protection (UEP) was proposed to cope with this problem.

The underlying concept of UEP scheme is to splitting the source data accord-

ing to its priority. In [23], a UEP-based 3D video transmission scheme is proposed

which assigns more protection to the color sequence than the depth map. Differ-

ent levels of protection are realized by allocating an unequal transmission power

to various 3D video components. The most important data is assigned higher

protection level than less important data. Several techniques to achieve UEP

for multimedia data have been proposed in the literature [40, 216, 218]. In [40],

3D video transmission scheme based on UEP was proposed, where the UEP

method assign more protection levels to the color sequence than the depth map

sequence. Different levels of protection have been achieved by allocating unequal

transmission power to 3D video components.

There has been a considerable research activity into multimedia transmission

over MIMO systems due to the provision of high transmit or receive spatial di-

versity to mitigate channel fading [41–43, 169]. In [43], a joint design between

application and physical layers to transmit multimedia data over a closed loop

MIMO system has been proposed, where UEP can be achieved automatically

for scalable video. Experimental results show that the proposed system achieved

better performance relative to open-loop systems. Channel coding and spatial

diversity can be combined together to achieve UEP as reported in [41]. In this

scheme, more channel coding rates and spatial diversity have been allocated to

the most important bits with less spatial diversity and less coding rates to least

important bits. Robust channel code design may lead to a better performance,

but at the expense of bandwidth efficiency.
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The use of multiple antennas may be impractical in many instances due to

limitations on the size and power of communications devices. However, coopera-

tive communication, as a new technology to deal with the problems encountered

by MIMO technology, has received much attention. In cooperative communi-

cation systems, several intermediate nodes located between the source and the

destination attempt to help forward information leading to an improved link

quality and provides high spectral efficiency [4, 17, 55]. Relay selection (RS) pro-

tocol [14, 18, 19] is an efficient technique to achieve high end-to-end throughput

by choosing the best relay between source and destination and improving the di-

versity in a distributed mode. By utilizing cooperative communication with relay

selection context, a new form of UEP has been developed to deliver a high data

rate to the receiver. UEP combined with selective DF protocol were investigated

in [89] over error-prone wireless channels. In this protocol, the most significant

bits can be delivered through direct transmission. The less significant bit-streams

are conveyed with high data rate via indirect links. The closed-form expression of

symbol error probability was derived for single and multiple relay protocol. Al-

though UEP based upon relay selection is proposed for single carrier systems

in [50, 51]. Most of the existing studies on RS combined with 3D transmission

have assumed the channel is flat-fading. As a result, 3D video transmission over

OFDM-based relay system is an open issues.

Orthogonal frequency division multiplexing (OFDM) has become a dominant

technique for multimedia transmission over wideband channels. OFDM technique

can convert a high rate data stream into several low rate streams to be transmit-

ted over independent frequency sub-carriers. There appears to have been limited

work on considering the OFDM technique incorporated with 3D video transmis-

sion [6–8]. However all described techniques were obtained through the use of

multiple antennae.
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6.3 3D video coding and DIBR Representation

In the last decade, the techniques for video compression have developed toward

reductions in system complexity, storage space for archived video information and

transmission bandwidth to have little or no adverse effect on the visual quality

perceived by the end user. Today, H.264/AVC is the video coding standard that

is widely used for 3D video compression in communication systems.

6.3.1 H.264/AVC Coding

H.264/AVC is an industry standard for video compression which can provide high

video quality with remarkably lower data rates and complexity compared to prior

standards. It was developed by the ITU-T Video Coding Experts Group (VCEG)

and the ISO/IEC Moving Picture Experts Group (MPEG). To date, it has been

adopted by several application standards. In addition, there are several techniques

to represent 3D content includeing, stereo video signals, multiview video coding

and video-plus-depth. Previously it has been shown in [219] that the efficiency of

a 3D video transmission system can be be drastically improved by utilizing scene

geometry information such as a depth map. As a consequence, video-plus-depth

has became one of the most popular formats for representing 3D video scenes

because the amount of data required for depth information is relatively small. It

consists of a conventional 2D video with an associated per-pixel depth map which

allows the decoder to synthesize the received sequences using depth image based

rendering (DIBR) technique.

To transmit video-plus-depth format using H.264/AVC, the video and depth

sequences are encoded independently at the transmitter. Figure 6.1 illustrates

an overview diagram for color-plus-depth format using H.264/AVC encoder. The

primary coded sequence can be represented by video sequence while the auxiliary

coded sequence is the depth map. Both sequences are then transmitted through

wireless channels to the destination separately. At the display side, these streams

are decoded to obtain the distorted video and depth sequences. Finally, DIBR

reconstructs the left and right views.
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Figure 6.1: Block diagram of color-plus-depth video representation.

6.3.2 Depth Image Based Rendering (DIBR) Representa-

tion

In order to understated how 3D imaging works, it is important to understand the

human visual system (HVS) [220]. The construction of the HVS consists of the

brain and two eyes. The retina in each eye collects information and transfers it

to the lateral geniculate body in the brain and then to the visual cortex through

the optic nerve. Due to the distance of about 6-8 cm between the human eyes,

human 3D depth perception is the product of two slightly different images pro-

jected to the left and right eye retinas. The brain fuses the two images to yield

the depth perception. To deliver a 3D sequence to the eyes, autostereoscopic or

shutter glasses can be used at the destination terminal to supply each eye with

its corresponding video stream.

Depth image-based rendering (DIBR) is an efficient technique to overcome the

drawback in the 3D depth perception realization proposed in [218] to represent 3D

on a monoscopic video. It is based on the video plus depth (V+D) technique which

is the dominant approach for 3D video representation [216]. In this technique,

depth map are required to generate good quality 3D video, but do not need to

be of the same quality as the color sequence.

DIBR can provide high quality 3D video with a smaller bandwidth and re-

duced storage requirements for transmission compared to the traditional represen-

tation of 3D video using left-right views. Figure 6.2 illustrates the color and depth

map sequences of the “Interview” at the input of the DIBR. The image warping

process can be summarized as: Depth map can be used to generate two virtual

views from the original view. The pixels of the original image are projected into



128
3D Video Transmission Over Cooperative OFDM Relaying

Systems

(a) (b)

Figure 6.2: Color-plus-depth representation in DIBR for Newspaper test sequence

a) color image b) depth map.

the 3D domain, utilizing their depth values specified by the depth stream. Then

this 3D model is projected into the image plane of the virtual camera. The vi-

sual view generation process is shown in Figure 6.3 [44, 221]. The original pixels

located at (x, y) are moved to the new locations (xl, y) and (xr, y) for left and

right view respectively. The two virtual views xl and xr can be calculated as

xr = xc +
f.tc
2

(
1

Z
− 1

Zc

)
(6.1)

xr = xc −
f.tc
2

(
1

Z
− 1

Zc

)
(6.2)

where f is the focal length of the reference camera and tc is the baseline

distance between left and right camera positions. Zc is the selected convergence

distance located at the zero parallax setting (ZPS) plane and Z represents the

depth value of each pixel in the reference view. The user can control the param-

eters f, Zc and tc by setting the depth impression at the destination [221].

6.4 System Model

The proposed relay selection system is illustrated in Figure 6.4 and consists of

one source denoted as S, one destination denoted as D, and M relays located
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Figure 6.3: Virtual left and right views generation in DIBR process.

between S and D. The source is equipped with multiple antennas, while the relays

and destination have only one antenna due to cost and/or size limitations. Half-

duplex transmission mode is considered. The relay node is composed of an OFDM

transceiver with N sub-carriers. Without loss of generality, quasi-static frequency-

selective Rayleigh fading channels are considered. The complete CSI is known at

the destination only and the relay selection follows the same scenario presented

in Section 3.3. To avoid interference, the destination informs the source which

relay is assigned to color sequence and which one is assigned for depth.

The channel fading gains between the source-relays and relays-destination

are denoted as hsri,n and hrid,n, (i =1, ...M) respectively. Due to the Rayleigh

fading channel, however, the channel power between source - relays, and relays-

destination are denoted by |hsri,n|2 and |hrid,n|2 (i = 1, ...M) respectively and are

independent, exponentially distributed random variables with zero mean and unit

variance. In addition, perfect time and frequency synchronization is assumed. The

noise at all nodes is additive white Gaussian noise (AWGN) with zero mean and

power spectral density N0.
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Figure 6.4: System Model.
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6.4.1 UEP Based on HRP

In this scheme, it is assumed that the relays have the ability to perform perfect

error-checking. Therefore any relay which can perform CRC checksum successfully

will be included in the DF group, otherwise it is included in the AF group. In the

AF group, the nth subcarrier in each relay simply amplifies the received signal by

an amplification factor βi,n and forwards it to the destination. The relays in the

DF group decode the received signal from the source, re-encode and then forward

it to the destination. After finding the optimal relay in each group, the destination

informs the source which relay is selected with a corresponding forwarding scheme

through a reverse broadcast channel. In the communication protocol, the source

encodes each frame of multimedia data and classifies it into two sequences. The

former one is the color sequence which is relayed in a highly reliable scheme

using a DF relay and the latter is depth sequence which is transmitted through

the AF relay. Figure 6.5 illustrates the system model where each group consists

of several relays and only a single relay in each group is participating in the

communication phase. The communication occurs through direct and indirect

links with a two-phase protocol. During the first phase, the source node conveys

the color and depth signals to the destination and the relays. The received signals

at the destination and each relay for nth subcarrier can be expressed as

ysj ,ri,n =
√
Ps,nhsj ,ri,nx(n) + wri,n

ysj ,d,n =
√
Ps,nhsj ,d,nx(n) + wd,n,

(6.3)

where x and Ps,n denote the transmitted signal (color or depth) and the signal

power at the source, respectively. ysj ,ri,n, and ysj ,d,n denote the signals received

at the destination and the nth subcarrier of ith relay node, respectively. i =

{1, ...,M} and j = {1, 2} represent the numbers of the relays and transmitter

antennas, respectively. hsj ,ri,n and hsj ,d,n are the channel coefficients between S -

D and S - R. wri,n and wd,n denote the additive white Gaussian noises (AWGN)

in the corresponding channels at the relay and destination, respectively.

In the second time slot, the best relay in each group forwards the received

information to the destination. The best AF relay node amplifies the depth se-
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Figure 6.5: Hybrid relay selection system model.

quence map while the best DF relay decodes the color sequence and re-encodes

with the same code as at the source. The color and depth signals received by the

destination from AF and DF best relays are given by

ycolor =
√
PDF
ri,n

hDFri,d,nx(n) + wd,n

ydepth = βri,nh
AF
ri,d,n

ysj ,ri,n + wd,n,
(6.4)

where PDF
ri,n

denote the signal power at the DF relay. The instantaneous end-to-end

SNR for each relay at the destination is

γn =


γs,ri,nγri,d,n

γs,ri,n+γri,d,n+1
, for depth sequence

γri,d,n, for color sequence

(6.5)

where γs,ri,n and γri,d,n are the instantaneous SNR of the first and second hop for

best relays respectively. The overall received SNR at the destination after using

maximum ratio combining (MRC) is given by

γcolor = γcolorsd + arg max γi
i=1,..∈GDF

γdepth = γdepthsd + arg max γi
i=1,..∈GAF

,
(6.6)

where γcolorsd and γdepthsd are the end-to-end SNR for the direct link of both color

and depth respectively.
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6.4.2 UEP Based on First and Second Best AF relays

(FBSB)

In this protocol all the relays are assumed to used the AF scheme. The destina-

tion chooses the first and second best relay among available relays between the

source and destination as shown in Figure 6.6. As in the previous protocol the

communication process consists of two time slots. In the first time slot, the source

broadcasts color and depth sequences to the relays and the destination indepen-

dently. Therefore, the received signals at the relay and destination for the nth

subcarrier are as shown in (6.3). In the second phase, the first best relay and the

second best relay nodes simply amplify the received color and depth signals from

the source and forward them to the destination through the hr1,d,n and hr2,d,n

channels respectively. The color and depth signals received by the destination

from first and second best relays are given by

ycolor = βr1,nhr1,d,nysj ,r1,n + wd,n

ydepth = βr2,nhr2,d,nysj ,r2,n + wd,n,
(6.7)

where βr1,n and βr2,n are the amplification factors for first and second best AF

relays, respectively. The MRC can be employed at the destination to improve

overall SNR. Therefore, the aggregate received SNR is given by

γcolor = γcolorsd + arg max γi
i=1,..M

γdepth = γdepthsd + arg 2nd max γi
i=1,..M

.
(6.8)
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6.5 PDF of proposed protocols

Since the relay retransmits the entire OFDM symbol from the source, it is in a

state of outage if any subcarrier has an outage. Although the channel coefficient

between any two nodes follows a Rayleigh fading distribution, the instantaneous

SNR is exponentially distributed. Therefore, the cumulative distribution function

(CDF) of the end-to-end link can be written as in [45,176]

Fγ = 1−
N∏
n=1

(1− Fγn(γ)) , (6.9)

where Fγn is the CDF of the nth subcarrier at the destination and can be written

for both AF and DF schemes as

Fγn(γ) =

1− e−γ( 1
γ̄sr

+ 1
γ̄rd

)
= 1− e

γ
γ̄eq , for AF scheme

1− e−
γ
γ̄rd , for DF scheme.

(6.10)

By substituting (6.10) into (6.9), the CDF can be expressed as

Fγ =

1− e−N
γ
γ̄eq , for AF scheme

1− e−N
γ
γ̄rd , for DF scheme.

(6.11)

The probability density function (PDF) can be evaluated by differentiation (6.11)

with respect to γ as

fγ =


N
γ̄eq
e
−N γ

γ̄eq , for AF scheme

N
γ̄rd
e
−N γ

γ̄rd , for DF scheme.

(6.12)

6.5.1 UEP Based on HRP

In this protocol, the relays are classified into two groups according to their abil-

ity to perform CRC checksums successfully. Assuming M relays are arbitrarily

located between S and D and are classified into AF and DF groups. It is assumed

that the AF and DF groups consist of Q and M − Q relays respectively. The

destination chooses the best relay among the relays in each group which has the

maximum end-to-end SNR independently. In the following analysis, the PDF and

CDF for the end-to-end SNR of the best relay in both groups can be evaluated
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by using the moment generating function (MGF) approach. Firstly, the MGF of

the end-to-end SNR of color, depth and direct transmission are calculated and

combined by utilizing MGF properties. Then, the corresponding PDF of each

scheme can be evaluated by using the inverse Laplace transform. The end-to-end

SNR of selected relay in each group can be written as

γcolor,1 = arg max γi
i=1,..Q

γdepth,1 = arg max γi
i=1,..M−Q

.
(6.13)

The CDF of γcolor and γdepth can be evaluated as

F depth
γ,1 =

Q∏
q=1

F depth
γq

F color
γ,1 =

M−Q∏
m=1

F color
γm .

(6.14)

By differentiating the CDF in (6.14) with respect to γ, the PDF can be obtained

as

fdepthγ,1 =

Q∑
q=1

fdepthγq

Q∏
j=1

F depth
γj

f colorγ,1 =

M−Q∑
m=1

f colorγm

M−Q∏
j=1

F color
γj

.

(6.15)

Substituting (6.11) and (6.12) into (6.15), the PDF of color and depth sequences

can be rewritten as

fdepthγ,1 =

Q∑
q=1

N

γ̄eq
e
−N γ

γ̄eq

Q∏
j=1

1− e−N
γ
γ̄eq

f colorγ,1 =

M−Q∑
m=1

N

γ̄rd
e
−N γ

γ̄rd

M−Q∏
j=1

1− e−N
γ
γ̄rd .

(6.16)

After some mathematical simplification and manipulation, (6.16) can be rewritten

as

fdepthγ,1 =

Q∑
q=1

Cq
Q(−1)q−1Nq

γ̄eq
e
−Nq γ

γ̄eq

f colorγ,1 =

M−Q∑
m=1

Cm
M−Q(−1)m−1Nm

γ̄rd
e
−Nm γ

γ̄rd .

(6.17)
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where Cq
Q =

(
Q
q

)
= Q!

(Q−q)!q! is the binomial distribution. The PDF of the direct

link γs,d for both color and depth is

fγs,d =
N

γ̄sd
e
−N γ

γ̄sd , (6.18)

By using the definition of the MGF generally given by

Mγ(s) = E{e−sγ} =

∫ ∞
0

e−sγfγ(γ)dγ, (6.19)

the MGF of γs,d can be evaluated as

Mγs,d(s) =
N

N + γ̄sds
(6.20)

Similarly, the MGF of γcolor,1 and γdepth,1 can be derived by substituting (6.17)

into (6.19)

Mγdepth,1(s) =

Q∑
q=1

Cq
Q(−1)q−1 Nq

Nq + γ̄eqs

Mγcolor,1(s) =

M−Q∑
m=1

Cm
M−Q(−1)m−1 Nm

Nm+ γ̄rds
.

(6.21)

Since the received SNR from direct and indirect links for both color and depth

at the destination are independent, the MGF of γcolor and γdepth can be expressed

as

Mγdepth(s) = Mγs,d(s)Mγdepth,1(s)

Mγcolor(s) = Mγs,d(s)Mγcolor,1(s).
(6.22)

By substituting (6.20) and (6.21) into (6.22), and applying partial fraction algo-

rithm with several manipulations we arrive at

Mγdepth(s) =

Q∑
q=1

Cq
Q(−1)q−1(

A

1 + γ̄eq
Nq
s

+
B

1 + γ̄SD
N
s

)

Mγcolor(s) =

M−Q∑
m=1

Cm
M−Q(−1)m−1(

C

1 + γ̄rd
Nm

s
+

D

1 + γ̄SD
N
s

).

(6.23)

where A = − γ̄eq
qγ̄SD−γ̄eq

, B = qγ̄SD
qγ̄SD−γ̄eq

, C = − γ̄rd
mγ̄SD−γ̄rd

and D = mγ̄SD
mγ̄SD−γ̄rd

.

By applying the inverse Laplace transform to MGF in (6.23), the PDF can be
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evaluated as

fdepthγ = L−1{Mγdepth} =

∫ ∞
0

e−sγMγdepth(s)ds

=

Q∑
q=1

Cq
Q(−1)q−1 Nq

qγ̄SD − γ̄eq
(e
−N γ

γ̄SD − e−qN
γ
γ̄eq )

f colorγ = L−1{Mγcolor} =

∫ ∞
0

e−sγMγcolor(s)ds

=

M−Q∑
m=1

Cq
M−Q(−1)m−1 Nm

mγ̄rd − γ̄rd
(e
−N γ

γ̄SD − e−mN
γ
γ̄rd ).

(6.24)

6.5.2 UEP Based on First and Second Best AF relays

(FBSB)

The PDF and CDF of this protocol are evaluated by following the same procedure

as in the previous subsection. The M relays are assumed to be located randomly

between the source and the destination. The PDF of the best relay is similar to

(6.17) being

f colorγ,2 =
M∑
m=1

Cm
M(−1)m−1Nq

γ̄eq
e
−Nm γ

γ̄eq . (6.25)

and the PDF of the second best relay can be evaluated by considering a similar

setup as in [222,223] and substituting K = 2 as

fdepthγ,2 = M(M − 1)
M∑
m=1

Cm
M−2(−1)m−1 N

γ̄eq
e
−N(m+2) γ

γ̄eq . (6.26)

The MGF for both first and second best relays can be evaluated by substituting

(6.25) and (6.26) in (6.19) as

Mγdepth,2(s) =
M∑
m=1

Cm
M(−1)m

Nm

Nm+ γ̄eqs

Mγcolor,2(s) = M(M − 1)
M−2∑
m=2

Cm
M(−1)m

N

Nm+ 2 + γ̄eqs
.

(6.27)

The MRC is employed at the receiver to combine the received signal from the

direct and indirect links. The MGF of the combined signals can be calculated

by substituting the PDF of direct transmission in (6.20) and for FBSB protocol

in (6.27) with applying partial fraction expansion. The MGF of first and second
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best after some mathematical manipulations can be written as

Mγcolor(s) =
M∑
m=1

Cq
M(−1)m(

A

1 + γ̄eq
Nm

s
+

B

1 + γ̄SD
N
s

)

Mγdepth(s) = M(M − 1)
M−2∑
m=1

Cm
M−2(−1)m × (

C

1 + γ̄eq
N(m+2)

s
+

D

1 + γ̄SD
N
s

).

(6.28)

where A = − γ̄eq
mγ̄sd−γ̄eq

, B = mγ̄sd
mγ̄sd−γ̄eq

, C = − γ̄rd
mγ̄sd−γ̄rd

and D = mγ̄sd
mγ̄sd−γ̄rd

.

Finally, the PDF of color and depth signals at the destination can be derived as

f colorγ (γ) =
M∑
m=1

Cm
Q (−1)m−1 Nm

mγ̄SD − γ̄eq
(e
−N γ

γ̄SD − e−mN
γ
γ̄eq )

fdepthγ (γ) = M(M − 1)
M−2∑
m=1

Cq
Q(−1)m

N

(m+ 2)γ̄SD − γ̄rd
(e
−N γ

γ̄SD − e−(m+2)N γ
γ̄rd ).

(6.29)

6.6 End-To-End Performance Analysis

In this section, the closed-form expression of BEP and outage probability system

performances are derived over independent identical Rayleigh fading channels.

6.6.1 Bit Error Probability Performance

The average BEP can be found by averaging the conditional error probability in

AWGN P (e/γ) over the PDF of γ as follows

P (e) =

∫ ∞
0

P (e/γ)fγ(γ)dγ, (6.30)

where P (e/γ) is represented by Gaussian Q-function for a wide range of modula-

tion schemes. For binary phase shift key (BPSK), the conditional error probability

is given by Q(
√
βγ), where a = 2 and Q(x) = (1/

√
2π)

∫∞
x
exp(−t

2

2
)dt. The con-

ditional error probability for BPSK modulation can be expressed as

P (e/γ) =

∫ ∞
0

1

π

∫ π
2

0

exp

(
a2γ

2sin2θ

)
dθfγi(γ)dγ

=
1

π

∫ π
2

0

[∫ ∞
0

exp

(
a2γ

2sin2θ

)
fγi(γ)dγ

]
dθ

=
1

π

∫ π
2

0

Mγexp

(
a2γ

2sin2θ

)
fγi(γ)dθ.

(6.31)
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The closed-form expression for the average error probability of each scheme at

the destination can be evaluated by substituting (6.24) and (6.29) into (6.31) and

can be expressed as

P depth
HRP =

1

2

Q∑
q=1

Cq
Q(−1)q−1 q

γ̄eq − qγ̄

[
γ̄eq

(
1−

√
λeq,n

)
− qNγ̄SD

(
1−

√
λSD,n

)]

P color
HRP =

1

2

M−Q∑
m=1

Cm
M−Q(−1)m−1 m

γ̄rd −mγ̄

×
[
γ̄rd

(
1−

√
λrd,n

)
−mNγ̄SD

(
1−

√
λSD,n

)]
(6.32)

P depth
FBSB =

1

2

M∑
m=1

Cm
M(−1)m−1 m

γ̄eq −mγ̄

×
[
γ̄eq

(
1−

√
λeq,n

)
−mNγ̄SD

(
1−

√
λSD,n

)]
P color
HRP =

1

2
M(M − 1)

M−2∑
m=1

Cm
M−2(−1)m

m

γ̄eq − (m+ 2)γ̄

×
[

γ̄eq
m+ 2

(
1−

√
λeq,n

)
− γ̄SD

(
1−

√
λSD,n

)]
(6.33)

where λSD,n =
γ̄SD,n

1+γ̄SD,n
, λeq,n = γ̄eq,n

1+γ̄eq,n
and λrd,n =

γ̄rd,n
1+γ̄rd,n

6.6.2 Outage Probability Performance

The outage probability is defined as the probability that the mutual informa-

tion between the source and destination falls below a predefined threshold value

γth. Mathematically can be written as

Pout = Fγ(γout) = Pr(γ < γout) =

∫ γout

0

fγ(γ)dγ (6.34)

where γout = 22r − 1 and r is the number of bits in each subcarrier. The outage

probability is corresponds with the CDF with respect to γth. Therefore the outage

probability for both schemes can be evaluated by substituting (6.24) and (6.29)
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into (6.34)

P depth
HRP =

Q∑
q=1

Cq
Q(−1)q−1 q

γ̄eq − qγ̄SD
(1 +

γ̄SD
N

e
−N γ

γ̄SD − γ̄eq
qN

e
−qN γ

γ̄eq )

P color
HRP =

M−Q∑
m=1

Cq
M−Q(−1)m−1 m

γ̄SD −mγ̄rd
(1 +

γ̄SD
N

e
−N γ

γ̄SD − γ̄rd
mN

e
−mN γ

γ̄rd ).

(6.35)

P color
FBSB =

M∑
m=1

Cm
M(−1)m−1 m

γ̄eq −mγ̄SD
(1 +

γ̄SD
N

e
−N γ

γ̄SD − γ̄eq
mN

e
−mN γ

γ̄eq )

P depth
FBSB = M(M − 1)

M−2∑
m=1

Cq
M−2(−1)m

1

(m+ 2)γ̄SD − γ̄rd

× (
γ̄SD
N

(1− e−N
γ

γ̄SD )− γ̄rd
(m+ 2)N

e
−(m+2)N γ

γ̄rd ).

(6.36)

It can be seen from (6.35) and (6.36) that the outage probability depends on

the number of relays in each group in HRP while based upon all relays in FBSB

protocol.

6.7 Simulation and Numerical Results

In this section, the simulation and numerical results are presented to demonstrate

the error probability and outage probability performances of the proposed pro-

tocols. The performance of the HRP and FBSB schemes are compared with the

EEP scheme. BPSK modulation is performed for all simulations and the path-

loss exponent was assumed to be equal to 4 and shadowing is not considered. The

channels between any two nodes in the system are modeled as frequency-selective

Rayleigh fading channels. The OFDM symbol is assumed to consist of N = 64

sub-carriers with a cyclic prefix (CP) length of 16. It is also assumed that perfect

CSI is available at the relay, and at the destination. The system is assumed to

consist of 6 relays. The DF group in the HRP scheme has 4 relays while AF

group is composed of 2 relays. The EEP scheme has 3 AF relays for each color

and depth. All the relays are assumed to be located at the center of the source-

to-destination path in which the SNR of each hop is equal (i.e. γsr,n = γrd,n). The
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Figure 6.7: Bit error probability performance of the UEP-based HRP and EEP

versus SNR

total transmission power is divided equally between the source and the relays and

each sub-carrier transmits one bit (r = 1).

Figure 6.7 plots the BEP performance of the analyzed proposed protocols as a

function of the average SNR of the source-relay link. The closed-form expressions

of the analytical BEP for color and depth and for HRP and FBSB are presented

in (6.32) and (6.33) respectively. It can be seen that the color sequence of the

HRP scheme provides better performance than FBSB at low and medium SNR

values. This outcome is reasonable because the HRP is transmitted with perfect

DF scheme. Whereas above the SNR of 20 dB, the FBSB outperforms the HRP

scheme due to its provision of a higher diversity ordered (6 + 1)-fold. From the

same figure, it is obvious that the EEP protocol exhibits lower performance than

HRP and FBSB protocols. The depth sequence of the HRP scheme demonstrates

worse performance than either EEP or FBSB schemes because it provides the

lowest diversity gain. The performance of the depth sequence of the FBSB and

EEP are approximately the same when the SNR is less than 15 dB. However
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Figure 6.8: Outage probability performance of the UEP-based HRP and EEP

versus SNR.

when the SNR is greater than 15dB the behavior of FBSB deviates significantly

due to the exploitation of the advantages of diversity. It can be seen that the

theoretical and simulation results are perfectly matched.

Figure 6.8 shows the outage probability for the analyzed protocols versus SNR

with each sub-carrier assigned 1 bps/Hz. The analytical results of the outage

probability are achieved using (6.34) and (6.35) for the HRP and FBSB protocols

respectively. It shows that the color sequence of the HRP and FBSB performs

much better than the EEP protocol. The performance depends directly on the

number of participating relays in each group. When the SNR drops below 17 dB,

the color sequence of the HRP exhibits better performance than FBSB. With-

out loss of generality, the performance of the HRP scheme only depends on the

relay-destination channel (γrd,n), while EEP and FBSB protocols depend upon the

equivalent SNR of the first and second hop (i.e., 1
γeq,n

= 1
γsr,n

+ 1
γrd,n

= 0.5γrd,n). Ac-

cordingly, the instantaneous SNR is double that of other protocols. On the other

hand, after 19 dB of the SNR the performance of FBSB is greatly improved
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Figure 6.9: Average PSNR of video sequence.

against the HRP protocol.

In addition, it can be seen from Figure 6.8 that the outage probability of

the depth sequence for the HRP showed a poorer performance than other proto-

cols. Meanwhile, the FBSB outperforms the EEP when the SNR is greater than

17dB. Again, the theoretical results are in a good match with simulation results.

To evaluate the proposed UEP scheme, the 3D interview video sequence with

100 frames is tested. A resolution of 720 × 576 and 4:2:0 color format with a

frame rate of 15 frames/s, is considered. The H.264/AVC reference software JM

version 16.1 is used to encode the video sequences. Simulations are repeated 20

times for each channel SNR condition and the average peak signal-to-noise ratio

(PSNR) of the left and right views are adopted as the performance evaluation

metric.

The quality of video can be measured at the destination by using either are

objective quality metric or a subject quality metric [224]. Electrical measurements

are used in the objective quality metric, while human observation is used in

the subjective quality metric. Here, several parameters such as illumination and

the distance between the user and the display affect the quality of the received

signals. Most of existing research in the field of video quality measurement have

adopted objective quality metric [225]. The PSNR is the most commonly used

video quality metric [226].

The PSNR is measured at the destination by computing the mean square

error (MSE) between a reconstructed and an original video frame as shown in

Figure 6.9, mathematically represented as the ratio of the maximum value of the
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pixel data (8 bits) and MSE in decibels and can be written as

PSNR = 10log10(
2552

MSE
) dB, (6.37)

MSE depends on the original and compressed video and can be expressed as

MSE =
1

K

K∑
k=1

(xk − yk)
2 (6.38)

where K is the number of pixels andxk and yk denote the original and distorted

video sequence of pixel k, respectively. When the MSE is lower value that mean

the distorted video sequence (received video) is substantially high and leads to

higher PSNR. As a result, the quality of the video sequence seen by end user

is better. In 3D video transmission, the reconstructed left and right views are

influenced more by the color sequence than depth sequence [221].

Table 6.1: Average PSNR of different UEP Protocols for the Interview sequence

Channel PSNR of EEP (dB) PSNR of HRP (dB) PSNR of FBSB (dB)

SNR (dB) color depth color depth color depth

5 5.22 5.12 9.27 4.95 7.38 4.98

7 5.52 5.45 13.05 5.25 8.61 5.32

9 6.16 6.02 16.87 5.75 11.43 5.94

11 7.03 6.87 20.3 6.44 15.48 6.75

13 9.24 8.74 22.95 7.26 19.82 8.84

15 11.31 10.91 25.3 8.52 23.95 11.37

17 15.20 14.83 27.08 10.17 26.79 15.97

19 18.65 18.13 28.55 15.31 28.92 19.5

21 21.42 20.93 29.74 17.13 30.15 23.05

23 23.58 22.81 30.84 19.79 31.56 25.14

25 25.29 24.63 31.58 21.42 32.38 26.85

27 27.0 26.42 32.15 24.38 33.23 29.14

29 28.17 27.36 32.60 25.51 33.87 30.48

31 29.2 28.31 33.04 26.28 34.51 31.27

33 29.53 28.78 33.35 26.95 35.02 32.18

Table 6.4 demonstrates the outcome of the investigated protocols of the Interview

sequence versus different values of SNRs for color and depth maps. It can be seen
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Figure 6.10: Average PSNR of the Interview sequence versus SNR for EEP and

UEP based HRP.

that the PSNR of the reconstruction color for the EEP is less than the other

UEP protocols for all the values of SNR. The reconstruction color sequence for

the UEP based HRP exhibits higher PSNR than FBSB scheme where the SNR

is below than 19dB. Otherwise the FBSB provides better PSNR than HRP. The

response of the PSNR for the reconstruction depth sequence seems to be the same

as in Figures. 6.7 and 6.8.

Figures 6.10 and 6.11 show the PSNR of the decoded left and right views

of the schemes under consideration over a range of SNR for the Interview test

sequence. HRP exhibits better performance at low SNRs while FBSB achieves

remarkable gain over HRP and EEP for highest SNRs values.

Figures 6.12 shows the average PSNRs of the decoded left and right views

with the proposed scheme over a range of SNR conditions. It can be seen that

both proposed protocols consistently outperform EEP over the entire range of

SNRs. For the UEP-based HRP, the performance gap is high at low SNRs (e.g,

5 dB gain at SNR of 8 dB) and decreases at high SNRs (e.g, 2 dB gain at SNR
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Figure 6.11: Average PSNR of the Interview sequence versus SNR for EEP and

UEP based HRP.

of 30 dB). Also this figure shows that the FBSB protocol delivers an increase the

PSNR of 3dB at SNR of 8 dB and an increase of 5 dB at high SNR compared

to EEP. It is clear that HRP outperforms the FBSB when the SNR is less than

25dB, and vice versa.

Figures 6.13, 6.14, 6.15 and 6.16 demonstrate the subjective results of Interview

test sequence in terms of subjective quality evaluation for different schemes of

UEP based on relay selection. The frame under consideration is 81st of the color,

depth map, left and right views as well as EEP. Frames are decoded at SNR =

12 dB. Figure 6.13 shows the original color and depth map sequences. It can be

seen from Figure 6.14 that the color and depth sequences in EEP are provided the

same protection quality. As a result the quality of the reconstructed left and right

views is low due to its direct dependence on the quality of the color sequence,

which is also low.

Figure 6.15 illustrates the subjective quality of the UEP based of first best

second best protocol. It can be seen that the quality of the color is improved
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Figure 6.12: Average PSNR of the Interview sequence versus SNR for EEP and

UEP based HRP.

relative to the EEP scheme and the depth exhibits the same quality. The visual

quality of the left and right views is convenient at the end user. In the case of UEP

based HRP at a SNR set to 12 dB, the color sequence can provide a substantial

improvement at the expense of the depth quality as shown in Figure 6.16. As

a result, even though the depth quality is decreased in UEP, the quality of the

reconstructed left and right views at the display end are significantly improved

compared with EEP and FBSB protocols.

The results presented above emphasize that the quality of the reconstructed

left and right views build upon on the color sequence. By exploiting this outcome,

the UEP should be designed to provide more protection to the color sequence

rather than depth map. Furthermore, It is obvious from the results obtained that,

the output quality in error-prone circumstance has been improved using diversity

gain. As a result cooperative communication becomes an attractive technique to

achieve this task efficiently.
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(a) Color (b) Depth

(c) Left view (d) Right view

Figure 6.13: Original frames of Interview sequence.
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(a) Color (b) Depth

(c) Left view (d) Right view

Figure 6.14: Reconstructed frames of EEP at SNR = 12 dB for Interview sequence.
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(a) Color sequence (b) Depth sequence

(c) Left view (d) Right view

Figure 6.15: Reconstructed frames of UEP based HRP at SNR = 12 dB for

Interview sequence.
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(a) Color sequence (b) Depth sequence

(c) Left view (d) Right view

Figure 6.16: Reconstructed frames of UEP based FBSB at SNR = 12 dB for

Interview sequence.
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6.8 Conclusion

In this chapter, the advantages of diversity in the physical layer are exploited to

provide UEP in 3D video transmission. In particular, the UEP scheme is proposed

for color plus depth 3D video transmission in wireless relay networks based on

two protocols of relay selection. The closed-form expressions of the BEP and

outage probability is then derived for the proposed systems for frequency-selective

Rayleigh fading channels. Theoretical and simulation results are provided to show

the significant advantages of the proposed protocols over EEP.

From the simulation results, the quality of the color sequence is the dominant

factor to the visual quality of the left and right views at the end user. The UEP

based HRP, which exhibited higher gains, provides significant improvements at

low SNR values. On the other hand, the UEP based FBSB protocol with higher

diversity gain shows better results at the high SNR values. Even though the depth

sequence of the UEP based HRP shows lower performance at SNR=12dB, the

quality of the reconstructed left and right views are sufficiently good.



Chapter 7

Conclusions and Future Work

7.1 Introduction

In this dissertation, several types of diversity were investigated to increase the

reliability of the wireless communication networks. Selective OFDM(A) relaying

based on “all-subcarrier” and “per-subcarrier” were studied and Chapters 3 and

5 presented protocols to overcome the drawbacks in existing schemes. Power allo-

cation with and without sub-carrier pairing was investigated in Chapter 4. When

used with hybrid relay selection, this technique can enhance the diversity and

combat multi-path fading over frequency-selective Rayleigh fading channels. DSFC

has been shown to provide a full data rate as well as full diversity order and is

easily implemented at the relay nodes to provide Alamouti code at the desti-

nation. In addition, cooperative communications can provide high reliability for

data transmission by splitting the communication path into multiple paths with

short distance has been discussed. These make the high data rate required for

applications such as 3D video transmission are possible. Chapter 6 introduced

unequal error protection as a component of the physical layer to further exploit-

ing the advantages of the forwarding schemes in relaying systems over error-prone

channels.

In this chapter, the contributions envisaged from the work presented in this

thesis are summarized, and possible future research into cooperative communica-
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tions and high data rate applications is discussed.

7.2 Conclusions

In this dissertation, two areas of research in wireless communication systems were

investigated.

In Chapter 3, selective OFDM(A) relaying schemes with, and then without

direct transmission were investigated over wireless broadband channels. A new

scheme using unequal block OFDM relaying was proposed to tradeoff between the

complexity and diversity gain as well as to overcome the challenge of load balanc-

ing of sub-carriers distribution. The outage probability of the selective OFDM,

selective OFDMA, selective block-OFDM and proposed protocol (unequal block

OFDM relaying) were addressed and compared. The selective OFDM protocol was

less complex than selective OFDMA but it delivered lower performance compared

the other protocols. The more complicated selective OFDMA relaying provided

higher performance due to takes benefits of the full diversity order available in

the system. The system with direct transmission outperformed the one without

direct transmission for all protocols due to it exploiting the diversity of broad-

cast nature. The results also demonstrated that employing direct transmission

can provide significant improvement in terms of diversity order and gain for all

protocols examined except selective OFDMA.

A new strategy of hybrid relay selection called multicarrier-adaptive hybrid

relay protocol (MC-AHRP) was proposed in Chapter 4 to avoid sub-carriers that

experience deep fading. It does this by exploiting the advantages of the adap-

tive DF scheme. The relay selection in Chapter 3 was based on “all-subcarrier

basis”. However it is difficult to find relays which can decode all sub-carriers

correctly using frequency-selective channels. The“per-subcarrier basis” was con-

sidered in the single relay MC-AHRP system. The sub-carriers are divided into

two groups depending on their SNR, which can reduce the system complexity

and removes the need of a CRC code.

Adaptive bit and power allocation with and without sub-carrier permutation
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was adopted to further improve the system performance in terms of bit error prob-

ability, outage probability and system capacity. The ABPA was optimized under

individual power constraints. The number of bits assigned to each sub-carrier at

the source based on the SNR of the first hop and a water-filling algorithm was

employed to calculate the power allocated. Since the AF sub-carriers group re-

transmits the information with same data rates, the water-filling algorithm was

used. The total power used by the AF group was easy calculated and the residual

power was distributed optimally over sub-carriers in the DF group. This tech-

nique substantially improved the system performance, especially where the relay

was close to the destination. The closed-form expressions of bit error probabil-

ity and outage probability were investigated for both the proposed scheme and

conventional HRP when the channel fading coefficients are independent and have

identical distribution. Simulation and numerical results show that the MC-AHRP

outperformed the conventional HRP for the entire range of SNR and at any loca-

tion except when the relay is located close to the source and a low threshold value

is specified. In addition, joint ABPA with sub-carrier pairing provides a slight en-

hancement to system capacity (about 0.5 bps/Hz) compared with uniform bit

and power allocation.

In Chapter 5, a simple implementation of DSFC was added to hybrid relay

selection to deliver an Alamouti code to the destination. The selected relay nodes

of the proposed hybrid relay protocol were classified into clusters where each

cluster consisted of a pair of AF and DF relay nodes. The Alamouti code was

implemented at the source and the DF relay node by exploiting the fact that

the DF scheme can undertake some processing of the received signal. The DF

relay performed a very simple processing (complex conjugate) to the received

signal whereas the AF relay simply forwards the received signals after scaling

with amplification factor.

Optimization of power allocation with, and then without sub-carrier match-

ing was investigated to reduce the detrimental effect of multi-path fading over

frequency-selective channels. In order to reduce the system complexity, the ag-

gregate transmit power for each sub-carrier was divided optimally between the
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source and selected relay nodes. Then the assigned power to the selected relay

nodes was split amongst them optimally depending on the power channel gains

of the second time interval. The simulation results confirm that DSFC imple-

mented with HRP provided full spatial diversity and full data rate. Furthermore,

the results demonstrated that the performance of four selected relay nodes using

two clusters was equal to two selected relay nodes utilizing a single cluster. The

throughput of the joint power allocation with sub-carrier pairing outperformed

conventional protocols and the HRP scheme utilizing orthogonal channel trans-

mission (repetition based).

Finally, in Chapter 6 the advantages of cooperative communication in high

data rate transmission were used to investigate unequal error protection (UEP)

of 3D video transmission. This protocol was employed in the physical layer which

does not require any extra information at the transmitter and leads to a de-

crease in system complexity. Two UEP schemes were proposed based on relay

selection. The first was UEP-based on the hybrid relay protocol which was inves-

tigated in Chapter 4, while the second one was based on first-best second-best

(FBSB) relay selection using the AF approach.

In color-plus-depth 3D video representation, color and depth sequences demon-

strate different error sensitivities as color is the dominant contributor to the

quality of the reconstruction video at the end user. The color sequence is broad-

cast over reliable channels and assigned high protection level. For UEP-based

HRP, the color sequence is sent through the best relay in the DF group while

the depth map sequence is sent via the best relay in AF group. In the first-best

second-best AF protocol, the color sequence utilizes the best relay and the depth

sequence uses second best. The closed-form expressions of the bit error proba-

bility and outage probability were investigated for both schemes. In addition,

the PSNR was presented to illustrate the quality of the reconstructed 3D video

transmission. The simulation results demonstrate that the color sequence in the

UEP-based HRP exhibits better performance than other protocols at low and

medium SNR values (less than 17dB) due to it exploiting the advantages of the

DF scheme. The color sequence of the UEP-based first-best second-best scheme
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provides higher improvement because it achieved higher diversity. The depth se-

quence of the HRP obtained worse performance compared with FBSB and equal

error protection schemes. The proposed UEP-based HRP outperforms the FBSB

and conventional EEP schemes in terms of reconstruction left and right views

when the SNR is set to 12 dB. It was illustrated that the cooperative gains can

be leveraged to improve the reconstruction views by providing high channel gain

to the high priority information.

7.3 Future Work

While our cooperative protocols can be naturally extended to the kind of highly

mobile scenarios in which time-selective fading is encountered, the potential im-

pact of our protocols becomes less substantial when other forms of diversity can

be exploited in the system. This section lists some future directions.

• Selective OFDM relaying with Bit loading

Most of the previous research of selective OFDM relaying systems assumed that

the destination is unable to receive the source signal directly. In this dissertation,

four schemes of selective OFDM were studied with, and then without direct trans-

mission to demonstrate the benefits of broadcast nature. The system considered

used equal bit loading where the bits were assigned to all sub-carriers uniformity

distributed. However, this may not support the frequency diversity of multipath

fading channels. A bit loading algorithm could be employed to overcome this

problem where the total data rate is spread over all sub-carriers at the transmit-

ter and selected relay(s) according to the end-to-end channel quality. The overall

system would be in “outage” if an aggregate rate of all sub-carriers combined at

the destination was smaller than the target rate. The performance analysis over

frequency-selective channels is a challenging issue.

• Hybrid Relay Selection for Multi-user Systems

In multiuser systems, OFDMA has been identified as one of the most commonly

used in practical applications. In this kind of system, the sub-carriers should

be assigned to all users optimally to obtain higher multiuser diversity. The en-
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gagement of OFDMA relaying systems with multiuser could improve the system

performance. Employing the conventional relays (AF or DF) may corrupt the re-

ceived signal due to the noise amplification and error propagation caused by the

AF and DF relays respectively. The hybrid relay protocol offers a viable solution

to overcome these drawbacks, however this can increase the complexity of the

seeking algorithm for the best sub-carrier with suitable forwarding scheme. The

issue of computational complexity should be addressed for sub-carrier assignment

over frequency-selective channels in multiuser OFDMA relaying system.

• Rateless Code for Cooperative OFDM Networks

Transmitting high data rates over broadband wireless channels can lead signifi-

cant signal deterioration. Coding and cooperative OFDM systems have become a

promising solution to combat the problem of channel fading. The fixed rate codes

require full knowledge of channel parameters at the relay node. This can impose

higher overhead signals and as a result induce high transmission latency. Raptor

code, which consists of an outer high-rate low density parity check code combined

with an inner Luby transform code, or known as “rateless” code can be used. The

preliminary results in [227] demonstrated that the computational complexity and

latency can be reduced without any loss of reliability by using fountain codes

with cooperative communication in single carrier systems. However, it does ex-

hibit a high error floor over error-prone channels. For practical applications, the

OFDM-based cooperative network has been extensively studied to provide high

data rates with reasonable reliability. The analysis of the performance of raptor

code concatenated with OFDM relaying systems over noisy channels is an open

issue.

• Multi-views 3D video Transmission over Cooperative Networks

Three-dimensional video transmission has received significant development in

high data rate systems. Several techniques have exploited the advantages of the

physical layer concept to achieve unequal error protection for multimedia trans-

mission. These protocols considered a single view of 3D where only a single image

was transmitted for each scene. In order to deliver a good quality scene at the

destination, multiview video technique is adopted where a high number of views
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have to be provided of the same scene. This can generate a huge amount of

data and it becomes a major challenge in bandwidth limited channel problem

environments. This is worthy of future investigation.

7.4 Final Remarks

Diversity is a potential technique to combat the detrimental effect of multipath

fading in broadband wireless networks. It has been extensively studied in recent

years and are still an active area of research. Diverse techniques have been inves-

tigated in this dissertation including; relay selection, distributed space frequency

coding, power allocation and adaptive bit and power allocation.

The demand for high data rate applications is increasing rapidly due to evolu-

tion in communication consumption. 3D video applications over wireless networks

become more promising and attractive which require re-design of existing systems

to counter the inherently high error probability and bandwidth constraints. It is

hoped that the proposed algorithms will find their applications in the next gen-

eration of wireless networks.
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