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Abstract

The integration of smart devices into healthcare has led to the creation of
vast amounts of sensor data, which are crucial for advancing various health-
care applications such as elderly care, lifestyle enhancement, and health mon-
itoring. Human Activity Recognition (HAR), which relies on these data, is
essential for the success of these applications. While Deep Learning (DL)
methods, particularly Convolutional Neural Networks (CNN) and Machine
Learning (ML), have been somewhat successful in HAR, they often face per-
formance limitations. These limitations arise from the challenges of extract-
ing complex features from sensor-based HAR data and dealing with noise.
Current methods often rely on a single-phase feature extraction process. In
contrast, adopting a multi-phase feature extraction approach, which rigor-
ously performs feature extraction across multiple distinct phases, could more
effectively address these challenges. To overcome these challenges, we intro-
duce a novel hybrid framework named Dual-Phase Fused Neural Networks
with Ensemble Learning (DP-FusedNN-EL), designed to achieve robust fea-
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ture extraction and enhanced human activity recognition tasks. This model
operates in two main stages: dual-phase feature extraction and classifica-
tion. Initially, it employs two neural networks for feature extraction: a novel
Dual-Head Fused CNN for local features and a CNN combined with a Stacked
Bidirectional Gated Recurrent Unit and Attention network for local-global
features. Subsequently, it utilizes a Dual-Phase Ensemble Learning model
for classification, aiming to reduce overfitting by leveraging the strengths of
local-global features. We evaluated our DP-FusedNN-EL model on several
HAR datasets, achieving remarkable performance with accuracies ranging
from 87.47% to 99.66%. These results significantly outperform existing mod-
els, demonstrating the effectiveness of the DP-FusedNN-EL model in HAR
tasks.

Keywords: Human Activity Recognition, Deep Learning, Ensemble
Learning, Feature Extraction, Feature Fusion, Attention Mechanism

1. Introduction

Human Activity Recognition (HAR) has diverse applications, including
research on human behavior, ubiquitous computing, and development of
human-computer interfaces [1]. HAR has gained attention in smart home
applications [2], healthcare [3], rehabilitation [4], surveillance [5], and gait
analysis [1]. In healthcare, HAR plays a crucial role in classifying everyday
human activities, ranging from simple tasks like walking to more complex
ones like cycling, by analyzing various measurements [6]. The use of sensors
in HAR facilitates early disease detection, improves fitness, enhances elderly
care, and manages patient records, ultimately leading to improved patient
health [6].

Sensory systems for data collection in HAR encompass diverse technolo-
gies like Wi-Fi, acceleration, audio, infrared, depth cameras, smartphones,
and Bluetooth, each providing distinct advantages based on the application
environment [1, 12]. Generally, activity recognition methods are categorized
into visual-based, audio-based, and sensor-based approaches [1, 13]. Visual
systems use cameras to record and detect human physical activities continu-
ously, facing challenges related to confidentiality and cost [1]. Sensor-based
systems directly interact with the body using devices like smartphones and
Inertial Measurement Units (IMUs) to record activities [1]. Predicting hu-
man activities in HAR presents complex challenges but offers diverse bene-
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Figure 1: Comparison of feature learning in the HAR model: (A) Features extracted
using existing single-phase methods, including MI-CNN-GRU [7], Multi-Head CNN [8],
MLCNNwav [9], HMR-CNN-GRU [10], and 2D-CNN-LSTM [11]; (B) Our proposed dual-
phase feature extraction approach (DP-FusedNN), which leverages DH-Fused-CNN (first
phase) and CNN-SBi-GRU-Attention (second phase) to learn highly representative local
and global features, enhancing human activity classification through the DP-EL method.
Key components of the DH-Fused-CNN and CNN-SBi-GRU-Attention for improving per-
formance in HAR tasks include: the convolution block, recurrent block (SBi-GRU), feature
fusion module, skip connection with the feature fusion module, and attention mechanisms
like self-attention. These elements are crucial for enhancing feature extraction and repre-
sentation in the model.
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fits across various applications [1]. Mobile sensors, including accelerometers
and gyroscopes, are ideally suited for integration into building structures
or portable devices [1]. Thus, these sensors convert motion into detectable
signals crucial for HAR [1]. However, this approach has limitations in fully
capturing all stance phases of the humanoid body, potentially affecting per-
formance [1]. In industrial settings, employing multiple sensors enhances
activity recognition accuracy and effectiveness [1, 14]. These sensors enable
tracking vital metrics and mitigating health risks with cost-effective and pre-
cise recognition, driving interest in activity recognition [1, 6].

Various Deep Learning (DL) and Machine Learning (ML) algorithms
are widely utilized across various industries, such as healthcare, excelling
in various tasks including classification [15, 16] and object detection [17, 18].
These algorithms independently learn complex features from extensive large
datasets without manual input. Smartphone sensors pose challenges for HAR
tasks, where feature extraction plays a pivotal role and utilizes various strate-
gies. Traditional ML models, such as Support Vector Machine (SVM), Ran-
dom Forest (RF), K-Nearest Neighbors (KNN), Decision Tree (DT), Linear
Discriminant Analysis (LDA), and Kernel Principal Component Analysis
(KPCA), Group Feature Selection (GFS), Randomized SVM, Cooperative
Genetic Algorithm (CGA), and Hybrid Tuple Selection approach (HTS) in
[19, 20, 21, 22, 23, 24, 25, 26, 27] were explored and applied to the HAR prob-
lem. However, these approaches heavily used handcrafted features, which are
time-consuming and generate lower performance in terms of accuracy [28].
For example, the methods in [25] and [27] obtained lower accuracies: 79.21%
and 73.11% for the UCI HAR [29] and WISDM datasets [30], respectively.

Several DL models, including Long Short-Term Memory (LSTM), Con-
volutional Neural Networks (CNN), Bidirectional LSTM (Bi-LSTM), and
Gated Recurrent Unit (GRU), have been utilized to address the lower per-
formance issue in HAR. Despite promising results in activity recognition,
these models still face ongoing difficulties, including complex feature extrac-
tion and dealing with noisy data [1]. For example, the methods described
in [31] encountered challenges in classifying complex activities using shallow
CNNs. It was primarily due to the extraction of limited handcrafted features,
which relied on costly domain knowledge [32, 33].

To overcome these challenges, researchers have developed various hybrid
methods [7, 11, 34, 10], CNN with feature fusion approaches [35, 36], and
attention-based models [8, 37, 38, 39]. These methods aim to extract robust
representative features and enhance model performance. However, existing
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approaches still face challenges in capturing highly representative features
due to their focus on single-phase feature extraction strategies. Instead, a
multi-phase feature extraction strategy, which rigorously extracts features
across multiple phases, can be more effectively capture highly representative
features, as shown in Figure 1. As a result, these current methods have
shown limited performance across diverse HAR datasets, such as UCI-HAR,
WISDM, MHealth, and PAMAP2. In addition, among them some exist-
ing methods perform well on specific HAR datasets but still face challenges
when generalizing across diverse HAR datasets due to difficulties in capturing
highly desirable features. While some other works do not conduct extensive
experiments on diverse popular HAR datasets, highlighting the need for more
comprehensive experimentation.

The intuition highlights the need for a more comprehensive approach that
rigorously extracts features multiple times to capture highly representative
features, as shown in Figure 1. In addition, comprehensive experimentation
also requires across various HAR datasets to this extensive approach per-
formance. Given its significant impact on healthcare research and people’s
lives, achieving robust performance in HAR tasks is crucial. Motivated by
these considerations, we propose a hybrid model known as the Dual-Phase
Fused Neural Networks with Ensemble Learning (DP-FusedNN-EL) model.
Specifically, the DP-FusedNN-EL model integrates DL and Ensemble Learn-
ing (EL) strategies to perform dual-phase feature extraction tasks, followed
by classification tasks. Specifically, we develop Dual-Phase Fused Neural
Networks (DP-FusedNN) to rigorously perform feature extraction in two dis-
tinct phases, thereby capturing highly representative local-global features, as
shown in Figure 1.

Figure 1 highlights the differences between our proposed dual-phase fea-
ture extraction approach (DP-FusedNN) and existing single-phase feature
extraction methods [8, 7, 10, 9, 11] in capturing highly representative features
from HAR datasets to perform HAR tasks effectively. Our approach shows
its effectiveness by rigorously extracting features across two phases, leading
to human activity classification using the DP-EL model. It is achieved by
designing two specific neural networks: the Dual Head Fused CNN (DH-
Fused-CNN) network for learning comprehensive local dependencies and the
CNN with Stacked Bi-GRU and Attention (CNN-SBi-GRU-Attention) net-
work for extracting highly representative local-global features. In addition,
we develop a Dual-Phase EL (DP-EL) model for HAR tasks. The proposed
DP-FusedNN-EL approach undergoes extensive experimentation, aiming to
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achieve high performance on the UCI-HAR [29], UCI-HAR-AAL [40], UCI-
HAPT [41], MHealth [42], WISDM [30], and PAMAP2 [43] datasets.

The main contributions of this work can be summarized as follows:

1. We propose DP-FusedNN-EL, a novel framework that integrates a dual-
phase feature extraction strategy with an ensemble learning model to
achieve robust feature extraction and improved classification perfor-
mance for human activity recognition tasks.

2. We propose the DH-Fused-CNN network to effectively learn compre-
hensive local features from sensor-based HAR datasets. To further re-
fine these features and enhance their ability to capture both local and
global dependencies, we design the CNN-SBi-GRU-Attention network.

3. We propose the DP-EL model, leveraging Stacking withWeighted Voting-
based EL (SWV-EL) strategies for robust human activity classification
tasks. It selects optimal base learners to create EL models using stack-
ing with weighted voting strategies and combining these EL models to
form the DP-EL model for activity classification.

4. While prior studies often use limited HAR dataset(s) for performance
evaluation, we conduct extensive experiments on six well-known HAR
datasets [29, 40, 41, 42, 30, 43] and compare the performance of our
suggested approach with the state-of-the-art ML and DL approaches.

The rest of this study is organized as follows. Section 2 explores previous
research works for HAR tasks. Section 3 introduces our proposed efficient
method to perform HAR tasks. Section 4 presents experimental outcomes
using well-known public HAR datasets. Section 5 concludes the study.

2. Related Works

Previous studies in HAR have extensively explored datasets such as UCI
HAR, UCI HAR-AAL, UCI HAPT, WISDM, MHealth, and PAMAP2 [29,
30, 40, 41, 42, 43]. This section examines reported DL models, including
CNNs with feature fusion, hybrid models, and attention mechanisms, applied
to these HAR datasets.

2.1. CNN and Hybrid Models

In [44], researchers developed a HAR model using smartphone sensors,
employing a CNN framework for activity classification. Another study [45]
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proposed a DL framework combining CNN with statistical features for real-
time activity classification, effectively retaining temporal information in time
series data and enhancing HAR model performance. Inspired by this, re-
cent research introduced lightweight CNN models, such as shallow CNN
[31], layer-wise CNN [46], and Grouped Temporal Shift Networks (GTS-Net)
[47], to perform HAR tasks. However, these methods achieved lower accu-
racies, ranging from 88.6% to 95.7% on UCI-HAR and WISDM datasets, as
they prioritized computational cost over accuracy, limiting their feasibility
in healthcare research where accurate classification is crucial with minimal
computational costs [48, 49]. Because accuracy remains the primary focus for
ML and DL researchers in healthcare applications, given its direct impact on
patient well-being [48, 49]. Conversely, Recurrent Neural Networks (RNNs),
integral to DL, excel in handling sequential data.

Traditional RNNs, however, faced challenges capturing extensive depen-
dencies in HAR data [50]. LSTM and GRU, variants of RNNs, effectively
address vanishing gradient issues, showcasing superior handling to capture
long-term dependencies [1]. For instance, [51] stacked five LSTM cells to con-
struct a robust classifier for human activities using smartphone sensor data.
Based on this strategy, [52] proposed a bidirectional LSTM-based network
for HAR, while [53] introduced a deep residual bidirectional LSTM frame-
work, improving recognition rates in both temporal and spatial dimensions.
Combining the strengths of CNN and LSTM, [54] developed a hybrid model
to capture spatiotemporal patterns from raw sensor data, enhancing clas-
sification accuracy in HAR. Additionally, [55] presented a versatile hybrid
CNN-LSTM architecture finely tuned for HAR with multimodal wearable
sensors.

Inspired by influential research in [50, 51, 52, 53, 54, 55], several re-
searchers have recently developed hybrid models to overcome lower perfor-
mance issues by integrating CNN with RNN strategies. For example, Dua et
al. [7] developed a Multi-Input CNN with a GRU network (MI-CNN-GRU)
model, extracting local features through CNN and capturing long-term de-
pendencies via GRU layers. This method achieved heightened accuracies of
96.2%, 97.21%, and 95.27% on UCI-HAR, WISDM, and PAMAP2 datasets,
respectively. Nafea et al. [10] unveiled the Hierarchical Multi-Resolution
CNN with a GRU technique (HMR-CNN-GRU) to perform HAR tasks. It
extracts local and global features, achieving an accuracy of 94.5% and 99.38%
on the UCI-HAR and MHealth datasets, respectively. Kosar and Barshan
[11] proposed a unique 2D-CNN-LSTM hybrid model, differing from the stan-
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dard 1D CNN-LSTM approach, by utilizing a fusion strategy and parallel
branches. This approach achieved 95.66% accuracy on the UCI-HAR dataset.
These prior methods [7, 10, 11] often struggled to attain high performance
on HAR datasets. The main reason behind this is the challenges in capturing
representative features from HAR datasets.

Tong et al. [34] developed a Bi-GRU with Inception model (Bi-GRU-
I) to extract temporal and spatial features of human movements for HAR.
Comprising a two-layer Bi-GRU and Inception module, this architecture op-
timized the deep neural network for HAR modeling. The Bi-GRU-I method
achieved 95.42% and 98.25% accuracy on UCI-HAR and WISDM datasets,
respectively. It performed well on specific HAR datasets but faced chal-
lenges when applied to a broader range of HAR datasets due to difficulties
in extracting robust features. Helmi et al. [56] combined DL and swarm
intelligence to create a robust HAR system. Their approach features a light
extraction method using a residual convolutional network and a recurrent
neural network (RCNN-BiGRU), alongside new feature selection techniques
based on the marine predator algorithm (MPA) to optimize feature sets
to perform human activity recognition tasks. Most recently, Al-Qaness et
al. [57] developed the PCNN-Transformer, a parallel convolutional neu-
ral network and transformer architecture that utilizes parallel architecture
and residual mapping to learn temporal features from sensor data for HAR
tasks. Their PCNN-Transformer approach performed well on multiple HAR
datasets. While Lalwani and Ramasamy [1] developed a multi-branched
hybrid model, CNN-BiLSTM-BiGRU, to extract short-term patterns and
long-term associations in sequential data by merging CNN, Bi-GRU, and
Bi-LSTM components. The CNN-BiLSTM-BiGRU model [1] achieved clas-
sification accuracies of 99.32% and 96.10%, precisions of 92.82% and 79.65%,
recalls of 93.1% and 84.57%, and F1-scores of 73.2% and 90.13% on WISDM
and PAMAP2 datasets, respectively. This hybrid model has notable success
in classification accuracy by extracting desirable short-term and long-range
patterns from the input HAR datasets. However, this method exhibited
shortcomings when assessing additional performance metrics like precision,
recall, and F1 scores. These metrics play a critical role in dealing with the
class-imbalanced HAR dataset [29, 30, 40, 41, 42, 43].

Drawing on EL, which has proven effective in ML and extends to DL, [58]
introduced a novel training algorithm for LSTM models and an EL classifier
combining multiple LSTM learners. This approach was further developed
in [59], where a hybrid HAR model was created by parallelly integrating a
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fully convolutional block and an LSTM block. This innovative fusion aimed
to leverage the strengths of both components, enhancing the overall model’s
capabilities. Inspired by these breakthroughs in [58, 59], researchers have
explored alternative strategies based on hybrid models merging DL and ML
techniques. For example, the approach by Dahou et al. [60] integrated CNN
for feature extraction, followed by a Binary Arithmetic Optimization Algo-
rithm (BAOA) for feature selection tasks and SVM for classification tasks.
This method achieved 95.23% and 99.5% accuracy on the UCI-HAR and
WISDM datasets, respectively. However, it lacked comprehensive experi-
ments and struggled to generalize its methods across diverse popular HAR
datasets, highlighting the need for more extensive experimentation to address
HAR tasks efficiently.

Some alternative studies to hybrid models utilize feature fusion techniques
within CNN models to extract highly significant features from input HAR
datasets to perform HAR tasks. Specifically, Wang et al. [35] developed
the Adaptive Feature Fusion Network (AFFNet) based on a multi-scale fu-
sion approach to combine temporal and distance features for human activity
classification. It extracts multi-scale temporal features using a dynamic con-
volution network, while distance features are obtained through a prototype
network. The AFFNet achieved 95.32% and 94.61% accuracy on UCI-HAR
and WISDM datasets, respectively. This feature fusion approach still faced
challenges in achieving high performance on HAR datasets due to difficul-
ties in capturing essential features. Emphasizing the need for comprehensive
experiments to generalize this strategy across diverse HAR datasets. Most
recently, Liu et al. [36] introduced a UC Fusion method for feature extraction
based on the strategy of features fusion technique. It merged the extracted
unique features from each sensor with the common features shared across all
sensors. This approach achieved high accuracies of 96.84% and 98.85%, pre-
cisions of 96.35% and 98.73%, recalls of 96.22% and 98.90%, and F1-scores
of 96.27% and 98.83% on UCI-HAR and WISDM datasets, respectively, to
perform HAR tasks.

2.2. Attention Models

Wang et al. [61] first introduced an attention method by combining tradi-
tional CNN procedures with attention sub-modules to assess the relationship
between local and global features for HAR tasks on weekly labeled wearable
sensor data. Similarly, a novel DL architecture proposed in [62] significantly
altered the algorithm by replacing the baseline CNN’s global loss with a
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local loss, reducing memory requirements for sensor-based activity recogni-
tion. Based on the ideas in [61, 62], several researchers have introduced
diverse attention strategies to combine them with variant CNNs or hybrid
models. For example, Khan and Ahmed [8] introduced a Multi-Head CNN
with attention mechanisms. This approach enhances CNN’s representation
ability by automating important feature extraction, which is crucial for per-
forming HAR tasks. This attention model achieved accuracies of 95.38% and
98.18% on the UCI-HAR and WISDM datasets, respectively. In contrast,
Yin et al. [37] introduced a combined strategy, a 1D Convolution-based Bi-
LSTM Parallel Model with an Attention mechanism (ConvBLSTM-PMwA).
This model aims to extract features, eliminate noisy data from the HAR
dataset, and obtain good accuracies of 96.71% and 95.86% on UCI-HAR and
WISDM datasets. Gao et al. [63] developed an advanced attention strategy:
the Dual Attention Network-based HAR (DanHAR) method for multimodal
HAR scenarios to enhance the CNN’s representation power. This advanced
strategy combines channel and temporal attention layers to extract channel-
wise and temporal patterns, respectively. The DanHAR approach achieved
outstanding accuracy rates of 98.85% and 93.16% in HAR tasks.

Tang et al. [38] also introduced a Triplet Cross-Dimension attention
model for sensor-based activity recognition tasks. This model features three
attention branches capturing cross-interaction features between sensor, tem-
poral, and channel dimensions. Their approach achieved notable F1 scores of
93.2%, 96.77%, and 98.61% on PAMAP2, UCI-HAR, and WISDM datasets.
Mim et al. [39] presented a hybrid approach incorporating an inception-
attention-based method utilizing the GRU layer for effective temporal and
spatial information extraction from sensor-based HAR data. Employing In-
ception with Convolutional Block Attention Module (CBAM) attention, their
approach achieved commendable accuracies of 96.4%, 90.78%, and 99.13% on
UCI-HAR, PAMAP2, and WISDM datasets [39].

Dahou et al. [9] introduced a wavelet transform strategy as an alter-
native to attention mechanisms for HAR tasks. [9] proposed a multilevel
CNN, namely MLCNNwav, based on the Discrete Wavelet Transformation
(DWT) strategy for global feature extraction without using attention mech-
anisms to perform HAR tasks. This approach obtained accuracies of 95.52%
and 99.14% on UCI-HAR and WISDM datasets. Previous works [8, 37, 63,
38, 39, 9] lacked comprehensive experiments and faced challenges in gener-
alizing their methods across diverse popular HAR datasets. It underscores
the necessity for more extensive experimentation to address HAR tasks effi-
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ciently. While Al-Qaness et al. [64] proposed Multi-ResAtt, a multilevel
residual network that combines recurrent neural networks with attention
mechanisms. This approach integrates initial blocks and residual modules
in parallel, enabling effective extraction of time-series features and activity
recognition across diverse HAR datasets. However, their approach achieved
limited performance, with an accuracy of 87.82% on the PAMAP2 dataset.
This limitation arises from an excessive focus on initial blocks and residual
modules, rather than employing an extensive feature fusion process with a
more integrated attention mechanism within these components.

Another study works as an alternative to CNN with an attention mech-
anism. For example, Essa and Abdelmaksoud [65] presented a transformer
model, Convolution with a Self-Attention Network (CSNet) and Temporal-
Channel CSNet (TCCSNet) for HAR tasks. These approaches capture local
and global features and time- and channel-wise information from MHealth,
PAMAP2, and WISDM datasets. However, this approach ultimately fell
short despite attempting to extract robust features from various HAR datasets.

Knowledge distillation (KD) can enhance the performance of a compact
student model by transferring knowledge from a more complex teacher model.
However, many existing KD methods overlook the bias introduced by the
teacher’s logits during distillation, which can lead to sub-optimal results
in student training. To address this problem, Xu et al. [66] designed a
Contrastive Distillation framework with Regularized Knowledge (ConDRK),
which enhances knowledge distillation by addressing biases from teacher log-
its. They leveraged a contrastive distillation approach using unbiased soft
targets and contrastive learning to improve student model performance. This
approach achieved a comparable performance of 96.57% on the UCI HAR
dataset. However, it did not extensively explore diverse HAR datasets, lim-
iting its effectiveness across broader applications in HAR tasks.

Summary of the Literature: Previous HAR studies mainly utilized
CNN with feature fusion [35, 36], attention-based approaches [8, 37, 38, 39],
and hybrid models [1, 7, 10, 11, 34] for robust feature extraction. However,
many existing approaches, including hybrid models that combine CNN and
RNN strategies with attention mechanisms, often face challenges to capture
highly representative features. This limitation arises from their reliance on
single-phase feature extraction processes, rather than adopting a multi-phase
feature extraction strategy that rigorously extracts features across multiple
phases from diverse HAR datasets to enhance performance. As a result,
there is a need for a more comprehensive approach. In response, we pro-
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pose DP-FusedNN-EL, a novel framework that integrates deep learning-based
DP-FusedNN with ensemble learning (DP-EL) techniques for robust feature
extraction and classification tasks.

One existing work [60] leveraged dual-phase feature extraction process,
aimed to perform HAR tasks effectively. While it performed well on a spe-
cific HAR dataset [30], it still faced challenges when evaluated on other HAR
datasets, such as [29]. This limitation arises from its reliance on CNNs for
feature extraction and BAOA for feature selection from these learned fea-
tures. It overlooks the potential of leveraging a hybrid model, such as our
CNN-SBi-GRU-Attention network and misses the benefits of an extensive
feature fusion strategy within a CNN like our DH-Fused-CNN network. Our
approach addresses these gaps, resulting in the learning of more compre-
hensive features and improved performance across diverse HAR datasets. In
addition, this existing work relied on traditional machine learning models, in-
cluding multiclass SVM, while overlooking the potential of combining neural
networks and ensemble learning model, such as ours DP-EL model.

3. DP-FusedNN-EL: Dual-Phase Fused Neural Networks with En-
semble Learning Model

In this section, we present the proposed DP-FusedNN-EL architecture,
designed to enhance performance on HAR tasks, as shown in Figure 2. This
architecture consists of two main components: (1) DP-FusedNN, which per-
forms dual-phase feature extraction to capture highly representative local-
global features from sensor-based HAR datasets, and (2) DP-EL, which
leverages these features to effectively recognize human activities. Detailed
descriptions of each component and their contributions to HAR performance
are provided in the following sub-sections.

3.1. DP-FusedNN: Dual-Phase Fused Neural Networks

Effective feature extraction is crucial for sensor-based HAR tasks to pre-
vent overfitting and improve classifier performance [48]. Motivated by this
concept, we design the DP-FusedNN method, which leverages a dual-phase
feature extraction process: (1) The first phase employs the DH-Fused-CNN to
extract comprehensive local features, and (2) the second phase uses the CNN-
SBi-GRU-Attention network to capture highly representative local-global fea-
tures, as shown in Figure 2.
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Figure 2: Architecture of the proposed Dual-Phase Fused Neural Network with Ensemble
Learning (DP-FusedNN-EL) model for HAR tasks. The model comprises two components:
DP-FusedNN (depicted in A and B) and DP-EL (shown in C). The DP-FusedNN employs
a dual-phase feature extraction strategy: (1) DH-Fused-CNN extracts comprehensive lo-
cal features Xe (A), leveraging a feature fusion module with intermediate concatenation
layers to fuse feature maps from each block of one head with corresponding blocks from
subsequent heads, capturing diverse local patterns (shown in D), and a feature fusion
and skip connection module for comprehensive local feature extraction (exhibited in E);
(2) CNN-SBi-GRU-Attention refines these comprehensive local features into highly rep-
resentative local-global features X

′

α using a convolution block, a recurrent block, and a
self-attention-based feature fusion module (shown in B). (C) The key components of the
DP-EL model include: Harris Hawk Optimization for hyperparameter tuning of machine
learning models (e.g., Random Forest, SVM), model selection to choose the top 2, 3, or
5 models to form ensemble models using a stacking with Weighted Voting (WV) strategy
(first phase), and combining these ensembles into a dual-phase ensemble model (second
phase).
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Existing methods [1, 7, 10, 11, 34, 60, 8] have employed hybrid architec-
tures that combine CNNs and RNNs, often enhanced with attention mech-
anisms. These approaches are generally considered single-phase feature ex-
traction networks. However, these approaches often struggle to capture com-
prehensive local-global features due to their inadequate focus on a rigor-
ous feature extraction process. In contrast, DP-FusedNN performs feature
extraction in two distinct phases, as shown in Figure 1, effectively captur-
ing highly representative local-global features and thereby improving perfor-
mance on HAR tasks. Detailed descriptions of the DH-Fused-CNN and CNN-
SBi-GRU-Attention networks are provided in the following sub-sections.

3.1.1. First Phase Feature Extraction: DH-Fused-CNN

The Multi-Head CNN approach [8, 67, 68, 69] and feature fusion tech-
niques [35, 36] effectively extract highly discriminative features for HAR
tasks. These methods allow each network head to learn distinct patterns,
which are then fused to capture diverse representations, thereby enhancing
performance on HAR [35, 36, 8, 67, 68, 69].

Inspired by existing approaches [35, 36, 8, 67, 68, 69], the DH-Fused-
CNN is designed to extract comprehensive local features from HAR data
by leveraging CNNs’ ability to learn filters for small sub-regions, thereby
capturing local patterns and their variations [21, 45]. Unlike prior methods
that rely on early or late fusion layers to capture diverse local information,
DH-Fused-CNN employs multiple intermediate feature fusion layers within
the feature fusion module, followed by a skip connection-based feature fusion
module, as shown in Figure 2. This design enables the network to learn a
more comprehensive local information. Specifically, it comprises a feature
fusion module and skip connections to enhance local feature learning, thus
improving the performance of the DP-EL model for HAR tasks.

The DH-Fused-CNN architecture comprises dual-head neural networks,
where each head is composed of four convolutional blocks. Each block v
contains two 1D point-wise convolutions p and one standard 1D convolution
layer c. The c layer captures local features and generates feature maps, while
the point-wise convolutions p serve dual purposes: the first p layer performs
dimensionality reduction, and the second p layer generates output features
for the feature fusion module. In this module, the intermediate feature fusion
layers effectively fuse outputs from corresponding convolution blocks across
the two heads to learn diverse local information, as depicted in Figures 3 and
4. To stabilize training, batch normalization η is applied after each c layer.
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Figure 3: Architecture of DH-Fused-CNN approach as the first phase for feature extraction
tasks. Key components include: (A) feature fusion module with intermediate feature
fusion layers (concatenation) to fuse new feature maps from each block of one head with
other feature maps from corresponding blocks of subsequent heads to learn diverse local
information hv×v: h0 = H11, h1 = H12, h2 = H13, . . . , h13 = H42, h14 = H43, h15 = H44.
Here v denotes convolution block. (B) feature fusion with skip connection module to
extract comprehensive local features based on learning diverse local patterns.

A feature fusion with skip connections strategy (Figure 5) is then applied
to extract comprehensive local features, which are further processed by the
CNN-SBi-GRU-Attention network.
A. Convolution Block: In this study, we represent the input signal for
the HAR dataset as α, where α ∈ RT×S, with T denoting the number of
time steps and S represents the size of the feature set, serving as the input
to the first convolution block v of both heads hd. The initial point-wise
convolution layer p generates the jth feature maps xhdvpj after the first p layer

in each v, where 1 ≤ hd ≤ q and the value of q = 2, as per the DH-
Fused-CNN approach. A non-linear activation function ϕS is then applied
to mitigate vanishing gradient or explosion issues, ensuring the generation of
informative feature maps xhdvpj .

xhdvpj =

Size(α)∑
m=1

ωm
vpj
αhd
(vpj−1)m

+ bshdvpj

 (1)

xhdvpj = ϕS

(
xhdvpj

)
(2)

where m denotes the feature map index at the (p − 1)th layer, ωm
vpj

signifies

the weight matrix for the first p of every block for both hd’s.

15



H11
H11 H12H13 H14

H12 H13 H14

H
ea

d 
2

H
ea

d 
1

....... ....... ....... .......

....... ....... .......

Head 2

Head 1 H11

H12

H14

H13

(A)
Feature
Fusion
Module

Intermediate feature
fusion layer 

Point-wise
Convolution Layer

3 * 3
Convolution Layer

Batch
Normalization

(B)Convolution
Block

Convolution
Block

Convolution
Block

Convolution
Block

Convolution Block

Figure 4: Detailed architecture to show how learned features are fused by the feature fusion
module of the DH-Fused-CNN approach. Here (A) feature fusion module with intermediate
feature fusion layers (concatenation) to fuse new feature maps from each convolution block
of head 1 is fused with other feature maps learned from its corresponding blocks of next
heads i.e., head 2, to learn diverse local information hv×v: H11, H12, H13, H14. Here v
denotes convolution block. (B) Detailed analysis of how feature fusion module performs
to learn diverse local information i.e., H11 to H14.

Next, we perform a standard 1D convolution operation, as per equation
(3), for every block of both hd’s to facilitate the generation of informative
feature maps xhdvcj . We then apply ϕS to it as per equation (2).

xhdvcj =

size(X)∑
m=1

A∑
n=1

ωm,n
vcj

xhdvpjm

+ bshdvcj

 (3)

where n denotes another feature map index at the (c− 1)th layer for the
kernel size A of the cth layer at every block for both hd’s.

We leverage η layer, which forms normalized feature maps Nhd
normv

for
every block of both hd’s. Based on these processes as specified in Equations
1 - 4, each convolution block is formed, and each output as generated feature
maps of every v’s is then forwarded to the following v’s to form new feature
maps Nhd

normv
until the following v’s of both hd’s are available.

Nhd
normv

= η
(
xhdvcj

)
(4)

B. Feature Fusion Module: The primary motivation for developing the
feature fusion module is to effectively capture diverse patterns from different
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branches of the network, enhancing the model’s classification performance.
Unlike existing approaches that use late or early fusion methods [8, 67, 68,
69, 35, 36], the DH-Fused-CNN architecture incorporates a feature fusion
module with v × v intermediate feature fusion layers θv×v(·). This module
fuses new feature maps xhdvpj from each block of one head hd with feature maps

x
hd+(q−1)
vpj

from corresponding blocks of subsequent heads to learn diverse local
information hv×v, as shown in equation (5). An additional p layer is applied
at the end of each convolution block to learn these new feature maps xhdvpj .

This approach, exhibited in Figures 3 and 4 and detailed in Algorithm 1.

hv×v = θv×v

(
xhdvpj , x

hd+(q−1)
vpj

)
(5)

Figures 3 and 4 visually represent about feature fusion module within
the network’s architecture. In each head, output feature maps xhdvpj from

each block are fused with feature maps x
hd+(q−1)
vpj

from subsequent heads
hd + (q − 1) to learn diverse local patterns hv×v. Here, v = 4 and hv×v =
{h0, h1, h2, . . . , h14, h15}, starting from the 0th position, resulting in h4×4 =
h16 diverse local information.
C. Feature Fusion and Skip Connection Module: The primary mo-
tivation for developing the feature fusion with skip connection module is to
further fused features across different levels, specifically combining lower-
level patterns with higher-level ones to capture comprehensive local features
[70, 71]. This integration aims to enhance the classification model’s perfor-
mance. Inspired by this approach, the DH-Fused-CNN architecture employs
the Feature Fusion and Skip Connection (FF-SC) module, as shown in Figure
5 and detailed in Algorithm 1. The FF-SC module is applied to each diverse
local patterns ho, where o ∈ [0, v × v − 1], aiming to learn comprehensive
local information Di

k at each iteration i. The indices i and k act as counters

for the iterative fusion process, defined as 0 ≤ i ≤ 1, 0 ≤ k ≤ (v×v)−2
2

, and
i ≤ o ≤ (v×v)−1, respectively. The FF-SC technique is designed to retain a
comprehensive range of feature representations, from low-level to high-level,
thus minimizing potential information loss during the fusion process.

The FF-SC technique is governed by the following conditions, as mathe-
matically represented as Equation 6:

1. Direct Skip Fusion: When o = i, meaning the index o matches i,
the diverse local information hio is directly fused with another one hio+2

to learn comprehensive local information Di
k. This approach allows the
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o,

where o ∈ [0, v × v − 1], to learn comprehensive local information Di
k :

Di=0
0 , Di=0

1 , Di=1
0 , Di=1

1 , . . . , Di=0
k−2, D

i=1
k−2, D

i=0
k−1, D

i=1
k−1, D

i=0
k , Di=1

k at each iteration i. The
key components include: (A) Direct Skip Connection: when o = i, the diverse local
information hi

o is directly fused with hi
o+2 to generate comprehensive local information Di

k;
(B) Residual Fusion: when o ̸= i, the diverse local information hi

o+2 is fused with the
previously learned comprehensive local information Di

k−1 to learn further comprehensive
information Di

k. Each learned local pattern Di
k, ∀ i is subsequently fused with ho∈i, where

o ∈ i = [0, 1]. This process generates refined comprehensive local information, D0 and D1,
which undergo another fusion step to form d, followed by a fully connected (FC) layer to
extract comprehensive local features xe. Indices i and k serve as counters in the iterative

fusion process, defined as 0 ≤ i ≤ 1, 0 ≤ k ≤ (v×v)−2
2 , and i ≤ o ≤ (v × v)− 1.
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network initially to skip certain intermediate learned local information
to enrich the fusion process with diverse feature combinations.

2. Residual Fusion: Conversely, when o ̸= i, the fusion operation in-
volves combining the new diverse local information hio+2 with the pre-
viously learned comprehensive local information Di

k−1 to learn further
comprehensive information Di

k.

Di
k =

{
θ
(
Di

k−1, h
i
o+2

)
if (o ̸= i)

θ
(
hio, h

i
o+2

)
if (o == i)

(6)

By incrementally advancing o by 2 after each fusion operation, the FF-SC
technique systematically fuses both newly learned information hio+2 with pre-
viously captured features Di

k−1. This module ensures a comprehensive fusion
of feature maps across different levels of abstraction, mitigating potential
information loss and thereby improving the model’s overall effectiveness in
learning comprehensive local patterns.

Each learned local patternsDi
k, ∀ i is further fused with ho∈i where o ∈ i =

[0, 1], as shown in Figure 5 and detailed in Equation 7. This process generates
refined comprehensive local information Di, which undergo another fusion
step followed by a fully connected (FC) layer with δ to extract comprehensive
local features xe. These features xe are subsequently used as an input to
the CNN-SBi-GRU-Attention network to capture highly representative local-
global features.

Di = θ (ho∈i, D
i
k)

d = θ (Di)
xe = ϕS (FCδ(d))

 (7)

3.1.2. Second Phase: CNN-SBi-GRU-Attention Approach

Traditional CNNs excel at learning local features [45, 21], while self-
attention mechanisms combined with RNNs (LSTM or GRU) effectively cap-
ture global patterns [72, 73, 74]. Hybrid approaches that integrate CNNs
with RNNs and attention mechanisms [7, 10, 37] often achieve superior
performance by addressing both local and global patterns. Some methods
further enhance performance through multi-head neural network strategies
[8]. Inspired by these approaches, we design the CNN-SBi-GRU-Attention
method as the second phase in the feature extraction process of the DP-
FusedNN framework, as shown in Figure 6 and detailed in Algorithm 2.
This approach leverages self-attention with stacked Bi-GRU layer to capture
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Algorithm 1 : DH-Fused-CNN Approach

1: Input: HAR dataset: training set = {x train, y train} and testing set =
{x test, y test}.
2: Output: xe;
3: Procedure:
4: for each hd do:
5: Perform all v according to equations (1 - 4);
6: end for
7: Perform feature fusion operations for all learnable feature maps for all
heads to form fused feature maps according to equation (5).
8: Perform feature fusion with a skip connection strategy on all fused feature
maps according to equations (6-7).
9: return xe;

Point-wise
Convolution

Layer

Convolution
Block 1

Convolution
Block 2

Convolution
Block 3

Convolution
Block 4

Convolution
Block 5

Convolution
Block 6

Recurrent
Block

3 * 3
Convolution

Layer

Batch
Normalization

Bi-Directional
GRU Layer 1

Bi-Directional
GRU Layer 2

Attention
Layer

Fully
Connected 

LayerConcatenation

H
ead 1

Convolution
Block 1

Convolution
Block 2

Convolution
Block 3

Convolution
Block 4

Convolution
Block 5

Convolution
Block 6 H

ead 2

Extracted Local-
Global Features

Figure 6: Architecture of the CNN-SBi-GRU-Attention approach as the second phase
for feature extraction tasks to extract highly representative local-global features. Key
components include: multiple convolution block, recurrent block (stacking-based Bi-GRU
layer), and self-attention module with feature fusion strategy to refined comprehensive
local features into highly representative local-global features.
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global dependencies like [72, 73, 74], while CNNs focus on local patterns as
[21, 45]. By combining these strategies, CNN-SBi-GRU-Attention effectively
extracts highly representative local-global features from the comprehensive
local features xe provided by the DH-Fused-CNN. Unlike previous works
[35, 7, 8, 38, 9, 34, 10, 39, 37, 11, 46, 36, 1] that utilize input HAR data, our
CNN-SBi-GRU-Attention network refines xe into highly representative local-
global features, thereby further enhancing the performance of the DP-EL
model for HAR tasks.

In this network, dual heads hd’s are used, denoted as hd1 and hd2, where
the value of hd lies between 1 and q as 1 ≤ hd but hd ≤ q = 2 as per
this network. The first head, hd1, consists of a CNN sub-network, while the
second head, hd2, comprises another sub-network: convolution with stack-
ing based-Bi-GRU. These sub-networks consist of six convolution blocks v
and one recurrent block, RB. The first five convolution blocks v’s comprise
point-wise and standard 1D convolution and batch normalization layers, ac-
companied by ϕS and generating normalized feature maps, Nhd

normV
, as per

equations 1 - 4. In blocks six and seven for each head, we implement the
above-specified convolution layers with a batch normalization layer and add
another point-wise convolution layer to form xhdvPj

.

A. Recurrent Block Module: Incorporating the Recurrent Block (RB)
module within the head hd(q−1), we apply a Stacking-based Bi-GRU (SBi-
GRU) layer. This layer plays a crucial role in learning highly representative
features. It uses forward and backward routes for each Bi-GRU layer g,
leading to the generation of feature maps, as outlined in equation (8). These
routes comprise two critical gates: the reset and update gates, denoted as
Rt and Ut, where Ut = ϕU(ωU [hst−1;xt] + bsU), Rt = ϕR(ωR[hst−1;xt] + bsR)
and xt ∈ Nhd

normV
as the input tensor of the current unit for g = 0. While bs

and ϕ(·) represent the bias vector and element-wise logistic sigmoid function,
ωU , ωR, and hst−1 represent weight matrices, and hst−1 represents the hidden
state of the current unit, respectively. The update gate controls the flow
of information from both the forward and backward GRU cells to update
the hidden state at a specific time step. This gate determines how much
information from the past and future is combined to produce the current
hidden state.

The reset gate controls the amount of data passed to the current candidate

set
−→
hst within the previous stage, where

−→
hst = tanh(ωhs.[(hst−1 ⊗ Rt), xt] +

bshs) and hst = (1 − Ut) ⊗ hst−1 + Ut ⊗
←−
hst, t ∈ (1,m), which represents
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the hidden state of the prior unit. While ⊗ and ωh denote the element-
wise multiplication and weight matrix, respectively. Consequently, these two
routes yield distinct hidden layer states, enabling the extraction of diverse
and informative information from the data.

X =
[
θ
(−→
hst,
←−
hst

)]g
(8)

When generating an SBi-GRU layer, we follow the same process for the
subsequent layer g, where we assign xt = X. In this layer, we fuse each GRU
layer’s forward and backward routes’ generated features for each state. This
feature fusion process yields the output features X for all g, by synthesiz-
ing the forward and backward routes’ of generated features. These features
effectively enhance the inter-dimensional correlations in the sequential data.
Subsequently, the resulting output X is directed to the seventh block to
process further to generate feature maps x

hd(q−1)
vpj

.
B. Attention Module with Feature Fusion Technique: We employ an
attention technique ψ(·) to improve the quality of the learnable feature maps
generated during our study. This attention mechanism focuses on salient
features while effectively disregarding potentially confusing or unrelated in-
formation. Hence, it provides higher weights to related features and lowers
the significance of unrelated ones. In our suggested approach, we apply ψ(·)
to the output feature maps, xhdvpj and x

hd(q−1)
vpj

, obtained from the CNN and

convolutional-stacking based-Bi-GRU sub-networks after taking them as in-
puts to it. These generated features are designated as queries, hd == 1
outputs and keys and values are as hd+(q− 1) outputs, while

√
yz denoting

as the dimension of these inputs. Subsequently, estimate the alignment score
ϑ(·) using the dot product of inputs: xhd=1

vpj
and xhd=2

vpj
of ψ(·).

ϑ
(
xhd=1
vpj

, xhd=2
vpj

)
= ϑ

(
x0

T × xhd=2
vpj

)
(9)

We then utilize the softmax activation ϕΠ for normalizing these score
values, thereby deriving the weight distribution for the associated values.
Next, we use the feature fusion technique θ· to fuse the first head’s generated
output xhd=1

vpj
with the output of the ψ· to form a fused learnable feature map

xα. It is then forwarded to the FC layer to capture highly representative
local-global features x′α, as details in the following:
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Algorithm 2 : CNN-SBi-GRU-Attention Approach

1: Input: xe = TH-Fused-CNN
2: Output: x′α;
3: Procedure:
4: for each hd do:
5: Perform all v (up to 5) according to equations (1 - 4);
6: end for
7: if (v == ’six’ and hd2 == True) then
8: Perform an SBi-GRU layer according to equation (8).
9: end if
10: if (b == ’six’ and hd1 == True or b == ’six’ and hd2 == True) then
11: Nhd

normV
= Operate this block according to equations (1 - 4);

12: end if
13: Perform an attention mechanism on all heads’ generated output feature
maps according to equations (9-10).
14: Perform feature fusion operation and extract features according to the
equations (11-12).
15: return x′α;

ψ(Query,Key, V alue) = ϕΠ

ϑ
(
x0

T × xhd=2
vpj

)
√
yz

× xhd=2
vpj

(10)

xα = θ
(
xhd=1
vpj

, ψ(Query,Key, V alue)
)

(11)

x′α = ϕS (FCδ (xα)) (12)

Following the above-specified procedures, the DP-Fused-NN extracts cru-
cial, highly representative local-global features x′α from input local features
xe, forwarding them to the DP-EL model to recognize Human activities ef-
fectively.

3.2. DP-EL: Dual-Phase Ensemble Learning Model

Effective classifiers are crucial to enhance the performance of ML or DL
models. Based on that fact, some researchers have developed EL methods
that combine weaker and stronger models for improved outcomes [49]. Ad-
dressing this problem, we propose a DP-EL method, using the SWV-EL
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technique for precise human activity classification tasks, as shown in Figure
2. The DP-EL model comprises two phases. Phase 1 considers the Nth
classification models to form EL models, and Phase 2 combines these EL
models. To develop EL models in Phase 1, it selects the bth number of
best-performing models after estimating the threshold value based on their
probability scores. It then forms the bth number of EL models based on
two approaches: stacking EL and weighted voting EL techniques. Phase 2
combines these bth EL models through the SWV-EL strategy to form a ro-
bust classification model, as shown in Figure 2. Subsections provide more on
DP-EL’s specifics.

3.2.1. Phase 1: First-Phase Ensemble Learning Models

Phase 1 consists of three operations: firstly, generating base models and
selecting the best performing models, and secondly, generating various EL
models.
A. Generate Base Models and Select the Best Performing Models:
This study uses N number of classifiers β indexed as [1 : N ] to actively
contribute to form the DP-EL method, where these classifiers are initially
arranged in a list L.

β = {β1, β2, β3, . . . , βN−2, βN−1, βN} (13)

There are some challenges in developing an EL model to achieve high
performance. Because most classifiers struggle to generate effective perfor-
mance to form an EL model. To address this challenge, we identify the
best-performing classifiers Bestbkj from the list, where k represents a list with
j as the selected best classifiers and the value of b depends on the size of k. To
achieve this, we initially estimate a probability score pr as an error score for
misclassified examples for each β, as pr(βN) = [Error(βN)] ({x′

trainα,ytrain}).
In this case, {x′

trainα,ytrain} represents the extracted training features with
the corresponding training labels. Subsequently, we compute a threshold
value t that depends on the mean of all prβN

,∀β and compare it with each
model’s prβN

. This process helps us select the best-performing models from
the available models.

B. Generating Various EL Models: This study applies the SWV-EL
strategy to form various EL models as the first-phase EL models. To achieve
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this, we initially select the highest-performing classifiers Bestbkj to serve as
the base estimators µw

b for the weighted voting-enabled and stacking-enabled
EL models, such that values of w = [1, Kj] where w = Kj. We then train
all these mubµ to yield the respective predictive outcomes outbi,w for these EL
models. These predictive outcomes, in turn, contribute to creating a new
feature matrix, often called the meta-features (MF )b, for every b along with
ytrain. These are subsequently used to train individual meta-learners χb for all
Bestbkj to perform as every stacking-based EL model. We employ a weighted
voting-enabled EL strategy to form these χb in this study. To achieve this,
we determine the weight ωb

w corresponding to every µb
w, where we subtract

each probability score pr(µb
w) associated with every µb

w from the value of 1,
as illustrated below.

ωb
w =

[
1− pr

(
µb
w

)]
(14)

Next, allocate these weights ωb
w to each µb

w, enabling the development of
a weighted voting-enabled EL strategy. This process is pivotal for forming
individual meta-learners χb, each tailored to be fitted on the new meta-
features (MF )b corresponding to every b derived from Bestbkj along with
ytrain. In this way, it generates the several EL models as the first-phase EL
models (β′)b for each selected highest-performing classifier.

χb = ELb
w

(
x′αi

)
=

∑
w

µb
w × ωb

w

(
x′αi

)
(15)

(MF )b = (MF )b ∪
{(

outbi,w
)}

(16)

(β′)
b
=

[
χb

({
(MF )b, ytrain

})]
(17)

3.2.2. Phase 2: Second Phase Ensemble Learning Model

To form the second phase of EL model, βF , we employ the (β′)b mod-
els and following the same principles elucidated in equations (14-17). Each
first-phase EL model serves as a set of base learners µ′

b , contributing their
prediction results out′i,b to create new MF ′ . Then, form a new meta-learner
χ′ by utilizing the identical strategy demonstrated in equations (14-15). To
achieve this, each base estimator, in conjunction with its associated weights
ω′
b = ⌊1− pr(BestbKj

)⌋, contributes to constructing this new meta-learner χ′.
It is then fitted to the MF ′ and ytrain after employing the same strategy, as
exhibited in equations (16-17). Through these well-defined procedures, we
form a βF , subsequently employed to evaluate its classification performance
on the test data.
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3.3. Network Settings

This part will explore our suggested DP-FusedNN architecture configu-
ration outlined in Appendix 1. We employ multiple convolution blocks for
all heads of dual phase feature extraction networks. Specifically, we use four
v′s for dual heads of the DH-Fused-CNN approach and six for dual heads
of the CNN-SBi-GRU-Attention network. Additionally, the second head of
the second phase of the CNN-SBi-GRU-Attention approach incorporates a
recurrent block.

3.3.1. Network Settings for DH-Fused-CNN Network

In the DH-Fused-CNN network, v of every head comprises two p layers
with a kernel size of 1 and one c layer with a kernel size of 3. The initial
stride value for the first c of first v varies between 1 and 2 for both heads
depending on the input HAR datasets used. Following this, we apply a η layer
before applying another p layer for both heads in this network. Additionally,
we perform 33 intermediate feature fusion processes, where 16 processes are
employed to fuse features with other output feature maps for each head via
feature fusion module, as explained in section 3.1.1(B). Furthermore, the rest
of the operations involve feature fusion with a skip connection module, as
demonstrated in section 3.1.1.(C). In this context, 14 operations perform the
skip connections with feature fusion tasks. Rests combine the resulting fused
features, as illustrated in Figure 4. Finally, we employ a FC layer to extract
highly representative local features.

3.3.2. Network Settings for CNN-SBi-GRU-Attention Network

In this network, we employ six v′s for both heads, with head 2 incorpo-
rating a recurrent block. Each of the first five blocks consists of a p layer, a
c layer (kernel size: 3 for dual heads), and η layer, as depicted in Figure 5.
For the sixth and seventh convolution blocks, respectively, in both heads, we
introduce an additional p layer after these previously mentioned layers. In
the case of head 2′s sixth block, we apply an SBi-GRU layer, as illustrated
in Figure 5.

3.3.3. Network Settings for Attention Module with Feature Fusion Technique

Following the above-specified layers, the attention layer is applied to both
heads’ output of the CNN-SBi-GRU-Attention network. Subsequently, a
feature fusion process is executed, and a single FC layer is employed for
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Table 1: Description of HAR datasets, including the number of subjects, activities per-
formed, window length, sampling rate, and the number of training and testing sets. The
datasets covered are: UCI HAR [29], UCI HAR-AAL [40], UCI HAPT [41], MHealth [42],
WISDM [30], and PAMAP2 [43].

Datasets D1 [29] D2 [40] D3 [41] D4 [42] D5 [30] D6 [43]

Subjects 30 30 30 10 29 9
Activities 6 6 12 12 6 12
Window Length 128 128 128 50 50 200
Sampling Rate (Hz) 50 50 50 50 50 50
Training Set 7352 4021 10692 4804 14723 7548
Testing Set 2947 1723 2673 2059 6310 2582

extracting the highly representative local and global features, which are then
used for subsequent classification tasks.

4. Experiments and Results

This section has four sub-parts. The first part discusses this study’s HAR
datasets [29, 30, 40, 41, 42, 43] and outlines the data preprocessing strategies.
The subsequent parts demonstrate how our suggested method performs on
these datasets for human activity classification tasks.

4.1. Dataset Descriptions and Preprocessing Details

In this sub-section, we evaluate our proposed approach on six widely used
HAR datasets: UCI HAR (D1) [29], UCI HAR-AAL (D2) [40], UCI HAPT
(D3) [41], MHEALTH (D4) [42], WISDM (D5) [30], and PAMAP2 (D6) [43].
Table 1 provides a summary of these datasets, with implementation details
outlined in the following sub-sections.

4.1.1. Dataset 1: UCI HAR dataset [29]

The UCI HAR dataset [29] was generated using a Samsung Galaxy S II
smartphone worn by 30 volunteers aged 19 to 48. This smartphone, securely
attached to the waist of each subject, was equipped with accelerometers
and gyroscope sensors, allowing it to record axial linear accelerations and
angular velocities at a sampling frequency of 50 Hz. Data preprocessing
involved noise filtering and sampling using a fixed 128-width sliding window
technique. Walking Upstairs, Downstairs, and many more activities were
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captured through video and manual labeling. This dataset comprises 10,299
samples split randomly into 70% and 30% for training and testing. Appendix
4 presents a comprehensive tabular overview and graphical representation of
the UCI-HAR dataset description.

4.1.2. Dataset 2: UCI HAR-AAL dataset[40]

The [29] dataset, aimed at enhancing the dataset’s included in [40] per-
formance in Ambient Assisted Living, gathered data from built-in accelerom-
eters and gyroscopes in smartphones worn by 30 participants aged 22 to 79.
The same activities as [29] were conducted for 60 seconds using identical
sensors as specified in [29]. Noise reduction involved median and third-order
low-pass Butterworth filters with 20 Hz cutoff frequency. Fast Fourier Trans-
form (FFT) was used to estimate feature vector variables for each pattern.
It resulted in 5744 samples, divided randomly into 70% and 30% for training
and testing. Appendix 4 presents a comprehensive tabular overview of the
UCI-HAR-AAL dataset description.

4.1.3. Dataset 3: UCI HAPT dataset [41]

The [41] dataset extends from [29] using smartphone data. Similar to
[29], volunteers from the same age groups wore smartphones on their waists
and recorded activities through video for manual labeling. Sensor signals in
[41] were processed with a Butterworth low-pass filter to separate gravity and
body motion. This dataset included six additional basic activities and postu-
ral transitions like stand-to-sit and sit-to-stand. In this dataset, we used 128
window lengths with a 50 Hz sampling rate, as shown in Table 1. We also
used 50% overlapping for basic activities. We performed higher overlapping,
93.75%, to extract more data for postural transitions. This dataset was par-
titioned randomly: 10692 samples for training and 2673 samples for testing.
Appendix 4 presents a comprehensive tabular overview of the UCI-HAPT
dataset description.

4.1.4. Dataset 4: MHealth dataset

The MHealth dataset [42] comprises vital signs and body movement data
collected from ten diverse volunteers performing 12 physical activities. These
activities include standing still, sitting, lying down, walking, climbing stairs,
waist bending forward, frontal elevation of arms, knee bending (crouching),
cycling, jogging, running, and jumping front and back. Each activity is
either performed for one minute or repeated 20 times. Data is collected
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using three Inertial Measurement Units (IMUs) sensors placed on the left
ankle, right wrist, and chest, capturing magnetic orientation, turn rate, and
acceleration. This dataset generalizes well to common daily activities due to
the diversity of body parts involved (e.g., frontal elevation of arms vs. knees
bending), varying activity intensities (e.g., cycling vs. sitting and relaxing),
and differences in execution speed or dynamicity (e.g., running vs. standing
still).

In this study, we utilized the sliding window technique with the Time
Series Feature Extraction Library (TSFEL) [75], applying a 50 Hz sampling
rate and a window length of 50. This process generated 6,863 examples
across 12 activities. The dataset was then randomly divided into training
(70%) and testing (30%) sets, resulting in 4,804 training samples and 2,059
testing samples. Appendix 4 presents a comprehensive tabular overview of
the MHealth dataset description.

4.1.5. Dataset 5: WISDM dataset

The Wireless Sensor Data Mining (WISDM) dataset [30] was collected
by the WISDM lab using an Android mobile app equipped with a three-
axial accelerometer in a controlled environment. Data were gathered from
twenty-nine volunteers, each carrying a smartphone in their front leg pocket
while performing six activities: walking, jogging, ascending stairs, descending
stairs, sitting, and standing. The accelerometer continuously recorded data
during these activities.

The dataset was augmented using the TSFEL strategy with a sliding win-
dow approach [75], applying a 50 Hz sampling rate and a window length of
50. This process generated 21,033 examples across 6 activities. The dataset
was then randomly divided into training (70%) and testing (30%) sets, re-
sulting in 14,723 training samples and 6,310 testing samples. Appendix 4
presents a comprehensive tabular overview and graphical representation of
the WISDM dataset description.

4.1.6. Dataset 6: PAMAP2 dataset

In this study, the Physical Activity Monitoring Data Set (PAMAP2) [43]
is utilized for its comprehensive collection of 27 signals captured under con-
trolled laboratory conditions. PAMAP2 includes 52-dimensional data col-
lected over 10 hours from nine subjects performing 18 daily activities. These
activities encompass nine repetitive tasks (such as, walking, jogging, cycling),
non-repetitive actions, and three postures (lying, sitting, standing). Most
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activity instances lasted 4 min, with adjustments to fit building limits or
prevent subject tiredness. The dataset features recordings from three IMUs
and one heart rate monitor, positioned on each subject’s dominant ankle,
wrist, and chest. For data augmentation, a sliding window technique with a
window length of 200 and a sampling rate of 50 Hz was utilized. Subjects 7
and 8 were designated for the testing set, while the remaining subjects were
used for training. Appendix 4 presents a comprehensive tabular overview
and graphical representation of the PAMAP2 dataset description.

4.1.7. Preprocessing Details

In this study, we employ several data pre-processing strategies: linear
interpolation, scaling and normalization, and segmentation using the sliding
window approach.

Linear Interpolation: The above-mentioned HAR datasets in sub-
section 4.1 are characterized by their real-world nature, involving wireless
sensors worn by subjects [1]. As a result, data loss during collection is pos-
sible, often represented as NaN or zero values [1]. To address this, we use
linear interpolation as noise reduction strategy [76] to fill in missing values
and minimize their impact.

Scaling and Normalization: Normalising the input data within the
range of 0 to 1 is imperative [1]. This approach mitigates the potential bias
introduced during model training when employing substantial values directly
from channels.

Segmentation: Smartphones and wearable sensors generate continuous
signals, often in the form of time-series data, capturing activities as tempo-
ral sequences [1]. The initial step in HAR involves segmenting the sensor
data using a sliding window approach, which divides the data into fixed-size
windows [1]. For the UCI HAR, UCI HAR-AAL, UCI HAPT, and PAMAP2
datasets, we use the sliding window approach without applying the TSFEL
strategy. In contrast, for the MHealth and WISDM datasets, we use the slid-
ing window approach with the TSFEL strategy. Details of the segmentation
process using the sliding window strategy, with or without TSFEL, for these
diverse HAR datasets are provided in subsection 4.1.

4.2. Implementation Details and Performance Evaluation

We assessed the performance of our suggested DP-FusedNN-EL method
for classifying human activities across six popular HAR datasets [29, 30, 40,
41, 42, 43], as shown in Figures 7−24. To enhance the generalization of
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our DP-EL model training and address overfitting concerns, we employ a 5-
fold cross-validation strategy. This strategy allows us to assess our proposed
model performance by generating precision-recall curves based on the predic-
tions made on the validation subsets within each fold of the cross-validation
process. These precision-recall curves are presented in Appendix 2 for all
utilized datasets. In addition, we use the Harris Hawk Optimization (HHO)
technique [77] to optimize hyperparameters for each employed ML model,
namely RF, DT, SVM, KNN, Logistic Regression (LR), NuSVM, XGBoost,
Extra Trees (ET), and Light Gradient Boosting Machine (LGBM), for all uti-
lized datasets, as exhibited in Appendix 3. We employed these ML models
and various DL, including CNN, Multi-Layer Perceptron (MLP), CNN-Bi-
GRU, CNN-Bi-LSTM, CNN-GRU, and CNN-LSTM, for performance com-
parison based on the performance assessment metrics, namely accuracy, pre-
cision, recall, and F1 score. The Python simulations were performed on a
machine running Microsoft Windows 11 with an Intel Xeon 2.20 GHz CPU
clocked at 2.20 GHz, 32 GB of RAM with 4 virtual CPU cores (Kaggle
platform).

4.2.1. For UCI-HAR Dataset

The study demonstrates our proposed model’s exceptional performance
on the UCI-HAR dataset [29], achieving an overall accuracy of 96.97%, pre-
cision of 97.10%, recall of 96.76%, and F1 score of 96.85% across all human
activities, as exhibited in Figure 7. Specifically, for each activity, accura-
cies range from 92.06% to 100%, with corresponding precisions, recalls, and
F1-scores ranging from 93% to 100%, 92% to 100%, and 95% to 100%, re-
spectively, as exhibited in Figure 7. The accompanying confusion matrix, as
exhibited in Figure 8, highlights the significant results on the [29] dataset.
Notably, walking and lying activities perform excellently, while walking up-
stairs and standing demonstrate strong results. However, sitting and walking
downstairs activities require improvement.

Our proposed hybrid model consistently outperforms traditional ML and
DL models. For ML models, accuracy improves by 1.14% to 10.92%, and
F1 scores enhance by 1.02% to 11.09% for the dataset [29]. In the case of
DL models, accuracy gains were 1.79% to 3.59%, and F1 score improvements
were 1.63% to 3.37%. In contrast, DT, KNN, and CNN models exhibit
comparatively lower performances, as exhibited in Figure 9.
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Figure 7: Performance of the proposed DP-FusedNN-EL model on the UCI-HAR dataset,
evaluated across individual activities including walking, walking upstairs, walking down-
stairs, sitting, standing, laying, and overall performance.

Figure 8: Confusion matrix of the proposed DP-FusedNN-EL model on the UCI-HAR
dataset, evaluated across individual activities including walking, walking upstairs, walking
downstairs, sitting, standing, and laying.
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Figure 9: Performance comparison of the proposed DP-FusedNN-EL model on the UCI-
HAR dataset (D1) [29] in terms of accuracy and F1 score, against several machine learning
and deep learning models including LightGBM (LGBM), XGBoost (XGB), Random Forest
(RF), Extra Trees (ET), Decision Tree (DT), K-Nearest Neighbors (KNN), Logistic Re-
gression (LR), Support Vector Machine (SVM), Nu-SVM, Multi-Layer Perceptron (MLP),
Convolutional Neural Networks (CNN), and hybrid models such as CNN-LSTM, CNN-
GRU, CNN-BiLSTM, and CNN-BiGRU.

4.2.2. For UCI-HAR-AAL Dataset

This study assesses the performance of our proposed model on the UCI-
HAR-AAL dataset [40], achieving significant results. Specifically, we ob-
tained an accuracy of 87.47%, precision of 87.54%, recall of 87.54%, and
F1 score of 87.54% across all human activities, as shown in Figure 10. Re-
markably, our proposed approach achieved highly desirable performances in
terms of accuracies ranging from 79% to 93%, precisions ranging from 82%
to 98%, recalls ranging from 82% to 98%, and F1-scores ranging from 82%
to 98% for each activity on the UCI-HAR-AAL dataset. The accompanying
confusion matrix, as exhibited in Figure 11, highlights that our proposed
model improves the performance of the standing and laying activities. In ad-
dition, walking and walking downstairs activities still perform good results.
However, the sitting activity still fails to achieve satisfactory performance.

Our proposed hybrid model consistently outperforms traditional ML and
DL models. Our approach improves accuracy by 0.34% to 11.62% compared
to ML models and enhances F1 scores by 0.27% to 11.69%. Conversely, for
DL models, accuracy improves within the 2% to 2.48% range, and F1 scores
enhance between 1.98% and 2.54%. Notably, DT, KNN, and CNN show
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Figure 10: Performance of the proposed DP-FusedNN-EL model on the UCI-HAR-AAL
dataset, evaluated across individual activities including walking, walking upstairs, walking
downstairs, sitting, standing, laying, and overall performance.

relatively lower performances, as shown in Figure 12.

4.2.3. For UCI-HAPT Dataset

This study evaluates our proposed model’s performance on the UCI-
HAPT dataset [41], achieving notable results. Across all human activities,
our model achieved an accuracy of 98.72%, precision of 98.99%, recall of
98.91%, and F1 score of 98.94%, as shown in Figure 13. Specifically, per-
formances obtained in terms of accuracies ranged from 95.05% to 100%,
precisions from 96% to 100%, recalls from 95% to 100%, and F1-scores from
96% to 100%, for each activity. The generated confusion matrix, shown in
Figure 14, highlights outstanding performance in activities, such as walking
upstairs, downstairs, lying, sit-to-stand, sit-to-lie, and stand-to-lie. While
stand-to-sit, lie-to-stand, and standing activities seem to have good results.
However, sitting and lie-to-sit activities need improvement to match the per-
formance of other activities on this dataset.

In comparing the performance of our proposed hybrid model with tradi-
tional ML and DL models, our proposed approach consistently outperforms
these models. Accuracy shows improvement from 4.73% to 17.7%, while
F1 scores experience enhancements between 4.8% and 15.94% compared to
ML models. In contrast, for DL models, accuracy shows improvement rang-
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Figure 11: Confusion matrix of the proposed DP-FusedNN-EL model on the UCI-HAR-
AAL dataset, evaluated across individual activities including walking, walking upstairs,
walking downstairs, sitting, standing, and laying.
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Figure 12: Performance comparison of the proposed DP-FusedNN-EL model on the UCI-
HAR-AAL dataset (D2) in terms of accuracy and F1 score, against several machine learn-
ing and deep learning models including LGBM, XGB, RF, ET, DT, KNN, LR, SVM, Nu-
SVM, MLP, CNN, and hybrid models such as CNN-LSTM, CNN-GRU, CNN-BiLSTM,
and CNN-BiGRU.

ing from 4.79% to 5.71%, while F1 scores experience enhancements between
4.14% and 4.8%. Notably, DT, KNN, and CNN exhibit comparatively lower
performances, as illustrated in Figure 15.

4.2.4. For MHealth Dataset

Our proposed model exhibits exceptional performance on the MHealth
dataset [42], achieving an accuracy of 99.66%, precision of 99.67%, recall of
99.67%, and F1 score of 99.67% across all activities, as shown in Figure 16. In
particular, accuracies obtained range from 98% to 100%; precisions received
range from 99% to 100%; recalls range from 99% to 100%; and F1 scores
range from 99% to 100% for each activity. The generated confusion ma-
trix, as exhibited in Figure 17, highlights the outstanding performance of all
activities. Our proposed hybrid model consistently outperforms traditional
ML and DL models, showing accuracy improvements ranging from 0.68%
to 9.33% and F1 score enhancements between 0.7% and 9.85% compared to
employed ML models. Conversely, for DL models, our proposed model ex-
hibited accuracy improvements ranging from 1.67% to 5.71%, with F1 score
enhancements between 1.33% and 1.77%. Notably, DT demonstrates the
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Figure 13: Performance of the proposed DP-FusedNN-EL model on the UCI-HAPT
dataset, evaluated across individual activities including walking, walking upstairs, walking
downstairs, sitting, standing, laying, stand to sit, sit to stand, sit to lie, lie to sit, stand
to lie, lie to stand, and overall performance.

lowest performance, as shown in Figure 18.

4.2.5. For WISDM Dataset

The study evaluates our proposed model’s performance on the WISDM
dataset [30], achieving notable performances in terms of an accuracy of
97.78%, precision of 97.12%, recall of 96.67%, and F1 score of 96.89% across
all human activities on this dataset, as exhibited in Figure 19. Particularly,
our proposed approach obtained accuracies ranging from 92% to 99%, pre-
cisions ranging from 93% to 99%, recalls ranging from 93% to 99%, and F1
scores ranging from 93% to 99% for each activity, respectively. The gener-
ated confusion matrix, as exhibited in Figure 20, highlights the outstanding
performance of walking, jogging, sitting, and standing activities. However,
walking upstairs and downstairs activities need improvement in enhancing
performance comparable to other activities on this dataset.

Our proposed hybrid model consistently outperforms traditional ML and
DL models, with accuracy improvements ranging from 1.47% to 7.47% and F1
score enhancements between 1.8% and 9.77% for the dataset [30] compared
to ML models. Conversely, DL models show accuracy improvements ranging
from 1.74% to 2.61%, with F1 score enhancements between 2.11% and 3.51%.
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Figure 14: Confusion matrix of the proposed DP-FusedNN-EL model on the UCI-HAPT
dataset, evaluated across individual activities including walking, walking upstairs, walking
downstairs, sitting, standing, laying, stand to sit, sit to stand, sit to lie, lie to sit, stand
to lie, and lie to stand.
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Figure 15: Performance comparison of the proposed DP-FusedNN-EL model on the UCI-
HAPT dataset (D3) in terms of accuracy and F1 score, against several machine learning
and deep learning models including LGBM, XGB, RF, ET, DT, KNN, LR, SVM, Nu-
SVM, MLP, CNN, and hybrid models such as CNN-LSTM, CNN-GRU, CNN-BiLSTM,
and CNN-BiGRU.
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Figure 16: Performance of the proposed DP-FusedNN-EL model on the MHealth dataset,
evaluated across individual activities including standing still (stand), sitting (sit), lying
down (laying), walking, climbing stairs (climb), waist bending forward (waist forward),
frontal elevation of arms (frontal), knee bending, cycling, jogging, running (run), and
jumping front and back (jump), and overall performance.
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Figure 17: Confusion matrix of the proposed DP-FusedNN-EL model on the MHealth
dataset, evaluated across individual activities including stand, sitting, lying, walking,
climbing, waist bending forward, frontal elevation of arms (frontal), knee bending, cy-
cling, jogging, running, and jump.

40



LG
B

M

X
G

B R
F

ET D
T

K
N

N LR

SV
M

N
uS

V
M

M
LP

C
N

N

C
N

N
-L

ST
M

C
N

N
-G

R
U

C
N

N
-B

iL
ST

M

C
N

N
-B

iG
R

U

Pr
op

os
ed

 m
od

el

90

92

94

96

98

100

Pe
rf

or
m

an
ce

s 
(%

)

Accuracy
F1 score

Model

Figure 18: Performance comparison of the proposed DP-FusedNN-EL model on the
MHealth dataset (D4) in terms of accuracy and F1 score, against several machine learning
and deep learning models including LGBM, XGB, RF, ET, DT, KNN, LR, SVM, Nu-
SVM, MLP, CNN, and hybrid models such as CNN-LSTM, CNN-GRU, CNN-BiLSTM,
and CNN-BiGRU.

Notably, DT exhibits the lowest performances among ML and DL models,
as shown in Figure 21.

4.2.6. For PAMAP2 Dataset

The study evaluates our proposed model’s performance on the PAMAP2
dataset [43], achieving notable performances in terms of accuracy of 96.04%,
precision of 96.29%, recall of 94.93%, and F1 score of 95.53% across all human
activities on this dataset, as exhibited in Figure 22. Notably, for each specific
activity, our proposed approach obtained accuracies ranging from 84% to
100%, precisions ranging from 89% to 100%, recalls ranging from 89% to
100%, and F1 scores ranging from 89% to 100%. The confusion matrix, as
exhibited in Figure 23, highlights the outstanding performance of walking,
running, nordic walking, and laying activities. Sitting, standing, cycling,
and ascending chair activities exhibit good results. However, rope jumping,
descending chairs, vacuum cleaners, and ironing activities need to enhance
performance comparable to other activities on this dataset.

In comparing the performance of our proposed hybrid model with tradi-
tional ML and DL models, our proposed approach consistently outperforms
these models. Accuracy shows improvement ranging from 1.54% to 41.24%,
while F1 scores experience enhancements between 0.94% and 42.34% for the
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Figure 19: Performance of the proposed DP-FusedNN-EL model on the WISDM dataset,
evaluated across individual activities including walking, jogging, upstairs, downstairs, sit-
ting, standing, and overall performance.

dataset [43] compared to ML models. In contrast, for DL models, accuracy
shows improvement ranging from 4.37% to 8.47%, while F1 scores experience
enhancements between 3.99% and 8.63%. Notably, DT and KNN models ex-
hibit lower performances among ML and DL models, as illustrated in Figure
24.

4.3. Performance Analysis on Different window Length

We extend our experimental analysis by evaluating the DP-FusedNN-EL
model with different window lengths of 50, 100, 128, and 200. The experi-
ments are conducted on the UCI HAR, UCI HAPT, and PAMAP2 datasets,
as shown in Table 2. The results indicate that a window length of 128 pro-
vides the best performance for the UCI HAR and UCI HAPT datasets, with
accuracy gains of 0.19% to 2.77% and F1 score improvements of 0.35% to
3.14%. For the PAMAP2 dataset, a window length of 200 yields the high-
est gains, achieving accuracy improvements of 2.61% to 7.46% and F1 score
increases from 2.00% to 6.36%. These findings highlight the importance of
selecting the optimal window length for each dataset to enhance performance.
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Figure 20: Confusion matrix of the proposed DP-FusedNN-EL model on the WISDM
dataset, evaluated across individual activities including walking, jogging, upstairs, down-
stairs, sitting, and standing.

Table 2: Performance comparison of our proposed DP-FusedNN-EL model for different
window length varying from 50, 100, 128, 200, conducted on the UCI HAR [29], UCI
HAPT [41], and PAMAP2 [43] datasets.

Window Length
Dataset → UCI HAR UCI HAPT PAMAP2
Metrics ↓ 50 100 128 200 50 100 128 200 50 100 128 200
Accuracy 96.08 96.30 96.97 96.78 95.95 97.28 98.72 98.44 88.58 92.67 93.43 96.04
F1 Score 96.10 96.26 96.85 96.50 95.80 97.40 98.94 98.37 89.16 92.84 93.52 95.52
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Figure 21: Performance comparison of the proposed DP-FusedNN-EL model on the
WISDM dataset (D5) in terms of accuracy and F1 score, against several machine learning
and deep learning models including LGBM, XGB, RF, ET, DT, KNN, LR, SVM, Nu-
SVM, MLP, CNN, and hybrid models such as CNN-LSTM, CNN-GRU, CNN-BiLSTM,
and CNN-BiGRU.
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Figure 22: Performance of the proposed DP-FusedNN-EL model on the PAMAP2 dataset,
evaluated across individual activities including laying, sitting, standing, walking, running,
cycling, Nordic walking, ascending chairs, descending chairs, vacuum cleaner, ironing, rope
jumping, and overall performance.
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Figure 23: Confusion matrix of the proposed DP-FusedNN-EL model on the PAMAP2
dataset, evaluated across individual activities including laying, sitting, standing, walking,
running, cycling, Nordic walking, ascending chairs, descending chairs, vacuum cleaner,
ironing, and rope jumping.

Table 3: Performance comparison of our proposed DP-FusedNN-EL model with varying
hyperparameter optimization techniques, such as Grid Search Optimization (GSO) [78],
Random Search Optimization (RSO) [79], Bayesian Optimization (BO) [80], and Harris
Hawk Optimization (HHO) [77] conducted on the UCI HAR [29], UCI HAPT [41], and
PAMAP2 [43] datasets.
Dataset → UCI HAR WISDM PAMAP2
HPO → GSO RSO BO HHO GSO RSO BO HHO GSO RSO BO HHO
Accuracy 96.81 96.85 96.94 96.97 96.38 96.45 97.42 97.78 95.10 95.18 95.59 96.04
F1 Score 96.67 96.78 96.80 96.85 96.05 96.13 96.57 96.89 94.88 95.07 95.33 95.52
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Model

Figure 24: Performance comparison of the proposed DP-FusedNN-EL model on the
PAMAP2 dataset (D6) in terms of accuracy and F1 score, against several machine learn-
ing and deep learning models including LGBM, XGB, RF, ET, DT, KNN, LR, SVM, Nu-
SVM, MLP, CNN, and hybrid models such as CNN-LSTM, CNN-GRU, CNN-BiLSTM,
and CNN-BiGRU.
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Table 4: Computational cost analysis of the DP-FusedNN-EL model, consisting of three
approaches: DH-Fused-CNN, CNN-SBi-GRU-Attention, and DP-EL, evaluated on the
UCI HAR [29], UCI HAR-AAL [40], UCI HAPT [41], MHEALTH [42], WISDM [30], and
PAMAP2 [43] datasets. The table presents the number of parameters (in millions, M)
and testing time per example (in milliseconds, ms) for each approach, along with the total
parameters and testing time for the DP-FusedNN-EL model.

Number of parameters required
by each component (M)

Total parameters
(in millions)

Test Time/Sample for
Each Component (ms)

Total Test
Time/sample (ms)

Dataset (↓) DH-Fused-
CNN

CNN-SBi-
GRU-Attention

DP-EL DP-FusedNN-EL
DH-Fused-

CNN
CNN-SBi-

GRU-Attention
DP-EL

DP-FusedNN-
EL

UCI HAR 2.6 1.3 0.1 4.7 2.5 1.7 0.31 4.51
UCI

HAR-AAL
2.6 1.3 0.12 4.72 2.3 1.45 0.3 4.05

UCI HAPT 1.3 2.6 0.08 3.98 4 10 0.6 14.6
MHEALTH 4.5 2 0.15 6.65 1.7 7 0.61 9.31
WISDM 3.7 2 0.2 5.9 2.2 5.4 0.38 7.98
PAMAP2 4.8 1.13 0.25 6.18 5 7 0.64 12.64

4.4. Performance Analysis with Different Hyperparameter Optimization

We extend the experimental analysis of the DP-EL approach by evaluat-
ing it with four hyperparameter optimization techniques: Grid Search Op-
timization (GSO) [78], Random Search Optimization (RSO) ][79], Bayesian
Optimization (BO) [80], and Harris Hawk Optimization (HHO) [77]. These
experiments, detailed in Table 3, are conducted on the UCI HAR, UCI
HAPT, and PAMAP2 datasets. The DP-FusedNN approach is used to ex-
tract highly representative local-global features for each variant of the DP-EL
model with different optimization techniques. The results show that the DP-
EL approach optimized with HHO consistently outperforms GSO, RSO, and
BO. Specifically, HHO enhances accuracy by 0.18% to 1.4% and improves
the F1 score by 0.18% to 0.76%.

The superior performance of HHO can be attributed to its efficient bal-
ance of exploration and exploitation, which is crucial for optimizing complex
models in HAR tasks. Unlike GSO, which exhaustively searches all combi-
nations, and RSO, which samples randomly without systematic exploration,
HHO dynamically adjusts its search strategy based on previous results. This
adaptability allows HHO to more effectively navigate high-dimensional hy-
perparameter spaces, leading to better overall performance.

4.5. Computational Cost Analysis

In this section, we briefly analyze the computational cost of the proposed
DP-FusedNN-EL model across six HAR datasets: UCI HAR, UCI HAR-
AAL, UCI HAPT, MHEALTH, WISDM, and PAMAP2, as summarized in
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Table 4. The computational cost of the DP-FusedNN-EL model arises from
three key approaches: DH-Fused-CNN, CNN-SBi-GRU-Attention, and DP-
EL. DH-Fused-CNN is designed as the first-phase feature extractor, focus-
ing on capturing highly discriminative local features from the input HAR
data, as detailed in Section 3.1.1. CNN-SBi-GRU-Attention is employed as
the second-phase feature extractor, capturing both highly representative lo-
cal and global features from the initially extracted features, as described in
Section 3.1.2. DP-EL is employed for the effective recognition of human
activities, as outlined in Section 3.2.

The computational complexity analysis shows that the DH-Fused-CNN
approach, comprising convolution block, feature fusion, and feature fusion
with skip connections modules, often requires higher computational param-
eters across all datasets except UCI HAPT. This is due to the increased
number of filters in each convolution layer and the additional burden of the
concatenation layer used in both the feature fusion and feature fusion with
skip connections modules. In contrast, the CNN-SBi-GRU-Attention ap-
proach, which extracts highly representative local-global features, demands
fewer computational parameters. This is because it extracts these features
already captured by the DH-Fused-CNN, thereby reducing the overall param-
eter count. The DP-EL approach, which employs multiple machine learning
models such as support vector machines, logistic regression, and random
forests, requires the fewest parameters among the three approaches for effec-
tive human activity recognition.

Overall, the DP-FusedNN-EL model’s total parameter count ranges from
3.98 to 6.65 million. Despite this higher parameter count, the model’s test
time per sample remains competitive with state-of-the-art methods, as shown
in Tables 12 - 15. Therefore, while the proposed model has a higher number
of parameters, it achieves superior performance compared to existing models.

4.6. Ablation Study

This study extensively examined the impact of our DP-FusedNN-EL
method’s influence on enhancing the performance of classifiers. We initially
investigated a DH-Fused-CNN approach to extract the highly discriminative
local features from input HAR data fed into the DP-EL model to assess their
effectiveness. Despite initial promise, its impact on generating performances
was limited in capturing representative global features across specified HAR
datasets in [29, 30, 40, 41, 42, 43], as shown in Tables 5-10. We then explored
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Table 5: Experimental evaluation of the approaches utilized in the DP-FusedNN-EL model
across the UCI HAR dataset [29]. This analysis examines the effect of various approaches
combinations on model performance. Approaches include DH-Fused-CNN (first phase
feature extraction), CNN-SBi-GRU-Attention (second phase feature extraction), DP-EL,
Weighted Voting-based Ensemble Learning (WVEL), Stacking-based Ensemble Learning
(SEL), and Harris Hawk Optimization (HHO).

Model Accuracy (%) F1 (%) Training Time (in sec) Test Time (in ms)

DH-Fused-CNN+DP-EL 96.30 96.24 61.34 4.55
CNN-SBi-GRU-Attention+DP-EL 96.5 96.4 67.59 5.694
DP-FusedNN + WVEL 95.83 95.78 62.1 4.426
DP-FusedNN + SEL 95.18 95.14 60.11 4.403
DP-FusedNN-EL without HHO 96.78 96.64 18.75 4.494
DP-FusedNN-EL 96.97 96.85 67.34 4.51

Table 6: Experimental evaluation of the approaches utilized in the DP-FusedNN-EL model
across the UCI HAR-AAL dataset [40]. This analysis examines the effect of various ap-
proaches combinations on model performance. Approaches include DH-Fused-CNN (first
phase feature extraction), CNN-SBi-GRU-Attention (second phase feature extraction),
DP-EL, Weighted Voting-based Ensemble Learning (WVEL), Stacking-based Ensemble
Learning (SEL), and Harris Hawk Optimization (HHO).

Model Accuracy (%) F1 (%) Training Time (sec) Test Time (ms)

DH-Fused-CNN + DP-EL 87.06 87.01 41.5 4.052
CNN-SBi-GRU-Attention + DP-EL 85.85 86.00 57.59 4.85
DP-FusedNN + WVEL 85.93 87.00 45.3 3.957
DP-FusedNN + SEL 85.25 85.00 39.4 3.935
DP-FusedNN-EL without HHO 86.00 86.00 13.75 4.038
DP-FusedNN-EL 87.47 87.54 54.4 4.05

Table 7: Experimental evaluation of the approaches utilized in the DP-FusedNN-EL model
across the UCI HAPT dataset [41]. This analysis examines the effect of various approaches
combinations on model performance. Approaches include DH-Fused-CNN (first phase
feature extraction), CNN-SBi-GRU-Attention (second phase feature extraction), DP-EL,
Weighted Voting-based Ensemble Learning (WVEL), Stacking-based Ensemble Learning
(SEL), and Harris Hawk Optimization (HHO).

Model Accuracy (%) F1 (%) Training Time (sec) Test Time (ms)

DH-Fused-CNN + DP-EL 98.30 98.40 102.36 14.36
CNN-SBi-GRU-Attention + DP-EL 98.10 98.10 147.99 2.3
DP-FusedNN + WVEL 96.80 96.80 111.88 14.3
DP-FusedNN + SEL 96.40 96.70 101.28 14.2
DP-FusedNN-EL without HHO 98.62 98.81 18.75 14.51
DP-FusedNN-EL 98.72 98.94 103.53 14.6
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Table 8: Experimental evaluation of the approaches utilized in the DP-FusedNN-EL model
across the MHealth dataset [42]. This analysis examines the effect of various approaches
combinations on model performance. Approaches include DH-Fused-CNN (first phase
feature extraction), CNN-SBi-GRU-Attention (second phase feature extraction), DP-EL,
Weighted Voting-based Ensemble Learning (WVEL), Stacking-based Ensemble Learning
(SEL), and Harris Hawk Optimization (HHO).

Model Accuracy (%) F1 (%) Training Time (sec) Test Time (ms)

DH-Fused-CNN + DP-EL 98.45 98.28 58.4 9.64
CNN-SBi-GRU-Attention + DP-EL 98.99 98.93 72.48 9.56
DP-FusedNN + WVEL 99.41 99.39 47 9.25
DP-FusedNN + SEL 99.41 99.39 49.8 9.2
DP-FusedNN-EL without HHO 99.41 99.41 19 9.25
DP-FusedNN-EL 99.66 99.67 60 9.31

Table 9: Experimental evaluation of the approaches utilized in the DP-FusedNN-EL model
across the WISDM dataset [30]. This analysis examines the effect of various approaches
combinations on model performance. Approaches include DH-Fused-CNN, CNN-SBi-
GRU-Attention, DP-EL, WVEL, SEL, and Harris Hawk Optimization (HHO).

Model Accuracy (%) F1 (%) Training Time (sec) Test Time (ms)

DH-Fused-CNN + DP-EL 97.31 96.47 65.4 8.046
CNN-SBi-GRU-Attention + DP-EL 97.49 96.63 77.48 8.296
DP-FusedNN + WVEL 97.44 96.36 59.8 7.996
DP-FusedNN + SEL 96.78 95.55 57 7.896
DP-FusedNN-EL without HHO 95.52 95.1 23 7.94
DP-FusedNN-EL 97.78 96.89 68.4 7.98

the CNN-SBi-GRU-Attention strategy, occasionally outperforming the ini-
tial methods but not consistently outperforming prior works. We ultimately
merged these methods into a Dual-Phase feature extraction approach, ef-
fectively capturing highly representative local and global features from the
input HAR dataset. This integration led to notable performance improve-
ments, as illustrated in Tables 5-10. Consistent enhancements in accuracy
and F1-score, ranging from 0.26% to 3.3% and 0.41% to 4.93%, respectively,
were observed across various HAR datasets [29, 30, 40, 41, 42, 43]. These
findings underscore the effectiveness of our proposed approach compared to
alternative methods.

Optimizing hyperparameters of ML models in our DP-EL model increased
training time. In this study, the average training time is calculated based on
the number of iterations (for optimizing hyperparameters) or epochs (to train
dual-phase feature extraction to extract features) employed, and the results
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Table 10: Experimental evaluation of the approaches utilized in the DP-FusedNN-EL
model across the PAMAP2 dataset [43]. This analysis examines the effect of various
approaches combinations on model performance. Approaches include DH-Fused-CNN,
CNN-SBi-GRU-Attention, DP-EL, WVEL, SEL, and Harris Hawk Optimization (HHO).

Model Accuracy (%) F1 (%) Training Time (sec) Test Time (ms)

DH-Fused-CNN + DP-EL 95.05 94.51 77.3 12.72
CNN-SBi-GRU-Attention + DP-EL 95.59 95.00 86.79 0.733
DP-FusedNN + WVEL 94.88 95.15 66.68 12.56
DP-FusedNN + SEL 91.11 92.22 69.16 12.42
DP-FusedNN-EL without HHO 94.55 94.10 14.16 12.6
DP-FusedNN-EL 96.04 95.52 80.3 12.64

are presented in Tables 5-10. However, it yielded significant performance
improvements. While neglecting optimization, it reduced training time but
often led to inferior performance, as exhibited in Tables 5-10. Additionally,
despite longer training times, the testing time per sample is often lower com-
pared to state-of-the-art models, as shown in Tables 12 - 15. This highlights
the effectiveness of our proposed model in performing HAR tasks efficiently.

Our ablation study also explores the DP-EL approach’s impact on enhanc-
ing the performance of our proposed model. Two EL strategies, Stacking-
based EL (SEL) and Weighted Voting-based EL (WVEL), were introduced
but occasionally underperformed due to including lower-performing mod-
els, as exhibited in Tables 5-10. To address this, we introduced the DP-EL
model, selecting top-performing models to develop several EL models based
on the SWV strategy and combining them to form the DP-EL model. This
approach demonstrated significant performance improvements in accuracy,
increasing by 0.25% to 4.93% and, hence, surpassed the WVEL and SEL
methods, as exhibited in Tables 5-10, asserting this proposed approach’s su-
periority in developing our DP-FusedNN-EL model for performing human
activity classification tasks.

Further experiments for ablation study: We extend the experi-
mental analysis of the components employed in our proposed DP-FusedNN-
EL model to evaluate its performance on the UCI HAR, UCI HAPT, and
MHealth datasets, as summarized in Table 11. This table compares baseline
approaches A1-A8, which explore different combinations of four key compo-
nents: feature fusion (FF) and feature fusion with skip connections (FF-SC)
from DH-Fused-CNN, and the recurrent block (RB) and attention module
with feature fusion (AM-FF) from CNN-SBi-GRU-Attention. Specifically,
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Table 11: Experimental evaluation of the components utilized in the DP-FusedNN-EL
model across the UCI HAR, UCI HAPT, and MHealth datasets. This analysis exam-
ines the effect of various component combinations on model performance. Components
include feature fusion (FF) and feature fusion with skip connections (FF-SC) from DH-
Fused-CNN, and recurrent block (RB) and attention module with feature fusion (AM-
FF) from CNN-SBi-GRU-Attention. The approaches are defined as follows: A1 employs
a Dual-head CNN without any additional components; A2 and A3 incorporate either
RB or AM-FF from CNN-SBi-GRU-Attention into the A1 approach; A4 represents the
CNN-SBi-GRU-Attention approach; A5 signifies DH-Fused-CNN approach; A6 combines
components from A2 and A5; A7 combines components from A3 and A5 similarly; A8
represents DP-FusedNN-EL model. All approaches use the convolution block module and
DP-EL for consistency in evaluation. For performance comparison, the Dual-head CNN
model is based on a multi-head CNN approach, utilizing multiple convolution blocks with-
out attention or recurrent blocks.

Components UCI HAR UCI HAPT MHealth
Approach FF FF-SC RB AM-FF Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

A1 ✗ ✗ ✗ ✗ 93.80 93.84 95.80 95.75 96.57 96.50
A2 ✗ ✗ ✗ ✓ 94.61 94.68 96.53 96.63 97.52 97.45
A3 ✗ ✗ ✓ ✗ 95.32 95.35 96.97 96.90 98.05 98.10
A4 ✗ ✗ ✓ ✓ 96.45 96.40 98.10 98.10 98.99 98.93
A5 ✓ ✓ ✗ ✗ 96.30 96.24 98.30 98.40 98.45 98.28
A6 ✓ ✓ ✗ ✓ 96.65 96.68 98.44 98.48 99.10 99.03
A7 ✓ ✓ ✓ ✗ 96.61 96.59 98.50 98.53 99.05 99.05
A8 ✓ ✓ ✓ ✓ 96.97 96.85 98.72 98.94 99.66 99.67

approach A1 uses a Dual-head CNN without additional components. Ap-
proaches A2 and A3 incorporate either RB or AM-FF from CNN-SBi-GRU-
Attention into A1. Approach A4 represents the CNN-SBi-GRU-Attention
model, while A5 signifies the DH-Fused-CNN model. Approaches A6 and A7
combine components from A2 and A5, and A3 and A5, respectively, to mimic
the dual-phase feature extraction strategy of DP-FusedNN-EL; approach A8
integrates all components to form the DP-FusedNN-EL model. Consistency
in evaluation is maintained across all approaches using the convolution block
module and DP-EL. For comparison, the Dual-head CNN model serves as
a baseline, leveraging only convolution blocks in each head of the network
while excluding attention and recurrent components.

Results and Discussion: The experimental results in Table 11 demon-
strate that baseline approaches A6 and A7, which incorporate three compo-
nents: FF, FF-SC, and either RB or AM-FF, which outperform approaches
A1-A5, which lack these combinations. The inclusion of these components in
A6 and A7 facilitates the learning of highly representative local-global fea-
tures, resulting in performance comparable to our proposed DP-FusedNN-
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Table 12: Performance comparison of the proposed approach with prior state-of-the-art
models, including AFFNet [35], MI-CNN-GRU [7], Multi-Head CNN [8], Triplet Atten-
tion [38], MLCNNwav [9], Bi-GRU-I [34], HMR-CNN-GRU [10], Inception+CBAM [39],
ConvBLSTM-PmwA [37], 2D-CNN-LSTM [11], CNN-BAOA-SVM [60], GTS-Net [47],
Layer-CNN [46], UC fusion [36] on the UCI-HAR dataset [29]
Authors Methods Acc (%) Prec (%) Rec (%) F1 (%) Training time (sec) Test Time (ms)

Wang et al. [35] AFFNet 95.32 - - - - -
Dua et al. [7] MI-CNN-GRU 96.20 - - 96.19 - -
Khan and Ahmed [8] Multi-Head CNN 95.38 95.48 95.42 95.37 - 25.62
Tang et al. [38] Triplet Attention. - - - 96.77 - -
Dahou et al. [9] MLCNNwav 95.52 96.2 96.13 96.11 - -
Tong et al. [34] Bi-GRU-I 95.42 95.47 95.56 95.45 - 0.7
Nafea et al. [10] HMR-CNN-GRU 94.5 94.62 94.5 94.46 - -
Mim et al. [39] Inception+CBAM - 96.4 96.27 96.27 - 4185
Yin et al. [37] ConvBLSTM-PmwA 96.71 - - - - 14.71
Kosar and Barshan [11] 2D-CNN-LSTM 95.66 95.65 95.67 95.62 - 1.60
Dahou et al. [60] CNN-BAOA-SVM 95.23 95.33 95.33 95.33 - -
Park et al. [47] GTS-Net - - - 95.7 - 3.84
Phukan et al. [46] Layer-CNN - - - 91.66 - 0.541
Liu et al. [36] UC fusion 96.84 96.35 96.22 96.27 - -
This study DH-FusedNN-EL 96.97 97.10 96.76 96.85 67.34 4.51

Table 13: Performance comparison of the proposed approach with prior state-of-the-art
models, including HMR-CNN-GRU [10], CSNet and TCCSNet [65] on the MHealth dataset
[42]
Authors Methods Acc (%) Prec (%) Rec (%) F1 (%) Training Time (sec) Test Time (ms)

Nafea et al. [10] HMR-CNN-GRU 99.38 99.35 99.35 99.35 - -
Essa and Abdelmaksoud [65] CSNet 97.66 97.04 97.77 97.51 - -
Essa and Abdelmaksoud [65] TCCSNet 98.6 98.31 98.66 98.15 - -
This study DH-FusedNN-EL 99.66 99.67 99.67 99.67 60 9.31

EL model (A8), which integrates all four components. However, the DP-
FusedNN-EL model (A8) still achieves superior performance over all base-
lines, including A6 and A7. These results highlight that incorporating all
components in the DP-FusedNN-EL model leads to significant improvements
over baseline models (A1 to A7), with performance gains ranging from 2.92%
to 3.19% across all datasets.

4.7. State-of-the-Art Performance Comparison

In this section, we compare the performance of our proposed method
against established state-of-the-art techniques in [1, 7, 10, 11, 34, 35, 36, 8,
37, 63, 38, 39, 9, 65, 60] on various HAR datasets [29, 30, 42, 43], as detailed
in Tables 12-15. Focusing first on dataset [29], our proposed approach outper-
forms hybrid models in [1, 7, 10, 11, 34, 60], with performance improvements
ranging from 0.66% to 2.47%, as shown in Table 12. Additionally, com-
pared to attention-based CNN models [8, 37, 63, 38, 39], our suggested model
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Table 14: Performance comparison of the proposed approach with prior state-of-the-art
models, including AFFNet [35], MI-CNN-GRU [7], ConvBLSTM-PmwA [37], GTS-Net
[47], CSNet and TCCSNet [65], and CNN-BiLSTM-BiGRU [1] on the WISDM dataset
[30]
Authors Methods Acc (%) Prec (%) Rec (%) F1 (%) Training Time (sec) Test Time (ms)

Wang et al. [35] AFFNet 94.61 - - - - -
Dua et al. [7] MI-CNN-GRU 97.21 - - 97.22 - -
Yin et al. [37] ConvBLSTM-PmwA 95.86 - - - - 12.11
Essa and Abdelmaksoud [65] CSNet 91.21 82.56 82.37 84.14 - -
Essa and Abdelmaksoud [65] TCCSNet 92.51 85.18 85.37 86.2 - -
Park et al. [47] GTS-Net - - - 88.6 - 3.62
Lalwani and Ramasamy [1] CNN-BiLSTM-BiGRU 99.32 92.82 93.1 73.2 - -
This study DH-FusedNN-EL 97.78 97.12 96.67 96.89 68.4 7.98

Table 15: Performance comparison of the proposed approach with prior state-of-the-art
models, including MI-CNN-GRU [7], Triplet Attention [38], Inception+CBAM [39], Dan-
HAR [63], CSNet and TCCSNet [65], Shallow CNN [31], GTS-Net [47], and CNN-BiLSTM-
BiGRU [1], on the PAMAP2 dataset [43]
Authors Methods Acc (%) Prec (%) Rec (%) F1 (%) Training Time (sec) Test Time (ms)

Dua et al. [7] MI-CNN-GRU 95.27 - - 95.24 - -
Tang et al. [38] Triplet Attention - - - 93.2 - -
Mim et al. [39] Inception+CBAM - 90.78 90.3 90.3 - -
Gao et al. [63] DanHAR 93.16 - - - - 14.71
Essa and Abdelmaksoud [65] CSNet 88.43 84.09 85.34 83.83 - -
Essa and Abdelmaksoud [65] TCCSNet 89.1 86.42 87.95 87.82 - -
Huang et al. [31] Shallow CNN 91.93 - - - - -
Park et al. [47] GTS-Net - - - 76.2 - 4.44
Lalwani and Ramasamy [1] CNN-BiLSTM-BiGRU 96.10 79.65 84.57 90.13 - -
This study DH-FusedNN-EL 96.04 96.29 94.93 95.52 80.3 12.64

achieves significant performance gains ranging from 0.08% to 1.74%. Further-
more, our proposed model demonstrates notable performance enhancements
compared to feature fusion models [35, 36], with improvements ranging from
0.13% to 1.65%. Notably, our approach also exhibits faster testing times per
sample, ranging from 0.225 milliseconds (ms) to 41.53 ms, outperforming
previous works on the dataset [29], as exhibited in Table 12. In dataset [42],
our approach surpasses the performance of hybrid and Transformer models in
[10, 65], achieving performance improvements ranging from 0.28% to 1.52%,
as exhibited in Table 13.

Moving to dataset [30], our approach outperforms hybrid, attention-based
CNN, transformer, and feature fusion approaches in [1, 7, 35, 37, 65], with
performance gains ranging from 0.57% to 14.56%, as presented in Table 14.
Additionally, our model demonstrates faster testing times per sample, rang-
ing from 3.236 ms to 250.5 ms, compared to previous research works on
this dataset, as shown in Table 14. For dataset [43], our approach out-
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performs hybrid models, attention approaches, and transformer models in
[1, 7, 63, 38, 39, 65], achieving performance improvements ranging from 0.77%
to 19.32%, as demonstrated in Table 15. Furthermore, our proposed model
achieves faster testing times per sample, ranging from 3.801 ms to 94.851 ms,
compared to prior research works on this dataset, as exhibited in Table 15.
Therefore, our proposed approach has been thoroughly validated, demon-
strating its clear superiority over previously mentioned methods in human
activity classification tasks.

Our proposed method consistently outperforms other models, making it
the preferred and most effective choice for classifying human health activities
in healthcare applications. It underscores the significance of our research in
advancing HAR tasks.

Discussion: Our method significantly outperforms existing approaches
[35, 7, 8, 38, 9, 34, 10, 39, 37, 11, 60, 47, 46, 36] on the UCI HAR dataset,
[65] on the MHealth dataset, [35, 7, 37, 65, 47, 1] on the WISDM dataset,
and [7, 38, 31, 63, 39, 65, 1] on the PAMAP2 dataset. These methods often
struggle to capture highly representative features due to their reliance on
single-phase feature extraction. In contrast, our approach employs a dual-
phase feature extraction policy coupled with a dual-phase ensemble learning
model. This strategy rigorously extracts features across multiple phases from
diverse HAR datasets, enhancing human activity recognition performance.
Specifically, our method integrates an extensive feature fusion strategy within
a CNN framework (DH-Fused-CNN) and a hybrid network approach (CNN-
SBi-GRU-Attention network) to learn comprehensive local-global features.
The DP-EL model then classifies human activities, leading to significant
performance improvements across various HAR datasets.

4.8. Limitations, Challenges and Potential Solutions

The proposed DP-FusedNN-EL model requires more parameters than
state-of-the-art approaches, including resource-constrained lightweight mod-
els. This can pose challenges for deployment on devices with limited re-
sources, such as Internet of Things (IoT) devices. The DH-Fused-CNN phase,
in particular, demands a higher parameter count for effective local feature
extraction compared to existing models. The second phase also adds to this
burden by requiring additional parameters to extract both local and global
features. Consequently, this model may not be suitable for deployment on
IoT devices.
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To address these concerns, we need to redesign the DP-FusedNN-EL
model to reduce its parameter count. This involves minimizing the num-
ber of filters in each convolution layer, replacing concatenation layers with
addition layers in the FF and FF-SC modules, and reducing the number of
neurons in the fully connected layers. These modifications aim to make the
model more suitable for low-resource environments. However, they may lead
to a performance drop of approximately 10% to 15% compared to the current
configuration.

Alternatively, adopting a single-stage feature extraction strategy with a
single-branch neural network, combined with a feature fusion approach and
an optimal hierarchical attention mechanism, can address these issues. This
strategy would enable the model to learn both refined local and global rep-
resentations efficiently, potentially enhancing performance while remaining
suitable for resource-constrained environments.

5. Conclusion and Future Tasks

We proposed an innovative hybrid approach based on DL and EL-based
architecture, DP-FusedNN-EL, to automate HAR with applications in smart
healthcare, such as early disease detection. Our approach features a dual fea-
ture extraction by dual neural networks operating in two phases to extract
local and global features from diverse HAR datasets. Classification tasks are
then performed using a DP-EL model. We conducted extensive experiments
on multiple HAR datasets to validate and evaluate the effectiveness of our
proposed model on diverse HAR tasks. In particular, we compared the per-
formance of our proposed approach with many state-of-the-art ML and DL
models. We demonstrated that the proposed approach can achieve signifi-
cant improvements ranging from 0.08% to 19.32% over existing approaches
across all employed datasets.

These performance improvements achieved by our model on various HAR
tasks can contribute greatly to many important applications ranging from
physical training to health management and early disease prevention. Given
the significant performance improvements achieved by our model, we will in-
vestigate the applicability of this approach to other healthcare-related tasks,
such as body language recognition for emotion and psychiatric symptom de-
tection. Another important future work is to study the use of our model in
online and mobile settings and address the associated challenges with these
applications.
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