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Abstract

Main-sequence low-mass stars are known to spin down as a consequence of their magnetized stellar winds.
However, estimating the precise rate of this spin-down is an open problem. The mass-loss rate, angular momentum
loss rate, and magnetic field properties of low-mass stars are fundamentally linked, making this a challenging task.
Of particular interest is the stellar magnetic field geometry. In this work, we consider whether non-dipolar field
modes contribute significantly to the spin-down of low-mass stars. We do this using a sample of stars that have all
been previously mapped with Zeeman–Doppler imaging. For a given star, as long as its mass-loss rate is below
some critical mass-loss rate, only the dipolar fields contribute to its spin-down torque. However, if it has a larger
mass-loss rate, higher-order modes need to be considered. For each star, we calculate this critical mass-loss rate,
which is a simple function of the field geometry. Additionally, we use two methods of estimating mass-loss rates
for our sample of stars. In the majority of cases, we find that the estimated mass-loss rates do not exceed the critical
mass-loss rate; hence, the dipolar magnetic field alone is sufficient to determine the spin-down torque. However,
we find some evidence that, at large Rossby numbers, non-dipolar modes may start to contribute.

Key words: magnetohydrodynamics (MHD) – stars: evolution – stars: low-mass – stars: magnetic field – stars:
rotation – stars: winds, outflows

1. Introduction

It is well known that thermally driven stellar winds cause
low-mass stars to spin down over their main-sequence lifetimes
(e.g., Weber & Davis 1967). Many authors have attempted to
model the rotation period evolution of these stars (Gallet &
Bouvier 2013, 2015; Brown 2014; Johnstone et al. 2015; Matt
et al. 2015; Amard et al. 2016; Blackman & Owen 2016; van
Saders et al. 2016; Gondoin 2017; Sadeghi Ardestani et al.
2017; Garraffo et al. 2018; See et al. 2018), but accurately
determining angular momentum loss rates is a difficult task. An
open question in this context is the impact of magnetic field
geometry. Parameter studies using MHD simulations have
shown that, when considering only single spherical harmonic
modes, the angular momentum loss rate is highest when the
field is dipolar and drops dramatically for higher-order field
configurations, e.g., quadrupolar, octopolar, etc. (Garraffo et al.
2015; Réville et al. 2015). However, the magnetic fields of real
stars are known to be a mixture of many spherical harmonic
modes (e.g., DeRosa et al. 2012). It turns out that, when
constructing so-called “braking laws” that specify the rate at
which stars lose angular momentum, the relevant magnetic
parameter to consider is the open flux (Vidotto et al. 2014;
Réville et al. 2015; Finley &Matt 2017; Pantolmos &Matt 2017;

Finley & Matt (2018, hereafter F18). This is the flux associated
with field lines that extend into interplanetary space, i.e., the field
lines along which stellar winds carry away mass and angular
momentum.
Previous studies have suggested that the open flux, and hence

angular momentum loss rates, is dominated by the dipolar
component of the stellar magnetic field (Jardine et al. 2017; See
et al. 2017, 2018). However, the open flux is not a directly
observable quantity, and attempts to estimate it are difficult and
model-dependent. Indeed, there have been some suggestions that
higher-order magnetic field modes may play a significant role in
the spin-down of low-mass stars (Brown 2014; Garraffo et al.
2018). Recently, Finley & Matt (2017, F18) formulated a braking
law in terms of the photospheric field strengths of the dipole,
quadrupole, and octopole components of the field. Formulating
braking laws in this manner is advantageous because the field
geometry can be accounted for without resorting to model-
dependent open flux estimates. This braking law can therefore be
used to more precisely test the claim that dipole magnetic fields
dominate over higher-order geometries when estimating angular
momentum loss rates.
To use the braking law of F18), we have to determine the

field strengths associated with the dipole, quadrupole, and
octopole components of stellar magnetic fields. This is
something that the Zeeman–Doppler imaging (ZDI) technique
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can uniquely do. It is a tomographic technique that can
reconstruct the large-scale photospheric magnetic field geome-
tries of low-mass stars (Semel 1989; Brown et al. 1991; Donati
& Brown 1997; Donati et al. 2006). The magnetic field maps
produced from ZDI are expressed in terms of a spherical
harmonic decomposition (e.g., see Appendix B of Folsom et al.
2018a), allowing us to take advantage of the F18 braking law.

As well as the magnetic properties of the star, knowledge of
the mass-loss rate is also important to accurately determine
angular momentum loss rates. Mass-loss rates for low-mass
stars are notoriously difficult to determine due to the diffuse
nature of their winds. Currently, only indirect methods of
measuring stellar mass-loss rates are possible (Wood et al.
2014; Vidotto & Bourrier 2017; Jardine & Collier Cameron
2019). Consequently, when using braking laws, the mass-loss
rate is likely to be the least well-constrained input parameter.

In this paper, we investigate whether the dipole magnetic
field dominates when calculating angular momentum losses
using the F18 braking law. In Section 2, we present this
braking law and demonstrate that only the dipole component of
the magnetic field contributes to a star’s spin-down torque if the
star’s mass-loss rate is below some critical mass-loss rate. In
Section 3, we discuss the magnetic properties of the ZDI
sample used in this work. Two methods for estimating mass-
loss rates are introduced in Section 4. In Section 5, we calculate
the critical mass-loss rates for our sample and analyze which
stars are the most likely to have mass-loss rates that exceed the
critical mass-loss rate. A discussion of the uncertainties of our
work is presented in Section 6. Finally, a discussion and the
conclusions of our results are presented in Section 7.

2. Finley & Matt (2018) Law

The braking law of F18 takes the form of a twice-broken
power law and is given by

= W á ñT M R , 1A
2˙ ( )

where T is the angular momentum loss rate or spin-down
torque, Ṁ is the mass-loss rate, Ωå=2π/Prot is the angular
frequency, Prot is the rotation period, and á ñRA is the torque-
averaged Alfvén radius. Physically, á ñRA corresponds to the
lever arm of the spin-down torque and is given by
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esc˙ is the wind magnetiza-

tion, and vesc is the escape velocity of the star. Also,
= B Bd d , = B Bq q , and = B Bo o are the magnetic

field ratios where Bå=Bd+Bq+Bo. By definition,
+ + =   1d q o . The subscripts d, q, and o indicate

dipole, quadrupole, and octopole, respectively. The precise
meaning of Bd, Bq, and Bo will be further discussed in
Section 3. Finally, Kd=1.53, Kq=1.7, Ko=1.8, md=0.229,
mq=0.134, and mo=0.087 are fit parameters obtained from the
MHD simulations of F18.

Mathematically, Equation (2) can predict arbitrarily small
Alfvén radii if ϒ is very small. However, we impose a lower limit
on the Alfvén radius of r2 3 . This is the lever arm associated
with a completely unmagnetized and inviscid wind, and smaller

values are unphysical. The factor of 2 3 is a consequence of
our definition of the angular momentum loss rate in Equation (1).
It is a geometric factor that arises when integrating the angular
momentum loss rate over all latitudes (e.g., compare with Weber
& Davis 1967). We also note that this braking law only accounts
for contributions from the dipolar, quadrupolar, and octopolar
field modes. Although real stellar magnetic fields contain higher-
order spherical harmonic modes, this braking law likely provides a
reasonable estimate of the torque. As discussed later in this
section, high-order field modes only become relevant at high
mass-loss rates. However, if the mass-loss rate of a star is high
enough for field modes above the octopolar mode to contribute,
the Alfvén radius is likely to be so small that it is close to or below
the unmagnetized = r r2 3A limit.
It is instructive to analyze the behavior of this braking law.

As an illustrative example, in Figure 1, we plot angular
momentum loss rate as a function of mass-loss rate using
Equations (1) and (2) for solar parameters (these are listed in
Table 1; the values used for Bd,e, Bq,e, and Bo,e are discussed
in Section 3). While the mass-loss rate of the Sun is relatively

Figure 1. Angular momentum loss rate as a function of mass-loss rate using
Equations (1) and (2) for solar parameters (see Table 1). The three power laws
show the three components of Equation (2): red dotted–dashed line for the
dipole component (Equation 2(a)), blue solid line for the dipole + quadrupole
component (Equation 2(b)), and green dashed line for the dipole + quadrupole
+ octopole component (Equation 2(c)). The true angular momentum loss rate is
the upper envelope of these three power laws. Black dotted lines indicate the
mass-loss rate at which Equations (2(a)) and (b) intersect (labeled as Mcrit˙ ) and
where Equations (2(a)) and (c) intersect. The shaded region roughly indicates
the observed solar mass-loss rate.

Table 1
Adopted Solar Parameters

Symbol Adopted Value

Mass Me 1.99×1033 g
Radius re 6.96×1010 cm
Angular frequency Ωe 2.6×10−6 Hz
Dipole field strength Bd,e -

+0.9 G0.6
0.7

Quadrupole field strength Bq,e -
+0.8 G0.6

1.8

Octopole field strength Bo,e -
+1.2 G0.8

1.2

Note. Note that the upper and lower bounds on the field strengths are the range
of values observed in cycle 24 rather than formal errors.
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well constrained from observations, the same is not true for
other stars. Understanding how this braking law behaves as a
function of mass-loss rate is therefore a useful exercise. The
three components of Equation (2) are plotted as three separate
power laws. The predicted angular momentum loss rate from
the F18 braking law is the upper envelope of these three
functions.

Figure 1 shows that Equation (2(a)) (red dotted–dashed line)
dominates at low mass-loss rates, Equation (2(b)) (blue solid
line) dominates at intermediate mass-loss rates, and Equation (2
(c)) (green dashed line) dominates at high mass-loss rates.
Since Equation (2(a)) depends only on Bd, Equation (2(b))
depends on Bd and Bq, and Equation (2(c)) depends on Bd, Bq,
and Bo, the general trend is that more high-order, non-dipolar
field modes are required to properly calculate the spin-down
torque at higher mass-loss rates. Physically, this is because
high-order field modes decay more rapidly as a function of
distance from the star (e.g., see Réville et al. 2015). If the mass-
loss rate is low, the Alfvén radius (the lever arm of the spin-
down torque) will be large and extend out to a distance where
non-dipolar field components have decayed away. However, if
the mass-loss rate is large, the Alfvén radius may be small
enough that high-order field components have not completely
decayed away and must be accounted for.

We can define a critical mass-loss rate, Mcrit˙ , below which
only the dipole field strength is required to properly determine the
angular momentum loss rate of the star. This critical mass-loss
rate is given by equating Equations (2(a)) and (b) and solving for
the mass-loss rate.12 It is given by

=
+


 
 M

B r

v
0.33 , 3crit

2 2

esc

d
4.82

d q
2.82

˙
( )

( )

where we have substituted in the values for Kd, Kq, md, and mq.
For solar parameters, ~ ´ - -M M5 10 yrcrit

14 1˙  . The observed
mass-loss rate for the Sun, ~ ´ - -M M2 10 yr14 1˙  , is lower
than this critical mass-loss rate, and, consequently, we only
need the dipole component of the solar magnetic field to
calculate the solar angular momentum loss rate using the F18
braking law. However, there are caveats to this statement
related to the variability of the Sun’s magnetic activity that we
shall return to in Section 6.3.

3. The Stellar Sample and Its Magnetic Properties

The sample of stars we will use in this study is the one
presented by See et al. (2019). This sample consists of 85 stars
that have had their magnetic fields mapped with ZDI. Some of
these stars have been mapped at multiple epochs resulting in
151 magnetic maps. This collection of ZDI maps is drawn from
many sources and represents nearly two decades of observa-
tions. The parameters (mass, radius, luminosity, and rotation
period) used for this work are listed in Table1 of See et al.
(2019) and were generally taken from the original paper that
the ZDI map was published in. Additionally, convective

turnover times, τcz, were calculated using the formulation
presented by Cranmer & Saar (2011).13

In addition to the parameters listed in Table1 of See et al.
(2019), we also require field strength values for the dipole,
quadrupole, and octopole components of the magnetic field for
this work, i.e., Bd, Bq, and Bo in Equation (2). In the MHD
simulations of F18, Bd, Bq, and Bo correspond to field strengths
at the rotation pole (or, equivalently in their simulations, the
magnetic pole). However, these authors only considered
axisymmetric field topologies, whereas ZDI maps contain both
axisymmetric and nonaxisymmetric modes. Rather than using
polar field values, we will instead use the stellar surface
averaged unsigned field strength for each spherical harmonic
mode.14 We shall denote these as á ñBZDI,d , á ñBZDI,q , and á ñBZDI,o .
Values for á ñBZDI,d , á ñBZDI,q , and á ñBZDI,o are shown in Table 2
for our entire sample, along with citations to the original paper
each ZDI map is published in.
Numerous studies have shown that magnetic activity

indicators scale with the ratio of the rotation period over the
convective turnover time, which is known as the Rossby
number, Ro=Prot/τcz. In the top row of Figure 2, we plot
á ñBZDI,d , á ñBZDI,q , and á ñBZDI,o against Ro. Each component
follows a relatively tight power-law relation at large Rossby
numbers and appears to saturate at small Rossby numbers. This
separation into saturated and unsaturated regimes is well
known from X-ray studies (Pizzolato et al. 2003; Wright et al.
2011, 2018; Stelzer et al. 2016; Wright & Drake 2016). We
have also plotted solar values in each of these panels. These
values are calculated using the solar magnetograms from
Vidotto et al. (2018) that cover most of cycle 24. For each
magnetogram, we calculate a surface averaged poloidal dipole,
quadrupole, and octopole field strength. These are then
averaged to determine the average poloidal dipole, quadrupole,
and octopole field strength over cycle 24 and plotted with
magenta squares. The range of possible values over cycle 24
for each of these quantities is plotted with a magenta bar.
For each field component, we perform a three-parameter fit

of the form

á ñ = <

á ñ=
b



B B

B B

for Ro Ro

Ro

Ro
for Ro Ro , 4

ZDI,i sat,i crit,i

ZDI,i sat,i
crit,i

crit,i

i

( )
⎛
⎝⎜

⎞
⎠⎟

where the subscript i={d, q, o} represents each of the three
components, Bsat,i is the field strength in the saturated regime,
Rocrit,i is the critical Rossby number separating the saturated
and unsaturated regimes, and βi is the power-law index in the
unsaturated regime. As discussed in See et al. (2019), we have
excluded the stars with Ro0.012 from these fits, since they
appear to display bimodal magnetic fields (Donati et al. 2008;
Morin et al. 2008b, 2010) for which there is currently no

12 In principle, to properly calculate Mcrit˙ , one should calculate the mass-loss
rate at which Equation (2(a)) equals Equation (2(b)) and also the mass-loss rate
at which Equation (2(a)) equals Equation (2(c)). Then Mcrit˙ is given by the
smaller of these two mass-loss rates. However, for the sample of stars presented
in Section 3, it turns out that the mass-loss rate at which Equation (2(a)) equals
Equation (2(b)) is always smaller than the mass-loss rate at which Equation
(2(a)) equals Equation (2(c)).

13 As noted in See et al. (2019), Cranmer & Saar (2011) stated that this method
of calculating convective turnover times is valid for stars with effective
temperatures in the range 3300 KTeff7000 K. Although a number of our
stars have Teff<3300 K, they all lie in the saturated regime where the
magnetic properties of stars, such as field strength, do not change significantly
as a function of Rossby number. Therefore, this method of calculating
convective turnover times will not greatly affect our results.
14 More formally, for each harmonic mode, we consider the power in the
poloidal component of the component we are interested in. For example, using
the formalism shown in AppendixB of Folsom et al. (2018a), á ñBZDI,q would
be calculated using the αℓ,m and βℓ,m coefficients with ℓ=2andm={0, 1, 2}
and all other coefficients set to zero.
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definitive explanation. The best-fit values can be found in
Table 3, and the corresponding best-fit curves are plotted in red
in Figure 2. All three fits have similar Rocrit and β values within
the error bars. The most notable difference in the fits is that the
dipole component has a larger saturation field strength
compared to the other two components. The saturation field
strength is likely to be the least well-constrained parameter,
however, since there are far fewer stars here compared to the
unsaturated regime. Additionally, due to observational biases,
the Rossby number is correlated to stellar mass in our sample
of stars. Although we have parameterized our fit in terms of
Rossby number, there may be an additional dependence on
stellar mass that is hard to disentangle from the dependence on
Rossby number.

As well as the raw field strengths, we can also consider the
field ratios defined in Section 2 for our sample of stars, i.e.,

= á ñ å á ñ B Bi ZDI,i j ZDI,j . These are plotted against Rossby
number in the bottom row of Figure 2. Each component shows
a large amount of scatter with no obvious structure present. On
average, d has a higher value than q oro, although this is
not necessarily true for any individual star.

4. Estimating Mass-loss Rates

In this section, we estimate mass-loss rates for our sample of
stars. Since estimating mass-loss rates for low-mass stars is
difficult and model-dependent, we explore two different
methods. Although the main purpose of this section is to
estimate mass-loss rates to compare to critical mass-loss rates
in Section 5, we will also present the torques and spin-down

timescales associated with these methods, since these are
simple to calculate once mass-loss rates have been estimated.

4.1. Cranmer & Saar (2011) Method

Our first method of estimating mass-loss rates uses the one-
dimensional model of Cranmer & Saar (2011, hereafter CS11),
which takes the stellar mass, radius, luminosity, rotation period,
and metallicity as inputs. We have chosen to use solar
metallicity for all of our stars for simplicity. This model
estimates the energy generated from turbulent convective
motions in the stellar interior. It then tracks this energy as it
travels upward through the photosphere in the form of MHD
waves. Eventually, the energy is deposited along open field
lines, heating up the local plasma and driving a hot
coronal wind.
Figure 3(a) shows the mass-loss rates of our sample

estimated with the CS11 model. We have also plotted curves
where each line corresponds to mass-loss rates for a fixed
stellar mass over a range of Rossby numbers (similar curves are
plotted on the other panels of Figure 3). These lines are
included to illustrate the behavior of the CS11 model over a
range of fixed masses and are intended to aid the reader in
interpreting the data points. Additionally, they allow for a
rough estimate of mass-loss rates in regions of parameter space
that our ZDI sample does not cover. For each line, stellar radii
and luminosities, which are required by the CS11 model, are
estimated by interpolating over the grid of stellar evolution
models of Baraffe et al. (2015) at an age of 2 Gyr. This age is
chosen to be older than the zero-age main sequence but
younger than the main-sequence turnoff for the types of stars in
our sample. We have therefore assumed that the stellar radius

Figure 2. Average ZDI magnetic field strength (top row) and field ratio (bottom row) against Rossby number for the magnetic dipole (left), quadrupole (middle), and
octopole (right) components. The subscript i={d, q, o} represents each of the three components. Each point is color-coded by stellar mass. The range of solar values
for each component is shown using a magenta bar. A three-parameter fit (Equation (4)) is performed for each component in the top row (solid red line). The best-fit
values can be found in Table 3.
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Table 2
Numerical Values Used and Derived in This Study for Our Sample of Stars

Star ID á ñBd á ñBq á ñBo Ṁ (CS11) Ṁ (M15) Ṁ (mod M15) Mcrit˙ T (CS11) T (M15) τ (CS11) τ (M15) Reference
(G) (G) (G) ( -M yr 1

 ) ( -M yr 1
 ) ( -M yr 1

 ) ( -M yr 1
 ) (erg) (erg) (Gyr) (Gyr)

Solar-like Stars
HD 3651 2.9 1.93 0.701 4.72E−15 1.08E−12 3.32E−15 6.34E−13 1.32E+29 2.78E+30 224 10.7 P. Petit et al. (2019, in preparation)
HD 9986 0.539 0.291 0.114 5.63E−14 4.87E−12 9.03E−14 3.85E−14 3.60E+29 1.29E+31 201 5.6 P. Petit et al. (2019, in preparation)
HD 10476 1.62 1.39 0.901 4.02E−14 1.59E−11 2.79E−13 1.26E−13 5.47E+29 4.61E+31 130 1.54 P. Petit et al. (2019, in preparation)
κ Cet 11.4 7.61 4.44 3.36E−13 1.28E−11 3.49E−14 1.08E−11 2.67E+31 1.99E+32 6.81 0.915 do Nascimento et al. (2016)
ò Eri (2007) 11 2.93 1.47 5.05E−14 2.86E−11 9.93E−14 1.28E−11 3.97E+30 1.45E+32 30.3 0.827 Jeffers et al. (2014)
ò Eri (2008) 7.48 4.85 2.82 5.05E−14 2.87E−11 1.90E−13 2.84E−12 2.80E+30 1.45E+32 43 0.827 Jeffers et al. (2014)
ò Eri (2010) 6.47 6.36 4.65 5.05E−14 2.71E−11 2.42E−13 1.26E−12 2.45E+30 1.45E+32 49.1 0.827 Jeffers et al. (2014)
ò Eri (2011) 6.79 3.24 2.68 5.05E−14 3.09E−11 2.23E−13 3.20E−12 2.56E+30 1.45E+32 46.9 0.827 Jeffers et al. (2014)
ò Eri (2012) 12.5 5.5 3.85 5.05E−14 2.40E−11 7.94E−14 1.17E−11 4.49E+30 1.45E+32 26.8 0.827 Jeffers et al. (2014)
ò Eri (2013) 15.6 4.03 4.06 5.05E−14 2.14E−11 5.48E−14 2.64E−11 5.48E+30 1.45E+32 21.9 0.827 Jeffers et al. (2014)
HD 39587 5.37 5.76 6.05 1.93E−12 6.32E−11 7.93E−13 1.69E−12 9.41E+31 1.43E+33 3.72 0.244 P. Petit et al. (2019, in preparation)
HD 56124 1.94 0.708 0.235 9.12E−14 4.50E−12 2.63E−14 6.52E−13 1.64E+30 2.12E+31 57.4 4.44 P. Petit et al. (2019, in preparation)
HD 72905 6.69 5.57 5.74 1.60E−12 4.06E−11 3.03E−13 3.33E−12 8.45E+31 8.69E+32 3.8 0.369 P. Petit et al. (2019, in preparation)
HD 73350 4.94 4.3 4.63 2.13E−13 7.36E−12 3.29E−14 1.60E−12 8.11E+30 7.48E+31 17.3 1.87 Petit et al. (2008)
HD 75332 5.14 1.91 1.86 1.31E−12 1.01E−11 2.96E−14 6.91E−12 1.16E+32 3.79E+32 4 1.23 P. Petit et al. (2019, in preparation)
HD 76151 2.71 1.32 0.608 6.42E−14 3.74E−12 1.57E−14 9.63E−13 1.56E+30 1.84E+31 55.3 4.68 Petit et al. (2008)
HD 78366 10.4 8.25 4.03 2.97E−13 2.14E−12 5.49E−15 9.40E−12 2.61E+31 7.61E+31 6.69 2.29 P. Petit et al. (2019, in preparation)
HD 101501 7.61 6.48 2.57 6.09E−14 4.25E−12 1.17E−14 3.48E−12 3.42E+30 3.55E+31 20.2 1.94 P. Petit et al. (2019, in preparation)
ξ Boo A (2007) 21.9 10.1 7.99 2.76E−13 3.95E−11 1.01E−13 4.53E−11 4.42E+31 6.52E+32 5.02 0.341 Morgenthaler et al. (2012)
ξ Boo A (2008) 12.1 7.86 7.88 2.76E−13 5.33E−11 2.75E−13 9.87E−12 2.58E+31 6.52E+32 8.63 0.341 Morgenthaler et al. (2012)
ξ Boo A (2009) 14.6 10.9 10.4 2.76E−13 4.79E−11 2.00E−13 1.23E−11 3.06E+31 6.52E+32 7.26 0.341 Morgenthaler et al. (2012)
ξ Boo A (2010 Jan) 9.04 5.43 4.73 2.76E−13 6.23E−11 4.51E−13 5.96E−12 1.97E+31 6.52E+32 11.3 0.341 Morgenthaler et al. (2012)
ξ Boo A (2010 Jun) 15.2 8.01 5.64 2.76E−13 5.17E−11 1.87E−13 1.93E−11 3.17E+31 6.52E+32 7.01 0.341 Morgenthaler et al. (2012)
ξ Boo A (2010 Jul) 11.2 6.34 5.04 2.76E−13 5.83E−11 3.16E−13 9.60E−12 2.39E+31 6.52E+32 9.32 0.341 Morgenthaler et al. (2012)
ξ Boo A (2011) 14.4 6.97 3.59 2.76E−13 5.48E−11 2.04E−13 1.89E−11 3.02E+31 6.52E+32 7.35 0.341 Morgenthaler et al. (2012)
ξ Boo B 9.34 8.15 6.34 2.70E−15 4.20E−11 4.35E−13 1.63E−12 2.89E+29 1.15E+32 284 0.714 P. Petit et al. (2019, in preparation)
18 Sco 0.776 0.92 0.407 6.17E−14 3.98E−12 6.22E−14 2.99E−14 5.73E+29 1.46E+31 126 4.92 Petit et al. (2008)
HD 166435 8.64 8.75 6.04 2.25E−12 1.17E−10 1.20E−12 4.06E−12 1.80E+32 3.24E+33 2.79 0.155 P. Petit et al. (2019, in preparation)
HD 175726 4.21 4.1 3.14 2.99E−12 7.72E−11 1.23E−12 1.20E−12 1.39E+32 1.85E+33 3.25 0.245 P. Petit et al. (2019, in preparation)
HD 190771 6.24 3.61 3.92 4.96E−13 1.84E−11 8.62E−14 4.38E−12 2.42E+31 2.38E+32 8.39 0.854 Petit et al. (2008)
61 Cyg A (2007) 9.77 4.76 2.62 8.03E−16 1.18E−12 3.03E−15 4.75E−12 6.94E+28 3.62E+30 319 6.11 Boro Saikia et al. (2016)
61 Cyg A (2008) 2.16 1.8 0.85 8.03E−16 3.73E−12 3.88E−14 1.29E−13 1.74E+28 3.62E+30 1.27E+03 6.11 Boro Saikia et al. (2016)
61 Cyg A (2010) 2.38 2.59 3.59 8.03E−16 2.93E−12 3.31E−14 1.08E−13 1.90E+28 3.62E+30 1.16E+03 6.11 Boro Saikia et al. (2016)
61 Cyg A (2013) 8.33 3.79 1.73 8.03E−16 1.55E−12 3.97E−15 3.68E−12 6.00E+28 3.62E+30 369 6.11 Boro Saikia et al. (2016)
61 Cyg A (2014) 6.91 3.33 1.56 8.03E−16 2.12E−12 5.44E−15 2.40E−12 5.05E+28 3.62E+30 438 6.11 Boro Saikia et al. (2016)
61 Cyg A (2015 Aug) 10.4 4.05 1.83 8.03E−16 1.06E−12 2.71E−15 6.58E−12 7.37E+28 3.62E+30 300 6.11 Boro Saikia et al. (2016)
61 Cyg A (2015 Oct) 6.88 2.71 1.82 8.03E−16 2.14E−12 5.48E−15 2.83E−12 5.03E+28 3.62E+30 439 6.11 Boro Saikia et al. (2018)
61 Cyg A (2015 Dec) 5.84 2.66 1.32 8.03E−16 2.51E−12 7.22E−15 1.81E−12 4.34E+28 3.62E+30 510 6.11 Boro Saikia et al. (2018)
61 Cyg A (2016) 6.23 3.67 3.44 8.03E−16 2.24E−12 6.47E−15 1.61E−12 4.60E+28 3.62E+30 481 6.11 Boro Saikia et al. (2018)
61 Cyg A (Jul 2017) 6.62 1.93 0.672 8.03E−16 2.28E−12 5.84E−15 3.25E−12 4.86E+28 3.62E+30 455 6.11 Boro Saikia et al. (2018)
61 Cyg A (2017 Dec) 3.84 1.71 0.928 8.03E−16 3.29E−12 1.47E−14 7.97E−13 2.95E+28 3.62E+30 749 6.11 Boro Saikia et al. (2018)
61 Cyg A (2018) 8.74 3.61 2.32 8.03E−16 1.43E−12 3.66E−15 4.40E−12 6.27E+28 3.62E+30 353 6.11 Boro Saikia et al. (2018)
HN Peg (2007) 9.62 6.61 4.01 2.01E−12 4.98E−11 2.36E−13 9.12E−12 1.62E+32 1.29E+33 2.55 0.321 Boro Saikia et al. (2015)
HN Peg (2008) 6.27 4.09 4.35 2.01E−12 5.70E−11 4.86E−13 4.11E−12 1.09E+32 1.29E+33 3.78 0.321 Boro Saikia et al. (2015)
HN Peg (2009) 6.83 3.86 4.2 2.01E−12 5.67E−11 4.22E−13 5.67E−12 1.18E+32 1.29E+33 3.49 0.321 Boro Saikia et al. (2015)
HN Peg (2010) 9.15 6.17 5.82 2.01E−12 4.89E−11 2.57E−13 8.43E−12 1.55E+32 1.29E+33 2.67 0.321 Boro Saikia et al. (2015)

5

T
h
e
A
stro

ph
y
sica

l
Jo
u
rn

a
l,

886:120
(15pp),

2019
D
ecem

ber
1

S
ee

et
al.



Table 2
(Continued)

Star ID á ñBd á ñBq á ñBo Ṁ (CS11) Ṁ (M15) Ṁ (mod M15) Mcrit˙ T (CS11) T (M15) τ (CS11) τ (M15) Reference
(G) (G) (G) ( -M yr 1

 ) ( -M yr 1
 ) ( -M yr 1

 ) ( -M yr 1
 ) (erg) (erg) (Gyr) (Gyr)

HN Peg (2011) 7.72 6.8 5.94 2.01E−12 4.96E−11 3.43E−13 4.32E−12 1.32E+32 1.29E+33 3.12 0.321 Boro Saikia et al. (2015)
HN Peg (2013) 13.7 8.04 4.56 2.01E−12 4.08E−11 1.31E−13 2.18E−11 2.23E+32 1.29E+33 1.85 0.321 Boro Saikia et al. (2015)
HD 219134 1.33 1.93 0.479 1.46E−15 2.83E−12 3.73E−14 3.46E−14 2.45E+28 3.65E+30 1070 7.2 Folsom et al. (2018b)
AV 1693 13.5 17.1 7.67 1.65E−13 1.49E−11 5.66E−14 4.89E−12 1.47E+31 2.09E+32 10.1 0.708 Folsom et al. (2018a)
AV 1826 9.5 10.2 7.37 8.85E−14 2.89E−11 1.67E−13 2.94E−12 6.67E+30 2.39E+32 19.5 0.544 Folsom et al. (2018a)
AV 2177 6.23 3.52 2.2 1.12E−13 3.40E−11 2.71E−13 2.54E−12 4.89E+30 2.00E+32 30.6 0.746 Folsom et al. (2018a)
AV 523 9.32 7.36 6.76 2.23E−14 2.83E−11 1.72E−13 3.39E−12 1.90E+30 1.46E+32 51.3 0.668 Folsom et al. (2018a)
EP Eri 14.9 9.55 1.61 7.68E−14 6.30E−11 3.01E−13 1.06E−11 9.23E+30 4.91E+32 19.4 0.365 Folsom et al. (2018a)
HH Leo 15.5 8.78 6.14 3.27E−13 5.74E−11 2.19E−13 1.84E−11 3.80E+31 7.77E+32 6.56 0.321 Folsom et al. (2018a)
Mel 25-151 12 7.8 4.77 5.52E−14 2.99E−11 1.15E−13 9.37E−12 6.18E+30 2.34E+32 18.8 0.498 Folsom et al. (2018a)
Mel 25-179 15.5 7.89 5.6 8.56E−14 2.77E−11 7.76E−14 2.15E−11 1.15E+31 2.76E+32 10.9 0.453 Folsom et al. (2018a)
Mel 25-21 10.5 4.38 2.83 1.70E−13 2.88E−11 9.50E−14 1.41E−11 1.48E+31 2.74E+32 9.31 0.503 Folsom et al. (2018a)
Mel 25-43 5.59 3.05 1.35 7.59E−14 3.79E−11 3.31E−13 2.26E−12 3.43E+30 1.93E+32 35.7 0.634 Folsom et al. (2018a)
Mel 25-5 6.71 3.04 2.14 8.32E−14 4.45E−11 2.89E−13 5.51E−12 6.22E+30 3.10E+32 18.5 0.371 Folsom et al. (2018a)
TYC 1987-509-1 11.4 10.2 5.51 1.53E−13 1.72E−11 6.45E−14 5.83E−12 1.16E+31 1.85E+32 12.2 0.769 Folsom et al. (2018a)
V447 Lac 9.95 10.3 7.8 3.06E−13 1.38E−10 1.71E−12 3.39E−12 2.95E+31 1.90E+33 10.3 0.159 Folsom et al. (2016)
DX Leo 26.1 11.7 6.01 3.11E−13 5.14E−11 1.32E−13 6.10E−11 5.93E+31 9.45E+32 4.21 0.264 Folsom et al. (2016)
V439 And 9.51 4.61 2.46 4.35E−13 7.31E−11 4.29E−13 1.01E−11 3.59E+31 9.04E+32 6.59 0.262 Folsom et al. (2016)
Young Suns
AB Dor (2001) 68.1 103 94.8 7.81E−13 2.73E−11 6.99E−14 1.35E−10 4.23E+33 2.90E+34 0.621 0.0905 Donati et al. (2003)
AB Dor (2002) 142 55.4 54.1 7.81E−13 7.87E−12 2.02E−14 3.11E−09 8.30E+33 2.90E+34 0.317 0.0905 Donati et al. (2003)
BD–16351 34 23.6 13.8 4.42E−13 8.71E−11 2.28E−13 8.20E−11 1.99E+32 3.52E+33 2.1 0.119 Folsom et al. (2016)
HII 296 65.4 32.5 27 3.23E−13 2.93E−11 7.52E−14 4.93E−10 4.47E+32 5.14E+33 1.15 0.0999 Folsom et al. (2016)
HII 739 7.44 5.89 6.99 7.37E−12 2.46E−10 4.07E−12 4.84E−12 8.74E+32 1.48E+34 1.48 0.0872 Folsom et al. (2016)
HIP 12545 73.9 40.8 32.7 8.07E−14 2.53E−11 6.49E−14 7.89E−10 1.96E+32 4.41E+33 1.56 0.0693 Folsom et al. (2016)
HIP 76768 68.2 18.6 20.4 5.01E−14 2.34E−11 6.01E−14 7.21E−10 9.24E+31 2.59E+33 3.17 0.113 Folsom et al. (2016)
Lo Peg 81.3 43.1 37.3 4.43E−14 1.63E−11 4.19E−14 3.34E−10 4.07E+32 1.00E+34 5.6 0.228 Folsom et al. (2016)
PELS 031 13.4 11 11.1 4.99E−13 1.67E−10 1.16E−12 1.60E−11 2.01E+32 8.03E+33 2.94 0.0734 Folsom et al. (2016)
PW And 102 44.5 27 1.79E−13 1.30E−11 3.33E−14 8.97E−10 4.21E+32 4.29E+33 1.63 0.16 Folsom et al. (2016)
TYC 0486-4943-1 14.9 12.4 10.5 4.15E−14 9.83E−11 7.33E−13 7.55E−12 1.08E+31 1.29E+33 23.9 0.198 Folsom et al. (2016)
TYC 5164-567-1 51.6 20.4 18.1 3.15E−13 4.39E−11 1.13E−13 3.36E−10 1.72E+32 2.50E+33 1.66 0.114 Folsom et al. (2016)
TYC 6349-0200-1 48.6 17 13.8 4.64E−14 4.47E−11 1.15E−13 4.06E−10 1.02E+32 4.22E+33 3.49 0.0843 Folsom et al. (2016)
TYC 6878-0195-1 43.5 16.7 12 3.68E−13 8.03E−11 2.06E−13 6.32E−10 4.81E+32 8.92E+33 0.766 0.0414 Folsom et al. (2016)
HD 6569 16.7 5.12 3.43 1.12E−13 5.23E−11 1.65E−13 2.93E−11 1.41E+31 4.42E+32 12 0.385 Folsom et al. (2018a)
HIP 10272 11 3.94 1.78 2.16E−13 7.69E−11 4.31E−13 1.26E−11 1.86E+31 6.86E+32 11.7 0.319 Folsom et al. (2018a)
BD–072388 84.5 41.2 38.4 2.48E−13 1.78E−11 4.57E−14 5.58E−10 2.28E+33 2.32E+34 1.63 0.16 Folsom et al. (2018a)
HD 141943 (2007) 29.4 23.8 29.3 2.54E−11 1.77E−10 4.55E−13 1.89E−10 1.39E+34 3.97E+34 8.66E−02 0.0302 Marsden et al. (2011)
HD 141943 (2009) 19.5 16.4 9.5 2.54E−11 2.40E−10 9.09E−13 7.96E−11 9.52E+33 3.97E+34 0.126 0.0302 Marsden et al. (2011)
HD 141943 (2010) 14.9 17.4 28.1 2.54E−11 2.35E−10 1.43E−12 2.91E−11 7.43E+33 3.97E+34 0.161 0.0302 Marsden et al. (2011)
HD 35296 (2007) 6.69 3.66 4.78 3.56E−12 2.70E−11 1.31E−13 6.61E−12 2.49E+32 1.05E+33 2.05 0.484 Waite et al. (2015)
HD 35296 (2008) 3 4.76 4.6 3.56E−12 2.94E−11 4.48E−13 3.10E−13 1.90E+32 1.05E+33 2.69 0.484 Waite et al. (2015)
HD 29615 60.6 26.1 28.6 3.77E−12 3.56E−11 9.13E−14 5.63E−10 2.19E+33 7.38E+33 0.288 0.0854 Waite et al. (2015)
EK Dra (2006) 25.9 18.6 16.6 1.40E−12 1.14E−10 3.85E−13 5.26E−11 4.09E+32 5.15E+33 1.3 0.104 Waite et al. (2017)
EK Dra (2007 Jan) 33.8 19.8 13.5 1.40E−12 9.59E−11 2.46E−13 1.12E−10 5.21E+32 5.15E+33 1.02 0.104 Waite et al. (2017)
EK Dra (2007 Feb) 14.9 12 13.6 1.40E−12 1.45E−10 9.88E−13 1.49E−11 2.45E+32 5.15E+33 2.17 0.104 Waite et al. (2017)
EK Dra (2008) 21.5 10.7 12.7 1.40E−12 1.39E−10 5.28E−13 5.36E−11 3.44E+32 5.15E+33 1.55 0.104 Waite et al. (2017)
EK Dra (2012) 13.3 30.7 23.4 1.40E−12 1.15E−10 1.19E−12 2.19E−12 2.22E+32 5.15E+33 2.4 0.104 Waite et al. (2017)
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Table 2
(Continued)

Star ID á ñBd á ñBq á ñBo Ṁ (CS11) Ṁ (M15) Ṁ (mod M15) Mcrit˙ T (CS11) T (M15) τ (CS11) τ (M15) Reference
(G) (G) (G) ( -M yr 1

 ) ( -M yr 1
 ) ( -M yr 1

 ) ( -M yr 1
 ) (erg) (erg) (Gyr) (Gyr)

Hot Jupiter Hosts
τ Boo (2008 Jan) 0.889 0.794 0.873 7.66E−12 5.71E−11 1.14E−12 1.19E−13 4.54E+32 2.39E+33 2.17 0.413 Fares et al. (2009)
τ Boo (Jun 8) 0.868 0.778 0.772 7.66E−12 5.84E−11 1.17E−12 1.13E−13 4.45E+32 2.39E+33 2.21 0.413 Fares et al. (2009)
τ Boo (2008 Jul) 0.725 0.784 0.696 7.66E−12 6.07E−11 1.21E−12 6.06E−14 4.31E+32 2.39E+33 2.28 0.413 Fares et al. (2009)
τ Boo (2009) 1.23 1 0.831 7.66E−12 5.29E−11 1.03E−12 2.58E−13 4.84E+32 2.39E+33 2.03 0.413 Fares et al. (2013)
τ Boo (2010) 1.35 1.19 1.04 7.66E−12 4.95E−11 9.36E−13 2.80E−13 5.11E+32 2.39E+33 1.93 0.413 Fares et al. (2013)
τ Boo (2011 Jan) 1.63 0.745 0.899 7.66E−12 5.14E−11 9.86E−13 8.37E−13 4.95E+32 2.39E+33 1.99 0.413 Fares et al. (2013)
τ Boo (2011 May) 0.742 1.23 1.25 7.66E−12 5.18E−11 1.03E−12 3.18E−14 4.92E+32 2.39E+33 2 0.413 Mengel et al. (2016)
τ Boo (2013 May) 1.32 1.26 1.08 7.66E−12 4.91E−11 9.28E−13 2.41E−13 5.14E+32 2.39E+33 1.91 0.413 Mengel et al. (2016)
τ Boo (2013 Dec) 1.92 1.74 0.925 7.66E−12 4.46E−11 7.18E−13 5.49E−13 5.56E+32 2.39E+33 1.77 0.413 Mengel et al. (2016)
τ Boo (2014) 1.05 0.893 0.965 7.66E−12 5.41E−11 1.08E−12 1.75E−13 4.75E+32 2.39E+33 2.07 0.413 Mengel et al. (2016)
τ Boo (2015 Jan) 1.14 1.02 1.06 7.66E−12 5.18E−11 1.03E−12 1.96E−13 4.92E+32 2.39E+33 2 0.413 Mengel et al. (2016)
τ Boo (2015 Apr 2) 1.07 0.435 0.309 7.66E−12 6.60E−11 1.32E−12 3.95E−13 4.03E+32 2.39E+33 2.44 0.413 Mengel et al. (2016)
τ Boo (2015 Apr 13) 0.826 0.378 0.229 7.66E−12 7.28E−11 1.45E−12 2.15E−13 3.71E+32 2.39E+33 2.65 0.413 Mengel et al. (2016)
τ Boo (2015 Apr 20) 1 0.426 0.321 7.66E−12 6.70E−11 1.34E−12 3.37E−13 3.98E+32 2.39E+33 2.47 0.413 Mengel et al. (2016)
τ Boo (2015 May) 1.34 0.811 0.745 7.66E−12 5.41E−11 1.06E−12 4.35E−13 4.75E+32 2.39E+33 2.07 0.413 Mengel et al. (2016)
HD 73256 3.54 3.07 3.44 9.98E−14 7.89E−12 5.97E−14 6.41E−13 2.56E+30 4.91E+31 48.8 2.54 Fares et al. (2013)
HD 102195 6.62 3.37 2.45 7.87E−14 1.59E−11 7.30E−14 3.67E−12 3.67E+30 8.94E+31 28 1.15 Fares et al. (2013)
HD 130322 1.82 1.08 0.451 1.72E−14 4.01E−12 3.27E−14 2.60E−13 2.47E+29 8.90E+30 164 4.56 Fares et al. (2013)
HD 179949 (2007) 1.17 1.16 1.07 5.10E−13 9.09E−12 1.53E−13 1.12E−13 1.33E+31 1.40E+32 22.1 2.1 Fares et al. (2012)
HD 179949 (2009) 2.04 1.94 1.29 5.10E−13 7.55E−12 6.60E−14 3.67E−13 1.78E+31 1.40E+32 16.6 2.1 Fares et al. (2012)
HD 189733 (2007) 3.88 7.53 7 3.94E−14 1.71E−11 2.44E−13 1.64E−13 1.22E+30 8.94E+31 74.7 1.02 Fares et al. (2010)
HD 189733 (2008) 9.17 8.26 5.71 3.94E−14 1.48E−11 6.57E−14 3.13E−12 2.67E+30 8.94E+31 34 1.02 Fares et al. (2010)
M Dwarf Stars
CE Boo 98.7 25 17.9 9.46E−17 1.61E−12 4.14E−15 3.69E−10 1.44E+29 2.82E+31 180 0.916 Donati et al. (2008)
DS Leo (2007) 33.1 27.5 12.2 2.72E−16 1.35E−11 3.46E−14 2.08E−11 1.71E+29 5.99E+31 244 0.696 Donati et al. (2008)
DS Leo (2008) 32.6 24.3 11.6 2.72E−16 1.38E−11 3.55E−14 2.31E−11 1.68E+29 5.99E+31 247 0.696 Donati et al. (2008)
GJ 182 72.6 44.3 40.1 3.36E−15 1.94E−11 4.98E−14 3.96E−10 1.74E+31 1.91E+33 12.7 0.116 Donati et al. (2008)
GJ 49 15.7 8.71 5.32 1.82E−16 1.25E−11 3.91E−14 7.11E−12 4.93E+28 2.29E+31 612 1.32 Donati et al. (2008)
AD Leo (2007) 162 74.6 48.6 6.12E−17 2.44E−12 6.26E−15 5.09E−10 8.20E+29 2.55E+32 152 0.489 Morin et al. (2008b)
AD Leo (2008) 170 64.5 39.3 6.12E−17 2.25E−12 5.78E−15 6.57E−10 8.56E+29 2.55E+32 146 0.489 Morin et al. (2008b)
DT Vir (2007) 79.3 40.6 26.5 5.98E−16 1.25E−11 3.22E−14 2.14E−10 3.03E+30 6.67E+32 70.1 0.319 Donati et al. (2008)
DT Vir (2008) 39 48.5 47.9 5.98E−16 3.30E−11 1.07E−13 1.69E−11 1.58E+30 6.67E+32 134 0.319 Donati et al. (2008)
EQ Peg A 366 107 114 4.78E−17 5.63E−13 1.44E−15 3.09E−09 2.50E+30 4.03E+32 87.2 0.542 Morin et al. (2008b)
EQ Peg B 379 115 96 1.73E−18 2.99E−13 7.68E−16 1.74E−09 4.37E+29 3.01E+32 435 0.631 Morin et al. (2008b)
EV Lac (2006) 447 213 102 1.80E−17 3.11E−13 7.99E−16 2.37E−09 2.77E+29 5.49E+31 113 0.57 Morin et al. (2008b)
EV Lac (2007) 420 164 91.5 1.80E−17 3.45E−13 8.86E−16 2.48E−09 2.62E+29 5.49E+31 119 0.57 Morin et al. (2008b)
DX Cnc (2007) 92.3 37.2 33.8 4.54E−21 1.02E−12 2.61E−15 1.70E−11 3.87E+26 1.30E+31 4.13E+04 1.23 Morin et al. (2010)
DX Cnc (2008) 45.3 42.2 27.1 4.54E−21 2.82E−12 8.68E−15 1.67E−12 2.02E+26 1.30E+31 7.93E+04 1.23 Morin et al. (2010)
DX Cnc (2009) 53.5 26.4 17 4.54E−21 2.55E−12 6.55E−15 4.81E−12 2.35E+26 1.30E+31 6.80E+04 1.23 Morin et al. (2010)
GJ 1156 (2007) 35.3 31.9 26.5 2.92E−19 5.70E−12 2.02E−14 2.27E−12 4.33E+27 4.61E+31 8150 0.765 Morin et al. (2010)
GJ 1156 (2008) 74.9 62 40.1 2.92E−19 2.21E−12 5.66E−15 1.15E−11 8.63E+27 4.61E+31 4090 0.765 Morin et al. (2010)
GJ 1156 (2009) 71.4 47.7 30.7 2.92E−19 2.39E−12 6.14E−15 1.35E−11 8.26E+27 4.61E+31 4270 0.765 Morin et al. (2010)
GJ 1245 B (2006) 122 69.4 63.1 1.09E−19 7.98E−13 2.05E−15 3.60E−11 3.71E+27 1.95E+31 4410 0.841 Morin et al. (2010)
GJ 1245 B (2008) 38.2 33.6 28.5 1.09E−19 4.39E−12 1.45E−14 2.14E−12 1.28E+27 1.95E+31 1.28E+04 0.841 Morin et al. (2010)
OT Ser 66.3 47.6 53.4 2.82E−16 1.56E−11 4.00E−14 8.85E−11 1.14E+30 4.23E+32 134 0.361 Donati et al. (2008)
V374 Peg (2005) 588 235 183 4.92E−18 1.64E−13 4.22E−16 4.30E−09 1.42E+30 4.03E+32 157 0.556 Morin et al. (2008a)
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Table 2
(Continued)

Star ID á ñBd á ñBq á ñBo Ṁ (CS11) Ṁ (M15) Ṁ (mod M15) Mcrit˙ T (CS11) T (M15) τ (CS11) τ (M15) Reference
(G) (G) (G) ( -M yr 1

 ) ( -M yr 1
 ) ( -M yr 1

 ) ( -M yr 1
 ) (erg) (erg) (Gyr) (Gyr)

V374 Peg (2006) 491 243 124 4.92E−18 2.23E−13 5.71E−16 2.50E−09 1.21E+30 4.03E+32 186 0.556 Morin et al. (2008a)
WX UMa (2006) 904 511 275 1.28E−20 2.14E−14 5.48E−17 1.49E−09 4.25E+27 1.00E+31 2.22E+03 0.94 Morin et al. (2010)
WX UMa (2007) 1160 485 219 1.28E−20 1.41E−14 3.61E−17 3.22E−09 5.33E+27 1.00E+31 1.77E+03 0.94 Morin et al. (2010)
WX UMa (2008) 1110 593 326 1.28E−20 1.50E−14 3.85E−17 2.41E−09 5.15E+27 1.00E+31 1.83E+03 0.94 Morin et al. (2010)
WX UMa (2009) 1590 212 229 1.28E−20 8.23E−15 2.11E−17 1.15E−08 7.13E+27 1.00E+31 1.32E+03 0.94 Morin et al. (2010)
YZ CMi (2007) 540 205 146 1.47E−17 2.27E−13 5.81E−16 3.86E−09 4.18E+29 7.80E+31 118 0.633 Morin et al. (2008b)
YZ CMi (2008) 514 185 166 1.47E−17 2.47E−13 6.33E−16 3.64E−09 4.00E+29 7.80E+31 123 0.633 Morin et al. (2008b)
GJ 176 6.6 15.4 14.2 9.04E−18 2.13E−12 1.46E−14 1.30E−13 1.66E+27 2.31E+30 6.12E+03 4.4 É. M. Hébrard et al. (2019, in

preparation)
GJ 205 18.8 5.22 2.7 6.44E−17 1.41E−12 3.61E−15 2.06E−11 2.28E+28 5.12E+30 903 4.01 Hébrard et al. (2016)
GJ 358 123 15.9 8.15 1.22E−17 1.96E−13 5.03E−16 7.25E−10 2.96E+28 5.65E+30 372 1.95 Hébrard et al. (2016)
GJ 479 31.4 13.7 11 1.81E−17 2.32E−12 5.95E−15 2.54E−11 1.20E+28 7.02E+30 1.02E+03 1.75 Hébrard et al. (2016)
GJ 674 119 11.9 5.21 1.16E−18 8.00E−14 2.05E−16 7.55E−10 5.60E+27 2.35E+30 856 2.04 É. M. Hébrard et al. (2019, in

preparation)
GJ 846 (2013) 9.09 2.1 1.08 4.96E−16 8.01E−11 7.81E−13 5.21E−12 1.06E+29 1.45E+32 554 0.404 Hébrard et al. (2016)
GJ 846 (2014) 18.2 7.29 2.42 4.96E−16 5.67E−11 2.43E−13 1.44E−11 1.99E+29 1.45E+32 294 0.404 Hébrard et al. (2016)

Note. Listed are the dipole, quadrupole, and octopole field strengths, mass-loss rates, spin-down torque, spin-down timescale, and paper in which the ZDI map of each star was originally published. For quantities with
multiple estimates, the method used is noted in brackets.
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and luminosity are only a function of mass, not age or rotation,
when calculating these curves, which is approximately true on
the main sequence. This method produces radius and
luminosity estimates that are broadly representative of the
stars we are interested in. Although it is a relatively simple
method of estimating radii and luminosities, it is appropriate,
since the curves are simply illustrative and included only to
help the reader interpret the data points. Overall, the data points
in Figure 3 follow the trends shown by the lines, although there
will be small deviations due to a number of different factors,
e.g., the fact that the stars in our sample have a range of ages.
For a given stellar mass, we see that the mass-loss rates follow
the activity–rotation relation shape described in Section 3. The
most striking feature is the range of predicted mass-loss rates,
spanning around 10 orders of magnitude. The main determinant
of the mass-loss rate for the CS11 model is the stellar mass,
with rotation (or Rossby number) having a secondary effect.

Using these mass-loss rates, we can calculate torques, TCS11,
and spin-down timescales, τCS11. Here TCS11 is calculated using
the F18 braking law (Equation (2)) and shown in Figure 3(d),
while τCS11 is given by IåΩå/TCS11, where Iå is the moment of
inertia of the star. Again, we use the stellar evolution models of
Baraffe et al. (2015) to obtain moments of inertia for our

sample of stars. The τCS11 is plotted in Figure 3(f). Similar to
the mass-loss rate, we have plotted TCS11 and τCS11 curves in
panels (d) and (f). When calculating the TCS11 curves, we used
the fits to our magnetic field data (Equation (4)) to determine
the magnetic properties required in Equation (2). Due to the
low mass-loss rates estimated by this model and the
correspondingly low torques, the characteristic spin-down
timescales are large, especially at the lowest masses. Given
that M dwarfs are known to spin down on timescales shorter
than those shown in Figure 3(f) (e.g., Douglas et al. 2017), one
might interpret the large τCS11 values for M dwarfs as evidence
that the CS11 model substantially underestimates the mass-loss
rates for low-mass stars.

4.2. Rotation Evolution Method

Our second method is to determine the mass-loss rate
required by the F18 braking law in order to reproduce the
rotation period evolution seen in open clusters. We will base
this on the rotation period evolution model of Matt et al. (2015,
hereafter M15), which was tuned to broadly reproduce
observed rotation period distributions in open clusters; e.g.,
see their Figure2. As discussed in Section 3, many forms of

Figure 3. Mass-loss rate (top), angular momentum loss rate (middle), and spin-down timescale (bottom) as a function of Rossby number. These quantities are
calculated using (or are associated with) the CS11 (left), M15 (middle), and modified M15 (right) models. Each point is color-coded by stellar mass. Solid lines
correspond to the parameter of interest in each panel calculated for a given stellar mass over a range of Rossby numbers (see text for details). The solid lines are plotted
in intervals of 0.1Me from 0.1 to 1.3Me and are also color-coded by stellar mass. The lines corresponding to 0.1Me have been plotted with a dashed black line for
visibility. The average solar value in each panel is shown with a magenta square, and the range of variability is shown with a magenta bar when applicable.
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magnetic activity can be parameterized in terms of the Rossby
number but with different scalings depending on whether the
star is in the so-called saturated or unsaturated regime.
Motivated by this idea, Matt et al. (2015) assumed that
magnetic terms in their spin-down torque can also be
parameterized by Rossby number with different scalings in
the saturated and unsaturated regimes (see their Equations(4)
and (5)). The resulting torque has the form

t
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This additional mass dependence is required to explain
observations that show that the lowest-mass stars take much
longer to spin down compared to their higher-mass counter-
parts. For their critical Rossby number, M15 chose

=Ro 0.2crit . It is worth noting that this value is larger than
the Rocrit values we obtained in our three-parameter fits in
Section 3. For the Sun, this model estimates a spin-down torque
of 6.3×1030 erg, which is the value one finds if one assumes
the Sun is a solid body and spinning down according to
Skumanich (1972), i.e., Ω∝t−1/2 (see Section4.3 of F18, for
further details). This value for the solar spin-down torque is
similar to the values used in other rotation evolution models
(see Figure1 of Matt et al. 2015, for a comparison).

In Figure 3(e), we plot the torque for our sample using
Equation (5). These torques are larger than those estimated
using the CS11 model (Figure 3(d)), with the largest
disagreement occurring for the lowest-mass stars. In
Figure 3(b), we plot the mass-loss rate required by the F18
braking law to reproduce the torque used by M15, i.e., the
mass-loss rate at which Equations (1) and (2) equal
Equation (5). These mass-loss rates are much higher than
those estimated using the CS11 model. This is unsurprising
given the lower torques estimated when using the CS11 mass-
loss rates. Lastly, we plot the spin-down timescale associated
with this model, τM15, in Figure 3(g). The τM15 values are
generally smaller than the τCS11 values due to the larger TCS11
values.

4.3. Modified Rotation Evolution Method

There is a striking problem with the model presented in
Section 4.2. If one calculates the solar spin-down torque using
the F18 braking law and the observed solar mass-loss rate, one
obtains a value of T=2.5×1029erg, which is a factor of 25
smaller than the value predicted by the rotation evolution
model of Matt et al. (2015). Conversely, if one calculates the
mass-loss rate for the Sun in the manner described in
Section 4.2, using the parameters from Table 1, one obtains a
value of = ´ - -M M1.8 10 yr12 1˙  . This is a factor of ∼70
bigger than the observed solar mass-loss rate. Additionally, this
method also estimates mass-loss rates that are much larger than

the mass-loss rates inferred from Lyα observations (see Vidotto
et al. 2016 for a sample of stars that have both ZDI maps and
mass-loss rates inferred from Lyα observations). Clearly, there
is a discrepancy between the F18 braking law and the rotation
evolution models (also see discussion in Finley et al.
2018, 2019).
Although the origin of this discrepancy is unclear, one

possible explanation is that the MHD models used by F18 may
underpredict the torques. One solution is to include a
multiplicative correction factor in the F18 braking law. In
Figure 3(c), we recalculate mass-loss rates using the method
from Section 4.2 but including a multiplicative factor of 25 in
the F18 braking law. This value is chosen such that the solar
mass-loss rate is recovered when using the method described in
Section 4.2 for the Sun. Including the multiplicative factor
reduces the estimated mass-loss rates by a factor of between 50
and 390, the value of which depends on the values of á ñBZDI,d ,
á ñBZDI,q , and á ñBZDI,o for each star. We note that if the F18
braking law does underestimate spin-down torques by a factor
of 25, then the torques in Figure 3(d) should all be larger by
this amount.

5. Critical Mass-loss Rates

Having estimated mass-loss rates in Section 4, we can now
compare them to the critical mass-loss rates as defined in
Section 2. Figure 4 shows that the overall trend is for the
critical mass-loss rate to decrease as a function of Rossby
number. This decrease can be attributed to the dependence of
Mcrit˙ on B2 (see Equation (3)). Physically, this is because stars
with strong magnetic fields require a correspondingly large
mass-loss rate for the Alfvén radius to be small enough for non-
dipolar fields to contribute to the spin-down torque. There is
also a large amount of scatter in Figure 4 that can be attributed
to the scatter in B2, d, and q. Lastly, there is a departure
from the overall trend at the lowest Rossby numbers that is

Figure 4. Critical mass-loss rate (Equation (3)) against Rossby number. Points
are color-coded by stellar mass. The average solar Mcrit˙ is shown with a
magenta square, and the range over cycle 24 is shown by the magenta bar. The
lower limit of this range extends off the plot and has a value of

= ´ - -M M5.7 10 yrcrit
16 1˙  (the full range and variability of the magenta

bar is shown by the magenta curve in Figure 6). For each star, the angular
momentum loss rate is dominated by the dipole component of the stellar
magnetic field if its actual mass-loss rate is below the critical mass-loss rate
shown here.
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caused by the bimodal magnetic fields of the lowest-mass M
dwarfs (Donati et al. 2008; Morin et al. 2008b, 2010).

In the top row of Figure 5, we show the ratio of the mass-loss
rate to the critical mass-loss rate against Rossby number for
each of the mass-loss rate estimates outlined in Section 4. The
dotted lines indicate =M Mcrit˙ ˙ . For the CS11 model, we find
that the majority of the stars have <M Mcrit˙ ˙ , and, conse-
quently, only the dipole component of the field is required to
properly estimate the torque using the F18 braking law for most
stars using this method. The few stars that do have >M Mcrit˙ ˙
are the highest-mass stars, since the mass-loss rates estimated
by the CS11 model have a strong dependence on stellar mass. It
should be noted that a significant number of the points in the

>M Mcrit˙ ˙ regime are for one star, τ Boo. This is the star that
we have the most ZDI maps for and is also the highest-mass
star in our sample. In contrast to the CS11 model, a majority of
the stars have >M Mcrit˙ ˙ when using the rotation evolution
method (M15) to estimate mass-loss rates. However, as
discussed in Section 4.3, these mass-loss rates are likely to
be too high. Using the modified rotation evolution method to
estimate mass-loss rates results in a significant reduction in the
number of stars that have >M Mcrit˙ ˙ .

Figure 5 demonstrates that there may be regimes where the
mass-loss rates of low-mass stars are sufficiently high that non-
dipolar field modes need to be accounted for to properly
calculate their spin-down torques. It will be interesting to
determine how different the spin-down torques for these stars
are if we only account for their dipole fields. In the bottom row
of Figure 5, we plot the ratio of the torque calculated using the
full F18 braking law, TF18, to the torque calculated using just
the dipole component, TF18,dip, i.e., Equation 2(a). This ratio is

calculated using the mass-loss rate estimates from Section 4,
i.e., the mass-loss rates shown in Figures 3(a)–(c). By
definition, this ratio is equal to 1 when <M Mcrit˙ ˙ . However,
when >M Mcrit˙ ˙ , TF18 is bigger than TF18,dip. This can be
seen in Figure 1, where the dipole-only line (red dotted–dashed
line) drops below the upper envelope of the three curves
for >M Mcrit˙ ˙ . Physically, the reason that TF18>TF18,dip is
because the Alfvén radii are sufficiently small at high mass-loss
rates for the non-dipolar fields to contribute to the spin-down
torque. However, since TF18,dip does not account for the flux in
non-dipolar modes, the resulting torque is smaller. The
TF18/TF18,dip can reach values of around 3.7, 4.4, and 2.1,
respectively, for the CS11, M15 and modified M15 methods.
However, this is skewed by τ Boo. If we put τ Boo aside,
TF18/TF18,dip never exceeds 1.6 for the CS11 and modified M15
methods.
It is interesting to note that, generally, the non-dipolar field

modes only become important at large Rossby numbers. For
the CS11 method, this is mainly an effect of the stellar mass.
As already noted, the stars with the highest mass-loss rates, i.e.,
those most likely to have >M Mcrit˙ ˙ , are the highest-mass stars.
In our sample, these happen to be the ones with the largest
Rossby numbers. For the rotation evolution and modified
rotation evolution models, the explanation is slightly different.
We have already noted that the critical mass-loss rate has a
dependence on B2. For these models, both Ṁ (for a given
mass) and B2 decrease as a function of Rossby number in the
unsaturated regime. However, B2, and hence Mcrit˙ , decreases
more steeply than Ṁ . As such, broadly speaking, Ṁ becomes
larger than Mcrit˙ as the Rossby number increases. This also
predicts that Alfvén radii decrease as stars spin down.

Figure 5. Top: ratio of mass-loss rate to critical mass-loss rate against Rossby number. Points above the dotted =M Mcrit˙ ˙ line have a non-dipolar field contribution to
spin-down torque. Bottom: ratio of the torque calculated using the F18 braking law to the torque calculated using just the dipole component of the F18 braking law
against Rossby number. Both quantities are calculated using the CS11 (left), rotation evolution (middle), and modified rotation evolution (right) methods. Points are
color-coded by stellar mass.
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6. Uncertainties

In this section, we discuss the uncertainties, caveats, and
open questions relating to the methods and models we have
used in this paper, as well as where future progress may impact
our conclusions.

6.1. ZDI

Modern ZDI codes express magnetic fields in terms of a
spherical harmonic decomposition (e.g., see AppendixB of
Folsom et al. 2018a). It is well known that ZDI does not
recover the magnetic field associated with small-scale struc-
tures, e.g., star spots, due to flux cancellation effects (Reiners &
Basri 2009; Morin et al. 2010; See et al. 2019). Typically, ZDI
maps have a maximum spherical harmonic degree of
ℓmax=5–15. Lehmann et al. (2019) recently showed that even
the field strengths associated with low-order ℓ modes, including
the dipole, quadrupole, and octopole modes, can be system-
atically underestimated by factors of a few by ZDI. The
possibility of underestimated field strengths has two main
consequences for our results.

The first consequence is that the spin-down torque will be
underestimated due to the dependence of the F18 braking law
on magnetic field strength. Underestimated field strengths may
partially alleviate a problem noted by Finley et al. (2019).
Similar to this work, these authors estimated the spin-down
torques for a number of stars with ZDI maps using the F18
braking law. However, they used mass-loss rates inferred from
Lyα observations (see, e.g., Wood et al. 2014). The torques
they estimated using the F18 braking law were smaller than the
torques estimated by the M15 rotation evolution model by a
factor of ∼3–30. Closer agreement between these two torque
estimates could be achieved if the dipolar, quadrupolar, and
octopolar field strengths are larger than those inferred by ZDI.
Their results are also consistent with our results from
Section 4.2. The mass-loss rates we estimate using the rotation
evolution method are much larger than those inferred from
Lyα. As with the results of Finley et al. (2019), the discrepancy
between rotation evolution–based estimates of stellar torques
and braking law–based estimates can be partially alleviated by
larger field strengths. However, it is unlikely that the
discrepancy can be fully accounted for by underestimated field
strengths from ZDI.

The second consequence relates to the fact that µ M Bcrit
2˙ . If

the true field strengths are a factor of several higher than that
recovered by ZDI, the critical mass-loss rate would increase by
roughly an order of magnitude. Consequently, even fewer stars
than suggested in Section 5 will have >M Mcrit˙ ˙ .

6.2. Mass-loss Rate Estimates

Estimating mass-loss rates is notoriously difficult because
the mechanisms that drive stellar winds are still poorly
understood. Although the CS11 model is one of the more
sophisticated models currently available for estimating mass-
loss rates, it still has limitations. It is based on many previous
observations and theoretical works, and uncertainty in those
works will propagate through into the final mass-loss rate
estimate. For example, one key part of the model that remains
relatively unconstrained is the magnetic characteristics of low-
mass stars. Parameters such as the amount of energy flux in
Alfvén waves, the fraction of the stellar surface covered in open
flux tubes, and the rate at which these flux tubes expand above

the stellar surface all play an important role in determining the
overall mass-loss rate but remain uncertain. Other details, such
as the terminal wind speed or the location of the transition
region, are also hard to determine reliably and will contribute to
the overall uncertainty of this model. We refer the interested
reader to Section 6 of CS11 for a much more comprehensive
discussion of these uncertainties.
Our second method of estimating mass-loss rates relies on

rotation period evolution models. Although models are now
able to capture the overall rotation evolution behavior of low-
mass stars, none can yet fit all of the available data.
Additionally, the rotation evolution models are not well
constrained in areas of parameter space where rotation period
data are sparse, particularly for the lowest-mass and oldest
stars. In the model of Matt et al. (2015), the rotation periods of
the lowest-mass stars are not reproduced well, which can be
seen when comparing the model to observations from the
Hyades (see Figure 14 in Douglas et al. 2016) and Praesepe
(see Figure11 in Douglas et al. 2017). Outside of the lowest-
mass M dwarfs, the disagreement between the M15 model and
observed rotation periods can be up to ∼50% in some mass and
age ranges. Our mass-loss rate estimates that are based on the
rotation evolution models (Section 4.3) will therefore be
correspondingly uncertain. However, since the model repro-
duces the broad features seen in rotation period distributions
with a relatively simple torque prescription, it is ideal for the
purposes of this work.

6.3. Stellar Variability

In this work, we have estimated mass-loss and angular
momentum loss rates at single instances in time (or at a few
instances for stars with multiple ZDI maps). However, stellar
magnetic activity is known to be time-variable. Therefore, their
mass-loss and angular momentum loss rates are also time-
variable. For example, the angular momentum loss rate of the
Sun is expected to vary over a range of timescales (Pinto et al.
2011; Réville & Brun 2017; Finley et al. 2018; Perri et al.
2018). As noted in Section 2, the Sun has a mass-loss rate that
is smaller than its critical mass-loss rate. However, that was
calculated using averages of the solar dipolar, quadrupolar, and
octopolar fields over ∼8 yr using the data from Vidotto et al.
(2018). In the top panel of Figure 6, we show the critical mass-
loss rate as a function of time for the Sun. This is done using
data from Vidotto et al. (2018) and Finley et al. (2018) shown
in magenta and blue, respectively.15 From 2010 to 2018, where
data are available from both studies, the two critical mass-loss
rate estimates are broadly comparable. We also plot the solar
mass-loss rate determined from in situ spacecraft measurements
(Finley et al. 2018) with a black line. Times when the mass-loss
rate exceeds the critical mass-loss rate (estimated from the
Finley et al. 2018 data) are shaded in gray. For reference, the
bottom panel shows the sunspot number indicating periods of
maximum activity around 2001 and 2013. We see that the solar
mass-loss rate does not exceed the critical mass-loss rate for the
majority of the last two solar cycles, suggesting that the dipole

15 The solar magnetograms of Vidotto et al. (2018) consist of the radial,
meridional, and azimuthal components, while Finley et al. (2018) only consider
the radial component in their work. So far in this work, we have used the
magnetograms of Vidotto et al. (2018) because they provide a better
comparison to ZDI maps that also contain all three vector components.
However, the data set studied by Finley et al. (2018) covers a longer time
period, so we have included both in Figure 6.
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magnetic field dominates the solar torque most of the time.
However, the non-dipolar components become important
around solar maximum. This is due to the growing quadrupolar
field and shrinking dipolar field at solar maximum (DeRosa
et al. 2012).

The magnetic fields of stars that have been mapped with ZDI
over multiple epochs are also known to evolve over time (e.g.,
Jeffers et al. 2014; Boro Saikia et al. 2016, 2018; Lavail et al.
2018). Correspondingly, their estimated torques also change as
a function of time. As with the Sun, this means other stars can
spend some times with >M Mcrit˙ ˙ and other times with

<M Mcrit˙ ˙ . In the context of long-term rotation period
evolution, models are only sensitive to the spin-down torque
averaged over timescales of Myr or more, so comparisons with
instantaneous torque estimates will always be uncertain.

6.4. Braking Law

While the F18 braking law allows for a rapid assessment of
the spin-down torque of a star, there are still areas in which it
can be improved. For instance, the MHD simulations on which
this braking law is based assume a fixed coronal temperature
and use the polytropic assumption, which can have a small
impact on the resulting wind solutions (Pantolmos &
Matt 2017). Additionally, F18 only investigated axisymmetric
field configurations, while we have also included nonaxisym-
metric field components in this work. By using the F18 braking
law, we have effectively moved power from the nonaxisym-
metric modes to the axisymmetric ones. Although the effect of
including nonaxisymmetric modes into braking law studies like
that of F18 is not entirely understood, we do not expect that it

will drastically change our results (also see Section5.1 of
Finley et al. 2018).
Lastly, using Ulysses data, Finley et al. (2018) showed that

the simulations used to construct the F18 braking law appear to
underestimate the open flux for a given input solar magneto-
gram. This problem is not unique to the F18 simulations (e.g.,
Linker et al. 2017). Correspondingly, the F18 spin-down torque
estimates are also probably underestimated by a factor of a few
just due to the open flux problem. The reason for this is not
clear, but any potential solution may increase the contribution
of non-dipolar modes to the spin-down torque. In order to
increase the open flux, the height of the last closed field loop
must decrease (this radius is variously called the opening radius
or source surface radius in the literature, depending on the
context). Since non-dipolar fields decay more rapidly than
dipolar fields as a function of radius, the contribution of non-
dipolar modes to the open flux is increased by opening up
magnetic flux closer to the stellar surface. Unfortunately, it is
currently difficult to quantify the magnitude of this effect, but it
should be kept in mind.

7. Discussion and Conclusion

Using a sample of stars that have been mapped with ZDI and
the braking law of F18, we have investigated whether non-
dipolar magnetic fields contribute significantly to stellar spin-
down. In order to use this braking law, mass-loss rates have to
be estimated for each of the stars. In general, large mass-loss
rates are required for non-dipolar fields to contribute to stellar
spin-down. We quantify this in terms of a critical mass-loss
rate, Mcrit˙ , that depends on the field strength and geometry of
the star. If a star has a mass-loss rate smaller than Mcrit˙ , only the
dipolar field mode is required to calculate the spin-down
torque. However, higher-order field modes need to be
accounted for when stars have mass-loss rates larger than
Mcrit˙ . We used two methods to estimate the mass-loss rate.
The first method uses the model of Cranmer & Saar (2011).

Using these mass-loss rates, we find that the non-dipolar
magnetic field modes do not contribute to spin-down for the
majority of the stars in our sample. The stars that do have mass-

Figure 6. Top: critical mass-loss rate for the Sun calculated using magnetic data from Vidotto et al. (2018; magenta line) and Finley et al. (2018; blue line). The solar
mass-loss rate estimated by F18 is also shown (black line). Regions where the mass-loss rate is greater than the critical mass-loss rate are shaded in gray. Bottom:
sunspot number.

Table 3
Best-fit Parameters for Equation (4)

Bsat,i Rocrit,i βi

Dipole 137±48 0.05±0.02 −1.31±0.10
Quadrupole 73±21 0.05±0.01 −1.25±0.08
Octopole 65±17 0.05±0.01 −1.37±0.09

13

The Astrophysical Journal, 886:120 (15pp), 2019 December 1 See et al.



loss rates larger than Mcrit˙ are the highest-mass stars in our
sample. This is due to the strong dependence of mass-loss rate
on stellar mass in the Cranmer & Saar (2011) model.

The second method estimates mass-loss rates by determining
the mass-loss rates required by the F18 braking law to
reproduce the spin-down torques from the rotation evolution
model of Matt et al. (2015). This method produces much higher
mass-loss rates than the model of Cranmer & Saar (2011).
Consequently, a majority of the sample has mass-loss rates
larger than Mcrit˙ . However, this method overestimates the solar
mass-loss rate. This is likely because the Finley & Matt (2018)
braking law is underpredicting the spin-down torque. To
reproduce the observed solar mass-loss rate using this method,
a multiplicative factor of 25 needs to be included in the Finley
& Matt (2018) braking law. Once this is included, far fewer
stars have mass-loss rates that exceed Mcrit˙ . In this model, the
stars where high-order field modes need to be accounted for are
those at large Rossby numbers.

Our core conclusion is therefore that non-dipolar magnetic
fields do not contribute significantly to stellar spin-down for the
majority of low-mass stars. However, there are stars in some
parameter regimes, whose mass-loss rates are estimated to be
particularly large, for which this may not be true. This result is
based on the mass-loss rate estimates of two models, although
one could, in principle, conduct this sort of study using any
mass-loss rate model. Indeed, different methods of estimating
mass-loss rates may predict different parameter regimes in
which non-dipolar fields need to be accounted for. It is also
worth noting that this conclusion assumes that the mass-loss
rate of a star is known. In reality, small-scale fields are
important for heating and determining the mass-loss rate (e.g.,
Cranmer & Saar 2011; Suzuki et al. 2013). However, for a
given mass-loss rate, only the dipole field is important for
stellar spin-down for most stars.

Lastly, it is worth discussing our results in the context of
rotation evolution models. In recent years, higher magnetic
field complexity has been invoked when a reduced torque is
required by rotation evolution models to fit the observed period
distributions in open clusters. The justification for this is that
MHD simulations have shown that, all else being equal, stars
with higher-order spherical harmonic field modes have vastly
reduced torques (Réville et al. 2015; Garraffo et al. 2016). For
example, Garraffo et al. (2018) cited the higher field complex-
ity of rapid rotators as evidence that they should also have
reduced spin-down torques. However, the MHD simulations
for computing torques conducted before those of Finley & Matt
(2017, 2018) have generally only considered a single spherical
harmonic order in each simulation. In reality, the magnetic
fields of stars are a superposition of many spherical harmonic
modes. While it is true that some stars within our sample have
more magnetic energy at higher-order spherical harmonic
modes, i.e., fields associated with smaller spatial scales, all of
the stars contain a nonnegligible dipole component (see
Figure 2(a)). This is the reason why non-dipolar modes do
not significantly contribute to stellar spin-down for the majority
of our stars.
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