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A B S T R A C T   

Predicting accurately the Normalized Difference Vegetation Index (NDVI) trends from RGB images are essential 
to monitor crops and identify issues related to plant diseases, and water shortages. The current NDVI prediction 
models are primarily based on traditional machine learning models which lack reliability due to the problem 
related to atmospheric conditions. To predict NDVI in Prince Edward Island using RGB drone imagery data, this 
paper proposed a novel framework integrating empirical curvelet transform and DenseNet models. Each channel 
of RGB drone imagery data was passed through empirical curvelet transform method where the curvelet co-
efficients were analysed which result in creating a new formula to design NDVI. The output of the new formula 
was sent to the deep DenseNet to predict the final NDVI. The proposed model was evaluated using quantitative 
metrics including, Q-Q plot, regression, correlation coefficients, structural similarity (SSIM), peak signal to noise 
ratio (PSNR) and mean square error (MSE) as well as accuracy (ACC), sensitivity (SEN), f1-score, specificity. The 
obtained results showed that the proposed model outperformed the previous models by scoring the highest 
values of SSIM = 0.98, and lowest MSE = 120. It is believed that the proposed model is helpful to support farmers 
in monitoring the growth and plant health as well as to identify crops problems.   

1. Introduction 

NDVI prediction from RGB drone imagery data is crucial for identi-
fying crop problem, growth, and plant health. Mainly, Near-infrared 
(NIR) wavelength is required to generate a NDVI map. The NIR is 
designed based on multispectral cameras and sensors which are time 
consuming and expensive compared to the RGB cameras. However, 
designing a low cost NDVI map using standard RGB cameras is crucial to 
provide decision makers with the important crop health information. 

Several techniques have been suggested to monitor crops health for 
example, Remote sensing (RS) which is an old tool, and from time to 
time, it has come in handy for a lot of research work. Li et al. (2020) 
showed how remote sensing data could help monitor ecological ele-
ments like vegetation index, soil moisture, and evapotranspiration with 

an accuracy of 78%-94%, 17.7%–32.8%, and <12%, respectively. 
Vinukollu et al. (2011) used multi-sensor remote sensing data for global 
estimates of evapotranspiration for climate studies. Eguchi et al. (2008) 
used remote sensing for disaster management and offered to build 
consensus-based damage assessment criteria based only on remote- 
sensed data for standardizing the results of multi-event assessments. 
Devi et al. (2015) showed another application of remote sensing in 
satellite oceanography. Their paper showed how IR and microwave ra-
diometers could be used to measure temperature at different depths in 
the ocean. In the past years, RS has also become a potential tool to 
identify potential fishing zones. Canada Centre for Remote Sensing 
(CCRS) scientists are also working on developing a sustainable way to 
monitor land cover, water, and wetland transformation (Development, 
2023). 

Generative Adversarial Network (GAN) is a deep learning model 
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introduced by Ian Goodfellow and his colleagues (Giles, 2018). In recent 
years, GANs have been used as a critical tool to perform image trans-
formation from one domain into another while preserving its essential 
characteristics. GAN consists of two major components: Generator and 
Discriminator. The former generates images that are indistinguishable 
from the actual photos in the target domain, and the latter is a binary 
classifier that evaluates whether an image is real or fake. The generator 
produces realistic photos to fool the discriminator while the discrimi-
nator tries to become better at telling real from counterfeit images 
(Aggarwal et al., 2021). GANs have been successfully applied to a wide 
range of image translation tasks like SR-GAN for crop health detection 
(Maqsood et al., 2021), weed detection (Sapkota et al., 2022), SA-GAN 
for animal farming (Li and Tang, 2020), Cycle GAN for fruit detection 
(Barth et al., 2020) and aquaculture (Zhang et al., 2021). GANs have not 
only performed well on the ground level but have also done well as 
Underwater Multiscene Generative Adversarial Network (UMGAN) to 
enhance underwater images. Although the mentioned studies predicted 
NDVI, establishing an accurate and standard NDVI based on deep 
learning remains a challenging task. It is important to monitor plant 
growth accurately in Prince Edward Island. To achieve that We found 
that empirical wavelet transform (EWT) can reveal the important fea-
tures of RGB images. As a results, in this paper, we utilise the empirical 
curvelet transform to extract curvelet coefficients to design a new NDVI 
formula. 

Many recent studies have been designed to analyse time series data 
to predict NDVI for example Beyer et al., (2023) designed a NDVI pre-
diction model based on graph based deep learning model. In that study, 
Graph WaveNet model was proposed to predict NDVI from time series 
data. The data collected form the period of June 2002 to May 2019, 
including 763 different dates. Omar and Kawamukai, (2021) suggested 
an architecture based on Holt-Winters to design NDVI index to monitor 
crops. Li et al., (2022) generated NDVI time series using Transformer 
Temporal-spatial Model based deep learning model. Their model was 
tested using time series data collected from South of the Songnen region. 
Guo et al., (2024) designed a deep learning model for NDVI prediction in 
YRB of Chaina. In that study, multilayer multivariate LSTM neural 
network was employed to predict the actual values of NDVI. Emami 
et al. (2020) introduced the spatial GAN model (SPA-GAN), which lets 
the generator focus more on the most discriminative regions between 
the source and the target domains. Yi et al. (2017) performed a study 
and introduced the concept of DualGAN, which simultaneously learns 
two image translators from one domain to another and, as a result, 
performs a wide variety of image-to-image translation tasks; comparing 

the results showed that DualGAN could outperform supervised, trained 
methods on labelled data. DenseNet model has been used for melanoma 
cancer detection (Girdhar et al., 2023), image classification (Abai and 
Rajmalwar, 2019; Zhang et al., 2019), recognition and mapping of 
landslide (Gao et al., 2021, Liu et al., 2021), and remote sensing scene 
classification (Zhang et al. 2019). 

Most designed NDVI prediction models are primarily based on 
analyzing time series data using traditional neural network techniques. 
Those models showed several limitations regarding the designing NDVI 
formula, causing the NDVI based time series prediction models to lack 
reliability. The study conducted in this paper demonstrates an excellent 
approach due to the researchers’ advantage in utilizing advanced 
technology and abundant resources, distinguishing it from other studies. 
To predict NDVI from drone imagery data, this study constructed an 
artificial model based on curvelet decomposition and deep learning 
model to eliminate the issues associated with those models. 

Although the previous studies have suggested several NDVI models 
that used all image channels information. In this paper, we made an 
attempt to utilise the texture feature of RGB image to predict NDVI. The 
main contribution of this paper is to design an accurate NDVI model 
utilizing an empirical curvelets transform based model to analyse 
texture patterns of RGB images. The coefficients of empirical curvelets 
were tested and used to design a new NDVI formula. The designed NDVI 
formula was fed to DenseNet model directly instead of using the original 
images pixels. It is widely acknowledged that wavelet coefficients were 
more powerful to analyse RGB images. 

2. Data collection and dataset generation 

The data collection consisted of a fixed-wing Unmanned Aerial 
Vehicle (UAV) model called the Ebee X, developed by SenseFly Inc. 
based in Cheseaux-Sur-Lausanne, Switzerland, was employed. This UAV 
was equipped with a RedEdge-MX sensor, developed by MicaSense, 
headquartered in Seattle, Washington, USA. The data collection 
occurred in Prince Edward Island during the 2021 growing season, from 
May to October. The selected fields were located in various regions of 
the island: to the west (O’Leary at coordinates 47.0601196◦ N, 
62.4924976◦ W), to the east (Souris at 46.259217◦ N, 63.137842◦ W), 
and in the central areas (Oyster Cove at 46.471967◦ N, 63.694683◦ W; 
Tryon at 46.2416057◦ N, 63.5351343◦ W; and Bedeque at 46.3477236◦

N, 63.7577183◦ W).The imagery was captured throughout the potato 
growing season, covering key growth stages, including:  

1. Vegetation stage (15–30 days after planting, DAP).  
2. Tuber formation stage (30–45 DAP).  
3. Tuber bulking stage (75–110 DAP).  
4. Tuber maturation stage (more than 110 DAP). 

The RedEdge-MX sensor possesses the capability to capture images in 
a variety of spectral bands, including blue, red, green, near-infrared 
(NIR), and red-edge, with respective central wavelengths of 475, 560, 
668, 840, and 717 nm. To ensure precise positional accuracy, the 
captured imagery uses a built-in Differential Global Positioning System 
(DGPS) with real-time kinematics protocol integrated into the Ebee X 
UAV. The execution of regular interval image capture from agricultural 
fields, with a 75% frontal and side image overlap, was facilitated using 
eMotion flight mission planning software, developed by SenseFly Inc. of 
Cheseaux-sur-Lausanne, Switzerland. 

Before and after each survey, the RedEdge-MX sensor underwent 
radiometric calibration to correct for brightness and ensure the accuracy 
of the collected data. Most surveys were conducted on days with ample 
sunlight and wind speeds not exceeding 35 km per hour, contributing to 
stable imagery from the sensor. 

After data collection, radiometric calibration was employed to 
convert the image’s brightness values into spectral radiance values. This 
conversion facilitated the determination of nitrogen, chlorophyll, and 

Nomenclature 

PEI Prince Edward Island 
CCRS Canada Centre for Remote Sensing 
NDVI Normalized Difference Vegetation Index 
DGPS Differential Global Positioning System 
EWT Empirical wavelets transform 
SSIM Structural similarity 
ACC Accuracy 
SPE Specificity 
PSNR Peak signal to noise ratio 
MSE Mean square error 
SEN Sensitivity 
RS Remote sensing 
UAVs Unmanned Aerial Vehicle 
NIR Near-infrared 
GANs Generative Adversarial Networks 
DN Digital number 
FB Filter bank  
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biomass levels within the images, as well as the calculation of vegetation 
indices. Additionally, raw digital number (DN) values were ascertained 
for each pixel in each image. The standard radiometric calibration 
procedure for drone imagery involved the utilization of reflectance 
panels and the built-in functions of Pix4D software. Gains and offsets for 
the radiometric sensors were calculated by comparing the sensors’ DN 
values to those of the standard reflectance panel. The conversion to 
radiance accounted for various factors, including reflected and incident 
radiances, as well as solar scattering and absorption. However, atmo-
spheric variables, such as water vapor and humidity, could still be 
present, potentially leading to inaccurate data. To mitigate these at-
mospheric variables, the radiance data were further transformed into 
reflectance, yielding more precise and reliable data. 

The images collected by the Ebee X UAV were prepared in a suitable 
format for the training of Generative Adversarial Networks (GANs). This 
study made use of two image datasets: RGB and NDVI indices. An RGB 
image is a data array where each pixel is defined in terms of red, green, 
and blue channels. RGB cameras are commonly employed in standard 
drones, enabling the capture of colour aerial images via the combination 
of these three channels. The RGB option is favoured for crop image 
capture due to its relatively low cost and ease of use. On the other hand, 
NDVI, a combination of NIR and red channels, is widely utilized in 
vegetation monitoring. However, the inclusion of the NIR band in-
creases the cost of the sensor, making it more expensive for vegetation 
monitoring purposes. The NDVI index can be calculated as follows: 

Discriminator Loss =
NIRChannel − RedChannel
NIRChannel + RedChannel 

Incorporating the NIR band makes the sensor more expensive 
compared to those operating in the visible domain. The computed NDVI 
index image reflects the health of vegetation and symptoms of plant 
stress. Healthy plants are depicted in green, while barren land, roads, 
sheds, and soil appear in various shades of red. An index scale ranging 
from 0 to 1 can be added to quantify plant health in different areas, but, 

for GAN training purposes in this study, an index scale was not included 
in the NDVI computed images and may be added in the future. The GAN 
training dataset consisted of 500 pairwise images, distributed across 
training (80%, 400 images), validation (10%, 50 images), and testing 
(10%, 50 images) phases. 

3. Methodology and model development 

Most previous models for NDVI prediction do not adequately 
consider analysis of the texture features from RGB images, which were 
not fully considered in the designing of NDVI formulas. However, the 
analysis of texture features using decomposition techniques is very 
important to design standard NDVI formula. In response, this study es-
tablishes a more realistic NDVI prediction model for plants diseases 
detection, monitoring the productivity and health of crops. The pro-
posed approach is novel in terms of empirical curvelet transform 
method, construction of the NDVI based on the new formula, and Den-
seNet model to predict NDVI using RGB drone imagery data. Here each 
channel of drone RGB imagery data was passed through empirical cur-
velet transform method to decompose the data where the curvelet co-
efficients were analysed and calculated. The curvelet coefficients were 
then used to construct the new formula to design the NDVI. Lastly, the 
output of the new formula was sent to DenseNet model to predict the 
final NDVI. 

In this paper, we proposed a newly designed model for NDVI pre-
diction using empirical curvelet transform coupled with DenseNet 
model. The methodology consists of 3 steps, obtaining Curvelet co-
efficients for RGB channels, designing NDVI index, training and testing 
the model using DenseNet. These are discussed in detail in the coming 
sections. Fig. 1 depicts the schematic view of proposed modelling 
framework. 

Fig. 1. Flowchart of the proposed model for NDVI prediction.  
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3.1. Two-dimension empirical wavelet transform (EWT) 

NDVI images are comprised of various texture patterns. These 
texture patterns are complex and can be depicted as a combination of 
several oscillations. The goal of this section is to give an overview about 
EWT. Texture analysis is a difficult task as it requires to investigate all 
types of irregularity within textures. 

The EWT was originally designed as a signal decomposition tool. It 
has been used to separate and detect principal harmonic modes of sig-
nals (Zhang et al., 2022). The EWT comprises of two phases. First, it 
divides the Fourier spectrum into N supports, this step involves building 
the Fourier domain a filter bank. Second, it filters the input signal using 
the built filter bank to obtain the different components. The filter bank 
(FB) contains N wavelet filters in which one low-pass filter represents 
the approximation component while the N − 1 bandpass filters represent 
the details components (Drees et al., 2021). 

Suppose the Fourier spectrum is separated into N segments with 
boundaries {φn}

N
n=0 where φn = π,φ0 = 0. Using Meyers wavelet, a filter 

bank of wavelet is constructed. 

{φ1(x), {μ(x)}N− 1
n=1 } (1) 

The Fourier transform (f1) of empirical scaling function is expressed 
as 

f1(φ1)(ω)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1if |ω| ≤ (1 − μ)φ1

cos[
π
2

β(
1

2μφ1
(|φ| − (1 − μ)φ1))]if (1 − μ)φ1 ≤ |ω| ≤ (1+μ)φ1

0otherwise
(2)  

where the FT of EWD is given by  

where n = 1,⋯.,N, and β is an arbitrary function. The EWT is defined as 
the same way as the WT. The coefficients are obtained as 

wε
f (n, x) = F1(F1((f )(φ)F1(φn)(ω) )(x) (4) 

And the approximated coefficients are given as 

wε
f (o, x) = F1(F1((f )(φ)F1(φ1)(ω) )(x) (5)  

3.2. Curvelet coefficients analysis to construct new NDVI index 

To construct an empirical curvelet filter, the procedure in (Emami, 
Aliabadi et al. 2020) was adopted in this paper. For each input image im, 
s set of scale boundaries φi

ω =
{

ωn
i
}
, n = 0, ⋯.., n = Ni

s, and a set of 
angular boundaries φi

α =
{

αm
i
}
,m = 0,⋯.., n = Ni

α are detected and 
analysed, Where Ni

s and Ni
α are to the number of detected angular sectors 

and scales for the image im. Then, we employed the merging technique 
illustrated above on φi

ω =
{

ωn
i
}
,φi

α =
{

αm
i
}

to remove the useless sup-
ports. A threshold was employed to explore small supports. Threshold 
was set to Tω = 0.2,Tα = 0.06. As a result, we obtained two final sets of 
scales and angular boundaries. 

Based on above notation, the empirical curvelet filter are designed 
using a lowpass filter ∅1 constructed using ω, andα that corresponds to 
the polar coordinates in Fourier domain and the 2D Fourie terraform f2, 
where ∀α ∈ [0,2π]

f 2(∅1)(ω,α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1if |ω| ≤ (1 − μ)ω1

cos
[

π
2

β
(

1
2μω (|ω| − (1 − μ)ω )

)]

if 1if |ω| ≤ (1 − μ)ω1

0otherwise
(6)  

where β is an arbitrary function belonging to Ck([0,1]), and fulfilling the 
following conditions. 

β(x) = 0ifx ≤ 0  

β(x) = 1ifx ≥ 1  

β(x)+ β(1 − x) = 1, ∀x ∈ [0, 1]

The parameter μ allows us to ensure that only two consecutive filters 
can be overlapped. More details regarding chosen the two parameters in 
[1,3]. The bandpass curvelet filter fnm is equivalent to the polar wedges 
in Fourier domain. It’s defined as the product of polar window Wm and 
radial windowVn. .F2(fmn) = WnVm where  

while Vm is calculated as 

f1(φn)(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1if (1 + μ)ωn ≤ |ωn| ≤ (1 − μ)ω + 1

cos[
π
2

β(
1

2μωn+1
(|ω| − (1 − μ)(ωn + 1) ]if (1 − μ)ωn ≤ |ω| ≤ (1 + μ)ωn + 1

sin[
π
2

β(
1

2μωn
(|ω| − (1 − μ)(ωn) ]if (1 − μ)ωn ≤ |ω| ≤ (1 + μ)ωn

0othersie

(3)   

Wm(φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1if (1 + μ)ωm ≤ |ω| ≤ (1 − μ)ωm + 1

cos[
π
2

β(
1

2μωm + 1
(|ω| − (1 − μ)ωm ))]if (1 − μ)ωm ≤ |ω| ≤ (1 + μ)ωm + 1;

sin[
π
2

β(
1

2μωm + 1
(|ω| − (1 − μ)ωn− 1 ))]if (1 − μ)ωn− 1 ≤ |ω| ≤ (1 + μ)ωn + 1;

0otherwise

(7)   
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Vm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1if θn + Δθ ≤ θ ≤ θn+1 − Δθ

cos[
π
2

β(
1

2Δθ
(θ − θn+1 + Δθ))]if θn+1 − Δθ ≤ θ ≤ θn+1 + Δθ

sin[
π
2

β(
1

2Δθ
(θ − θn + Δθ))]if θn − Δθ ≤ θ ≤ θ1 + Δθ

0otherwise

(8) 

Finally, the corresponding filter bank is obtained by 

Bεc = {f 1(x),∅mn9x)}, n = 1,⋯Ns,m = 1,⋯.,Nθ (9)  

where x is a pixel in the 2D plane. The empirical curvelet transform is 
denoted as Wεc of image im. This can be expressed as 

Wεc(x)= ((∅*f )(x), (φ11*f )(x), (φ12*f )(x),⋯., (φmn*f )(x),⋯.,
(
φmsnθ

*f
)
(x)
(10)  

where * is convolution product. All convolutions are performed as 
pointwise product in Fourier transform and then, the inverse Fourier 
transform is performed to obtain curvelet coefficients. Figs. 2, 3, and 4 
show examples of texture patterns of RGB, and NDVI image. 

3.3. Designing new NDVI index 

Our main objective is to use the curvelet coefficients to construct the 
new NDVI index. Based on equation (9) to design an NDVI index from 

RGB channels, we utilized the curvelet coefficients of three channels 
including red, green, and blue. The proposed index is formulated using 
the following equation: 

NewNDVI = (Rtexture*weight, Gtexture*weight, Btexture*weight) (11)  

Where Rtexture, Gtexture, RBtexture, are the curvelet coefficients of the three 
channels (R, G, B) respectively. The weights (weight) is empirically 
chosen. We conducted several experiments based on hit and trail tech-
nique to determine the optimal weight value. At each experiment, the 
new formula was sent to the prediction model (i.e., DenseNet), and the 
MSE was calculated. The procedure was repeated until, the optimal 
weight value was obtained for each channel. The histogram of the actual 
NDVI and the proposed NDVI was plotted in Fig. 5 to show how the two 
models are close to each other. 

Fig. 6 shows an example of comparison between the proposed NDVI 
against the reference NDVI. The proposed NDVI was formulated from 
the RGB channels using equation (11). The regression between the 
proposed NDVI and the actual NDVI was calculated for pixel value. 

3.4. NDVI prediction using DenseNet model 

In deep learning-based approaches, Convolutional neural networks 
have been proven to be an effective tool to achieve higher recognition 
rates. The existing deep learning methods are designed to extract fea-
tures from single scale. Thus, the model cannot fully extract the feature 

Fig. 2. Texture analysis for (a) RGB image, (b) Texture output, (c) Visual segmentation texture of RGB image and (d) Texture in grey color.  
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information from the data, resulting in poor classification results. The 
architecture of the proposed DenseNet networks is shown in Fig. 7. The 
proposed DenseNet is constructed to predict NDVI images correspond to 
RGB images. The DenseNet model has been applied for various predic-
tion issues due to its ability to accurate predict the target values. For 
example, Seong et al., (2024) employed DenseNet model for deforma-
tion prediction. Albahli et al., (2023) proposed an advanced DenseNet 
model for prediction of stock market from time series data. The proposed 
DenseNet model includes an input layer, convolutional layers, a batch 
normalization layer, max-pooling, and fully connected layers (Yi et al., 
2017, Bui et al., 2020). The convolutional layer performs convolution 
computations on the input images using a convolution kernel. Batch- 
normalization is responsible for the fostering generalization of Dense-
Net model. The max pooling layer avoids an overfitting problem that 
could be appeared by down-sampling. 

Finally, the fully connected layer employees the extracted features to 
deliver the final classification (Gilles, 2013). The DenseNet model con-
sists of three multi-scale blocks with three fully connected layers of sizes 
256, 128, and 2. 

fuulyconnected = α(f *x+ c) (12)  

where f refers to the kernel weight, c denotes bias, α activation function, 
and x is the input image. A soft max layer was used to determine the 
probability RGB images using the following equation 

SWj =
Epj

∑M
i=1Epj

(13)  

where SWj is the probability of the sample belonging to the class pj, M is 
the total of classes. In this paper, cross entropy was employed as a loss 
function. The main formula for the loss function is expressed as 

Lossfucntion = 1
1
M

yilogyi (14)  

where yi and yi denotes to the predicted and actual samples. For 
recurrent updating, and parameters learning, the Mini-Batch Gradient 
Descent was employed. 

α = αr − θ*
1
m

∑j+m

i=j
(y(i) − hα(xi))xi

j (15)  

where m,α,θ, αr refers to the learning rate, mini-batch size, weight pa-
rameters, and feature index. y is the actual label, x refers to the input 
images, hα denotes the predicted output. 

3.5. Hyperparameters setting 

Selecting the optimal parameters has a great effect on the perfor-
mance of the prediction model. In this paper, the parameters of all 
models used were selected. Table 1 lists the hyperparameters of all 

Fig. 3. Example of texture analysis field image for (a) RGB image, (b) Texture output, (c) Visual segmentation texture of RGB image and (d) Texture in grey colour.  
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models used in NDVI prediction. Multi-experiments were conducted to 
select the parameters carefully for optimum accuracy of each model. As 
mentioned before the loss function was cross entropy, the rate of 
learning was set to 0.004. The network was trained for 50 iterations with 
a 34 size of mini batch. The LeakyReLU was used as an activation 
function. Adam optimizer is used for the network optimizer algorithm. 

3.6. Evaluation metrics 

To evaluate the proposed model, several metrics were used including 
accuracy, sensitivity, specificity, precision, recall, and f1-score, and 
three quantitative metrics named structural similarity (SSIM), peak 
signal to noise ratio (PSNR) and mean square error (MSE) were 
employed in this study. 

The different metrics used are defined as follows (Winkler and 
Mohandas, 2008, Huynh-Thu and Ghanbari, 2012, Gilles, 2013, Huang 
et al., 2019, Zeng et al., 2019, Gan et al., 2021, Jahmunah et al., 2023): 

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(16)  

Sensitivity(SEN) =
TP

TP + FN
(17)  

Specificity(SPE) =
TN

TN + FP
(18)  

Precision(Prec) =
TP

TP + FP
(19)  

F − score = 2 ×
Prec × SEN
Prec + SEN

(20)  

where TP is the total number of correctly predicted NDVI samples, FN is 
the total number of mistakenly predicted NDVI samples, FP is the total 
number of incorrectly classified HC samples as MDD cases, and TN is the 
total number of correctly predicted NDVI. In addition, quantitative ac-
curacy of the model was calculated using structural similarity (SSIM), 
the following metrics: 

SSIM(x, y) =
(
2avx2avyC1

)
+ (2covrxy + C2)

(av2
xav2

yyC1)(ver2
x + ver2

y + C2
(21)  

where x, and y has the same length, avx is the average of x, avy is the 
average of y, ver2

x is the variance of x, ver2
y is the variance of y, covrxy is 

the covariance of x, y, and C1, and C2 are the variables to stabilize the 
week dominator. The value of SSIM rages from 0 to 1, where 0 indicates 
no image similarity, and 1 indicates identical image. 

We also utilized MSE and RMSE. The MSE is defined as the average 
squared error between predicted, and actual data. While RMSE is the 
average magnitude of the errors of prediction model. The values of MSE, 
and RMSE ranges from 0 to ∞. A good predictor model should produce 
lower values of MSE, and RMSE. 

Fig. 4. Texture analysis of (a) NDVI image, (b) Texture output, (c) Visual segmentation texture of NDVI image and (d) Texture in grey colour.  
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PSNR = 20log10(
maxi
̅̅̅̅̅̅̅̅̅̅
MSE

√ (22)  

MSE =
1

mn

∑m− 1

0

∑n− 1

0
||f (i, j) − g(i, j) ||2 (23)  

where maxi is the maximum signal value in the original image, g is the 
compared image, f is the original image, m, n are the dimension of row 
and column of images. 

4. Experimental results 

In this section, we discussed the obtained results in three contexts i. 
e., evaluation using Quantile-Quantile (Q-Q) plot, comparison with 
other models, and evaluation based on SSIM, PSNR, and MSE. The 
proposed NDVI was designed using the RGB channels obtained from the 
camera as an input to the proposed model based empirical curvelet 
coupled with deep learning along with comparing models. To evaluate 
the proposed model, several metrics were used including accuracy, 
sensitivity, specificity, and three quantitative metrics named structural 
similarity (SSIM), peak signal to noise ratio (PSNR), mean square error 
(MSE), Precision, f1-score and Recall were employed in this study. 

4.1. Model evaluation using Quantile-Quantile (Q-Q) plot 

The Q-Q plot is a graphic tool which has been designed to validate 
two models according to their distributions, and behaviors. In this 
experiment, we evaluate the degree of similarity between the proposed 
NDVI model with the actual NDVI based on color distributions. The 
quantiles of the prosed NDVI were plotted against the quantiles of actual 
NDVI. The quantiles indicated to the number of pixels that lie below a 
given value. Based on Q-Q plot hypothesis, a total of 30% of the data-
points should be below the given value, however, the rest of the data-
points should remain above that value. A 45-degree reference line was 
mapped. If two models have the same behaviors and distribution, all 
points should be fall along the reference line. Fig. 8 shows the Q-Q plot 
of the proposed NDVI model and the actual NDVI. 

4.2. Performance comparison with other models 

The proposed DenseNet was compared with convolution neural 
networks (CNN), ResNet, simple neural networks (NN). In this experi-
ment, the output of the proposed model from Eq. (11) was fed to the 
proposed DenseNet model as well as to the CNN, simple NN, and ResNet. 
The comparisons were carried out in terms of accuracy, precision, recall, 
and F1-score. Table 2 displays the obtained results. The results 
demonstrated that the proposed DenseNet outperform the other models. 
It recorded the highest accuracy with 97% compared to CNN, simple NN, 

Fig. 5. Histogram comparison between the proposed NDVI and the actual NDVI.  
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and ResNet. However, the CNN obtained the second highest accuracy. 
Fig. 9 reports the prediction results. 

The error rate for the proposed DenseNet model was also calculated 
and compared with the CNN, ResNet, and simple NN. Fig. 10 reports the 
error rate for DenseNet and the other models. The error rate of DenseNet 
was 0.02, Simple NN is 0.4, CNN is 0.3, ResNet is 0.4. 

4.3. Model evaluation based on SSIM, PSNR, and MSE 

To evaluate the performance of the proposed model, three quanti-
tative metrics named structural similarity (SSIM), peak signal to noise 
ratio (PSNR) and mean square error (MSE) were employed in this study. 
We calculated the SSIM, PSNR, and MSE for each pair of real NDVI and 
the predicted NDVI. Fig. 11 shows that the average of SSIM varies 0.96 

Fig. 6. Regression curve for the proposed NDVI and the actual NDVI.  

Fig. 7. The architecture of the DenseNet model.  
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and 0.99, which drop down to 0.90, and 0.89 for three images. Our 
investigation showed that worse performance was obtained when the 
proposed model was tested on image that it had not a crop. Fig. 12 shows 
an example of image in which the proposed model showed a poor 
performance. 

The PSNR metric was also calculated to evaluate the performance of 

the proposed model. Fig. 13 shows the PSNR for all predicted images and 
it can be observed that the proposed model showed a high correlation 
with actual NDVI. However, as mentioned before, the performance of 
the proposed model decreased when it was tested on some types of 
images as shown in Fig. 12. 

To further quantify how well the proposed performed across the 
NDVI images, another performance evaluation was carried out using 
MSE metric. Fig. 14 shows the obtained results by MSE proven that the 
proposed model predicted most NDVI images correctly. To shed more 
light on the performance of the proposed model, the proposed DenseNet 
model was compared with the CNN, simple NN, and ResNet. Table 3 
reports the prediction results in terms of the SSIM, PSNR, and MSE. From 
the results obtained, we can notice that the DenseNet outperforms the 
other models, and it scored the highest values of the SSIM, PSNR, and 
MSE. However, the simple NN recorded the lowest average of the SSIM, 

Table 1 
List of hyper-parameters used for each model.  

Model Hyperparameters 

DenseNet Learning rate = 0.004 
batch size = 5 
dropout rate = 0.2 
epoch = 1000 
activation function = LeakyReLU 

ResNet Learning rate = 0.005 
Batch size = 2 
activation function = ReLu 

CNN Learning rate = 0.003 
Batch size = 3 
Solver = adam 

Simple NN Learning rate = 0.005 
Batch size = 5 
Solver = adam, 
activation function = ReLu,  

Fig. 8. Q-Q plot curve for the proposed NDVI and the actual NDVI.  

Table 2 
Prediction results of the proposed and comparing models.  

Model Accuracy Precision f1-score Recall 

DenseNet 97 % 95 % 95 % 96 % 
CNN 88 % 87 % 87 % 86 % 
ResNet 86 % 85 % 86 % 85 % 
Simple NN 84 % 82 % 83 % 82 %  
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PSNR, and MSE. 

5. Discussions 

In this paper, we proposed NDVI prediction model based on empir-
ical curvelets transform method and deep DenseNet model using the 
RGB drone imagery data form Prince Edward Island, Canada. In this 
section, the main findings are summarized as follows:  

1. Although the model presented in this study provided a new 
perspective to predict and monitor crops that could be useful to 
identify issues related to plant diseases to assist forest managers and 
framers, the proposed model only tested with small dataset. In future 
research, we aim to develop more efficient solutions to generalize the 
proposed model, a large dataset is required with different crops to 
evaluate the effectiveness of the proposed model. In addition, further 

improving the overall efficiency of the framework will also be made 
by testing more texture features.  

2. In this model, only six deep learning models were coupled with the 
empirical curvelets transform method to predict NDVI. One of our 
future works is to test other models such as graph based deep 
learning, LSTM. In addition, a further investigation will be made to 
find more accurate models that can predict NDVI with a high pre-
diction rate. 

3. To illustrate the efficiency of empirical curvelets transform tech-
nique in NDVI prediction. A new experiment was conducted in which 
the images were forwarded to various models with and without 
involving curvelet coefficients technique. Fig. 15 reports the ob-
tained results in term of accuracy. It was observed that the prediction 
rate was declined for all models when the RGB images were for-
warded directly to the prediction models. The results approved the 
ability of the proposed formula to correctly transfer RGB images into 

Fig. 9. Comparisons among the DenseNet and other models.  

Fig. 10. Error rate of the DenseNet model and other models.  

Fig. 11. SSIM results of all RGB inputs.  
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NDVI map and the prediction rate was notably increased as show in 
Fig. 15.  

4. In this experiment, the performance of the proposed model for NDVI 
prediction was evaluated in term of ROC. The specificity was plotted 
against sensitivity to calculate the ROC curves. Fig. 16 shows the 
ROC curves of the DenseNet model, CNN, simple NN, and ResNet. 
The performance of the four models were evaluated was in term of 
area under the curve (AUCI). The obtained results showed that the 
DenseNet model outperforms the other model, and it was scored 
AUCI of 0.96. however, the CNN model recorded AUC1 of 0.90, 
while the simple NN obtained the lowest AUC1.  

5. The correlation coefficient (CC) metric was also utilised to assess the 
proposed model for NDVI prediction. The correlation coefficient of 
the actual and predicted NDVI was computed for the DenseNet 

model, CNN, simple NN, and ResNet. Fig. 17 reports the correlation 
coefficient over different sample. In this experiment. The average of 
correlation coefficient of different sample was computed and pre-
sented in Fig. 16.  

6. The Willmott’s Index (d) was also used to evaluate the proposed 
model. The index calculates the degree of model prediction error 
which ranges between 0 and 1. The index of agreement indicates the 
ratio of the mean square error and the potential error. The d value of 
1 indicates a perfect match, while 0 indicates no agreement at all. 
The Willmott’s Index detects additive and proportional differences in 
the observed and simulated means and variances. The results of 
Willmott’s Index in Fig. 18 showed that the proposed model offers 
substantial benefits in NDVI prediction. The Willmott’s Index was 
calculated for DenseNet model, CNN, simple NN, and ResNet. 

The NDVI uses specific wavelengths to examine crop health and 
performance. The proposd model can be implemented to increasie the 
accessibility of spectral imaging systems through the development of 
small, low cost, and easy to use platforms for precision agriculture. 

Fig. 13. PSNR results of all RGB inputs.  

Fig. 14. MSE results of all RGB inputs.  

Fig. 12. Example of images with low performance.  

Table 3 
Performance evaluation in terms of SSIM, PSNR, MSE.  

Model SSIM PSNR MSE 

DenseNet  0.98 30 120 
CNN  0.88 25 370 
ResNet  0.79 20 270 
Simple NN  0.85 23 400  
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6. Conclusion 

This paper proposed a novel empirical curvelet transform based 
DenseNet model to predict NDVI using RGB drone imagery data. In the 
proposed model, each channel of drone RGB imagery data was passed 
through empirical curvelet transform method where the curvelet co-
efficients were analysed and assessed. As a result, the curvelet 

coefficients were used to generate a new formula to design NDVI. 
Finally, the output of the new formula was sent to DenseNet model to 
predict the final NDVI. The proposed model is compared against CNN, 
simple NN, and ResNet models using several goodness-of-fit metrics and 
diagnostic plots to predict NDVI. 

The results showed that there was a strong relationship between the 
actual NDVI and the new formula. According to the goodness-of-fit 
metrics, the proposed model has potential to generate NDVI from RGB 
images with high SSIM and PSNR values, and lower MSE. A high QQ plot 
and correlation were obtained for the DenseNet model as compared to 
other benchmarking models. 

The proposed model can be updated when large region prediction is 
required. Moreover, the curvelet coefficients can be further examined 
using graph theory concept to find the relationship among image 
channels. The scope of this work can be enhanced by employing and 
validating the proposed model in other areas such as agriculture, climate 
change, hydrology, environment, and renewable sectors for better de-
cision making. In the future research, other regions can be considered to 
provide a standard NDVI prediction model. It is believed that the pro-
posed model can provide important references for both farmers and 
agricultural managers in the region to monitor crops and their health. In 
addition, the proposed model can reduce the high cost associated with 
generating an NDVI from multispectral sensors. 
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