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1 Introduction

Dynamical systems representing vehicle flight are inherently nonlinear. When the underly-
ing continuous-time dynamics are known, solutions are typically obtained by integrating the
system equations over appropriately small time-steps Methods such as multiple-shooting and
pseudo-spectral analysis are used to understand the behaviour of such systems. However, there
is currently no generalised framework for explicit characterisation and solution of nonlinear
systems.

Conversely, linear systems are well understood, and many efficient algorithms are available
for explicit characterisation and prediction. Linear approximations of nonlinear systems is
an active area of research, with the objective of applying spectral analysis and linear theory
to nonlinear dynamics. One such method is the Koopman operator theory, which was first
proposed for continuous dynamical systems in 1932 [1, 2]. The Koopman operator unfolds a
nonlinear dynamical system into an infinite-dimension linear system [3]. When these lifted
dimensions are truncated to a finite space, existing linear system analysis tools can be applied.

Most applications of Koopman operator theory to dynamical systems utilise the methods
based on dynamic mode decomposition (DMD), in particular extended dynamic mode decompo-
sition (EDMD). EDMD methods uses time series data to approximate the linear system which
advances the lifted states, using best-fit methods. The primary focus of recent research is the
application of EDMD to create data-driven models, often when the underlying system is un-
known. However, a solution to the lifted state linear system can also be obtained using analytic
techniques using the underlying continuous non-linear equations. Analytic techniques provide
an exact solution to the system projection onto a set of basis functions, such as would be found
using EDMD with infinite data points [4]. For the purpose of predicting and analysing flight
dynamics, the governing continuous dynamics are typically understood, such as aerodynamics
and propulsion. Analytic derivations of the linear Koopman system therefore offers benefits
compared to the EDMD alternative, including a guaranteed order of captured dynamics.

This paper demonstrates the application of an analytically-derived Koopman linearisation
of flight dynamical systems, and is structured as follows: Sec. 2 summarises the history fun-
damental theory of the Koopman operator, DMD, and the Galerkin method. Sec. 3 describes
past and future uses of Koopman linear systems for aerospace dynamics. Sec. 4 describes the
implementation of the Galerkin method in this work, including the incorporation of system
parameters and inputs, and new efficient calculation algorithms. Sec. 5 demonstrates the per-
formance of Koopman lifted systems for a Duffing oscillator and autonomous glider. The paper
concludes with suggestions for future work in Sec. 6.

2 Background

2.1 The Koopman operator

This section describes the theory which underpins the Koopman operator. We start with a
continuous dynamical system of the form

d

dt
x(t) = f(x(t)) (1)

where x ∈ X ⊆ Rn is a set of n system states, and f(x) : X → X represents the system
dynamics. For an observable function of the space g(x), the continuous-time Koopman operator
K is defined as

K · g(x) := g(f(x)) =
d

dt
g(x) . (2)

This operation is linear, and so

K · (a1g1(x) + a2g2(x)) = a1K · g1(x) + a2K · g2(x) , (3)
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where a1 and a2 are constants. Although K is linear it, is not guaranteed to have a finite number
of terms. In fact, K is very likely to have infinite terms for any real system and arbitrary choice
of basis space G(X ). A solution to this problem is to consider an observable function which is
an eigenfunction of K, which by definition evolves linearly in time. For an eigenfunction ϕ(x)
of K, we express this identity as

d

dt
ϕ(x) = K · ϕ(x) = λϕ(x) . (4)

where λ is the corresponding eigenvalue. We can extend (4) to observables composed of a linear
combination of eigenfunctions

g(x) =

∞∑
i=1

viϕi(x) , (5)

with a corresponding linear time evolution,

d

dt
g(x) =

∞∑
i=1

λiviϕi(x) . (6)

Eq. (5) maps X to a new Hilbert space G(X ), which has an eigenfunction coordinate basis.
However, instead of a single scalar observable, we are normally interested in multiple system
observables

g(x) = [g1(x), g2(x), . . . , gm(x)]T . (7)

which can similarly be expressed as

g(x) =

∞∑
i=1

viϕi(x) . (8)

where vi is a vector known as the Koopman mode corresponding to eigenfunction ϕi. With the
exception of special cases such as Hamiltonian dynamical systems, there are generally infinite
eigenfunctions in the Hilbert space from (8), which cannot be captured in a finite linear system.
Instead, most applied Koopman methods choose or identify a finite set of observable functions
z(x) which approximate a set of eigenfunctions, called a Koopman-invariant subspace, so that

z(x) ≈
m∑
i=1

vizi(x) (9)

and
d

dt
z(x) ≈

m∑
i=1

λivizi(x) . (10)

Combining these finite Koopman modes and eigenvalues into a matrixK = [λ1v1, λ2v2, . . . , λmvm]
yields the linear system

d

dt
z(x) ≈ Kz(x) . (11)

Defining the basis functions z(x) and Koopman matrix K is the focus of various applied
Koopman techniques, and the number and type of basis functions have large influence of the
accuracy of this approximation. In some cases, such as DMD fluid dynamics analysis, the
objective is to identify a small dominant set of z(x) which give a reasonable approximation in (9),
in order to understand the dominant spectral properties and modes from data. Alternatively,
such as in the Galerkin method described Sec 2.3 a large set of orthogonal z(x) are chosen in
order to give very close approximation to (9) for accurate system prediction.
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2.2 Dynamic mode decomposition (DMD)

The dynamic mode decomposition (DMD) method was initially proposed by Schmid [5] in 2010
without inferring a direct link to the Koopman operator. Later works by Rowley, Mezic, and
collaborators, demonstrated that DMD is a finite approximation to the Koopman operator [6,
4, 7], and initial applications of DMD were limited to analysis of fluid dynamics data [8, 9].
Reviews by Tu [10] and Brunton et al. [3] provide further background to the history, variants,
and applications, of DMD.

DMD algorithms describe the standard methods to approximate a Koopman operator from
measured or simulated data. For this purpose, it deals with the discrete-time Koopman operator
Kt and its approximate finite linear equivalent Kt, which is related to the continuous-time
Koopman matrix K by

Kt = e(K·∆t) (12)

where ∆t is the discrete time-step. DMD methods are fundamentally based on a least-square
procedure to find the best fit matrix Kt which advances a set of states x ∈ Rn forward in time
according to

xk+1 = Ktxk , (13)

where xk+1 = x(tk+∆t). Tu [10] showed that with the exact DMD algorithm, all this is needed
is a set of data incorporating m number of consecutive state pairs {(xk,xk+∆t)}mk=1. Separating
the vectors of xk and xk+∆t into two matrices X and Y respectively, computation of Kt is
described by

Kt = min
Kt

∥Y −KtX∥F (14)

where ∥ · ∥F is the Frobenius norm. The data need not be ordered or regularly spaced in time,
other than the constant ∆t between the states of each pair. DMD is therefore a powerful tool
for data-driven Koopman operator approximation when the underlying dynamical equations are
unknown, and algorithms exist for efficient computation with high-dimensional systems, such
as spatially-sampled fluid velocity fields. Particular focus is typically given to the eigendecom-
position of K, to identify dominant modes. Extended Dynamic Mode Decomposition (EDMD)
furthers this approach by replacing the data set in (13) and (14) with an extended set of ob-
servables calculated from the data, z(X) and z(Y), which allows closer approximation of the
true Koopman operator.

2.3 The Galerkin method

Instead of the data-driven approach in Sec 2.2, a finite approximation to the Koopman operator
can be calculated from known underlying dynamic equations. Using the Galerkin method, the
original dynamic equations f(x) are projected onto a set of basis functions z(x). This projection
uses the inner product, which for a dynamic function f(x) and basis function z(x) is defined as

⟨f(x), z(x)⟩ =
∫
B
f(x)z(x)w(x)dx (15)

where B is the domain of the projection, and w(x) is a weighting function. For a finite set of
observables z(x), the error of the approximation in (9) is

e(x) =
d

dt
z(x)−Kz(x) (16)

= (∇xz(x)) f(x)−Kz(x) , (17)

where ∇x = [ ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

]. From the Galerkin method, we can state that e(x) is orthogonal
to all basis function z(x), expressed as

⟨z(x), e(x)⟩ = 0 . (18)
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Expanding (18) and simplifying notation leads to

⟨z, (∇xz)f −Kz⟩ = 0 (19)

⟨z,Kz⟩ = ⟨z, (∇xz)f⟩ . (20)

We select a set of orthogonal and scaled basis functions such that

⟨zi, zj⟩ =

{
1 for i = j

0 for i ̸= j
, (21)

which reduces the LHS of (20) so that each element of K is computed by

Kij = ⟨zi, (∇xzj)f⟩ . (22)

To relate the lifted states to our original states, we use the projection matrix G, where

Gij = ⟨xi, zj⟩ , (23)

resulting in
x = Gz . (24)

Mezi´c et al. [4] showed that for a similar set of basis functions, the Koopman approximation
calculated with DMD approaches the Galerkin solution. Sec. 4.4 introduces methods for efficient
computation of (22), which can otherwise quickly become intensive as the size of x and z
increase.

3 Applications

3.1 Past applications

Past use of the Koopman operator has primarily focussed on spectral analysis of measured or
simulated data using DMD, particularly for computational fluid dynamics (CFD) simulations
and fluid dynamics experiments. In this application, accurate future-state prediction is of lesser
importance, and the Koopman matrix is deliberately reduced to a small set of dominant modes.
Conversely, using a Koopman linear system for accurate future state prediction of known systems
is a relatively new field and less studied application, with most public literature published in the
last three years. Some examples of Koopman lifted linear system of known nonlinear dynamics
include:

� Near-space hypersonic vehicle control by Mi et al. [11] (2019).

� Optimisation and uncertainty propagation of an airdrop mission by Leonard et al. [12]
(2019).

� A DMD-based linear model of optimal vehicle control by Cibulka et al. [13] (2020).

� Spacecraft trajectory prediction and control by Chen and Shan [14] (2020).

� Solution to orbital zonal harmonits by Arnas and Linares [15] (2021).

Of these past examples which make use of the Galerkin method, specific dynamic systems have
been selected to simplify the problem, such as restricting the dynamics to stable systems with
smooth functions with closed-form integrals. However, many practical applications of Koopman
lifted systems will need to be compatible with any arbitrary dynamics function and non-smooth
functions (such as interpolated tabulated data or piecewise functions). This paper describes the
extension of the Galerkin method to efficiently capture arbitrary and non-smooth dynamics.
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3.2 Future applications

The benefits of approximating nonlinear dynamics with a Koopman linear system are broadly
applicable to a vast array of problems. However, the advantages of linearity are particularly
suited for aerospace vehicle dynamics, which require fast real-time analysis and high perfor-
mance control. Some key examples of these benfits are listed below, although many further
applications exist with respect to vehicle sub-systems, multi-agent systems, and vehicle track-
ing and interception.

� Fast and real-time vehicle trajectory prediction, including determining possible future-
state envelopes of a trajectory with known constraints. For example, determining the
future position envelope of a vehicle with knowledge of maximum thrust, dynamic pressure,
and acceleration g-force.

� Using a linear system representation with parameters (see Sec. 4.3.1) for:

– Fast solutions to trajectory initial-value problems, such as vehicle launch conditions,
and flight settings (see example in Sec. 5.2.1).

– Preliminary parametric vehicle design, considering vehicle properties such as mass,
aerodynamics, and propulsion.

– Modelling the response of autonomous control systems (see example in Sec. 5.2.2).

– Spectral analysis, particularly for autonomous control parameters (such as controller
gain). Eigendecomposition of the lifted linear system provides useful information on
dynamic modes, frequencies, and stability.

� Using a system representation with bilinear inputs (see Sec. 4.3.2) for:

– Optimal control, making use of bilinear optimisers and sequential quadratic program-
ming to find globally optimum time-varying control inputs. Optimal control inputs
may include thrust control and control surface positions. Optimal control with a
bilinear system is much faster, more robust, and more likely to find globally optimal
values than a nonlinear optimal control problem.

– Model predictive control (MPC). Real-time MPC for fast-reacting systems requires
a linear system model. A lifted-state linear model provides much greater accuracy
further from the current operating point than local linearisation, which allows longer
MPC time-horizons and better control performance.

� Nonlinear uncertainty propagation. Linear systems are capable of explicit uncertainty
propagation using Gaussian operations (such as the working principle of Kalman filters).
Nonlinear system uncertainty propagation typically require expensive Monte-Carlo simu-
lations, or local linearisation which reduces accuracy. For example, a lifted linear system
can be used to get explicit future-position uncertainty of an object trajectory with non-
linear dynamics.

In general, the computational cost of linear systems is much less than nonlinear systems,
and increases favourably for larger systems. As well as permitting explicit calculations without
time-integration, linear systems are highly compatible with vectorised and parallel computing,
which can be utilised to a much greater extent than with nonlinear systems. Therefore, lifted
linear systems offer the possibility to model and optimise larger and more complex systems than
possible with nonlinear equivalents.
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4 Implementation and development of the Galerkin method

4.1 Basis functions

In this work, each multivariate basis function zi(x) is the product of univariate Legendre poly-
nomials,

zi(x) = ci

n∏
j=1

Pkj (xj), (25)

where Pk is the Legendre polynomial of order k, and ci is a normalisation parameter to satisfy
(21). Legendre polynomials have the benefits of a bounded domain between [-1,1], a constant
weighting value w(x) = 1 in (15), and efficient numerical quadrature integration. We construct a
set of basis functions z(x) = [z1(x), z2(x), . . . , zm(x)]T to include all functions up to a combined
polynomial order kmax, expressed as

n∑
j=1

kj ≤ kmax . (26)

The number of basis functions is typically much larger than the number of original state vari-
ables. Alternative sets of orthogonal functions such as Hermite, Laguerre, and trigonometric
polynomials are equally valid. For example, considering a two-state system

x =

x1
x2

 , (27)

and basis functions up to kmax = 3, the univariate Legendre polynomials are

P0(x) = 1 (28a)

P1(x) = x (28b)

P2(x) = 0.5(3x2 − 1) (28c)

P3(x) = 0.5(5x3 − 3x) , (28d)

and the corresponding 10 basis functions are

z(x) =



z0(x)

z1(x)

z2(x)

z3(x)

z4(x)

z5(x)

z6(x)

z7(x)

z8(x)

z9(x)



=



c0P0(x1)P0(x2)

c1P0(x1)P1(x2)

c2P0(x1)P2(x2)

c3P0(x1)P3(x2)

c1P1(x1)P0(x2)

c4P1(x1)P1(x2)

c5P1(x1)P2(x2)

c2P2(x1)P0(x2)

c5P2(x1)P1(x2)

c3P3(x1)P0(x2)



(29)

6



4.2 Domain selection and state-space scaling

Although the nonlinear dynamics exist in the space x ∈ X , the lifted states z(x) are only valid
for x ∈ B ⊆ X , where B is the domain of the basis functions, which for the case of multivariate
Legendre polynomials B ∈ [−1, 1]n. Typical formulations of flight dynamics equations in terms
of physical states (such as position, velocity etc.) are not contained within B, or may not be
valid at all in this domain. Therefore, the original unscaled dynamics equations must be scaled
with a function s(x′) : X → B, so that f(s(x′)) : B → B, where x′ are the original unscaled
states, X ′ is the original unscaled domain, and x ∈ X ⊆ X ′ is the valid domain of the Koopman
approximation. The lifted states are then calculated from the scaled states, z(s(x′)). In this
work we use linear scaling x = s(x′) = ax′+b, where a and b are constants, however alternative
may include trigonometric or exponential scaling.

4.3 System parameters and inputs

The approach to approximate the Koopman operator described thus far is sufficient to model
fixed autonomous systems. However, the utility of a lifted linear system is greatly expanded if
we can use a single linear system to model:

1. Parameters p = [p1, p2, . . . , pnp ]
T that can vary at the system initial state, but do not vary

in time. Examples include vehicle mass during a parametric design study, or the gain of
an autonomous thrust controller.

2. Inputs u(t) = [u1(t), u2(t), . . . , unu(t)]
T that vary in time. Examples include propulsion

throttle, control-surface actuator position, or a time-varying controller setpoint.

This section describes how parameters and inputs can be incorporated into Koopman linear
models.

4.3.1 Parameters

Incorporating parameters into the Koopman linear system is relatively simple and without
limitation. Each parameter is treated as a system state variable with nill dynamics, and the
nonlinear system is augmented to incorporate these extra equations, represented as

d

dt

xf

p

 =

f(xf)

0

 . (30)

The process of constructing the Koopman linear system is then otherwise identical, where the
basis functions are now z(x,p) and p are scaled to a range of interest similar to state variables
(see Sec. 4.2). The lifted state vector z can be initialised for different values of p, and then
modelled in time using the same linear system

d

dt
z(x,p) = Kz(x,p) (31)

4.3.2 Inputs

Time-varying inputs can be incorporated into the linear model with some limitations. The
trivial solution is to describe the nonlinear system as an augmented system with inputs (similar
to parameters), and re-initialise the lifted state vector z(x,u) at each time-step. However, this
would negate most advantages of a linear system, and likely provide little speed benefit over
integrating the original nonlinear equations.
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Alternatively, it has been shown by Bruder et al. that a control-affine nonlinear system
can be described accurately with a bilinear Koopman linear representation. A control-affine
nonlinear system can be expressed as

d

dt
x(t) = f(x(t)) +Bxu(t) , (32)

where Bx is a linear matrix. We can construct a set of basis functions suitable for a bilinear
lifted system as

zu(x,u) =
[
[z(x)], [cu1z(x)], [cu2z(x)], . . . , [cunuz(x)]

]T
(33)

where c is a normalisation parameter to satisfy (5) for any two functions in zu. The lifted linear
system is then calculated as

d

dt



z(x)

cu1z(x)

cu2z(x)
...

cunuz(x)


=



[Kz] [Bu1 ] [Bu2 ] · · · [Bunu
]

−

−
...

−





z(x)

cu1z(x)

cu2z(x)
...

cunuz(x)


, (34)

which can be re-written in terms of z(x) as the bilinear system

d

dt
z(x) = Kzz(x) + c

nu∑
i=1

(Buiui) z(x) . (35)

Although (35) is still nonlinear, a significant body of past literature has focussed on effi-
cient algorithms to optimise bilinear systems, including sequential quadratic programming, and
sequential linear-quadratic programming. Moreover, Bruder et al. showed that efficient linear
model predictive control (MPC) can function accurately using the assumption that z(x) in the
bilinear term is constant over the predictive time horizon.

4.4 Efficient analytic computation of the Koopman matrix

Using the Galerkin method, each cell of the Koopman matrix K must be computed individually
by

Kij = ⟨zi, (∇xzj)f⟩ , (36)

which expands to

Kij =

∫
B
zi

n∑
k=1

∂zj
∂xk

fk dx . (37)

In this paper, we numerically evaluate this integral using Gauss-Legendre quadrature, which
does not restrict the dynamics functions to closed-form solutions of (37), and allows the process
to be automated. However, considering the high number of quadrature points necessary to
evaluate multivariate integrals and the large dimensions of K, we make use of various techniques
to avoid an otherwise burdensome computational time. Two of the most advantageous methods
to improve computational speed are described below.

First, we split the integral of (37) into

Kij =
n∑

k=1

∫
B
zi
∂zj
∂xk

fk dx . (38)
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Knowing that each basis function is composed of univariate orthogonal polynomials

zi = ci

n∏
a=0

Pia(xa) , (39)

and the arguments of each dynamic function are a subset of the state vector,

fk(xfk), xfk ⊆ x, (40)

we can identify combinations of orthogonal functions in the integral, as well as terms which are
zero, using ∫

B
zi
∂zj
∂xk

fk dx = 0 for

{
any ia ̸= ja ∧ a ̸= k ∧ xa /∈ xfk, or

jk = 0 ∧ xk /∈ xxk ,
(41)

where a are the polynomial orders from (39). Using this method we can quickly identify that
most of the integrals in (38) are zero.

Second, we observe that dynamic functions and basis functions need to be evaluated at
the quadrature points once only to construct the K matrix. Moreover, for basis functions
constructed using the product of univariate functions (such as the Legendre polynomials in this
work), each univariate function need only be evaluated once. After initial evaluation, each non-
zero integral term in (41) can be computed by the tensor dot products of quadrature values.
For example, consider a three-state nonlinear system where x = [x1, x2, x3]

T. The first term
(k = 1) in the sum from (38) is ∫

B
zi
∂zj
∂x1

f1 dx . (42)

Assume the dynamics function f1(x1, x2) is only a function of x1 and x2, and the two basis
functions zi and zj are described by

zi = ci P1(x1) P1(x2) P1(x3) , (43)

zj = cj P2(x2) P2(x2) P1(x3) . (44)

We can expand the integral to∫
B
zi
∂zj
∂x1

fk dx = cicj

∫
B
P1(x1)

dP2(x1)

dx1
P1(x2)P2(x2) P1(x3)P1(x3) f1(x1, x2) dx . (45)

We know from (21) that ∫
B
P1(x3)P1(x3) dx3 = 1 . (46)

To compute the remainder of the integral, we use tensors of the dynamics function and Legendre
polynomials evaluated as the quadrature points Q = [q1, q2, . . . , qp]. The tensor for f1 is

f1 → F1 =


f1(q1, q1) . . . f1(qp, q1)

...
. . .

...

f1(q1, qp) . . . f1(qp, qp)

 , (47)
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and the similar-dimensioned Legendre polynomial tensors are

P1 → P1 =


P1(q1) . . . P1(qp)

...
. . .

...

P1(q1) . . . P1(qp)

 , (48)

dP1

dt
→ P′

1 =


P ′
1(q1) . . . P ′

1(qp)
...

. . .
...

P ′
1(q1) . . . P ′

1(qp)

 , (49)

P2 → P2 =


P2(q1) . . . P2(qp)

...
. . .

...

P2(q1) . . . P2(qp)

 . (50)

The integral can then be computed using the tensor dot product∫
B
zi
∂zj
∂x1

fk dx = cicj
∑(

P1 ·P′
1 ·PT

1 ·PT
2 · F1 ·W

)
, (51)

where W is a tensor of corresponding quadrature weights. This method can be expanded to
any number of variables and corresponding tensor dimensions. The Legendre polynomials, their
derivatives, and the system dynamic functions are evaluated once only, and for each integration
the Legendre polynomial tensors are rotated to match the variable axes of the dynamics function,
and extended uniformly in additional tensor dimensions. Using this integration method provided
significant speed increases in the current work, but also importantly demonstrates the suitability
for future speed optimisation using graphical processing units (GPUs) which are highly suited
to tensor operations.

5 Demonstration and discussion

5.1 Test case: Duffing oscillator

We first demonstrate the application of the Galerkin method for computing the Koopman matrix
on a damped duffing oscillator, governed by

d2

dt2
x+ δ

d

dt
x+ αx+ βx3 = 0 , (52)

where the damping coefficient δ = 0.5, and the stationary points are determined by αx+βx3 = 0.
Eq. 52 is formulated as a nonlinear system of two state variables x1 = x, and x2 =

d
dtx,

d

dt

x1
x2

 =

 x2

−δx2 − αx1 − βx31

 . (53)

We consider the domain x1 ∈ [−2, 2] and x2 ∈ [−2, 2]. This simple test case is useful to
demonstrate the performance and limitations of the Galerkin method. We separate the case of
a single attraction basin (Sec. 5.1.1), to the case of multiple stationary points and attraction
basins (Sec. 5.1.2). A stationary point is defined as

d

dt
x = 0 , (54)

and an attraction basin describes the state-spate region for which any the system either tends
towards a single stationary point as t → ∞, or infinitely oscillates within the basin.
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5.1.1 Single attraction basin

First, we let α , β = 1 resulting in a global attracting stationary point at x = 0, as shown in
Figure 1. Figure 2 shows the Koopman linear approximation for basis functions with maximum

Figure 1: Damped duffing oscillator gradient field with a single attractor. x1 = x, x2 = dx
dt .

polynomial orders of 3, 5, and 7, which correspond to 10, 21 and 36 lifted states respectively.
Figure 3 shows the corresponding eigenvalues for the discrete-time flow matrix, with ∆t = 1 s.
The linear approximation approaches the true solution with an increasing number of lifted
states. All three linear models are stable with real eigenvalues within the unit circle, and all
converge to the stationary point of x = 0.

Figure 2: Comparison of linear approximation to a Duffing oscillator for three orders of basis functions.
The dynamics function has a global attractor at x = 0.

Mezi´c et al. [4] proved that with increasing sample points, the linear approximation derived
through EDMD converges to the Galerkin Koopman approximation described in Sec. 2.3. We
demonstrate that again here for the damped duffing oscillator with α = 1, β = 1. Training
points for the EDMD model are selected using a pseudo-random hypercube method. Figure 4
shows the progression of the function for increasing numbers of EDMD training points, which
are seen to converge to the Galerkin Koopman solution.

11



(a) Order 3 (b) Order 5 (c) Order 7

Figure 3: Eigenvalues of the discrete-time Koopman matrix representing a Duffing oscillator with a single
attracting basin, for three basis function orders.

Figure 4: Comparison of Galerkin and EDMD linear approximation to a Duffing oscillator with basis
functions up to order 7, and varying quantity of of EDMD sample points.
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5.1.2 Multiple attraction basins

A finite linear system can never perfectly represent a nonlinear system with multiple attraction
basins, and approximating the Koopman operator over multiple basins significantly reduces its
accuracy. To demonstrate this, we consider the Duffing oscillator, (52), with values α = −1
and β = 1, so that there are two attracting stationary points of x = −1 and x = 1, and a non-
attracting stationary point at the origin, as shown in Figure 5. Figure 6 shows the Koopman

Figure 5: Subspace of a duffing oscillator with multiple attractor basins. The red box indicates a subspace
within a single basin.

linear approximations for three orders of basis functions, which are all significantly worse than
the case of a single stationary point in Figure 2. All linear model tracks the true function until
approximately t = 1, where divergence becomes apparent. Figure 7 shows the eigenvalues for the
approximation using seventh order basis functions, where it is evident the linear approximation
is unstable, and will eventually diverge.

Figure 6: Comparison of linear approximation to a Duffing oscillator for three orders of basis functions.
The Duffing oscillator has two attracting stationary points at at x = 1 and x = −1.

The easiest way to resolve this issue and improve accuracy is to restrict the domain to a
subspace which contains a single attraction region, shown by the red rectangle in Figure 5.
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Figure 7: Eigenvalues of the linear approximation to the Duffing oscillator with basis functions up to
order 7. The Duffing oscillator has two attracting stationary points at x = 1 and x = −1.

Computing the linear system for this subspace results in a far more accurate representation of
the nonlinear system, as shown in Figure 8. However, this requires knowledge of the nonlinear
attraction basin boundaries within the function, which may not be obvious for many systems.
An alternative method is to utilise multiple short-horizon predictions using the linear model

Figure 8: Methods to handle dynamic functions with multiple stationary points: (1) restrict the domain
to a subspace with a single attractor; or (b) limit the linear model prediction horizon to a small value
and re-initialise the lifted states, marked with circles.

which encompasses the entire domain. After each linear prediction, the lifted states are re-
initialised from the basis functions as z(G · z). This is demonstrated in Figure 8, where circles
represent the points of re-initialization, and shows much improved accuracy. However, this
reduces the utility of the lifted system, in particular due to the nonlinear nature of the basis
functions. Additional proposed methods to improve the ability of Koopman linear systems are
described in Sec. 5.3.1.
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5.2 Glider trajectory

5.2.1 Model with parameters

The Koopman linear approximations is applied to the case of an trimmed three degrees of
freedom glider, which has 6 fundamental state variables: position coordinates in the inertial
frame x, y, z, velocity magnitude v, flight path angle χ, and heading angle γ. A trimmed
flight model assumes angle of attack, α, and bank (roll) angle, ϕ, are system inputs, and
are autonomously achieved by adjustments to the vehicle’s control surfaces. Additionally, it
is assumed that zero net moment forces are acting on the vehicle for a constant α and ϕ.
Thus, Euler rotation dynamics are not modelled, which simplifies the system for the current
demonstration purpose; this example could equally be applied to a full six degree of freedom
system (with increased computation time). We incorporate angle of attack and bank angle as
parameters p = [α, ϕ]T, so the augmented system dynamics is governed by

d

dt



x

y

z

v

χ

γ

α

ϕ



=



cos(γ) cos(χ)v

cos(γ) sin(χ)v

− sin(γ)v

f1/m− sin(γ)gz

(1/ cos(γ)V )(f2/m+ cos(χ)gz)

(1/V )(f3/m+ sin(γ) sin(χ)gz)

0

0



, (55)

where the body forces in vehicle velocity coordinates are

f1 = 0.5ρV 2Cd(α)A (56)

f2 = 0.5ρV 2Cl(α) sin(ϕ)A (57)

f3 = 0.5ρV 2Cl(α) cos(ϕ)A, (58)

and A is representative area. Defining vehicle motion in polar coordinates allows the domain to
be restricted to v > 0, avoiding the stationary singularity otherwise encountered with Cartesian
velocity coordinates. Lift and drag coefficients, Cl and Cd, are based of the NACA 0012 airfoil
at a Reynolds number of 2 × 105, calculated by Xfoil [17] and are a function of α, shown in
Figure 9. Atmospheric density ρ is determined using the piecewise-linear 1976 U.S. Standard
Atmosphere model [18] as a function of elevation.

ρ = f(−z) (59)

(60)

For altitudes up to 11 km, this is a single linear relationship. Figure 10 shows the trajectory of
the glider when released with the initial conditions presented in Table 1. Four different angles
of attack are modelled with the same linear system, demonstrating the utility of the augmented
system with parameters. Basis functions up to order 5 are used for the linear system, resulting
in 792 lifted states (although some are unused). The nonlinear system does not have a global
stationary point due to the varying atmospheric density. However, the linear model still closely
follows the true solution for about 100 seconds, before some divergence between the two is
apparent.
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(a) Lift (b) Drag

Figure 9: Aerodynamic lift and drag coefficients.

Table 1: Initial conditions for uncontrolled glider trajectory in Figure 10.

Parameter Initial value

Altitude 11 km

Velocity 160 m/s

Heading angle (χ) 0 ◦

Flight path angle (γ) 0 ◦

Angle of attack (α) 5 - 12.5 ◦

Bank angle (ϕ) 2.85 ◦
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5.2.2 Model with autonomous control

To demonstrate the ability to add controllers to the linearised system, we now replace the angle
of attack with a proportional-integral controller of the form

α = GP(vsp − v) +GI

∫ t

0
(vsp − v) dt = GP(vsp − v) +GIIc , (61)

with the dynamics system

d

dt



x

y

z

v

χ

γ

Ic

ϕ



=



cos(γ) cos(χ)v

cos(γ) sin(χ)v

− sin(γ)v

f1/m− sin(γ)gz

(1/ cos(γ)V )(f2/m+ cos(χ)gz)

(1/V )(f3/m+ sin(γ) sin(χ)gz)

vsp − v

0



, (62)

where vsp is the velocity setpoint, and GP and GI are proportional and integral gains respec-
tively. Figure 11 shows the glider trajectory with a deliberately overactive controller, in order
demonstrate the ability of the linear system to capture its effect. Initial conditions of the
simulation are presented in Table 2.

Table 2: Initial conditions for glider with autonomous velocity control in Figure 11.

Parameter Initial value

Altitude 10 km

Velocity 140 m/s

Heading angle (χ) 0 rad

Flight path angle (γ) 0 rad

Bank angle (ϕ) 2.85 ◦

Control integral term 0
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5.3 Discussion

5.3.1 State-space domain

In contrast to local linearisation which is only accurate around a small region, a Koopman linear
system may have an exact finite solution for an entire basin of attraction around a stationary
point. Nevertheless, Koopman linear systems are still limited by the fundamental linear system
characteristic of either a single stationary point at the origin, or a subspace of infinite stationary
points. The nonlinear state-space domain X ∈ X ′ chosen for linearisation (see Sec. 4.2) can
therefore have a strong impact on the accuracy of the Koopman linear system approximation,
particularly with respect to whether X is contained within one or more attraction basins.
Although a Koopman linear system is not capable of providing an exact solution over multiple
basins, it may still provide an approximate solution valid for short time horizon predictions,
although spectral properties of such a linear system will be inaccurate, as demonstrated in
Sec. 5.1.2. One approach to extend the size of attraction basins is to reformulate the dynamics.
For example, systems with conserved energy can be described by their Hamiltonian, which
provides a global attraction basin, often at the expense of some information of the system.
Alternatively, the Riccati equation may be used to extend the attraction basin for models
incorporating control.

Even when X is contained within a single attracting basin, a trade-off is encountered between
the size of X , the number of lifted states, and Koopman approximation accuracy. Some regions
of X ′ may contain highly nonlinear dynamics requiring high order basis functions, whereas other
regions can be modelled accurately with lower order functions. Multiple different linearised
domains and systems may be combined to represent different state-space domains. For example
we may define two subspaces X1, X2 ∈ X ′, where X1 may span vehicle low-acceleration cruise
dynamics with higher accuracy (and longer time-horizon accuracy), while X2 may span a larger
space encompassing high-acceleration states, but with poorer long-term accuracy.

A limitation of the current Galerkin method state-space domain selection is that state-space
domains X must be n-dimensional rectangular. That is, the domain is scaled by restricting
the range of each original state xi between some lower and upper bounds, requiring that the
dynamics associated with all ’corners’ of the state-space must be captured by the linear system,
even if they are irrelevant. For example, we may be interested in vehicle velocity between 100-
600 m/s, and an altitude range between 0-20 kms. The vehicle state at the extremes of 100 m/s
at 20 kms altitude, or 600 m/s at ground level cannot be achieved in reality result in high-order
gradients which must be captured by the linear system at the expense of accuracy at more
typical operating states (e.g. 300 m/s at 10 kms). Importantly, these ’corners’ of the state-
space domain often extend outside an attraction basin, and significantly affect linear system
accuracy. This effect can be minimised by reformulating the dynamics into more meaningful
state variables; instead of velocity, the state vector x can include Mach number which is more
meaningful at various altitudes. However, this does not fully resolve the issue, and some states
variables such as angle of attack or heading angle have no obvious substitution. At a theoretical
level, there is no impediment to restrict the subspace X to any arbitrary and non-rectangular
domain of X ′ when implementing the Galerkin method. Indeed, inherent choice of state-space
domain is one of the benefits of DMD, for which the training data set can only incorporate data
points from the relevant region of X ′. Incorporating non-rectangular domains in the Galerkin
method is a strongly suggested direction for future work, and should yield large improvements
in the applicability and performance of derived linear models.

5.3.2 Linear system accuracy

So far we have discussed the accuracy of Koopman linear systems qualitatively. We may often
need a quantitative understanding of upper bounds of this error, to inform the level of confidence
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placed on linear model results. The error of a lifted linear system across a discrete time-step
ez,∆t can be estimated manually by mass sampling states across the domain and calculating as

ez,∆t =
1

p

p∑
i=1

[Ktz(xk)− z(xk+1)] (63)

where p is a large number of distributed sample points. In addition, there already exists a
body of literature for a priori estimates of Galerkin projections, which can be utilised before
computing the linear matrix K to inform the choice of the corresponding basis functions and
state-space domain. However, we are primarily interest in the error of the original state vector
x rather than z(x), and the relationship between the two for varying discrete time-steps is
not apparent. As small errors ez,∆t are introduced, the lifted state falls off the manifold z(x)
with unpredictable consequences for the error in x. During future development of the Galerkin
method, attempts should be made to estimate the upper bounds error in x, which may provide
useful insights on such things as choice of basis function type and order, state-space domain,
and prediction time-horizon in order to achieve acceptable accuracy.

6 Conclusion and recommendations

6.1 Conclusion

Koopman operator theory presents a framework for constructing finite linear approximations
to nonlinear systems, by projecting the nonlinear dynamics onto a Hilbert space constructed
of Koopman operator eigenfunctions. Koopman linear approximations have historically been
used for spectral analysis of unknown dynamics, such as fluid turbulence, using dynamic mode
decomposition (DMD). However, recent work suggests Koopman linear systems can also provide
accurate lifted linear approximations to known dynamical systems constructed using Galerkin
projections. Lifted linear systems offer many potential benefits including but not limited to
explicit future state prediction, efficient parametric studies, spectral and stability analysis, and
control optimisation.

This work summarises the theory underpinning the Galerkin method of constructing Koop-
man linear approximations of known dynamics using polynomial basis functions. Details of a
system-agnostic program for computing the Koopman linear matrix is presented. New methods
to significantly optimise the Galerkin method calculation using numerical techniques are de-
scribed, which offer a pathway to efficiently construct linear systems of any arbitrary dynamical
system. Linear approximations are constructed for two nonlinear systems: a simple Duffing os-
cillator, and a three degree-of-freedom glider trajectory. The ability of linear systems to closely
follow the time-integrated nonlinear solution is presented, and an example demonstrates a lin-
ear model capable of incorporating variable system parameters. The paper discusses methods
to incorporate bilinear time-varying inputs, allowing for optimal control calculation, as well as
methods to avoid the inherent linear system limitation of a singular discrete stationary point.

Lifted linear systems are particularly suited to vehicle dynamics and trajectory problems,
where real-time future state prediction and high-performance control are required. Applications
include vehicle future-state envelope calculations, parametric initial-value solutions, and opti-
mal time-varying control inputs. Linear computations are highly compatibility with vectorised
and parallel computing, resulting in favourable time scaling for complex systems compared to
nonlinear equivalents. Therefore, further development of this technique may offer designers of
aerospace systems a distinct advantage to construct fast and optimal systems for system design
and control.
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6.2 Future work

Throughout this paper, many directions to further develop the theory, capability, and applica-
tion of Koopman linear systems are proposed. In no particular order, these include:

1. Optimal control of lifted linear systems with bilinear time-varying inputs using model
predictive control (MPC) and sequential quadratic programming (SQP);

2. Explicit uncertainty propagation of lifted linear systems using linear Gaussian operations;

3. Spectral decomposition of lifted linear systems to study stability of autonomous vehicle
controllers;

4. Methods to construct linear systems of any arbitrary state-space domain;

5. Investigation of alternative basis function types, including trigonometric basis functions;

6. A priori estimates of Galerkin system projection errors;

7. Methods to reformulating nonlinear vehicle dynamics to a system with a single stationary
point; and

8. Extending lifted linear systems to multi-agent systems.
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