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ABSTRACT 

Forecasting hydrologic phenomena are critical for strategic environmental planning, 

designing the hydrologic structures, and managing agricultural practices and water 

resources. Physical models are the mainstream method that helps understand the 

physical mechanisms and dynamics used in hydrological predictions. They are used for 

addressing the characteristics of hydrological phenomena while considering the initial 

conditions and spatial-temporal resolution of the model inputs. Data-driven models, on 

the other hand, are based on artificial intelligence and are designed as alternatives to 

discover the relationships between a set of predictors and a target variable without 

considering any of the initial conditions or underlying assumptions. These methods are 

relatively new and are becoming state-of-the-art to address different prediction 

problems.  

This doctoral thesis, with its five primary objectives, aims to build a set of deep 

learning hybrid models and evaluate for their predictive skills in forecasting 

hydrological variables such as soil moisture (SM), evapotranspiration (ETo), and 

streamflow water levels (SWL) within Australian Murray-Darling Basin. The first 

objective establishes the significance of feature selection to predict the monthly SWL 

at six study sites. The BRF-LSTM hybrid method integrated with the long-short term 

memory (LSTM) model with a Boruta-Random forest optimizer (BRF) is used to 

demonstrate the importance of feature selection for SWL forecasting problems. 

The second objective is to develop a CNN-GRU hybrid model using the ant 

colony optimization to screen the most correlated features from a diversified set of 

inputs using convolutional neural network (CNN) and gated recurrent unit (GRU) 

networks for evapotranspiration (ETo) forecasting. The results show that the CNN-

GRU model integrated with the ACO method has outperformed the benchmark models 

over multi-step forecast horizons, and it has also captured the complex and non-linear 

relationships between predictors and daily ETo. The third objective employs the BRF-

feature selection method to identify the global climate model (GCM)-simulated 

variables for an LSTM model, aiming to estimate upper-layer surface soil moisture 

(SM) under RCP4.5 and 8.5 warming scenarios. The results demonstrate that the 

proposed BRF-LSTM model is more accurate than benchmark models, and this 

objective has established a new approach that can deal with GCM-simulated variables.  
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The fourth objective develops a CEEMDAN-CNN-GRU hybrid model to 

forecast daily surface soil moisture (SSM) by using neighbourhood component analysis 

(NCA), complete ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN), convolutional neural networks (CNN), and gated recurrent units (GRU). 

The CEEMDAN-CNN-GRU hybrid model outperforms all benchmark and standalone 

models in simulating surface soil moisture. The fifth objective is to develop the 

CBILSTM hybrid model, coupled with CEEMDAN and a variational mode 

decomposition (VMD) to build the CVMD-CBiLSTM hybrid model for streamflow 

water level forecasting. This proposed model reveals that the CVMD-CBiLSTM hybrid 

model had outperformed the benchmark models.  

The artificial intelligence (AI) methodologies developed in this PhD project are 

expected to be a significant step forward in developing AI-based data-driven decision 

support systems that will enable hydrologists and climate specialists to design water 

resource management strategies. Though this work focuses on soil moisture, 

evapotranspiration, and streamflow water level forecasting, the developed 

methodologies can also contribute significantly to other areas, such as flood forecasting, 

irrigation scheduling, and sustainable management of water resources. Overall, the 

doctoral study establishes significant scientific pathways for water resources 

management and smart farming using AI-based decision support systems. 
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moisture data in the testing phase.  

Table 6 Evaluation of the performance of BRF-LSTM vs. the BRF-SVR, 

BRF-MARS, SVR, and MARS models at five stations of HadGEM2-

CC with the correlation coefficient (r), root mean square error 

(RMSE; mm), mean absolute error (MAE; mm), and the standardized 

performance metrics (Willmott’s Index, WI & Nash-Sutcliffe 

coefficient, NS) between the predicted and observed soil moisture 

data in the testing phase 

Table 7 Evaluation of the performance of BRF-LSTM vs. the BRF-SVR, 

BRF-MARS, SVR, and MARS models at five stations of HadGEM2-

ES with the correlation coefficient (r), root mean square error 

(RMSE; mm), mean absolute error (MAE; mm), and the standardized 

performance metrics (Willmott’s Index, WI & Nash-Sutcliffe 

coefficient, NS) between the predicted and observed soil moisture 

data in the testing phase 

Table 8 The training performances of the proposed hybrid deep learning 

model (i.e., BRF-LSTM) with selected stations of respective GCMs 

for RCP4.5 and RCP8.5 global warming scenarios.  

Table 9 Diebold–Mariano (DM) test was adopted to compare the predictive 

accuracy of any two forecasting Models (i.e., BRF-LSTM vs. SVR) 

for selected GCMs with RCP4.5 and RCP8.5 global warming 

scenarios. 
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Table 10 Kolmogorov-Smirnov (KS) test for normality of the estimated SM 

under RCP4.5 and RCP8.5 global warming scenarios. 

 

Chapter 6 

Table 1 Geographic locations and physical characteristics of selected sites in 

Murray Darling Basin 

Table 2 Description of the global pool of 52 predictor variables used to 

design and evaluate hybrid CEEMDAN-CNN-GRU predictive 

model for daily surface soil moisture forecasting. 

Table 3 (a) Range of tested hyperparameters in designing hybrid CNN-GRU 

and GRU predictive models through grid search. (b) Optimally 

selected hyperparameters. ReLU stands for Rectified Linear Units, 

SGD stands for stochastic gradient descent optimiser  

Table 4 Evaluation of hybrid CEEMDAN-CNN-GRU vs. benchmark (CNN-

GRU,  CEEMDAN-GRU, GRU) models for the specific case of 

Menindee study site. The correlation coefficient (r), root mean 

square error (RMSE; Kg m-2), mean absolute error (MAE; Kg m-2), 

and Nash-Sutcliffe coefficient, NS) is computed between forecasted 

and observed surface soil moisture for the 1st Day, 5th Day, 7th Day, 

14thDay, 21stDay, and 30thDay ahead periods in the testing phase. 

The optimal model is boldfaced (blue). 

Chapter 7 

Table 1 
Geographic locations and physical characteristics of selected sites in 

the Murray River System. 

Table 2 Description of predictor variables used to design and evaluate hybrid 

CVMD-CBiLSTM predictive model for daily SWL forecasting. 

Table 3 Optimally selected hyperparameters of deep learning models. ReLU 

stands for Rectified Linear Units, SGD stands for stochastic gradient 

descent optimiser 
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Table 4 Evaluation of hybrid CVMD-CBiLSTM vs. benchmark (CBiLSTM, 

BiLSTM, SVR) models for the Murray River System study sites. The 

correlation coefficient (r) and root mean square error (RMSE; m) are 

computed between forecasted and observed stream water levels in 

the testing phase for the 7-Day ahead periods. 

Table 5 Promoting Percentage of Legates and McCabe’s (LM) Index (𝛿𝐿𝑀), 

Mean Absolute Percentage Error (𝛿𝑀𝐴𝑃𝐸 ), and the Relative Root 

Mean Square Error (𝛿𝑅𝑅𝑀SE) to compare the various models used in 

SWL forecasting. 

Appendix A 

Table 1 List of Global Forecast System (GFS)-forecast variables (i.e., 2-

metre temperature, 10-metre wind speed, total cloud cover, and 

downward short-wave radiation flux) used as KRR model inputs, and 

GFS analysis variable (i.e., total cloud cover used as proxy observed) 

in the proposed KRR model used in bias correction problem.   

Table 2 Descriptive statistics of GFS forecast and GFS analysis data were 

used to develop the proposed KRR model. Data were acquired from 

the GFS model over January 1, 2019, and April 30, 2020, used for 

training 70% and testing (30%), where the remaining 15% of the 

training set is used for model validation. 

Table 3 Mean Absolute Error (MAE, %) between ‘proxy observed’ 

(TCDCGFS-Analysis) and ML-bias corrected TCDCBC using our 

proposed KRR model. Our conventional bias correction MRNBC 

method, whereas benchmark methods include BNR, DTR, GBR, 

HGBR, KNN, MARS, MLR,  and RF model. Approach 1 used 

T2mGFS-Forecast, VGFS-Forecast, UGFS-Forecast, TCDCGFS-Forecast, and 

DSWRFGFS-Forecast. In contrast, in Approach 2, we used TCDCGFS-

Forecast as a predictor (or input) variable against TCDCGFS-Analysis as a 

target variable.  
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Table 4 The optimal hyperparameter of the proposed KRR model, including 

that of the other benchmark models methods, include machine 

learning (i.e., BNR, DTR, GBR, HGBR, KNN, MARS, MLR, & RF) 

Table 5 List of Global Forecast System (GFS)-forecast variables (i.e., 2-

metre temperature, 10-metre wind speed, total cloud cover, and 

downward short-wave radiation flux) used as KRR model inputs, and 

GFS analysis variable in the proposed KRR model used in bias 

correction problem.   

Table 6 Descriptive statistics of GFS forecast and GFS analysis data were 

used to develop the proposed KRR model. Data were acquired from 

GFS model over January 1, 2019, and April 30, 2020, used for 

training 70% and testing (30%), where the remaining 15% of the 

training set is used for model validation. 

Table 7 Mean Absolute Error (MAE, %) between ‘proxy observed’ 

(TCDCGFS-Analysis) and ML-bias corrected TCDCBC using our 

proposed KRR model. Our conventional bias correction is an 

MRNBC method, whereas benchmark methods include BNR, DTR, 

GBR, HGBR, KNN, MARS, MLR,  and RF model. Approach 1 

used T2mGFS-Forecast, VGFS-Forecast, UGFS-Forecast, TCDCGFS-Forecast, and 

DSWRFGFS-Forecast. In contrast, in Approach 2, we used TCDCGFS-

Forecast as a predictor (or input) variable against TCDCGFS-Analysis as a 

target variable. 

Table 8 The optimal hyperparameter of the proposed KRR model, including 

that of the other benchmark models methods, include machine 

learning (i.e., BNR, DTR, GBR, HGBR, KNN, MARS, MLR, and 

RF) 
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Table 1 (a) A description of the 32 predictors from the MERRA-2 satellite 

system used to design the hybrid GWO-CEEMDAN-KRR model for 

wheat yield prediction (tonnes) in South Australia. (b) Feature 

selections were undertaken using Grey Wolf Optimization (GWO), 

Ant Colony Optimization (ACO), Particle Swarm Optimization 

(PSO), and Atom Search Optimization (ASO) and a “” shows the 

selected feature whereas a “×” shows the rejected feature.  

Table 2 Evaluation of the hybrid CEEMDAN-KRR vs. the benchmark (i.e., 

CEEMDAN-MLR, CEEMDAN-RF, CEEMDAN-SVR) models and 

their standalone counterparts (i.e., KRR, MLR, RF, and SVR) 

models. The r and normalized root mean square error (NRMSE) is 

computed between predicted and observed Wheat Yield (Y, tones) 

South Australia. The optimal model, GWO-CEEMDAN-KRR, is 

boldfaced (blue). 

Table 3 Table 3 The Optimal parameter values for the optimization 

algorithms (i.e., GWO, ACO, ASO,  and PSO)  
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Fig. 2.1    Map of the study region (a) the location of Murray Darling Basin 

(MDB), with close-ups (b-f) illustrating the selected sites for 

objectives 1 to 5, respectively. 
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Chapter 3  

Fig. 3.1  Graphical Abstract of Objective 1  

Fig. 1 Map of the study region with oceanic representation used to calculate 

the climate mode indices. Notations and equations of the climate 

indices are provided in Table 2.   

Fig. 2 The Australian Murray Darling Basin shows the selected river 

stations. 

Fig. 3 The monthly mean values of streamflow water level (SWL) for six 

selected stations within the Australian Murray Darling Basin 

Fig. 4 Topographical structure of the predictive models designed for the 

prediction of SWL (a) 4-layered Long short-term memory (LSTM) 

and (b) 3-layered  Gated Recurrent Unit Network (GRU). Note: [𝑥𝑡 is 

the new input, ℎ𝑡 is the hidden state, ℎ𝑡−1 is the last hidden state, 𝐶̃𝑡 

is the cell state, 𝐶̃𝑡−1is the previous cell state, 𝑡𝑎𝑛ℎ is the hyperbolic 

tangent function, 𝑂𝑡 is the output gate and  is the logistic sigmoid 
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Fig. 5 Workflow detailing the steps in the model designing, as for the 

proposed hybrid BRF-LSTM and BRF-GRU predictive models  
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Fig. 6 Box plots of the Z-scores by the Boruta for the Brewarrina (ST6) as 

an example used in determining significant features from a) the 

climate indices and b) the considerable lags of climate indices, 

rainfall, periodicity, and SWL. Blue resembles the shadow inputs, 

while green represents the Z-score distributions of confirmed inputs 

with notably considerable importance.  

Fig. 7 Partial autocorrelation function (PACF) plot of the SWL time series 

exploring the antecedent behaviour in terms of the lagged values of 

SWL every month. The red line in the figures indicates the ±95% 

confidence level.  

Fig. 8 Correlogram showing the covariance between the objective variable 

(SWL) and the predictor variable (climate indices, rainfall, and 

periodicity) in terms of the Cross-correlation coefficient (rcross) for 

North Cuerindi stations of MDB. Blue lines indicate the significance 

of rcross at the 95% confidence interval for each panel.  

Fig. 9 Comparison of the forecasting skill for all of the proposed models in 

terms of the relative error: RRMSE (%) and RMAE (%) within the 

testing period.   

Fig. 10 Cumulative frequency of the SWL generated by the objective model 

(BRF-LSTM) vs. BRF-GRU and the other comparing models in terms 

of absolute forecasting error (|FE|) within the Murray Darling Basin's 

six study sites.  

Fig. 11 Tylor diagram representing the correlation coefficient together with 

the standard deviation difference for proposed hybrid BRF-LSTM and 

BRF-GRU vs. benchmark models for (a) Coggan (b) Barham (c) Wee 

Jasper (d) Cowra (e) North Cuerindi and (f) Brewarrina stations.  

Fig. 12 Comparison between forecasted SWL and observed SWL during the 

model’s testing using the objective model (BRF-LSTM), vs. BRF-

GRU, LSTM, and GRU-based predictive models. 
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Fig. 13 Monthly relative forecasting error (%) generated by the proposed 

hybrid BRF-LSTM and BRF-GRU model vs. the comparative 

counterpart models (i.e., LSTM and GRU) For six stations of MDB. 

Fig. 14 Comparison of the Legates and McCabe's Index (LM) for the 

proposed hybrid deep learning approach (BRF-LSTM and BRF-

GRU) against the other standalone models.  

Fig. 15 Bar graphs showing the mean absolute percentage error (MAPE) for 

the proposed hybrid deep learning approach (BRF-LSTM and BRF-

GRU) in comparison with the other standalone models.  

Chapter 4 

Fig 4.1 Graphical Abstract of Objective 2 

Fig. 1 Reference Evapotranspiration (ETo) value from Menindee station 

January 2019 to March 2020.  

Fig. 2 Selected time-series predictors from January 2019 to March 2020 

(include avg surface temp, evaporation, SOI, Rainfall, and minimum 

temperature).  

Fig. 3 
The architecture of CNN model with 2-layered Gated Recurrent Unit 

for a hybrid CNN-GRU model at week 1–4 ahead ETo forecasting 

with Ant Colony Optimization.  

Fig. 4 Partial autocorrelation function (PACF) plot of the ETo time series 

exploring the antecedent behaviour in terms of the lag of ETo. The red 

line in the figures indicates the ± 95% confidence level.  

Fig. 5 Correlogram shows the covariance between the objective variable 

(ETo) and the predictor variable (plant canopy surface water and 

average surface skin temperature) in terms of the cross-correlation 

coefficient for Menindee stations MDB.  

Fig. 6 Time series of daily evapotranspiration (ETo, mm) for the observed 

and forecasted ETo for the objective model CNN-GRU for (a) MODIS 
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Satellite, (b) SILO data, and (c) Climate mode indices at week 1 lead 

forecasting. 

Fig. 7 An empirical cumulative distribution function (CDF) plot of |FE| of 

the CNN-GRU, CNN-LSTM the standalone models (i.e., GRU, 

LSTM, RNN, MLR, RF, etc.) for Menindee station at Week 1, 2, 3, 

and 4 horizons with Ant Colony Optimization in forecasting ETo 

(mm) at 95 percentiles on ECDF. Note: ET7, ET14, ET21, and ET28 are 

referred to as reference evapotranspiration for week-1, week-2, week-

3, and week-4, respectively.   

Fig. 8 Comparing the forecasting skill of the proposed models in RRMSE 

(%) and NS in the Menindee station's testing period. Note: ET7, ET14, 

ET21, and ET28 are referred to as reference evapotranspiration for 

week-1, week-2, week-3, and week-4, respectively.   

Fig. 9 Scatter plot of forecasted (ETfor) with observed ETo (ETobs) of 

Menindee station at Week 1, 2, 3, and 4 horizons) with the CNN-GRU 

model. A least square regression line and coefficient of determination 

(R2) with a linear fit equation are shown in each sub-panel. Note: ET7, 

ET14, ET21, and ET28 are referred to as reference evapotranspiration 

for week-1, week-2, week-3, and week-4, respectively.   

Fig. 10 Time series of daily evapotranspiration (ETo, mm) for observed and 

forecasted ETo for the (a) objective model (CNN-GRU), (b) 

standalone GRU, and (c) classical MLP at week 1 ahead ETo forecast.  

Fig. 11 Wavelet coherency spectrums between week-1 observed ETo (ET7) 

and forecasted ETo using CNN-GRU and GRU model with ACO. The 

arrows indicate the relative phase relationship within the significant 

zones of higher correlation.  

Fig. 12 The percentage change in RMAE generated by the objective and 

benchmark models using the ACO algorithm adopted in forecasting 

ETo at three sites of Murray Darling Basin. (a) Menindee, (b) 

Fairfield, (c) Gabo Island, and (d) Gatton at different nth (n = 1, 2, 3, 

and 4) week ahead horizon.  
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Chapter 5 

Fig. 5.1 Graphical Abstract of Objective 3 

Fig. 1 Topographical structure of LSTM memory cell following and (Olah 

2015). Note: [𝑥𝑡 is the inputs, ℎ𝑡 is the next hidden state, ℎ𝑡−1 is the 

last hidden state, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, Ct is the 

next cell state, and  is the logistic sigmoid function] 

Fig. 2 A detailed workflow is outlining the necessary steps taken in the 

design of the proposed hybrid BRF-LSTM predictive model for soil 

moisture (SM) estimation for two future global warming scenarios 

(i.e., RCP 4.5 & 8.5).  

Fig. 3 Map of the present study region showing the selected stations and 

their geographical location where the proposed hybrid deep learning 

BRF-LSTM model was validated for monthly SM estimation.  

Fig. 4 Box plot of the Z-scores attained by the Boruta feature selection 

algorithm exploring the relative strength of the predictor variables 

used for SM estimation, provided for the study site 2 (ST4) as an 

example. This method was used to determine the most significant 

input features for the ACCESS 1.3 (RCP 8.5) global climate model. 

Fig. 5 The relative performance of soil moisture estimation model at the five 

study sites for the four global climate model, evaluated according to 

the normalized Kling–Gupta efficiency for (a) RCP 4.5 and (b) RCP 

8.5. Note that KGE = 0 and 1, respectively, for the worst and best 

performance of the proposed model.  

Fig. 6 The caption is identical to Figure 5, except showing the model 

performance in terms of the normalized mean absolute prediction 

error (MAPE).  

Fig. 7 Comprehensive assessment of the performance of the proposed hybrid 

deep learning (i.e., BRF-LSTM) against the counterpart models, 

based on the relative root means square error for the five stations of 

four GCMs for RCP 4.5 and RCP 8.5 warming scenarios  
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Fig. 8 Evaluation of the performance of the proposed hybrid deep learning, 

BRF-LSTM model with the comparative benchmark models based on 

the relative mean absolute error for the five stations of four GCMs. 

The prediction was performed for the testing period for RCP 4.5 and 

RCP 8.5 warming scenarios.   

Fig. 9 Histogram illustrating the frequency of the absolute estimation errors 

(|FE|) of the proposed hybrid deep learning BRF-LSTM model for 

RCP 4.5 warming scenarios for five stations.  

Fig. 10 Illustration of the frequency of absolute value of estimation errors 

(|EE|) of the proposed hybrid deep learning BRF-LSTM model for the 

case of RCP 8.5 warming scenarios at all five study stations.  

Fig. 11 Box plots were constructed to evaluate the discrepancy ratio (i.e., the 

estimated SM/observed SM) generated by the proposed hybrid deep 

learning model BRF-LSTM model relative to the benchmark models 

for RCP 4.5 and RCP 8.5 scenarios. 

Fig. 12 Taylor diagram demonstrating the correlation coefficient, together 

with the standard deviation difference for the proposed hybrid deep 

learning BRF-LSTM vs. benchmark models for the case of the 

RCP4.5 scenario.  

Fig. 13 Caption identical to Figure 12 but for the RCP 8.5 scenario.  

Fig. 14 Scatter plot of the monthly soil moisture of the estimated (‘est’) vs. 

observed (‘obs’) values in the testing phase for the proposed hybrid 

deep learning BRF-LSTM model for the selected ‘best stations’ for 

each GCMs for both global warming scenarios (2005 to 2099).  

Fig. 15 A comparison of the proposed deep learning BRF-LSTM model for 

SM estimation based on the Legates and McCabe’s Index in the 

testing phase, for the two global warming scenarios. (a) RCP 4.5 and 

(b) RCP 8.5   

Fig. 16 A comparison of the proposed deep learning BRF-LSTM model for 

SM estimation based on Wavelet Coherence Spectrums for the two 

global warming scenarios (i.e., RCP 4.5 and RCP 8.5)   
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Chapter 6 

Fig. 6.1 Graphical Abstract of Objective 4 

Figure 1 (a) Schematic of the hybrid CEEMDAN-CNN-GRU model with 

Complete Ensemble Empirical Model Decomposition (CEEMDAN), 

Convolutional Neural Networks (CNN), and Gated Recurrent Unit 

(GRU) Neural Network arrangement. The IMF's (Intrinsic Mode 

Functions) and residual series are generated in the CEEMDAN 

process, whereas the CNN algorithm represents the feature extraction 

stage. (b) 2-layered GRU model. 

Figure 2 The Australian Murray Darling Basin with study sites & Surface Soil 

Moisture (SSM kgm-2) where the hybrid CEEMDAN-CNN-GRU 

model at multi-step daily SSM forecasting 

Figure 3 Workflow with the steps in model design for hybrid CEEMDAN-

CNN-GRU predictive model. SSM = Surface Soil Moisture, NCA = 

neighbourhood component analysis for regression, IMF = Intrinsic 

Mode Function, CEEMDAN = Complete Ensemble Empirical Model 

Decomposition with adaptive noise, GRU = Gated Recurrent Units 

Figure 4 Feature weight matrix of predictor variables from a pool of 52 data 

sources using neighbourhood component analysis at the nth (n = 1, 5, 

and 30) day lead time forecasting of surface soil moisture shown for 

the case of Menindee study station. 

Figure 5 Stair plot showing the relative root mean squared error (RRMSE, %) 

for (a) CNN-GRU, (b) GRU applied at different input combinations 

for Menindee station at the 1st, 5th, 7th, 14th, 21st and 30th Day lead 

time. 

Figure 6 Probability plot (95 percentiles) for hybrid CEEMDAN-CNN-GRU, 

CNN-GRU, CEEMDAN-GRU & GRU. model for Menindee at 

different nth (n = 1, 5, 7, 14, 21 & 30) Day lead time. 

Figure 7 Time series of daily surface soil moisture (SSM, kg m-2) for observed 

SSM (Gray) and forecasted SSM for the objective model, 
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CEEMDAN-CNN-GRU (red) against CNN-GRU (Cyan) and 

standalone GRU model (Purple) for Menindee station at different nth 

(n = 1, 5, 7, 14, 21 and 30) Day lead times. 

Figure 8 Scatter plot of the forecasted and observed SSM. (a) Menindee 

station, (b) Deniliquin, (c) Fairfield, and (d) Gabo Island at different 

nth (n = 1 and 7)Day ahead. A least square regression line, y = mx + 

C, and coefficient of determination (R2) are shown in each sub-panel. 

Figure 9 Polar plot showing the Legates & McCabe’s Index in the testing 

period computed for the hybrid CEEMDAN-CNN-GRU against 

comparative models at different nth Day-ahead forecasting of SSM. 

Figure 10 Contour plot of (a) KGE, (b) MAPE for hybrid CEEMDAN-CNN-

GRU model against comparative models for different nth (n = 1, 5, 7, 

14, 21 & 30) Day-ahead forecasting of SSM. 

Figure 11 
Box plot of errors in the testing phase for hybrid CEEMDAN-CNN-

GRU against comparative models at different nth (n = 1, 7, and 30) 

Day-ahead lead time forecasting SSM. 

Figure 12 The percentage change in RMAE generated by the objective and 

benchmark models using CEEMDAN and CNN methods was adopted 

in forecasting SSM at four study sites: Murray Darling Basin. (a) 

Menindee,(b) Deniliquin, (c) Fairfield, (d) Gabo Island at different nth 

(n = 1, 5, 7, 14, 21 & 30) Day-ahead forecasting SSM. 

Figure 13 The average forecasted SSM vs. observed SSM on a seasonal basis 

using hybrid CEEMDAN-CNN-GRU and CNN-GRU models for 

Menindee at different nth (n = 1, 5, 7, 14, 21 & 30) Day-ahead periods. 

The forecast error (|FE|) in each model is plotted on a secondary axis 

as a line chart. 

Chapter 7 

Fig. 7.1 

 

Graphical Abstract of Objective 5 

Figure 1 (a) The selected river stations of the Australian Murray River System 

including the flood inundation area, (b) 1-Monthly rainfall totals for 

MDB (01/12/2020 – 31/12/2020), (c) 6-Monthly rainfall totals for 
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MDB, (d) 12-hour total rainfall for MDB, (e) 48-hour total rainfall for 

MDB, (f) The land use in the Murray River basin and (g) Irrigated 

area within Murray River system.   

Figure 2 (a) Structure of bi-directional LSTM Network, (b) Topological 

structure of feature extraction algorithm (Convolutional Neural 

Network, CNN) that has been integrated with the objective predictive 

algorithm (Bi-directional Long Short Term Memory Networks 

(BiLSTM)) in this study used to construct CBiLSTM hybrid model in 

the SWL forecasting problem. The forecasting horizon was up to 7-

days, 14-days, and 28-days lead time-step. 

Figure 3 Schematic structure of the two-phase CVMD-CBiLSTM hybrid 

model integrating complete ensemble empirical mode decomposition 

adaptive noise (CEEMDAN) and variational mode decomposition 

(VMD) with Convolutional Neural Network (CNN) that has been 

merged with the Bi-directional Long Short Term Memory Networks 

(BiLSTM).  

Figure 4 (a) Correlogram showing the covariance between the objective 

variable (SWL) and the predictor variables (i.e., T2X, T2M, sam, ccot, 

RHmaxT, GBI) in terms of the Cross-correlation coefficient (rcross) for 

Howlong stations of Murray River System (b) Cross-correlation 

coefficient (rcross) for ccot of the Howlong stations decomposed by 

CEEMDAN (i.e., IMFn and Residuals) and VMD (i.e., VMIFn to Res-

VMD), (c) Partial autocorrelation function (PACF) plot of the SWL 

time series and decomposed ccot using CEEMDAN and VMD. The 

red line in the figures indicates the ±95% confidence level.  

Figure 5 Model performance for forecasting daily SWL (m) in terms of 

RRMSE (%) for Lake Albert, Wakool, and Bringenbrong Bridge with 

input data from SILO, MODIS and CI. 

Figure 6 Box plots of proposed hybrid models (i.e., CVMD-CBiLSTM) along 

with their respective standalone counterparts (i.e., CBiLSTM, 

BiLSTM, and SVR) in forecasting SWL in terms of Correlation 
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Efficient (r) and Root Means Squared Error (RMSE, m) for 19 

selected stations at Murray River System.  

Figure 7 Spatial plots of proposed hybrid models (i.e., CVMD-CBiLSTM) 

along with their respective standalone counterparts (i.e., CBiLSTM, 

BiLSTM, and SVR) in forecasting SWL in terms of Mean Absolute 

Percentage Error (MAPE, %) for 19 selected stations at Murray River 

System 

Figure 8 Comparison of the forecasting skill of proposed models in NSE for 

the testing period 

Figure 9 
Scatter plot of forecasted vs. observed SWL of a) Lake Albert and b) 

Tocumwal sites using the proposed hybrid model and comparing 

models. A least square regression line and coefficient of 

determination (R2) with a linear fit equation are shown in each sub-

panel.  

Figure 10 Tylor diagram representing correlation coefficient together with the 

standard deviation difference for proposed hybrid CVMD-CBiLSTM 

vs. benchmark models for (a) Lake Albert (b) Wakool (c) Tocumwal, 

and (d) Howlong.  

Figure 11 Empirical Cumulative Distribution function (CDF) of forecasted error 

|FE| of SWL generated by the proposed CVMD-CBiLSTM vs. 

benchmark models for (a) Lake Albert (b) Wakool (c) Tocumwal and 

(d) Howlong 

Figure 12 Comparison plots of proposed hybrid models (i.e., CVMD-

CBiLSTM) vs. standalone machine learning model (i.e., SVR) in 

forecasting SWL in terms of RRMSE (%) for 7-Days, 14-Days and 

28-Days ahead SWL forecasting  

Figure 13 Heat map showing the normalized LM index with the proposed hybrid 

deep learning approach (i.e., CVMD-CBiLSTM) compared to 

standalone models for 19 selected stations of Murray River Basin  
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Figure 14 Comparison between Forecasted and Observed SWL during model 

testing using CVMD-CBiLSTM model for 7-Day, 21-Day, and 28-

Day ahead forecasting 

Appendix A 

Fig. A1 Graphical Abstract of Article 6 

Fig. 1 Geographic location of our study site: Columboola solar energy farm 

in Queensland Australia, where the proposed kernel ridge regression 

(KRR)-based machine learning model (ML) model for bias correction 

of total cloud cover (TCDC) was developed utilizing Global Forecast 

System (GFS) analysis (i.e., proxy observed) and forecasted variables. 

Fig. 2 Schematic of the proposed KRR-based bias correction method that is 

benchmarked with the conventional (i.e., multivariate recursive 

nesting bias correction, MRNBC) and nine ML (i.e., Bayesian ridge 

regression (BNR), Decision Tree (DTR), Gradient Boosting 

Regressor (GBR), Hist Gradient Boosting Regressor (HGBR), k- 

nearest regression (KNN), multivariate adaptive regression splines 

(MARS), extreme gradient boosting (XGB), and random forest (RF) 

methods adopted to correct the bias in total cloud cover  

Fig. 3 Schematic illustration of the 3-h GFS forecasts initialized at 0000 

UTC compared with Australian Eastern Standard Time used to 

develop KRR bias correction method.    

Fig. 4 Schematic of the traditional method, i.e., multivariate recursive nested 

bias correction (MRNBC) presented in this study as a comparison 

method against the proposed KRR bias correction method used to 

correct bias in total cloud cover (TCDC) 

Fig. 5 Box plots of Willmott’s Index of Agreement (d) were calculated for 

all nine ML-bias corrections models (i.e., KRR, BNR, DTR, GBR, 

HGBR, KNN, MARS, RF, XGB) pooled together, including 

conventional bias correction (i.e., MRNBC) and their respective 



XII 
 

reference values (d calculated between TCDCGFS-Forecast and 

TCDCGFS-Analysis) for (a) Approach 1, & (b) Approach 2  

Fig. 6 Box plots of bias-corrected root mean square error (RMSE) calculated 

between data for all the nine ML-based bias correction methods 

pooled together (i.e., KRR, BNR, DTR, GBR, HGBR, KNN, MARS, 

RF, XGB), conventional bias correction method (i.e., MRNBC) & 

along with their respective reference values (RMSE calculated 

between TCDCGFS-Forecast and TCDCGFS-Analysis). (a) Approach 1 and 

(b) Approach 2.  

Fig. 7 Comparative analysis of four selected ML-based bias correction 

methods (i.e., KRR, MARS, KNN, RF) by means of correlation 

coefficient (r) between the corrected TCDC GFS-Forecasts and the 

reference TCDC GFS-Analysis. Included is a respective reference r-value 

computed using ‘non-corrected’ TCDC GFS-forecasts and bias-corrected 

TCDCGFS-Forecasts but using a traditional method (i.e., MRNBC). (a) 

Approach 1, and (b) Approach 2.  

Fig. 8 Change () in mean absolute percentage error, MAPD (%) generated 

by proposed KRR bias correction method with respect to a reference 

value of MAPD deducted from TCDCGFS-Forecast and TCDCGFS-Analysis. 

(a) Approach 1, and (b) Approach 2.  

Fig. 9 The percentage change in Legates & McCabe’s Index (LM) was 

deduced by comparing the LM values obtained using the proposed 

KRR-bias correction model in respect to the LM values generated by 

KNN, MARS, and RF Models. (a) Approach-1, (b) Approach-2.  

Fig. 10 Taylor diagram showing the correlation coefficient, standard 

deviation, and root mean square centered difference (RMSD). (a) The 

objective model (KRR) compared with (b) KNN, (c) MARS, and (d) 

RF) for the most accurate approach (i.e., Approach-2).  
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Fig. B1 Graphical Abstract of Article 7 

Figure 1 Integrated workflow showing the study area and atmospheric domain 

of South Australia with a schematic structure of KRR model 

integrating with GWO and CEEMDAN methods for the proposed 

GWO-CEEMDAN-KRR model for wheat yield prediction  

Figure 2 Flowchart of the grey wolf optimization (GWO) algorithm 

Figure 3 Comparison of the predictive skill of the proposed wheat yield 

prediction models in terms of the relative error: RMAE (%) and the 

correlation of determination (R2) within the testing period. 

Figure 4 An assessment of four distinct feature selection methods regarding the 

percentage change in relative error (i.e., RMAE) and relative index of 

agreement (drel) with all methods using a CEEMDAN data 

decomposition approach the model’s testing phase  

Figure 5 The prompting percentage (Δ) for correlation coefficient (ΔR), 

RMAE (ΔRMAE), and NRMSE (ΔNRMSE) between the proposed 

GWO-CEEMDAN-KRR model, other ACO, ASO, PSO used models, 

and the standalone models. 

Figure 6 Scatter plot of the predicted and observed Y generated by proposed 

GWO-CEEMDAN-KRR model vs. the other models. A least square 

regression line, Y = mX + C, and the coefficient of determination (R2) 

are shown in each sub-panel. 

Figure 7 
The discrepancy ratio (i.e., the predicted Y/ observed Y) generated by 

the proposed hybrid CEEMDAN-KRR model using the four 

optimization algorithms and their respective standalone counterparts. 

Figure 8 
(a) An empirical cumulative distribution function (ECDF) plot of |FE| 

and (b) Taylor diagram demonstrating the correlation coefficient, 

together with the standard deviation difference of the hybrid KRR 

model and standalone KRR with four optimization algorithms (i.e., 

GWO, ASO, ACO, and PSO) 
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CHAPTER 1: INTRODUCTION 

1.1 Background  

Increased agricultural and industrial activity and water-based recreation 

increase demand for water resources. As a result of anthropogenic influences, the 

distribution and accessibility of this valuable and rare resource adversely impacts the 

environment. In order to avoid any potential catastrophes, water resource management 

strategies that are prudent and effective are required to meet the expanding demand 

and inconsistent supply. Additionally, changing weather patterns and climate due to 

anthropogenic influences harm the distribution and accessibility of this scarce and 

essential resource. Due to the rising demand and inconsistent supply, a sustainable 

water resource management system must be developed to avoid potential calamities. 

Increased susceptibility to limited water resources has resulted from recent 

variability in long-term climate (e.g., seasonal variations) and short-term (weather) 

patterns due to natural and manufactured influences. The chaotic behaviour of 

climatological occurrences results in non-linearity and non-stationarity in 

hydrological phenomena. The impacts of extreme weather experiences such as 

excessive rainfall, droughts, and hail, as well as heatwaves and extreme temperatures, 

have frequently had a substantial impact on agricultural productivity and water 

resource management. As a result, improvements in the understanding of climate risk 

on water resources are required urgently to minimise the climate-related impact and 

assist agricultural and water resource managers in developing and implementing 

strategies to avoid any possible catastrophe. 

The most significant changes in the climatic conditions of water-dependent 

ecosystems due to climate change are likely to involve hydrological regimes (Barron 

et al. 2012). Climate change also impacts drivers such as land-use change, dams and 

other hydrological changes, and water extraction for consumptive use, all of which 

affect the aquatic environment. Rather than direct precipitation, terrestrial water 

reservoirs primarily control agricultural, hydrological, ecological, and interconnected 

socio-economic systems (Van Loon & Laaha 2015). In particular, streamflow water 

level (SWL) and soil moisture (SM) are two prime components of terrestrial water 
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reservoirs. The functioning of ecological and hydrological systems depends on soil 

moisture (Prasad et al. 2019), which plays an essential role in plant growth and 

maintenance and is linked with the water cycle of soil-plant-atmosphere systems (Cai 

et al. 2019). A continued lack of soil moisture, combined with a lack of adequate 

planning strategies, may significantly impact agricultural and hydro-meteorological 

processes (Zaman & McKee 2014; Prasad et al. 2018a, 2019) . In addition, streamflow 

is a collection of surface runoff from a catchment or basin, a crucial driver of soil 

water retention, infiltration, and evaporation. Projected climate changes significantly 

impacts streamflow, a vital element of the hydrological cycle (Alaoui et al. 2014; 

Abera et al. 2019). Changes in rainfall patterns, temperature, and evaporation 

indirectly affect streamflow (Guo et al. 2020). Watershed management is crucial to 

managing the consequences of climate change and creating effective adaptation 

measures. Interannual fluctuations in streamflow (McMahon et al. 1992; Deo & Sahin 

2016) pose irrigation, marine life, and ecosystem management (Verdon & Franks 

2005).  

Hydrologic drought studies rely heavily on streamflow data, whereas 

agricultural drought depends on SM levels. Hence, SWL and SM are essential to 

managing this limited resource properly. An early warning system for drought can be 

developed by forecasting SWL and SM to understand future water resource 

availability. Moreover, reference crop evapotranspiration (ETo) plays a vital role in 

agriculture, ecosystems, and ecological modelling (Feng et al. 2017). It connects the 

atmospheric and surface water flows by transporting water vapour to the atmosphere. 

A thorough understanding of the hydrological cycle dynamics is necessary to monitor 

ETo stochasticity and improve sustainable freshwater use (Zeng et al. 2019). 

Knowledge-based intelligent systems for monitoring soil moisture, evapotranspiration, 

and streamflow water level could benefit from optimal water distribution and 

exploitation for domestic, industrial, agricultural, hydroelectricity generating, and 

recreation applications.  

 Recent developments in processing capability have made it possible to apply 

machine learning-based predictive models in a wide range of fields, including energy 

(Ghimire et al. 2019a; Kong et al. 2020; Rajagukguk et al. 2020), medicine (Yuan et 

al. 2020), and hydrology (Deo et al. 2015; Deo & Sahin 2016; Ali et al. 2018). While 

data-driven models capture relevant predicting elements from past data sets, 
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traditional models do not (Ali et al. 2019). However, much of the research employed 

standalone data-driven models with specific simplification limitations due to 

complicated inputs with stochastic features generated by highly interrelated 

meteorological and hydrological parameters (Adamowski et al. 2012). The intricate 

and non-linear interactions between the predictors cause overfitting for big datasets 

(Zhang, W. et al. 2017). To overcome the limitations of standalone models, deep 

learning (DL) was employed (Li et al. 2007), which efficiently extracted compound 

relationships from data (Ghimire et al. 2019a). Given the importance of predicting 

climatological, hydrological, and agricultural sustainability, this is an area of 

investigation that is still being explored. Consequently, in this study, new and 

advanced deep learning-based predictive models, hybridised with different feature 

selection and feature decomposition approaches, are being investigated for the purpose 

of forecasting soil moisture, streamflow water level, and evapotranspiration in the 

Murray-Darling Basin, the Australian agricultural hub. The result of the study brings 

significant contributions to flood forecasting and irrigation scheduling for the 

sustainable management of water resources in Australia.  

1.2 Statement of the problem 

Australia is the driest inhabited continent on the planet, with one of the most 

inhospitable climates on the Earth (Ummenhofer et al. 2009). Rainfall records show 

regular drought cycles that can last years or even decades, and these cycles are 

alternated by years of above-average rainfall. Climate change has significantly 

impacted Australia's regional water availability and ecosystem health (CSIRO 2016). 

Hydrological abnormalities, such as frequent and long-lasting droughts, are a common 

feature of the Murray-Darling Basin (MDB), the focused area of this study (Deo et al. 

2009; McAlpine et al. 2009). Three major drought events, such as the Federation 

drought (1895–1902), World War II (1937– 1945), and the Millennium drought event 

(1997–2009), were all reported in the MDB region of Australia (Ummenhofer et al. 

2009; Deo & Şahin 2015). The most recent occurrence, the Millennium drought, 

together with the ever-changing weather patterns, impacts water resources, water 

management, and distribution policy. As a result, in the future high-emission scenario, 

seasonal changes of hydrological variables (i.e., SM) show a significant decrease, 
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primarily in the winter and spring seasons, while the annual-mean decrease by 10% in 

the MDB regions (Timbal et al. 2015). Moreover, the droughts and reduced rainfall 

have also resulted in a drop in agricultural yields (van Dijk et al. 2013).  

Even though climate change estimates imply that the MDB will become drier 

in the future, there is a huge transaction of uncertainty in the future rainfall projections, 

which makes the future runoff projections complex. Using the medium warming 

scenario, recent hydrological modelling studies reveal that the southern MDB will see 

a median predicted drop in mean annual runoff of 14% by 2046–75 (10–90 percentile 

range: -38 % to +8 %) (Whetton & Chiew 2021). The current era of a changing and 

highly unpredictable climate necessitates proactive and wise planning of sustainable 

water management procedures to meet the increasing need for water for agricultural 

and residential purposes, given limited water supplies and increasing demand.  

Experts use various methods to anticipate hydrological variables, including 

soil moisture, evapotranspiration, and streamflow, by utilising multiple models, 

namely physical-dynamical, statistical, and artificial intelligence approaches. Physical 

models are the mainstream model to quantify the hydrological variables, but they 

require many variables to validate the model (Li et al. 2017; Prasad et al. 2019). 

However, the non-linearities that arise between the hydrological variables resulting 

from hydro-physical interactions occurring at large scales can further conceal 

forecasting capability, making the model more laborious to use for forecasting 

purposes (Deo & Sahin 2016; Yaseen et al. 2016). As an alternative, data-driven 

models are intended to find the association between the predictors and target variables 

without considering the fundamental operations of hydrological systems (Kisi & 

Parmar 2016; Yaseen et al. 2016).  

The use of data-driven models in predicting hydrological variables (Deo & 

Sahin 2016; Prasad et al. 2019) is becoming increasingly promising. The application 

of multiple data-driven models to forecast stream water level, evapotranspiration, and 

soil moisture significantly have been investigated in the previous decade, including 

adaptive neuro-fuzzy inference system (Ehteram et al. 2019), support vector machine 

(Bafitlhile & Li 2019), and extreme learning machine (Deo & Sahin 2016; Yaseen et 

al. 2019). However, many studies have used standalone machine learning models, 

which have specific limitations in simplification competencies due to complex inputs 
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with deterministic characteristics induced by densely interrelated climatic and 

hydrological factors to address the vital temporal and seasonal patterns (Adamowski 

et al. 2012). Moreover, many standalone machine learning techniques often overfit 

when used on large datasets (Zhang, Y. et al. 2017) because of the intricate and non-

linear relationships between the predictors and the target variable. Deep learning (DL) 

models, on the other hand, have the potential to overcome the constraints of standalone 

models (Li et al. 2017). It has been proven to be more accurate than other methods. 

As a result, deep learning algorithms can potentially be incorporated in predicting 

stream water levels. 

Several multiple feature extraction layers are employed by deep learning (DL) 

models, which allow them to efficiently capture compound relationships within the 

predictor variables. These deep learning algorithms have been effectively applied in a 

variety of applications. The long short-term memory (LSTM) model was successful 

in hydrology and water resources (Zhang et al. 2018) as a proven and feasible 

forecasting strategy. The LSTM can extract the relative extrapolative features from 

the historical data. Ahmed et al. (2021) used a long short term memory (LSTM) and 

gated recurrent unit (GRU) model to forecast monthly stream water levels to avoid the 

issues associated with overfitting the inputs. According to the authors, the target 

variables (i.e., SWL) and model achieved better generalisation than the standalone 

machine learning models (e.g., RNN and SVR). Thus, DL approaches outperform the 

conventional machine learning model (Li et al. 2021), and need to be implemented in 

forecasting hydrological variables in Australia’s Murray Darling Basin for better 

management of water resources.  

Moreover, the hydrological variables are complex time series superimposed 

by multi-scale regulations, making them difficult to understand. It does not consider 

the trend of actual hydrological data and its periodicity and randomness, putting 

classical artificial intelligence prediction algorithms at a competitive disadvantage. 

Considering the complex and stochastic behaviour of the hydrological variables, a 

hybrid deep learning approach incorporating feature extraction (i.e., convolutional 

neural network, CNN) and multi-resolution analysis (MRA) is recommended to 

enhance the forecasting skill. A complete ensemble empirical mode decomposition 

with adaptive noise (CEEMDAN) is an improved version of ensemble empirical mode 
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decomposition (EEMD), and empirical mode decomposition (EMD) showed 

improved performance in forecasting problems. Previous investigations employed 

CEEMDAN to predict soil moisture (Prasad et al. 2018b) , and an earlier version of 

the model (i.e., EEMD) was used to predict stream-flow (Seo & Kim 2016), wave 

height (Raj & Brown 2021) and rainfall (Ouyang et al. 2016) with improved 

performance. Moreover, the complex relations between the input features can also be 

extracted by combining two decomposition methods, eventually increasing the 

forecasting ability (Peng et al. 2017; Prasad et al. 2020; Sibtain et al. 2020). Thus, 

decomposition techniques can increase the forecasting performance of hydrological 

variables (i.e., SM, ETo, and SWL) in Australia’s Murray-Darling Basin.  

Overall, the purpose of this doctoral study is to address the concerns of 

appropriate input selection, non-linearity, and non-stationarity of the predictor 

variables in the context of forecasting soil moisture, evapotranspiration, and 

streamflow water level in the Murray-Darling Basin of Australia. In addition, the 

multivariate sequential CEEMDAN and VMD approaches and feature selection 

methods (i.e., Boruta feature selection, neighbourhood component analysis (NCA) for 

regression and ant colony optimization) is used to investigate a unique ensemble 

forecasting technique incorporated with deep learning predictive models (i.e., LSTM, 

BilSTM, GRU, and CNN-LSTM). 

1.3 Objectives 

The primary aim of this doctoral work, presented as a collection of peer-

reviewed papers, was to develop hybrid deep learning predictive models for 

hydrological applications, focusing on predicting soil moisture, evapotranspiration, 

and streamflow water levels within Australia’s Murray-Darling Basin. Therefore, this 

doctoral thesis, presented as a collection of Quartile 1 (Q1) papers, has adopted an 

artificial intelligence modelling strategy to achieve five distinct objectives. The 

research has developed, applied, and assessed high accuracy forecast models for 

hydrological variables.  

The objectives of this study were designed to enable governments, water 

resource managers, and farmers to utilise these tools for future streamflow water levels 

and soil moisture predictions that can help make strategic decisions for agriculture and 
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water management in a highly variable and changing climate. The study aimed to build 

forecast models over medium (monthly) to short-term (daily) frames. The research is 

expected to provide accurate and reliable forecasting models to explore the 

hydrological response to climate change and variability at multiple forecast horizons. 

Overall, the modelling framework and the relevant data intelligent models aim to 

achieve the following specific objectives.  

 

Objective 1: Develop Hybrid Deep Learning Models for Feature 

Selection at Monthly Streamflow Forecasting  

1. To develop a hybrid version of the long short-term memory network (LSTM) and 

gated recurrent unit (GRU) models that adopt the Boruta-Random forest feature 

selection algorithm and forecast streamflow water levels at monthly horizons. The 

research has incorporated the synoptic-scale climate mode indices as predictor 

variables to demonstrate the importance of atmospheric teleconnections in 

streamflow predictions. The preciseness of the developed hybrid model has been 

validated using the respective standalone counterpart models.  

The outcomes of this objective have been published in the Journal of Hydrology 

ranked Q1 (Vol. 599, 2021, 126350). 

Objective 2: Develop Hybrid Deep Learning Models for Weekly 

Evapotranspiration Forecasting  

2. To develop a CNN-GRU hybrid model to forecast reference evapotranspiration 

(ETo) at four weekly steps. This main objective is to build a hybrid predictive 

model with ant colony optimisation (ACO) in forecasting ETo. The ant colony 

optimization, a feature selection incorporated with deep learning hybrid model 

(CNN-GRU), was tested for its precision in simulating reference 

evapotranspiration employing fifty-two potential inputs. The novel CNN-GRU 

model with ACO outperforms other benchmark models over various time horizons 

apprehends the complex and non-linear relationships between predictor variables 

and the daily ETo. 



8 
 

The outcomes of this objective have been published in the Stochastic 

Environmental Research and Risk Assessment ranked Q1 (2021, 1-19).  

Objective 3: Develop Hybrid Deep Learning Model for Soil Moisture 

Forecasting Under Global Warming Scenarios  

3. To formulate a new hybrid long short-term memory (LSTM) predictive framework 

that can emulate the monthly moisture in an upper portion of the soil column (SM) 

under global warming scenarios based on representative concentration pathways 

RCP4.5 and RCP8.5 CO2 emissions. This objective has integrated Boruta-Random 

forest (BRF) feature selection to capture the significant antecedent memory of SM 

behaviour to estimate future SM between 2006 and 2100 using the Coupled Model 

Intercomparison Phase-5 (CMIP5) repository of four global climate models 

(GCM).  

The outcomes of this objective have been published in Stochastic Environmental 

Research and Risk Assessment ranked Q1 (Vol: 35, pages: 1851–1881). 

 

Objective 4: Develop Hybrid Deep Learning Models for Daily Soil 

Moisture Forecasting Over Multi Horizons   

4. To develop a deep learning hybrid strategy for daily surface soil moisture 

forecasting over multi horizons. In this objective, the model has combined a 

feature selection algorithm using neighbourhood component analysis for 

regression and a feature decomposition CEEMDAN approach to generate the 

CNN-GRU predictive model. The CEEMDAN-CNN-GRU hybrid model is tested 

over the 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a large 

pool of 52 predictors obtained from three distinct data sources (satellite-derived 

data, ground-based variables from Scientific Information Landowners SILO, and 

synoptic-scale climate indices) to establish the model's viability for forecasting at 

multi-step daily horizons 

The outcomes of this objective have been published in Remote Sensing ranked 

Q1 (Vol. 13, Pages 554). 
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Objective 5: Develop Hybrid Deep Learning Model for Streamflow 

Water Level Forecasting at 7-day, 14-day, and 28-day Horizons for Medium-

Term Decisions 

5. To develop a deep learning hybrid model for streamflow water level (SWL) 

forecasting by convolutional neural networks (CNN), bi-directional long-short 

term memory (BiLSTM), and ant colony optimization (ACO) methods along with 

a two-phase decomposition technique. The proposed CVMD-CBiLSTM model 

combines the CBiLSTM model with a complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) and variational mode 

decomposition (VMD) to extract the significant features of the predictor variables. 

The model is tested at three forecasting horizons of 7-days, 14-days, and 28-days 

with potential applications in medium-term decision making. This goal discovered 

that the CVMD-CBiLSTM model outperformed the CBiLSTM and standalone 

BiLSTM and SVR, allowing better water resource management.  

The outcomes of this objective have been submitted to Science of Total 

Environment ranked Q1 2022. 
 

1.4 Significance of the Research  

The outcomes of this research are highly significant as the Murray-Darling 

Basin is the most productive agricultural area in Australia. The basin is considered the 

agricultural hub of Australia, which covers almost 67% of agricultural land 

(Australian Bureau of Statistics 2010), and is 14% of the mainland of the country. The 

drainage area of the basin is one of the world’s largest and the largest on the continent 

(AIDR 2021). The region is semi-arid, and the variability in the quantity and timing 

of streamflow is extreme and unpredictable. The temperature varies from 15°C to 

28°C from winter to summer. The significant connotation of the Inter-decadal Pacific 

Oscillation through the Pacific Ocean influences the ENSO phenomena, which impact 

the drought events and can eventually affect the streamflow and precipitation of the 

region.   

The long-term variations in the hydrological scenarios affect the frequency of 

flooding events, and changes in the temporal pattern of hydrological variables in the 
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region of streamflow can hamper irrigation scheduling and drought management. 

Understanding the features of the hydrological phenomena of the Murray-Darling 

Basin would help plan the water resources effectively. The developed hybrid artificial 

intelligence models are vital for policymakers and governments for better future 

planning concerning trade, development policies, and mitigating climate extreme 

events. The incorporation of feature selection, decomposition, and extraction methods 

reduce the irrelevant features from the predictors, producing a precise forecast of the 

hydrological phenomena in the Murray-Darling Basin. Moreover, these modelling 

strategies can provide timely information for rapid decision-making during 

agricultural production. The outcomes of this study will help farmers and decision-

makers optimise the hydrological parameters for better flood forecasting and irrigation 

scheduling for sustainable management of water resources in Australia, which would 

subsequently impact socio-economic, environmental, and agricultural development. 

1.3 Thesis layout 

The layout of the thesis is depicted schematically in Fig 1.1, and the overview of the 

thesis is illustrated in Fig 1.2. It clearly outlines the graphical abstract for 

comprehension, and the need for a dependable and precise forecasting tool for soil 

moisture and stream flows level and reference evapotranspiration. This thesis is 

divided into eight chapters, which are as follows: 

Chapter 1 Provides the introductory background, the problem statement about the 

research, and the objectives of this study 

Chapter 2  Introduces the study area, data, and general methodology of this study. 

This chapter provides general viewpoints while the specific study area, 

data, and methods are presented in the respective chapters. 

Chapter 3  This chapter is provided as a published journal article in the Journal 

of Hydrology. This study is devoted to incorporating a feature 

selection (i.e., BRF) based LSTM modelling approach to forecasting 

the streamflow water level at the monthly forecast horizon. Chapter 3 

addresses the first objective of this study. 

Chapter 4  This chapter is provided as a published journal article in the Stochastic 

Environmental Research and Risk Assessment journal. It describes a 
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hybrid CNN-GRU application with ant colony optimisation (ACO)  for 

early warning evapotranspiration, forecasting four weekly steps using 

deep hybrid learning. The third research objective of this study is 

described in detail in Chapter 4. 

Chapter 5  This chapter is provided as a published journal article in the Stochastic 

Environmental Research and Risk Assessment journal. It addresses a 

hybrid LSTM predictive framework coupled with Boruta-random 

forest (BRF) feature selection to emulate SM under global warming 

scenarios. The Coupled Model Intercomparison Phase-5 (CMIP5) 

repository estimated future SM. The fourth research objective of this 

study is described in detail in Chapter 5. 

Chapter 6 This chapter is provided as a published journal article in the Journal of 

Remote Sensing. This chapter describes the application of the updated 

CEEMDAN model with an NCA-based feature selection approach in 

the CNN-GRU model in forecasting soil moisture. It describes the 

model development process, and the outcomes are compared to 

comparative models (CEEMDAN-GRU, CNN-GRU, and GRU). 

Chapter 7  This chapter is provided as a published journal article in the Science of 

Total Environment. A newly proposed double decomposed model, 

CVMD-CBiLSTM, coupled with a complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) and variational mode 

decomposition (VMD) to extract the significant features of the 

predictor variables. This chapter describes the novel techniques to 

mimic the future scenarios of streamflow water level    

Chapter 8  This chapter provides the synthesis of the study with concluding 

remarks, limitations, and recommendations for future works.  
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CHAPTER 2: DATA AND METHODOLOGY 

This chapter provides an overview of the location of the study sites in developing the 

deep learning hybrid forecasting models. Different study sites within the study region 

were selected to achieve each objective, described in detail in each chapter. The 

description of data used, length of data, and limitations, if any, are also presented. This 

chapter also introduces a brief account of the methodology, while specific model 

development techniques have been described in respective chapters.  

2.1 Study Area: the Murray-Darling Basin  

The study focused on the rich agricultural zones of Australia, the Murray 

Darling Basin (MDB). The Murray-Darling drainage area is one of the world’s largest 

and the largest on the continent (AIDR 2021). In Australia, the MDB comprises the 

Murray River and Darling River catchments and is referred to as the country’s 

agricultural heartland (Prasad et al. 2019). Approximately 67% of Australia’s 

agricultural land is covered by this MDB basin agricultural land (Australian Bureau 

of Statistics 2010), the most productive agricultural region in the country.  

Located in southeast Australia, the Murray-Darling Basin encompasses more 

than one million km2 (Beare & Heaney 2002) and accounts for approximately 14 % 

of the country's total landmass (Leblanc et al. 2012). With a combined length of nearly 

7000 km, Australia's largest rivers - the Darling, Murray, and Murrumbidgee - are all 

situated within the basin catchment (Beare & Heaney 2002). As a result of the Murray 

Darling Basin's vast size, it has a highly diverse range of climatic conditions and 

natural environments. Although the MDB is dominated by extensive dryland 

agriculture, irrigated agriculture accounts for nearly 75% of all agricultural production 

in the MDB, where water demand and levels of water extraction from rivers and 

groundwater have reached at unsustainable levels (Chartres & Williams 2006).  
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Fig 2.1 Map of the study region (a) the location of Murray-Darling Basin (MDB), 

with close-ups (b-f) illustrating the selected sites for objectives 1 to 5, respectively. 

Murray River  
 

(f) Objective 5 (Chapter 7) 
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The basin’s mean annual rainfall ranges from 200 mm in the southwest to 1800 

mm in the southeast, while altitude ranges from 0 m at the Murray River mouth to 

2225 m in the Upper Murray catchment (Austin et al. 2010). The distribution of 

rainfall is also anticipated to shift due to climate change. In both scenarios, summer 

rainfall is expected to decrease, most notably in the basin's southern parts. Climate 

change affects precipitation, temperature, humidity, and wind speed, affecting 

potential evaporation. By 2100, both global warming scenarios predict a rise in annual 

average potential evaporation across the basin, particularly in the Murray River 

tributary catchments (Austin et al. 2010). On average, the Murray-Darling Basin's 

estimates indicate a small to moderate decline in water availability for dryland 

agriculture and a medium to a significant decrease in surface water flows. Fig 2.1 

illustrates the geographical locations of the study area  

2.2 Data Description  

To construct high-precision deep learning hybrid predictive models, a range of 

data from different sources were used in conjunction with each other. Concisely, Table 

2.1 contains the data used, the sources of the data, and additional essential information 

for attaining each objective. 

The development of a streamflow water level forecasting model (Objective 1), 

in particular, used multiple synoptic mode climate indices (CI) from various sources 

where the target variable was streamflow water level (SWL) obtained from the NSW 

Department of Primary Industries of Water. Moreover, Objectives 2 and 4 were 

formulated by incorporating three data sources: remotely-sensed MODIS data, 

ground-based SILO database, and synoptic mode climate indices to develop a hybrid 

deep learning model to forecast soil moisture and reference evapotranspiration. 

Objective 3 is prepared by utilising CMIP5-derived variables obtained from 4 global 

climate models (GCM).   
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Table 2.1 The datasets used in the study 

Objective Data Source 

S
tu

d
y
 

P
er

io
d

 

Data 

Predict  

Study 

Area 

1 

(Chapter 3) 

Predictors: 

Synoptic climate 

mode indices  

Refer to Table 2.3 

1
9
1
5
-2

0
1
9
 

Monthly 

F
ig

 2
.1

(b
) 

Target:  

Streamflow water 

level  

NSW Department of 

Primary Industries 

(NSW-Water, 2021)  

2 

(Chapter 4) 

Predictors: 

Synoptic climate 

mode indices 

Refer to Table 2.3 

2
0
0
3
-2

0
2
0
 

Daily 

F
ig

 2
.1

(c
) 

MODIS Satellite 

Refer to Table 2.2 

Ground-Based 

SILO 

Target:  

Reference 

Evapotranspiration   

3 

(Chapter 5) 

Predictors: 

CMIP5-derived 

Variables  

Refer to Table 2.5 

1
9
6
0

-2
1
0
0
 

Monthly 

F
ig

2
.1

(d
) 

Target: 

Moisture in an 

upper portion of 

the soil column  

4 

(Chapter 6) 

Predictors: 

Synoptic climate 

mode indices 

 

Refer to Table 2.3 

2
0
0
3
-2

0
2
0
 

Daily 

F
ig

 2
.1

(e
) 

MODIS Satellite 

Ground-Based 

SILO 

Target:  

Surface Soil 

Moisture  

5 

(Chapter 7) 

Predictors: 

Synoptic climate 

mode indices 

Refer to Table 2.3 

2
0
0
0
-2

0
2
0
 

Daily 

F
ig

 2
.1

(f
) 

MODIS Satellite  

Refer to Table 2.2 Ground-Based 

SILO 

Target:  

Streamflow water 

level 

NSW Department of 

Primary Industries 

(NSW-Water, 2021) 
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2.2.1 Streamflow water level (SWL) - NSW Department of Primary Industries 

The streamflow water level (SWL) for each month (in meters) was collected 

from the NSW Department of Primary Industries (DPI). Surface and groundwater 

resources in New South Wales are monitored and managed by the Department of 

Primary Industry—Office of Water, responsible for creating water policy. On specific 

sites in river basins, it monitors daily staff gauge readings gas purge pressure. It floats 

well-water level recording systems, electronic pressure sensors, telemetered digital 

logging systems, and telemetered pressure sensors. Generally, the data were from 

direct gauging, while some were adjusted during processing due to anomalies. The 

monthly (Objective 1) and daily (Objective 5) were utilised in this study were obtained 

from the NSW Department of Primary Industries.   

2.2.2 Meteorological data - Scientific Information for Landowners  

 The target variables for objective 2 (i.e., reference evapotranspiration, ETo)  

and predictor variables of objectives 2 (Chapter 4), 4 (Chapter 6) objective 5 (Chapter 

7) were collected from the repository of Scientific Information for Land Owners 

(SILO) database: https://www.longpaddock.qld.gov.au/silo/ppd/index.php developed 

by Queensland Department of Environment and Resource Management (Jeffrey et al. 

2001; Beesley et al. 2009). A list of ground-based SILO variables is tabulated in Table 

2.2(a).  

SILO is a database system that provides ready-to-use climate data to biological 

and hydrological models users. Missing values in the SILO database were interpolated 

using robust statistical tools in the quality control stages implemented by the 

Australian Bureau of Meteorology (BOM) (Zajaczkowski et al. 2013). This has 

enabled previous hydrological studies to use SILO-based meteorological data (Deo et 

al. 2016; Salcedo-Sanz et al. 2018; Ahmed, M. et al. 2021). Furthermore, in this 

doctoral research thesis, the meteorological data (maximum temperature, minimum 

temperature, relative humidity, rainfall, evaporation, evapotranspiration, and vapour 

pressure) from SILO-database are integrated with synoptic mode climate indices and 

Remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) data 

(Chapter 4 and Chapter 7).  
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2.2.3 Atmospheric Parameters - The Moderate Resolution Imaging 

Spectroradiometer (MODIS) 

The hybrid deep learning models dealing with objectives 2, 4, and 5 were 

developed using remotely sensed Moderate Resolution Imaging Spectroradiometer 

(MODIS) datasets. The datasets were collected from NASA’s Geospatial Online 

Interactive Visualization and Analysis Infrastructure (GIOVANNI) repository. 

GIOVANNI, which captures 2000 satellite variables, is a powerful online 

visualisation and analysis tool for geoscience datasets (Berrick et al. 2008; Chen et al. 

2010). As shown in Table 2.2, MODIS-based predictor variables are used in this study 

to design and evaluate the hybrid model for hydrological forecasting.  

Satellite-based atmospheric parameters (MODIS) are used to create the 

predictive model for Objectives 2 and 4. MODIS is a satellite instrument found on the 

Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed 

to cross the equator from north to south in the morning, while aqua crosses the equator 

from south to north in the afternoon. Terra and aqua orbit the Earth every 1-2 days, 

providing data with a moderate spatial resolution (250 m at nadir), a large swath (2330 

km), and a wide spectral range (36 channels between 0.412 and 14.2 m) (López & 

Batlles 2014). The MODIS observations yield forty-four data products. Among these 

products, the MOD08-M3 contains approximately 800 sub-datasets that describe 

atmospheric features such as cloud fraction, cloud optical thickness, precipitable water 

vapour amount, and aerosol optical thickness (Kim & Liang 2010).  

The predictor variables used to develop and execute the predictive model for 

objective 4 were obtained from the Global Land Data Assimilation System (GLDAS) 

system, which represents a high-temporal resolution terrestrial modelling system 

comprised of the land surface state and several flux parameters with three temporal 

resolution products: hourly, daily, and monthly. GLDAS 2.0 datasets extracted at daily 

temporal resolutions were used in our study made publicly available. The study used 

MODIS-based surface soil moisture (SSM) data obtained from the GLDAS 2.0 model 

as a target variable (Objective 4), as tabulated in Table 2.2(b).   
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Table 2.2 Description of predictor variables used to design and evaluate hybrid 

CEEMDAN-CNN-GRU predictive model for daily surface soil moisture forecasting. 
 

  

Acronyms Description Unit 

(a) SILO (Ground-Based Observations) 

Tx Maximum Temperature C 

Tn Minimum Temperature C 

r Rainfall mm 

Ep Evaporation mm 

Rd Radiation MJ m-2 

VP Vapour Pressure hPa 
Rx Relative Humidity at Temperature T.Max % 

Rn Relative Humidity at Temperature T.Min % 

Mp Morton potential evapotranspiration overland mm 

(b) GLDAS 2.0: MODIS Satellite Data from GIOVANNI Repository 

St Average Surface Skin temperature K 

CW Plant canopy surface water Kg m-2 

CE Canopy water evaporation kg m-2 s-1 

Es Direct Evaporation from Bare Soil kg m-2 s-1 

ET Evapotranspiration kg m-2 s-1 

Es Snow Evaporation kg m-2 s-1 

GW Groundwater storage mm 

LW Net longwave radiation flux W m-2 

Qg Ground heat flux W m-2 

Qh Sensible heat net flux W m-2 
Qle Latent heat net flux W m-2 

Qs Storm surface runoff kg m-2 s-1 

Qb Baseflow-groundwater runoff kg m-2 s-1 

Qm Snow melt kg m-2 s-1 

Sn Snow depth kg m-2 s-1 

Snt Snow Surface temperature m 

Sp Profile Soil moisture kg m-2 

Sz Root Zone Soil moisture kg m-2 

Ssur Surface Soil moisture kg m-2 

SW Snow depth water equivalent kg m-2 
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Acronyms Description  Unit 

SR Net short-wave radiation flux kg m-2 

Tr Transpiration kg m-2 s-1 

TW Terrestrial water storage  mm 

(c) MERRA-2 Model based Satellite Data 

T2X 2-meter air temperature - daily max  K 

T2A 2-meter air temperature - daily mean  K 

T2M 2-meter air temperature - daily min  K 

(d)MODIS-Aqua Model based Satellite Data 

AOD Aerosol Optical Depth 550 nm (Dark Target)  - 

asam Aerosol Scattering Angle: Mean of Daily  Degrees 

cdt 
Combined Dark Target and Deep Blue AOD at 

0.55 micron  
- 

pwvm Precipitable Water Vapor 440 to 10mb: Mean cm 

pwvs Precipitable Water Vapor Surface to 680mb  cm 

pwvt 
Precipitable Water Vapor Total Column: Mean 

of Level-3 QA Weighted  
cm 

crm Cirrus Reflectance: Mean  - 

icm Ice Cloud Effective Particle Radius: Mean  microns 

lwce 
Liquid Water Cloud Effective Particle Radius: 

Mean  
microns 

cfcm Cloud Fraction from Cloud Mask  - 

ccot Combined Cloud Optical Thickness: Mean  - 

icot Ice Cloud Optical Thickness: Mean  - 

lwco Liquid Water Cloud Optical Thickness: Mean  - 

cpdm Cloud Top Pressure (Day): Mean  hPa 

cpav Cloud Top Pressure: Mean hPa 

cpnm Cloud Top Pressure (Night): Mean hPa 

ctav Cloud Top Temperature: Mean K 

ctdm Cloud Top Temperature (Day): Mean K 

ctnm Cloud Top Temperature (Night): Mean K 

icwm Ice Cloud Water Path: Mean gm-2 

lwcm Liquid Water Cloud Water Path: Mean gm-2 

AODl 
Aerosol Optical Depth 550 nm (Deep Blue, 

Land-only) 
- 
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Table 2.3  Twelve climate model indices were used as predictor variables to 

forecast the SWL using the hybrid deep learning BRF-LSTM 

predictive model. Source of data: monthly sea surface temperature 

(SST) in different oceanic regions derived from the Optimum 

Interpolation SST, version 2 (OISST v2)  

Note: EMI = ENSO Modoki Index; WPI= West Pole Index; EPI = East Pole Index; 

DMI = Dipole Model Index, ET= Extra-Tropical 

 

Variable Notation Name and Description Region Data Source 

Nino3.0 N3 Average SST over 150°–90°W & 5°N–5°S Pacific OISST v2, 

NOAA Nino3.4 N34 Average SST over 170°E–120°W & 5°N–5°S Pacific OISST v2, 

NOAA Nino4.0 N4 Average SST over 160 °E–150°W & 5°N–5°S Pacific OISST v2, 

NOAA Nino1+2 N12 Average SST over 90°W–80°W & 0°–10°S   Pacific OISST v2, 

NOAA AO AO Arctic Oscillation  ET OISST v2, 

NOAA 

DMI DMI 
DMI = WPI – EPI 

WPI =Mean SST over 50°-70°E & 10°N-10°S  

EPI = Mean SST over 90°–110°E & 0°N–10°S  

Indian 

OISST v2, 

NOAA 

 

EMI EMI 

EMI = C – 0.5 x (E+W) 

Where the components are average SSTA over 

C: 165 °E–140 °W and 10°N–10°S 

E: 110°–70°W and 5°N‒15°S 

W: 125°‒145°E and 20°N‒10°S 

Pacific ERRSST.v.3b 

NAO NAO North Atlantic Oscillation   OISST v2, 

NOAA PDO PDO Pacific Decadal Oscillation Pacific OISST v2, 

NOAA SAM SAM Southern Annular Mode index Pacific OISST v2, 

NOAA 
SOI SOI 

Southern Oscillation Index 

The pressure difference between Tahiti and 

Darwin as defined by Troup (1965) 

Pacific BOM 

TPI TPI 
Tripole Index for the Interdecadal Pacific 

Oscillation 
Tropical  

OISST v2, 

NOAA 

MJO1 MJ1 Madden Julian Oscillation-1 

  

MJO2 MJ2 Madden Julian Oscillation-2 

MJO4 MJ4 Madden Julian Oscillation-4 

MJO5 MJ5 Madden Julian Oscillation-5 

MJO6 MJ6 Madden Julian Oscillation-6 

MJO7 MJ7 Madden Julian Oscillation-7 

MJO8 MJ8 Madden Julian Oscillation-8 
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The study also used Modern-Era Retrospective Analysis for Research and 

Applications, Version 2 (MERRA-2) data set spans 1980 to the present. Along with 

the improvements to meteorological assimilation, MERRA-2 makes significant 

progress towards the Earth System. MERRA-2 is the first long-term global reanalysis 

that incorporates space-based aerosol observations and their interactions with other 

physical processes in the climate system. It was developed to replace the original 

MERRA dataset due to advancements in assimilation technology that allows for the 

assimilation of contemporary hyperspectral and microwave observations and GPS-

Radio Occultation datasets (Gelaro et al. 2017). The spatial resolution is about 50 

kilometres latitudinal direction. MERRA-2 is the first long-term global reanalysis that 

incorporates space-based aerosol measurements and their interactions with other 

physical processes in the climate system (Draper et al. 2018).  

In Objective 5, twenty-two predictor variables from the MODIS-aqua model 

were also incorporated with the MERRA-2 model. MODIS-aqua views the entire 

Earth's surface every 2 days, acquiring data in 36 spectral bands. This data helps us 

understand global dynamics and processes on land, oceans, and the lower atmosphere. 

They play an important role in developing validated, global, interactive Earth system 

models capable of accurately predicting global change enough to assist policymakers 

in making sound decisions about environmental protection. A list of MODIS-aqua-

derived predictor variables is provided in Table 2.2 (d). 

2.2.4 GCM/CMIP5 Simulated Variables 

Global climate models (GCMs) are recognised as full gears for studying the 

present, past, and future (Xu et al. 2009; Ramesh & Goswami 2014). The 5th phase of 

the Coupled Model Intercomparison Project (CMIP5) of the World Climate Research 

Programme (WCRP) demonstrates numbers of GCMs compared to CMIP3 GCMs for 

the understanding of the mechanisms of climate system change and to improve the 

capability to simulate climate change (Sillmann et al. 2013; Sun et al. 2015; Meher et 

al. 2017). CMIP5 GCMs had improved skills in describing the seasonality of 

precipitation regimes compared to their predecessors over the Asian monsoon region 

(2016). Still, the performance of the GCMs varied for different river basins and 

catchments. The CMIP5 simulated variables were utilised throughout the study 
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periods for the RCP4.5 and RCP8.5 global warming scenarios to estimate the SM 

under Objective 3. The data sets of GCMs were obtained from the archive of the 

Centre for Environmental Data Analysis (CEDA): 

http://data.ceda.ac.uk/badc/cmip5/data/cmip5/output1. Accordingly, the list of GCM 

models and the predictors used in Objective 3 are tabulated in Table 2.4 and Table 2.5.      

 

Table 2.4 Summary of global climate models from CMIP5 simulation sets 

Model Centre/ 

Country 

Spatial 

Resolution 

Data Length 
References 

Historical RCPs 

ACCESS 1.0  CSIRO-

BOM/Australia 

1.875o×1.25 o 1960-2005 2006-2100 (Marsland et al. 

2013) 

ACCESS 1.3  CSIRO-

BOM/Australia 

1.875o×1.25 o 1960-2005 2006-2100 (Marsland et al. 

2013) 

HadGEM2-CC  MOHC/UK 1.875o×1.25 o 1960-2005 2006-2100 (Martin et al. 

2011) 

HadGEM2-ES  MOHC/UK 1.875o×1.25 o 1960-2005 2006-2100 (Martin et al. 

2011) 

Note:  CSIRO:  Commonwealth Scientific and Industrial Research Organization 

  MOHC: Met Office Hadley Centre   

 

  

http://data.ceda.ac.uk/badc/cmip5/data/cmip5/output1
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Table 2.5 Summary of CMIP5 simulated variables used in this study of Objective 3 

Acronyms Variables Units  

clt Total Cloud Fraction % 

evp Evaporation  mm 

hfls Surface Upward Latent Heat Flux MJm-2d-1 

hfss Surface Upward Sensible Heat Flux MJm-2d-1 

huss Near Surface Specific Humidity MJm-2d-1 

mrso Total soil moisture content  mm 

pr Precipitation mm 

prc Convective Precipitation  mm 

prw Atmospheric water vapour content  kgm-2 

ps Surface air pressure 0C 

psl Sea Level Pressure Pa 

rlds Surface Downwelling Longwave Radiation  MJm-2d-1 

rlus Surface Upwelling Longwave Radiation  MJm-2d-1 

rlut TOA Outgoing Longwave Radiation  MJm-2d-1 

rsds Surface Downwelling Shortwave Radiation  MJm-2d-1 

rsus Surface Upwelling Shortwave Radiation  MJm-2d-1 

sfcwind Monthly mean Near-Surface Wind Speed  ms-1 

tas Near-Surface Air Temperature  0C 

tasmax Daily Maximum Near-Surface Air Temperature 0C 

tasmin Daily Minimum Near-Surface Air Temperature 0C 

tsl Soil Temperature 0C 

mrsos 

(SM) 

Moisture in an upper portion of the soil column mm 

2.2.5 Synoptic Scale Climate Mode Indices 

In Australia, various synoptic-scale climate indices have been acknowledged 

as a suitable approach to climate variability based on locations and seasons (Schepen 

et al. 2012; Nguyen-Huy et al. 2017). The impacts of IOD and the subtropical ridge 

on Australian rainfall variability are well recognised (Murphy & Timbal 2008; Cai & 

Cowan 2009; Kirono et al. 2010). The La Niña events are responsible for significant 

precipitation (in eastern Australia), whereas the El Niño events are related to high-

scale drought situations (Yuan & Yamagata 2015). In the north and east of Australia, 

the El Niño Southern Oscillation (ENSO) phenomenon greatly influences 

precipitation, with regional differences (Risbey et al. 2009). However, IOD shows a 

superior impact than ENSO during winter and spring rainfall for southern Australia 
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due to the robust covariation between ENSO and the IOD (Cai et al. 2011). The ENSO 

hydroclimate relates to below-normal streamflow for El Niño and above regular for 

La Niño events (Deo & Sahin 2016), which indicates that SST-associated climate 

indices have robust potential in forecasting streamflow water level in Australia.  

Consequently, twenty-one climate indices were acquired from a variety of 

sources, including the National Climate Prediction Centre (BOM 2020), the Australian 

Bureau of Meteorology (BOM 2020), and the National Oceanic and Atmospheric 

Administration (NOAA) with daily sea soil (McKenzie et al. 2005). The monthly 

synoptic-scale climate indices from various credible and trustworthy databases are 

shown in Table 2.3. The sea surface temperatures (SSTs) are the most critical indices 

because they indicate climate variability. In contrast, the other indices (Pacific 

Decadal Oscillation (PDO), Indian Ocean Dipole (IOD), and El Nino Modoki Index) 

are dependent on the SSTs. As a result, this study uses the most recent version of SST; 

Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). The daily 

sea surface temperature (Nino1 + 2SST, Nino4SST, Nino3SST, and Nino3.4SST) was 

collected from KNMI- Climate Explorer (Trouet & Van Oldenborgh 2013). The 

monthly (Objective 1) and daily (Objective 2, 4, and 5) climate mode indices were 

utilised in this study.  

2.3 General Methodology 

 A number of basic tasks were applied to the predictor variables prior to the 

model development. Converting the inputs and the target data into their required 

forecast horizons and using the partial autocorrelation function (PACF) to select the 

best statistically significant lags from the target variables were the first two steps used 

in all objectives except the fourth objective of this thesis. Secondly, the datasets were 

decomposed using a complete ensemble empirical mode decomposition with adaptive 

noise (CEEMDAN) for Objective 4 and a combination of CEEMDAN and variational 

mode decomposition (VMD) for Objective 5 to address the non-stationarity issues 

associated with the data. The cross-correlation functions (CCF) were also adopted 

between the target and the inputs to select the best input variables in Objective 1, 

Objective 2, and Objective 5.  

The selection of features within the inputs used to forecast target variables (i.e., 

SWL, SM, and ETo) is a vital stage in the practical application of a predictive model. 
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This is implemented to reduce the dimensionality of model inputs and computational 

cost, including the desired improvements in forecasting accuracy and interpretation of 

predictors’ predictive model characteristics and nature (Bowden et al. 2005; Maier et 

al. 2010; Yang et al. 2012; Prasad et al. 2018b). The study incorporated three potential 

feature selection algorithms, namely, Boruta-random forest (Objective 1 and 3), ant 

colony optimization (Objective 2 and 5), and neighbourhood component analysis 

(Objective 4), to select appropriate input variables for the model.     

Furthermore, the higher frequency data from inputs and target datasets of all 

study objectives were normalized between zero and one using Eq. (1) to avoid large 

numeric ranges from the values of the predictor variables. Finally, the best parameters 

and boundary conditions of the models developed in the respective objectives of this 

study were selected using optimisation and trial-and-error methods. The tasks above 

were described in detail in their respective chapters. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                           (1)  

In Eq. (1), 𝑥  is the respective variable, 𝑥𝑚𝑖𝑛  is the minimum value, 𝑥𝑚𝑎𝑥  is the 

maximum and 𝑥𝑛𝑜𝑟𝑚 is the normalised value. 

 This thesis considers various data-driven forecasting models and pre-

processing methods to evaluate their ability to forecast over different horizons. The 

models were multivariate adaptive regression splines (MARS), support vector 

regression (SVR), multilayer perceptron (MLP), decision tree (DTR), random forest 

(RF), multilinear regression (MLR), recurrent neural regression (RNN), long short-

term memory (LSTM), a convolutional neural network (CNN), gated recurrent unit 

(GRU) network and bi-directional LSTM (BiLSTM). Pre-processing approaches were 

incorporated to increase the forecast accuracy by decomposing the data into low and 

high pass filters using CEEMDAN and VMD and selecting the best input parameters 

using ACO, BRF, and NCA tools. A trial-and-error method was also used in this study 

to select the appropriate hyperparameter of the models. 

The proposed data-driven models were considered to evaluate their precision 

in forecasting hydrological variables. The deep learning hybrid models range from the 

double-phase (Chapter 3 to 5) to the more advanced multi-phase hybrid approaches 

(Chapter 6 to 7). A multilayer perceptron (MLP) is an artificial neural network (ANN) 
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that uses feedforward learning. MLP is used ambiguously; it is sometimes used 

broadly to refer to feedforward ANN. Based on the neurological structure of the 

human brain, it is possible to define ANN as a simplified mathematical model of the 

brain. Its capability to determine complex correlations among variables makes 

artificial neural networks (ANN) one of the most powerful tools available in the field 

of data modelling (Akbari et al., 2014). Compared to the ANN, SVR is significantly 

faster and more computationally convenient (Akbari et al. 2014; Song & Dai 2017; 

Blanchard et al. 2018). An implicit feature space mapping from the dimension of the 

data to a potentially infinite feature space is used by SVR, in the same way as ANNs 

do, to provide a non-linear representation of the modelled data; this is accomplished 

by the use of the ‘kernel trick’ (Akbari et al. 2014; Dhiman et al. 2019). The SVR 

model has been widely regarded as a universal method for handling multidimensional 

function estimation problems. Figure 2.2 shows a brief overview of artificial 

intelligence (AI) based on the deep learning predictive models used in this doctoral 

research thesis.  

Deep learning (DL) models use multiple feature extraction layers and 

efficiently acquire compound associations within the data (Ghimire et al. 2019b). 

These DL methods have been successfully utilised in medical imaging, natural 

language processing, and computer vision. Nevertheless, only a few prior studies have 

explicitly employed a DL model for hydrological forecasting. The deep learning 

algorithm exhibits excellent quality to extract data characteristics when processing 

large amounts of complex data with substantial computing power and complex 

mapping ability (Gong et al. 2019). The convolutional neural network (CNN) is a 

variant of a traditional neural network consisting of one or more convolution, pooling, 

and fully connected layers (Wang et al. 2019). Each convolutional layer consists of 

several convolutional units, and a backpropagation algorithm optimizes the 

parameters of every unit. The purpose of a convolutional manipulation in CNN is to 

extract unique features of the input layer. As a distinctive class of recurrent neural 

networks, LSTMs utilize special units named memory blocks to take the place of the 

traditional neurons in the hidden layers (Sainath et al. 2015). Moreover, there exist 

three gates units called input gates, output gates, and forget gates in memory blocks, 

and hence LSTMs can update and control the information flow in the block through 

these gates (Chen et al. 2018). 
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In Chapter 4 and Chapter 6 of this research, the CNN-GRU model is proposed 

where the CNN algorithm is incorporated to extract intrinsic features of the target time 

series. At the same time, in the second phase, GRU is connected to CNN to utilize all 

relevant features for prediction. GRU is a distinct type of long short-term memory 

(LSTM) network presented by Cho et al. (2014). GRU can achieve long-short reliance 

on declining ignition gradients. Along with similarities, GRU possesses different 

characteristics from the LSTM. For instance, the GRU owns two gates: the update gate 

and reset gate, whereas the LSTM has three gates (i.e., the input gate, forget gate, and 

output gate). 

Chapter 7 of this doctoral research thesis proposes the CBiLSTM model; in 

this CBiLSTM model, the CNN algorithm is incorporated to extract intrinsic features 

of the target time series, while in the second phase, LSTM is connected to CNN to 

utilize all relevant features for prediction. The BiLSTM is an LSTM deformation 

structure with forwards and backward LSTM layers (Peng et al. 2021), which uses 

past and future information (Kulshrestha et al. 2020). 

In order to handle the non-stationarity features within the inputs, data pre-

processing via a proper multi-resolution analysis tool is necessary. Hence, hybridised 

models with complete ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) for Objective 4 and a combination of CEEMDAN and variational mode 

decomposition (VMD) is acquired for Objective 5. In addition, appropriate input 

selection is imperative not only for input dimension reduction but also to improve the 

model performances. The optimization by input selection approaches also has its 

advantages and disadvantages. Therefore, many algorithms were explored, including 

the neighbourhood component analysis (NCA) for regression, ant colony optimization 

(ACO), and Boruta-Random forest (BRF) algorithm. Table 2.6 summarizes the details 

of the methodology and tools used to develop artificial intelligence-based predictive 

models. The specific models developed in this study include: 

• Two DL models (i.e., LSTM and GRU) and two ML models (RNN and 

SVR) were designed for monthly SWL forecasting. PACF, CCF, and BRF 

were utilised for input selection (Chapter 3). 
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• Hybrid DL models (i.e., CNN-GRU and CNN-LSTM) and 7 standalone 

ML and DL models (i.e., GRU, LSTM, RNN, DTR, MLP, MLR, RF, and 

MARS) were designed for forecasting ETo. The proposed model is 

designed by integrating PACF and CCF, ACO, and CNN to optimize the 

models (Chapter 4). 
 

 

• Two-phase DL model BRF-LSTM for monthly SM estimation was 

developed where SVR and MARS are used as comparison models. BRF 

was utilised to select appropriate model inputs (Chapter 5). 

 

• A three-phase hybrid model (i.e., CEEMDAN-CNN-GRU) is designed for 

daily SSM forecasting. The proposed hybrid model is designed by 

integrating NCA, CEEMDAN, and CNN to optimize the models (Chapter 

6). 
 

 

• A new hybrid DL model (i.e., CVMD-CBiLSTM) and SVR model were 

designed for weekly SWL forecasting. The model is designed by 

integrating double decomposition methods (i.e., CEEMDAN and VMD) 

and PACF, CCF, ACO, CNN, CEEMDAN, and VMD for the optimization 

(Chapter 7). 
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Fig 2.2 Brief overview of artificial intelligence (AI) based-deep learning predictive 

models used in this doctoral research thesis. 

Proposed Model:  

• BRF-LSTM (Objective 1)  

• CNN-GRU (Objective 2) 

• BRF-LSTM (Objective 3) 

• CEEMDAN-CNN-GRU (Objective 4) 

• CVMD-CBiLSTM (Objective 5) 
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Table 2.6: Summary of the methodology and tools used to develop the predictive 

models.  

 

2.4 Model Evaluation  

Several statistical metrics were employed to evaluate the performance of 

artificial intelligence-based predictive models. They were based on root mean square 

error (RMSE), mean absolute error (MAE), correlation coefficient (r), Willmott’s 

index (WI), Nash–Sutcliffe coefficient (NSE), and the Legates and McCabe index 

(LM). Furthermore, relative (%) error values based on the RMSE (RRMSE) and MAE 

(RMAE) are also used for model comparison at geographically distinct sites. Besides 

these statistical metrics, the data-driven predictive models are also analysed with 

diagnostic plots, including box plots, scatter diagrams, frequency histograms, time 

series plots, spider plots, and Taylor plots. 

 

  

Objective 
Main 

Model 

Benchmark 

Model 

Hybrid 

Approaches 

Modelling 

Platform 
Target 

1 

(Chapter 3) 
LSTM 

GRU, RNN, 

SVR 

• PACF and 

CCF 

• BRF 

Python 

R 
SWL 

2 

(Chapter 4) 

CNN-

GRU 

CNN-LSTM, 

LSTM, RNN, 

DTR, MLP, 

MLR, RF, 

MARS 

• PACF and 

CCF 

• ACO 

• CNN 

Python 

Matlab 

Minitab 

ETo 

3 

(Chapter 5) 
LSTM SVR, MARS 

• PACF 

• BRF 

Python 

R 
SM 

4 

(Chapter 6) 

CNN-

GRU 
GRU 

• NCA 

• CNN 

• CEEMDAN 

Python 

Matlab 

Minitab 

R 

SSM 

5 

(Chapter 7) 

CNN-

BiLSTM 

BiLSTM, 

SVR 

• PACF and 

CCF 

• ACO 

• CNN 

• CEEMDAN 

• VMD 

Python 

Matlab 

Minitab 

R 

QGiS 

SWL 
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CHAPTER 3: STREAMFLOW WATER LEVEL 

FORECASTING USING CLIMATE INDICES, RAINFALL, 

AND PERIODICITY 

3.1 Foreword 

This Chapter is an exact copy of the published manuscript to the Journal of Hydrology 

599 (2021), 126350 (Scopus Impact Factor 5.72). The title of the manuscript is:   

“Deep learning hybrid model with Boruta-Random Forest optimiser algorithm for 

streamflow forecasting with climate mode indices, rainfall, and periodicity.” 

This chapter is based on real-time forecasting using a deep learning (DL) hybrid model. 

The long-short term memory (LSTM) model has hybridized with the Boruta-Random 

Forest (BRF) algorithm for feature selection. The BRF-LSTM hybrid model exhibits 

a significant advantage in SWL forecasting compared to conventional approaches. 98% 

prediction errors in a testing dataset were within 0.015 (m), with a low relative error 

of 1.30%, outperforming all benchmark models. Using the BRF-based feature 

selection technique based on maximum-optimal feature selection, the BRF-LSTM 

model builds a significant predictor set using a random forest model as its underlying 

learning process. As a result, reducing inputs was complemented properly in 

addressing the forecasting issues in the study areas, which was accomplished using 

the proposed model.   

3.2 Research Highlights  

• A deep learning hybrid model (BRF-LSTM) is built for streamflow forecasts. 

• Climate mode indices, rainfall, and periodicity are incorporated for accurate 

forecasts. 

• BRF was used as feature selection with LSTM and GRU models. 

• Six gauging sites were tested: BRF-LSTM yields >98% errors in ±0.015 m, 

~1.30% relative error. 

• The proposed model is useful for hydrological and strategic water resources 

planning. 
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Fig. 3.1 Graphical abstract of Objective 1 

3.3 Article 1   



This article cannot be displayed due to copyright restrictions. See the article link in the Related 
Outputs field on the item record for possible access. 
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CHAPTER 4: EVAPOTRANSPIRATION FORECASTING 

MODEL AT MULTI-STEP HORIZON 

4.1 Foreword 

This Chapter is an exact copy of the published manuscript to the Stochastic 

Environmental Research and Risk Assessment 241(2021) (Scopus Impact Factor 3.38). 

The title of the manuscript is:  

“Hybrid deep learning method for a week-ahead evapotranspiration forecasting.” 
 

This chapter comprises a combination of convolutional neural network (CNN) and 

gated recurrent unit (GRU) network coupled with ant colony optimization (ACO); this 

research provides a new hybrid-deep learning strategy for forecasting multi-step (weeks 

1 to 4) daily-ETo. The findings demonstrate an excellent forecasting capacity, which 

shows that the hybrid CNN-GRU model is superior to the other benchmark models in 

terms of mean absolute error and efficiency. Ultimately, the results of this study reveal 

that the proposed hybrid CNN-GRU model can capture the complicated and non-linear 

interactions between predictor variables and the daily ETo.  

4.2 Research Highlights  

• A hybrid predictive model (i.e., CNN-GRU) with ant colony optimisation is 

implemented in forecasting reference evapotranspiration at a multi-step horizon.  

• Data from MODIS satellite, ground-based SILO, and synoptic-scale climate mode 

indices are incorporated into the technique.  

• The ACO was found as a realistic approach to obtain the best features from an 

optimal set of predictor variables.  

• The hybrid CNN-GRU model significantly improved the forecasting performance 

of evapotranspiration against standalone models.  

• In general, the results showed ACO estimates would benefit future studies to 

characterise the regional scenarios of water resources. 

 

 

 



 
 
 
 

59 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Graphical abstract of Objective 2 

 

4.3 Article 2  



This article cannot be displayed due to copyright restrictions. See the article link in the Related 
Outputs field on the item record for possible access. 
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CHAPTER 5: SOIL MOISTURE ESTIMATION UNDER 

RCP4.5 AND RCP8.5 GLOBAL WARMING SCENARIOS 

5.1 Foreword 

This Chapter is an exact copy of the published manuscript to the Stochastic 

Environmental Research and Risk Assessment 35, pages1851–1881 (2021) (Scopus 

Impact Factor 3.38). The title of the manuscript is:  

“LSTM integrated with Boruta-Random Forest optimiser for soil moisture estimation 

under RCP4.5 and RCP8.5 global warming scenarios.” 

This chapter provides a hybridised LSTM framework to simulate moisture in an 

upper portion of the soil column (SM) in RCP4.5 and RCP8.5 global warming scenarios. 

The proposed model incorporates Boruta-Random Forest (BRF) feature selection and 

significant antecedent memory of predictor variables to estimate future SM using the 

CMIP5 repository. Five study sites in Australia's Murray-Darling Basin were chosen to 

test the deep learning model's viability for SM estimation till 2100. The BRF-LSTM 

model is compared to standalone models (i.e., LSTM, SVR, & MARS). The results 

showed that the BRF-LSTM hybrid model outperformed the standalone models in both 

warming scenarios.  

5.2 Research Highlights  

• A hybrid predictive model (i.e., BRF-LSTM) coupled with Boruta-Random Forest 

was used in estimating the CMIP5 simulated SM under RCP4.5 and RCP8.5.  

• It was discovered that the BRF was a viable way to acquire the best features from a 

collection of predictor variables.  

• The suggested hybrid model outperformed all benchmark models in SM estimation, 

with over 95% of all predicted errors below 0.02 mm and low relative root mean 

square error (1.06% for RCP4.5 and 1.88% for RCP8.5). 

• This study shows that using an LSTM algorithm with BRF feature selection can 

simulate future SM under climate change.   



80 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.1 Graphical abstract of Objective 3 

 

5.3 Article 3  
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CHAPTER 6: SURFACE SOIL MOISTURE FORECASTING 

AT MULTI-STEP HORIZON 

6.1 Foreword 

This Chapter is an exact copy of the published manuscript to the Remote Sensing 

2021, 13(4), 554 (Scopus Impact Factor 4.85). 

“Deep Learning Forecasts of Soil Moisture: Convolutional Neural Network and Gated 

Recurrent Unit Models Coupled with Satellite-Derived MODIS, Observations, and Synoptic-

Scale Climate Index Data” 

This chapter proposed a deep learning hybrid model for daily time-step surface 

soil moisture (SSM) forecasts, incorporating the gated recurrent unit (GRU), complete 

ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and a 

convolutional neural network (CNN). The CEEMDAN-CNN-GRU hybrid model is 

tested for SSM forecasting on the 1st, 5th, 7th, 14th, 21st, and 30th-day ahead. The results 

demonstrate that the proposed model can successfully forecast the surface soil moisture 

when compared to benchmark models. Therefore, it can be said that the proposed 

CEEMDAN-CNN-GRU model can be successfully implemented in hydrology and 

farm management. 

6.2 Research Highlights  

• A hybrid deep learning CEEMDAN-CNN-GRU model coupled with 

neighbourhood component analysis was used to forecast the surface soil moisture 

is incorporated.   

• A pool of 52 predictor datasets obtained from three distinct data sources is used for 

SSM forecasting at multi-step daily horizons. 

• The proposed CEEMDAN-CNN-GRU models perform all benchmark models.  

• Forecasting surface soil moisture using satellite-based sensors at multi-step 

horizons can be beneficial for planning and managing environmentally friendly 

agricultural methods. 
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Fig. 6.1 Graphical abstract of Objective 4 
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Abstract: Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the
future state of the underlying soils plays a critical role in planning and managing water resources and
sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-
CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the
gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability
for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested
at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of
52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global
Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique
terrestrial modelling system, and ground-based variables from Scientific Information Landowners
(SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the
hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is
supported by a relatively lower value of the mean absolute percentage and root mean square error.
In terms of the statistical score metrics and infographics employed to test the final model’s utility,
the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone
and other hybrid method tested on independent SSM data developed through feature selection
approaches. Thus, the proposed approach can be successfully implemented in hydrology and
agriculture management.

Keywords: deep learning algorithm; MODIS; gated recurrent unit; satellite models of soil moisture

1. Introduction

The precise requirements for water resource supply, constant monitoring, and forecast-
ing are changing continuously with population growth, agricultural and human activities.
Any variations in weather and perturbations in climate patterns due to anthropogenically-
induced factors affect usable water distribution and accessibility. Instead of precipitation
playing a paramount role, the terrestrial water basin tends to dominate the actual function-
ing of the hydrological, ecological, and inter-coupled socio-economic systems [1]. Notably,
the knowledge of fundamental components of water reservoirs, e.g., soil moisture (SM)
and streamflow, is essential for an effective water resources management strategy. SM
also governs the physical interactions between land and the atmosphere [2,3] and acts as
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a driver to feed irrigation systems [4], grazing and crop yield predictions [5]. A decline
in groundwater reduces soil water content and the storage volume in underlying soils. A
lack of soil moisture can affect agricultural and hydro-meteorological processes. Therefore,
predictive models providing prior information on monitoring and forecasting water, such
as in this study, are critical to soil moisture forecasts as a principal regulating factor in
groundwater hydrology to understand the soil’s future state.

With increasing computer power, researchers are developing intelligent models to
extract features in historical data (e.g., SM). Such models demonstrate acceptable skills
in forecasting hydro-metrological variables, e.g., precipitation [6–9], drought [10], stream-
flow [11,12], runoff [13,14], floods [15,16], soil moisture [17], water demand and water
quality [18–21]. However, very few studies have focused on the prediction of soil mois-
ture, with most examples being the artificial neural networks (ANN) [22] and the extreme
learning machines (ELM) [23]. Irrespective of the model type and domain of applications,
accurately forecasted soil moisture presents a greater understanding of water resources and
agricultural management, leading to more sustainable decisions. Intelligent systems based
on deep learning utilise feature extraction and reveal the compounded association between
predictors and targets [24]. Hence, soil moisture prediction with advanced algorithms is a
highly practical tool for agricultural water management. DL methods, however, are yet
to be explored in the present study region (i.e., Australian Murray Darling Basin). In this
study, we adopt a gated recurrent unit (GRU) neural networks as a modified long-short
term memory (LSTM) that has attracted good research attention [25]. There appear to be
only a few studies on GRU-based models, especially in hydrology [26,27]. Convolutional
Neural Networks (CNNs) is a useful feature extraction method to improve the overall
predictive process [28]. Therefore, an integration of CNN and GRU can, in foreseeable
possibilities, lead to a robust pre-processing of data providing a viable option to improve
the model’s forecasting skill. This has been evident in some studies that integrated CNN
with LSTM for improved performance, with Ghimire et al. [28] showing the superior skill
of the CNN-LSTM model in the problem of solar radiation. Integration of deep learning
(i.e., CNN-GRU) for soil moisture forecasting is yet to be tested explicitly, with no studies
previously using this method, the focus of this study.

Given the stochastic nature of hydrological variables, multi-resolution analysis (MRA)
can enhance any model’s performance as a tool to reveal the data features. Conven-
tional MRA, for example, discrete wavelet transforms (DWT), have long been imple-
mented [29–32]. However, DWT appears to have drawbacks, and this critical issue is
resolved by the maximum-overlap discrete wavelet transform (MODWT), an advanced
DWT method [11,33,34]. In this study, we adopt an improved version of EMD, i.e., complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to implement
a self-adaptive decomposition of the predictor variables [23]. In CEEMDAN-based decom-
position, a coefficient representing Gaussian white noise with a unit variance is added con-
secutively at each stage to reduce the forecasting procedure’s complexity, avoiding the time
series’ intricacy [35]. Previous studies used CEEMDAN in forecasting soil moisture [23,36]
with an earlier version (i.e., EEMD) used in forecasting streamflow [37] and rainfall [38–40].
Moreover, The multivariate empirical mode decomposition (MEMD) is a self-adaptive
algorithm that establishes multivariate inputs to perform a proper investigation [41]. The
MEMD method has been successfully applied in time series forecasting [42,43]. The study
incorporates the CEEMDAN method as neither the EEMD nor the CEEMDAN decomposi-
tion approach has been assimilated with any deep learning approach (i.e., GRU) to produce
a soil moisture forecast system, as attempted in the present study.

Climate indices have long been recognised as a useful synoptic-scale indicator of
teleconnections representing climate variability [9,44]. La Niña, represented by climate
indices, is accountable for substantial rainfall in eastern Australia, whereas the El Niño
phenomenon is related to drought [45]. However, El Niño Southern Oscillation (ENSO)
has a potential impact on precipitation in northern and eastern Australia [46]. Consider-
ing the substantial effects of ENSO phenomena on Australia’s climate variability, some
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studies [9,47,48] have correlated ENSO effects with hydrological variables (e.g., streamflow,
rainfall, and droughts). Rashid et al. [49] aimed to predict a drought index in Australian
catchments by aggregating synoptic-scale climate mode indices. Considering these studies,
the design of an artificial intelligence model utilising synoptic-scale climate indices, as
done in this paper, can be of great practical value in developing sustainable river systems
and drought management strategies.

In our paper, we rely on satellite (i.e., MODIS) sensors providing a flexible remote
system to explore the nexus between physical, chemical, and biological parameters related
to ground variables (i.e., observations) and how these affect future changes in daily soil
moisture. However, the inclusion of three distinct datasets has a high potential to address
the uncertainties in the predictor variables, especially the remote sensing data’s errors. The
variables from satellite sensors are associated with errors that propagate to the prediction
of hydrologic variables [50–52]. To address this issue, it is preferable to integrate satellite
and ground-based variables. Ghimire et al. [53] integrated GIOVANNI data with ECMWF
Reanalysis to predict long-term solar radiation. However, the integration of satellite-based,
ground-based SILO data, and climate indices for soil moisture forecasts, particularly with
deep learning methods (e.g., LSTM), is yet to be implemented.

The objectives are, therefore, fourfold. (1) To build deep learning approaches to
forecast surface soil moisture (SSM) at 2 cm depth, incorporating CEEMDAN (i.e., data
splitting method) with CNN (i.e., feature extraction method) to generate a GRU-based
predictive model. This predictive system, denoted as the CEEMDAN-CNN-GRU hybrid
model, is improved with neighbourhood component analysis as a feature selection tenet
on diverse predictors obtained from MODIS data, climate mode indices, and ground-
based SILO product. (2) To adopt the hybrid CEEMDAN-CNN-GRU model for daily
SSM forecasts at a multi-step horizon (i.e., 1st, 5th, 7th, 14th, 21st, and 30th day lead
time). (3) To explore the contributory influence of climate indices on the accuracy of the
CEEMDAN-CNN-GRU model. (4) To comprehensively benchmark the objective model
against alternative tools such as the GRU standalone algorithm, CEEMDAN-GRU, and
CNN-GRU hybrid model. This study’s primary contribution is to generate a skilful deep
learning method for soil moisture prediction, capitalising on remote sensing and ground
data while capturing pertinent relationships between soil moisture and synoptic-scale
drivers of climate variability in the Australian Murray Darling Basin.

2. Materials and Methods
2.1. Theoretical Frameworks
2.1.1. Convolutional Neural Network

To build the CEEMDAN-CNN-GRU hybrid model trained for daily SSM forecasts, this
study purposely employs the Convolutional Neural Networks (CNN) for optimal feature
extraction from the input dataset. CNN’s have some similarities with conventional neural
networks. They are, however, different in their connectivity between and within neuronal
layers. In conventional neural networks, every neuron is wholly connected to all neurons
in prior layers, whereas single layer neurons do not contribute to the model’s network.
CNN’s are similar to Feed Forward Neural Networks [54], with its model architecture
having three layers based on pooling, convolutional, and fully connected layer settings.

The connected layer is employed to estimate objective variables depending on the
predictor variable’s input features. CNN has proven to be a reliable modelling tool to extract
hidden features in inputs and generating filters capturing data features in predictors [55].
To extract the pattern in an objective variable (i.e., SSM) and associated predictor variables,
each convolutional layer is established as follows [56]:

hk
ij = f

((
Wk × x

)
ij
+ bk

)
(1)

Here, Wk is referred to as the weight of the kernel associated with kth feature map, f
is the activation function, and the operator of the convolutional procedure is denoted by
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multiplication sign (×). The rectified linear unit (ReLU) is used as an activation function
and the adaptive moment estimation (Adam) is selected as an optimisation algorithm using
the grid search approach. The ReLU is described as:

f (x) = max(0, x) (2)

A one-dimensional convolutional operative was adopted to directly forecast the 1-
Dimensional dataset, which eventually simplifies the modelling procedures for real-time
forecasting execution.

2.1.2. Gated Recurrent Unit Network

The hybrid CEEMDAN-CNN-GRU model utilises Gated Recurrent Unit (GRU) neural
network as the predictive tool after extracting features based on the CNN algorithm
(Section 2.1.1). GRU is a distinct type of long short-term memory (LSTM) network presented
by Cho et al. [57]. Along with similarities, GRU possesses different characteristics from
the LSTM. For instance, the GRU owns two gates, namely the update gate and reset gate,
whereas the LSTM has three gates (i.e., the input gate, forget gate, and output gate). Figure 1
provides a schematic of the hybrid CEEMDAN-CNN-GRU model with CEEMDAN data
decomposition and model architecture. Moreover, Figure 1b shows the structure of the
gated recurrent unit network.
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Figure 1. (a) Schematic of the hybrid CEEMDAN-CNN-GRU model with Complete Ensemble
Empirical Model Decomposition (CEEMDAN), Convolutional Neural Networks (CNN), and Gated
Recurrent Unit (GRU) Neural Network arrangement. The IMFs (Intrinsic Mode Functions) and
residual series are generated in the CEEMDAN process, whereas the CNN algorithm represents the
feature extraction stage. (b) 2-layered GRU model.
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In a GRU Network, two input features, including the input vector x(t) and output
vector h(t − 1), are present in each layer. The yield of each gate is achieved by logical
operation and non-linear transformation of predictors. Moreover, the association between
predictors and predictand can be defined as follows:

r(t) = σg(Wrx(t) + Urh(t− 1) + br) (3)

z(t) = σg(Wzx(t) + Uzh(t− 1) + bz) (4)

h(t) = (1− z(t))o(t− 1) + z(t)oĥ(t) (5)

ĥ(t) = σh(Whx(t) + Uh(r(t))oh (t− 1)) + bh (6)

where r(t) is the reset gate vector, z(t) is defined as the update gate vector, W and U are
parameter metrics and vector. σh is referred to as a hyperbolic tangent, and σg is defined as
a sigmoid function. Finally, given the architecture of GRU, a training approach is chosen,
which includes backpropagation through time. Based on previous studies, Adam optimiser
was implemented as it has enhanced expertise.

2.1.3. Hybrid CNN–GRU. Neural Network

In this paper, the hybrid modelling approach utilises a deep learning method built
upon a feature extraction procedure under a forecast model framework. This research
demonstrates how the CNN–GRU model comprised of three-layered CNN is used for fea-
ture extraction to generate future changes in the objective variable (i.e., SSM). In particular,
the GRU layer is employed to integrate input features extracted by the CNN algorithm to
finally forecast the target variable (i.e., SSM) with minimal training and testing error.

2.1.4. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN)

As elucidated in Section 1, CEEMDAN is adopted as an improved version of EMD
and EEMD to perform a self-adaptive decomposition of model input signals [23] prior
to modelling the target variable. The CEEMDAN decomposition process commences by
discretising the n-length inputs of any model χ(t) into intrinsic mode functions (IMFs)
and residues to comply with tolerability provision. Nevertheless, to ensure no leakage of
information in the IMFs and residues from the training series into the future (i.e., testing
and validation subset), the decomposition is performed separately for training, validation,
and testing. The actual IMF is produced by taking the mean of the EMD-grounded I.M.F.s
across a trial and the combination of white noise to model the predictor-target variables.

Assume that we have D-dimensional set, with n-length Xi matrix (i.e., inputs selected
by two-phase decomposed sub-series achieved during the decomposition) and the 1-
dimensional surface soil moisture as the target variable. The difference between CEEMDAN
and EEMD is that in the CEEMDAN case, a restricted noise (εi) across [0, 1] is included
at every single decomposition stage, calculated to induce the IMF to take the lead to
insignificant error. Considering Ej(.) as an operator producing Jth modes obtained from
EMD, we follow Torres et al. [58] to implement the CEEMDAN process as follows:

Step 1: The decomposition of p-realizations of χ[n] = ε1ωp[n] using EMD to develop their
first intrinsic approach, as explained according to the equation:

ˆIMF1[n] =
1
p

P

∑
p=1

IMFp
1 [n] = IMF1[n] (7)

Step 2: Putting k = 1, the 1st residue is computed following Equation (7).

Res1[n] = χ[n]− ˆIMF1[n] (8)
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Step 3: Putting k = 2, the 2nd residual is obtained as:

ˆIMF2[n] =
1
p

P

∑
p=1

E1(r1[n] + ε1E1(ω
p[n])) (9)

Step 4: Setting k = 2 . . . K calculates the kth residue as:

Resk[n] = Resk−1[n]− ˆIMFk[n] (10)

Step 5: Now we decompose the realisations Resk[n] + ε1E1(ω
p[n]), Here, k = 1, . . . K

until their first model of EMD is reached; here, the (k + 1) is:

ˆIMF(k+1)[n] =
1
p

P

∑
p=1

E1(rk[n] + εkEk(ω
p[n])) (11)

Step 6: Now the k value is incremented, and steps 4–6 are repeated. Consequently, the final
residue is achieved:

RESk[n] = χ[n]−
K

∑
k=1

ˆIMFk (12)

Here, K is defined as the limiting case (i.e., the highest number of modes). To com-
ply with the replicability of the earliest input, χ[n], the following is performed for the
CEEMDAN approach.

χ[n] =
K

∑
k=1

ˆIMFk + RESk[n] (13)

The additive noise demonstrates that signal-to-noise ratio (ε) is operated at every
phase [59,60] and must connect the low magnitude with high-frequency signals in the
data [61,62]. Figure 1a provides the CEEMDAN decomposed IMFs and residuals and
CNN architecture.

2.1.5. Feature Selection: Neighbourhood Component Analysis

The selection of features within the inputs used to forecast soil moisture is vital in
applying a predictive model. This is implemented to reduce the dimensionality of model
inputs and computational cost, including the desired improvements in the forecasting
accuracy and interpretation of the predictive model characteristics and nature of its pre-
dictors [59,63–65]. This study has adopted Neighbourhood Component Analysis (NCA)
based on regressions applied to segregate the potential input variables from 52 predictor
variables. Introduced by Yang et al., this method uses a competent, non-rectilinear, and
non-parametric implanted approach. The MATLAB function called “fsrnca” performs
NCA feature selection with regularisation to learn feature weights for the minimisation
of an objective function that measures the average ‘leave-one-out’ regression loss over
the training data. The NCA process’s fsrnca approach is adopted to train a variable set to
better understand the importance of features through weight by minimising the objective
function and calculating the regression loss of predictive model for soil moisture forecasts.

Consider training a dataset T = {(xi, yi): i = 1, 2, 3,..., N} where xi ∈ RP is the feature
vectors (i.e., predictor variables), yi ∈ R is the target (i.e., SSM), and N is the sample number
for the training set. A function g(x) : RP → R is absorbed by fsrnca algorithm to forecast
the response y from several input variables, optimising their nearest spaces. The weighted
distance (Dw) amongst any two samples is calculated as:

Dw(xa, xb) =
J

∑
j=1

w2
j |xa, xb| (14)
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where xa and xb are the two samples used during training, and wj is defined as the weight-
related to the jth feature. Furthermore, the probability distribution (pαβ) is employed
to increase its leave-one-out forecasting correctness in the training phase. By contrast,
the probability is that xα chooses xβ as its reference argument. The algorithm acquires a
weighting vector ‘w’ for gradient the ascent method to determine the feature subset with a
regularisation factor to prevent overfitting.

3. Study Area and Data
3.1. Study Area and Description of Predictive Model Development Dataset

For the first time, this study aims to build a new forecast for daily surface soil moisture
(SSM) with convolutional-gated recurrent unit neural networks within the Australian
Murray Darling Basin (MDB). The MDB covers ~1,042,730 km2 (or 14%) of mainland
Australia [24,66] and ~67% of agricultural lands [67]. As illustrated (Figure 2), the sites
are selected based on climate class and soil type diversity, namely Menindee, Deniliquin,
Fairfield, and Gabo Island.
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Figure 2. The Australian Murray Darling Basin with study sites and Surface Soil Moisture (SSM, kgm−2) where the hybrid
CEEMDAN-CNN-GRU model at multi-step daily SSM forecasting.

The geographical locations and physical characteristics of the sites in Murray Darling
Basin are tabulated in Table 1. It should be noted that the site Gabo Island is located at the
border of the MDB region for comparison purposes with the other study stations, whereas
~20 lakes surround Menindee in a harsh desert environment. The site Fairfield lies within
the savannah climate class with land-use patterns of dryland cropping [23]. Figure 2 also
shows a histogram of monthly surface soil moisture patterns for the candidate sites.

120



Remote Sens. 2021, 13, 554 8 of 30

Table 1. Geographic locations and physical characteristics of selected sites in the Murray Darling Basin.

Station Name BOM Station ID SILO Position
(MODIS Grid Area)

Major Climate Class
[68]

Soil Type
[69]

Elevation
[70]

Menindee 047019
32.39◦S, 142.42◦E
(142.5◦E, 32.5◦S,
142.25◦E, 32.25◦S)

Desert Calcarosol 61

Deniliquin 074128
35.53◦S, 144.97◦

(145◦E, 35.25◦S,
144.75◦E, 35◦S)

Savannah Calcarosol 94

Fairfield 066137
33.92◦S, 150.98◦E
(149.75◦E, 37.75◦S,
150.0◦E, 37.5◦S)

Savannah Vertosol 15

Gabo Island 084016
37.57◦S, 149.92◦E
(150◦E, 37.75◦S,
149.75◦E, 37.5◦S)

Sub-Tropical Sodosol 15

BOM = Bureau of Meteorology, Australia.

The appropriate selection of predictors related to the objective variable has a crucial
role in predictive model design. To build a robust model, we adopt remotely sensed
MODIS satellite-derived data identified as potential predictor variables in other studies,
e.g., solar radiation prediction [24,71,72]. We consider different studies that demonstrate
the potential utility of synoptic-scale climate indices that modulate Australian rainfall and
crops [41,73,74]. This study integrates three unique data (i.e., satellite-derived data, climate
indices, and ground-based variables) to capture a diverse suite of predictive features
to forecast SSM, enabling the deep-learning approach a significant edge over the solely
station-based models.

3.1.1. MODIS Satellite Dataset

Our hybrid deep learning model (i.e., CEEMDAN-CNN-GRU) is built upon NASA’s
Geospatial Online Interactive Visualization and Analysis Infrastructure (GIOVANNI) repos-
itory (1 February 2003 to 31 March 2020). GIOVANNI represents a powerful online visuali-
sation and analysis tool for geoscience datasets, capturing 2000 satellite variables [75,76]. In
this study, MODIS-based predictor variables, presented in Table 2, are utilised to design and
evaluate the hybrid CEEMDAN-CNN-GRU model for SSM forecasting. These are extracted
from the GLDAS system representing the high-temporal resolution terrestrial modelling
system consisting of the land surface state and several flux parameters with three temporal
resolution products: hourly, daily, and monthly. Our study has used GLDAS 2.0 datasets
extracted in daily temporal resolutions available publicly. The study utilised MODIS-based
surface soil moisture (SSM) data as a target variable obtained from the GLDAS 2.0 model.

3.1.2. Scientific Information for Landowners (SILO) Dataset

To increase the pool of predictors, enabling effective feature engineering and increased
performance of the DL model, this study selects nine meteorological variables from Sci-
entific Information for Landowners (SILO): https://www.longpaddock.qld.gov.au/silo/
ppd/index.php (accessed on 31 December 2020). SILO, managed by the Department
of Environment and Science, Queensland Government [77], is popular for studying the
Australian climate. Table 2 provides a list of SILO data.

3.1.3. Climate Indices

In previous studies, e.g., [9,29,59,74] on modelling precipitation, streamflow, and
soil moisture, the role of synoptic-scale and climate indices were found significant in
improving the overall model. In this study, twenty-one climate indices are thus obtained
from many sources: National Climate Prediction Centre, Australian Bureau of Meteorol-
ogy [70], and National Oceanic and Atmospheric Administration (NOAA) with daily sea
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surface temperature (Nino1 + 2SST, Nino3SST, Nino3.4SST, Nino4SST) over 1 March 2003
to 31 March 2020 from KNMI Climate Explorer [78]. As the positive SOI is related to La-
Nina and negative SOI concurs with El-Nino events [79,80], this study has used all of these
indices due to strongly correlated rainfall with lagged SOI showing high predictability
of rainfall from August-November [44,81]. To further enhance the predictive skill of the
deep learning model, we consider Madden-Julian Oscillation (MJO) known to produce a
substantial effect on tropical weather [70], which indeed entails a change in rainfall, wind,
sea surface temperature (SST), and cloudiness [82]. Hence, eight daily MJO indices were
adopted from KNMI. Climate Explorer [78], together with Interdecadal Pacific Oscilla-
tion (IPO), was introduced by Henley et al. [83], collected from NOAA National Climate
Prediction Centre. Detailed information on climate indices and SSTs are in Table 2.

Table 2. Description of the global pool of 52 predictor variables used to design and evaluate hybrid
CEEMDAN-CNN-GRU predictive model for daily surface soil moisture forecasting.

GLDAS 2.0: Modis Satellite Data from Giovanni Repository

Predictor Variable Notation Description Units

SurT St Average Surface Skin temperature K

CSW CW Plant canopy surface water Kg m−2

CWE CE Canopy water evaporation kg m−2 s−1

Esoil Es Direct Evaporation from Bare Soil kg m−2 s−1

ET ET Evapotranspiration kg m−2 s−1

Esnow Es Snow Evaporation kg m−2 s−1

GWS GW Groundwater storage mm

LWR. LW Net longwave radiation flux W m−2

Qg Qg Ground heat flux W m−2

Qh Qh Sensible heat net flux W m−2

Qle Qle Latent heat net flux W m−2

Qs Qs Storm surface runoff Kg m−2 s−1

Qsb Qb Baseflow-groundwater runoff Kg m−2 s−1

Qsm Qm Snow-melt Kg m−2 s−1

Snd Sn Snow depth m

Snt Snt Snow Surface temperature m

SMp Sp Profile Soil moisture Kg m−2

SMrz Sz Root Zone Soil moisture Kg m−2

SSM SSM Surface Soil moisture Kg m−2

SWE SW Snow depth water equivalent Kg m−2

SWR SR Net short-wave radiation flux W m−2

Tra Tr Transpiration Kg m−2 s−1

TWS TW Terrestrial water storage mm

SILO (Ground-Based Observations)

T.Max Tx Maximum Temperature ◦C

T.Min Tn Minimum Temperature ◦C

Rain r Rainfall mm

Evap Ep Evaporation mm

Radn Rd Radiation MJ m−2
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Table 2. Cont.

GLDAS 2.0: Modis Satellite Data from Giovanni Repository

Predictor Variable Notation Description Units

VP VP Vapour Pressure hPa

RHmaxT Rx Relative Humidity at Temperature
T.Max %

RHminT Rn Relative Humidity at Temperature
T.Min %

Mpot Mp Morton potential evapotranspiration
overland mm

SYNOPTIC-SCALE (Climate Mode Indices)

Nino3.0 N3 Average SSTA over 150◦–90◦W and
5◦N–5◦S

NONE

Nino3.4 N34 Average SSTA over 170◦E–120◦W
and 5◦N–5◦S

Nino4.0 N4 Average SSTA over 160◦E–150◦W
and 5◦N–5◦S

Nino1+2 N12 Average SSTA over 90◦W–80◦W
and 0◦–10◦S

AO A Arctic Oscillation

AAO AO Antarctic Oscillation

MJO1 MJ1 Madden Julian Oscillation-1

MJO2 MJ2 Madden Julian Oscillation-2

MJO4 MJ4 Madden Julian Oscillation-4

MJO5 MJ5 Madden Julian Oscillation-5

MJO6 MJ6 Madden Julian Oscillation-6

MJO7 MJ7 Madden Julian Oscillation-7

MJO8 MJ8 Madden Julian Oscillation-8

MJO10 MJ10 Madden Julian Oscillation-10

EPO EP East Pacific Oscillation

GBI G Greenland Blocking Index (GBI)

WPO WP Western Pacific Oscillation (WPO.)

PNA PN Pacific North American Index

NAO N North Atlantic Oscillation

SAM SM Southern Annular Mode index

SOI SOI Southern Oscillation Index, as per
Troup [84]

SSTA = Sea Surface Temperature anomalies (°C).

3.2. Predictive Model Development

To design a forecast model for SSM over multi-step periods of 1st, 5th, 7th, 14th,
21st, and 30th day lead time, three distinct datasets from satellites (i.e., GIOVANNI), cli-
mate indices, and ground source (SILO) for 17 years, 1 February 2003 to 31 March 2020
are used. Hybrid DL is implemented under Intel i7 @ 1.5 GHz and 16 GB memory. The
proposed model algorithms were demonstrated using freely available DL libraries, namely
the Keras [85,86] and TensorFlow [87] libraries. MATLAB 2020 software is used for Neigh-
bourhood Component Analysis feature selection with packages matplotlib, and Minitab is
used to visualise the forecasted SSM in the testing phase.
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Data-driven models were built by normalising the input variables, transforming these
predictors into a more consistent form [88]. To ensure the variable features were given pro-
portional attention in network training, all were normalised [89] between (0, 1) [41,53,90].

xnorm =
x− xmin

xmax − xmin
(15)

In Equation (15), x is the respective variable, xmin is the minimum value, xmax is the
maximum and xnorm is the normalised value. After normalising the variables, the datasets
are partitioned into training (February 2003–December 2013), validation (January 2014–
December 2016), and testing (January 2017–March 2020) subsets. Figure 3 shows the
methodological steps of the proposed CEEMDAN-CNN-GRU model. CEEMDAN is
implemented in four stages.
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Figure 3. Workflow with the steps in model design for hybrid CEEMDAN-CNN-GRU predictive
model. SSM = Surface Soil Moisture, NCA = neighbourhood component analysis for regression,
IMF = Intrinsic Mode Function, CEEMDAN = Complete Ensemble Empirical Model Decomposition
with adaptive noise, GRU = Gated Recurrent Units.

3.2.1. Feature Selection

By incorporating the MODIS satellite and ground and climate indices, this study has
utilised 52 different predictors for SSM forecasting; hence, feature selection was crucial
for data pre-processing. This is because irrelevant and redundant features increase the
network size, congestion and cause a reduction in the algorithm’s speed, reducing the
efficiency of the predictive model [91]. Therefore, our study has used the NCA algorithm
to screen an optimal set of predictor variables out of the 52-variable set. In general, fsrnca
calculates every predictor’s relative weight against a target (SSM), illustrated in Figure 4.
Following this, the standalone GRU and hybrid CNN-GRU models were executed with
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predictors added one by one from the highest feature to the lowest feature weight until an
optimal performance was achieved. Figure 5 illustrates the the relative root mean squared
error (RRMSE) value of different combinations prepared based on NCA. Tables A1–A6
shows the GRU and CNN-GRU model’s performance accordingly.
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Figure 4 illustrates the respective feature weights of predictor variables, using the
Menindee station as an example. For the 1st day of SSM forecasting, the root zone soil
moisture (kg m−2) is found to generate the highest feature weight, whereas, for the 5th day,
groundwater storage (mm) is found to be the most significant feature weight. Notably,
the groundwater storage contributed to the largest feature weighted for the 7th, 14th, 21st,
and 30th day SSM forecasting. This evaluation indicates that groundwater has a strong
influence on SSM over inter-daily scales. Tables S1–S6 illustrates the input combination for
SSM forecasting in the nth day lead period with their respective forecasting performance
with CNN-GRU and GRU model. It is imperative to note that fsrnca algorithm is used in
two distinct phases before applying the hybrid-deep learning (i.e., CEEMDAN-CNN-GRU)
model. In the first phase, fsrnca attains the feature weights and acquires the optimal predic-
tor variable list required for SSM forecasts. Subsequently, the second phase incorporates
the data decomposition process utilising CEEMDAN to each variable selected from the
feature weights. Finally, the feature weight is calculated for IMF (t) deduced for each
predictor variable against the objective variable (i.e., SSM). Here, the term t refers to the
number of IMFs for each variable, removing four to five least significant features from the
hybrid CEEMDAN-CNN-GRU model.
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Figure 5. Stair plot showing the relative root mean squared error (RRMSE, %) for (a) CNN-GRU and
(b) GRU applied at different input combinations for the Menindee station at the 1st, 5th, 7th, 14th,
21st and 30th day lead time.

3.2.2. Hybrid Deep Learning Algorithm Implementation

Before applying the CEEMDAN-CNN-GRU model in the 1st, 5th, 7th, 14th, 21st, and
30th day SSM forecasts, hyperparameter selection is undertaken through a grid search
procedure whose theoretical descriptions are provided in Section 2. Table 3 shows the
hyperparameters, optimal GRU architecture, and CNN-GRU with input combinations de-
duced from the feature weight matrix. Finally, the deep learning forecast model combining
a data decomposition (i.e., CEEMDAN) stage with a three-layered feature extraction stage
(i.e., CNN) and feature selection stage (i.e., fsrnca) is implemented to forecast SSM.

The proposed CEEMDAN-CNN-GRU model is implemented in four stages, as shown
in Figure 3. Firstly, CEEMDAN is applied to decompose historical training data into
IMFs and residual signals (Figure 1a) followed by segregation of each IMFs and residual,
such as collecting all the IMF1 for predictor variables. The relative feature weights of
respective IMFs related to IMF of the target variable (i.e., SSM) are determined. The optimal
signal selection enables the algorithm to remove the least important feature-weighted
IMFs, allowing the predictive model network to be noise-free. Finally, the forecasted
SSM utilising the CEEMDAN-based model (i.e., the hybrid CEEMDAN-CNN-GRU) is
obtained by aggregating the IMFs of the predictor variables. The robustness of the model
is investigated by several evaluation criteria (Section 3.2.3).
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Table 3. (a) Range of tested hyperparameters in designing hybrid CNN-GRU and GRU predictive
models through trial and error method. (b) Optimally selected hyperparameters. ReLU stands for
Rectified Linear Units, SGD stands for stochastic gradient descent optimiser.

(a) Tested Range of Model Hyper-Parameters

Model Model Hyper-parameter Names Search Space for Optimal
Hyper-Parameters

CNN-GRU

Filter 1 (70, 80, 100, 150)

Filter 2 (70, 80, 100,150)

Filter 3 (70, 80, 100, 150)

GRU Cell Units (40, 50, 70, 80, 100, 150)

Epochs (500, 800, 1000)

Activation function (ReLU)

Optimiser (Adam, SGD)

Batch Size (5, 10, 20, 50, 100)

GRU

GRU Cell 1 (70, 80, 100, 110)

GRU Cell 2 (70, 80, 100,150, 200, 210)

Epochs (500, 800, 1000)

Activation function (ReLU)

Optimiser (Adam, SGD)

Batch Size (5, 10, 20, 50, 100)

(b) Optimally Selected Hyper-Parameters

CNN-GRU

Convolution Layer 1 (C1) 80

C1-Activation function ReLU

C1-Pooling Size 1

Convolution Layer 2 (C2) 70

C2-Activation function ReLU

C2-Pooling Size 1

Convolution Layer 3 (C3) 80

C3-Activation function ReLU

C3-Pooling Size 1

GRU Layer 1 (L1) 200

L1-Activation function ReLU

GRU Layer 2 (L2) 60

L2-Activation function ReLU

Drop-out rate 0.2

Optimiser Adam

Padding Same

Batch Size 5

Epochs 400

GRU

GRU Cell 1 (G1) 110

G1-Activation function ReLU

GRU Cell 2 (G2) 250

G2-Activation function ReLU

Epochs 300
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Table 3. Cont.

(a) Tested Range of Model Hyper-Parameters

Optimiser SGD

Drop-out rate 0.2

Batch Size 15

Epochs 1000

It is worth noting that climate indices (CIs) have a notable signature of climate vari-
ability in Australia, leading to substantial influence on rainfall and a potential effect on
future surface soil moisture patterns. In the final task, climate indices’ relative contribution
to building the CEEMDAN-CNN-GRU model is assessed by Multivariate Adaptive Regres-
sion Splines (MARS) utilising the ARESLab toolbox. Following Friedman [86], MARS can
determine each predictor variable’s significance by evaluating its complex and non-linear
interaction with the target (i.e., SSM) based on best regressors and provide the importance
of each variable. The relative importance of any predictor variable is the square root of GCV
(Generalised Cross-Validation) with all basic functions involving the respective variable
minus the root square of the GCV score of that full model. However, this process is scaled
in such a way that the relative importance has a value of 100, expressed:

GCV =
MSE(

1− enp
N
)2 (16)

Here, enp is the significant number of model parameters, p = k + c (k− 1)/2; k = basis
function in MARS model; c = penalty (set to 2 or 3). However, if enp is greater or equal to
N, GCV is an Inf, which indicates the model is flawed [92].

3.2.3. Predictive Model Evaluation

The efficacy of deep learning hybrid model is evaluated using different performance
evaluation criteria e.g., Pearson’s Correlation Coefficient (r), root mean square error (RMSE),
Nash-Sutcliffe efficiency (NSE) [93], mean absolute error (MAE), and Kling-Gupta effi-
ciency [94]. Due to geographic differences between the study stations, we employ relative
error-based metrics: i.e., relative RMSE (denoted as RRMSE) and relative MAE (denoted as
RMAE). The appraisal of a predictive model’s efficacy depends on the exactness between
the predicted and observed values. RMSE is an appropriate measure of model performance
compared to MAE when the error distribution in the tested data is Gaussian [95] but for
an improved model evaluation, the Willmott’s Index (WI) and Legates-McCabe’s (LM)
Index are used as more sophisticated and compelling measures [96,97]. Mathematically,
the metrics are as follows:

Correlation coefficient (r):

r =


∑N

i=1
(
SSMobs − SSMobs

)(
SSM f or − SSM f or

)
√

∑N
i=1
(
SSMobs − SSMobs

)2
∑N

i =1

(
SSM f or − SSM f or

)2


2

(17)

Mean absolute error (MAE: kg m−2):

MAE =
1
N

N

∑
i=1

∣∣∣SSM f or − SSMobs

∣∣∣ (18)

Root mean squared error (RMSE: kg m−2):

RMSE =

√√√√ 1
N

N

∑
i=1

(
SSM f or − SSMobs

)2
(19)
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Nash-Sutcliffe Efficiency (NSE):

NSE = 1−

1−
∑N

i=1 (SSM f or)
2

∑N
i=1

(
SSMobs − SSM f or

)2

) (20)

Kling-Gupta efficiency (KGE):

KGE = 1−

√√√√(r− 1)2 +

(
SSM f or

SSMobs
− 1

)2

+

(
CVp

CVs

)2
(21)

Mean Absolute Percentage Error (MAPE, %):

MAPE =
1
N

(
t=1

∑
N

∣∣∣∣∣ (SSM f or − SSMobs)

SSMobs

∣∣∣∣∣
)
× 100, (0% ≤ MAPE ≤ 100%) (22)

Willmott’s Index (WI):

WI = 1−

 ∑N
i=1

(
SSM f or − SSMobs

)2

∑N
i=1

(∣∣∣SSM f or − SSMobs

∣∣∣+ ∣∣SSMobs − SSMobs
∣∣ )2

 (23)

Legates–McCabe’s Index (LM):

LM = 1−

 ∑N
i=1

∣∣∣SSM f or − SSMobs

∣∣∣
∑N

i=1
∣∣|SSMobs − SSMobs|

∣∣
 (24)

Relative Root Mean Squared Error (RRMSE, %):

RRMSE(%) =

√
1
N ∑N

i=1

(
SSM f or − SSMobs

)2

1
N ∑N

i=1(SSMobs)
× 100 (25)

Relative Mean Absolute Error (RMAE, %):

RMAE (%) =

1
N ∑N

i=1

∣∣∣SSM f or − SSMobs

∣∣∣
1
N ∑N

i=1(SSMobs)
× 100 (26)

Absolute percentage bias (APB, %):

APB =

∑N
i=1

∣∣∣SSMobs − SSM f or

∣∣∣ × 100

∑N
i=1|SSMobs|

 (27)

In Equations (17)–(27), SSMobs and SSM f or represents the observed and forecasted
values for ith test value; SSMobs and SSM f or refer to their averages, accordingly, and N is
defined as the number of observations, while CV stands for the coefficient of variation. CV
is a standardised measure of the dispersion of the frequency distribution.

4. Results

The practical utility of the hybrid DL (i.e., CEEMDAN-CNN-GRU) model is estab-
lished by integrating diverse data in its training and model testing phase. Significant
features from predictor variables are used by incorporating NCA, and the predictive model
is evaluated using statistical metrics (Equations (17)–(27)), infographics, and visualisations
to appraise the degree of agreements between simulated and observed soil moisture. By
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several measures, the CEEMDAN-CNN-GRU model appears to outperform all the com-
parative models with superior r and NSE and low RMSE, MAE, and APB in the testing
phase. An extensive analysis of tabulated results (Table 4) provides convincing arguments
that the hybrid deep learning method is effective for surface soil moisture forecasts and
can perhaps be a potential tool in agriculture water management. However, among all
study sites, the CEEMDAN-CNN-GRU model for the Menindee station showed the best
performance, considering r (0.996), NSE (0.995), and lowest RMSE (0.021), MAE (0.013),
and APB (0.359) values for the 1st day of SSM forecasting. The performance of this model
is followed by the CEEMDAN-GRU and CNN-GRU model.

For the 5th day of SSM forecasting, the results of the objective model for Menindee had
the best performance (r = 0.993; NSE = 0.991; RMSE = 0.040 kg m−2) followed by Deniliquin
(r = 0.989; NSE = 0.975; RMSE = 0.091 kg m−2). Likewise, for the 7th, 14th, 21st, and 30th
days of SSM forecasting, the CEEMDAN-CNN-GRU model outperformed the other models
by a notable margin for all the respective periods of SSM forecasting. However, a site-specific
signature in the model accuracy was also evident, with the results for Menindee registering
the lowest value of RMSE generated by the CEEMDAN-CNN-GRU model. In terms of MAE,
the CEEMDAN-CNN-GRU model returned the lowest value for Menindee, suggesting that
the CEEMDAN-CNN-GRU model was a potential forecasting tool SSM at the 1st, 5th, and 7th
day ahead periods. Not surprisingly, in accordance with other studies, e.g., the present study
indicates that as the length of the forecasting period was increased, the model’s performance
appear to reduce at a significant rate in such a way that the r-values reduced by 0.30%,
1.10%, 9.15%, 11% and 15% for the 1st to 5th, 7th, 14th, 21st and 30th day of SSM forecasting.
The change of the performance metrics (i.e., NSE, MAE, and APB) for longer-term horizons
relative to the shorter-term horizons also concurred with the respective changes in the r-values
and is consistent with earlier studies [60,98]. For a longer-term horizon, the present r value
was lower, and the MAE increased, suggesting that for the longer forecast horizon, the
model appeared to lose the relevant data features in the predictor variables required to
maintain precise SSM forecasting performance. The hybrid CEEMDAN-CNN-GRU model
is further evaluated using a probability plot of errors at the 95th percentile, including
those of the benchmark model (i.e., CNN-GRU, CEEMDAN-GRU) and the standalone
model (i.e., GRU) with an illustration for Menindee at the different nth (n = 1, 5, 7, 14, 21
and 30) days (Figure 6). The CEEMDAN-CNN-GRU model results show that ~95% of
SSM forecasting had the lowest error (<0.1) for the 1st and 5th days of SSM forecasting.
Among all the predictive models and the forecast periods over nth days, the GRU-based
model showed a more significant proportion of |FE| values at a 95% confidence level.
Notably, consistently good results were also achieved for the other stations (i.e., Deniliquin,
Fairfield, and Gabo Island), which are shown in supplementary materials (Figure S1a–c).
The lowest value of |FE|, with <0.063 with a 95% percentile, was evident for Fairfield
compared to the other two study stations. The correlation between observed and forecasted
daily surface soil moisture datasets generated by the proposed CEEMDAN-CNN-GRU
model vs. the corresponding benchmark models (i.e., CNN-GRU and GRU), for the case of
Menindee station, is illustrated in Figure 7. The correlations for the hybrid GRU model are
positioned close to the observed SSM values up to the 7th day, revealing a high degree of
forecasting accuracy. An improvement in the model’s forecasting performance was attained
by applying the CNN algorithm (i.e., soil moisture generated by the CNN-GRU model)
and data decomposition (i.e., CEEMDAN-CNN-GRU) method on standalone GRU model.
The disparity between the forecasted SSM and the reference SSM values was significantly
higher for the 14th, 21st, and 30th days of SSM forecasting, which concurs with earlier
metrics suggesting a potential inadequacy of the data features long time ahead periods [60].
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Table 4. Evaluation of hybrid CEEMDAN-CNN-GRU vs. benchmark (CNN-GRU, CEEMDAN-GRU, GRU) models for the specific case of Menindee study site. The correlation coefficient
(r), root mean square error (RMSE; Kg m−2), mean absolute error (MAE; Kg m−2), and Nash-Sutcliffe coefficient, NS) is computed between forecasted and observed surface soil moisture
for the 1st day, 5th day, 7th day, 14th day, 21st day, and 30th day ahead periods in the testing phase. The optimal model is boldfacede.

Soil Moisture Forecasting Horizon, nth Day Lead Time

1st Day 5th Day 7th Day 14th Day 21st Day 30th Day

r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB

Study Station 1: Menindee

CEEMDAN-
CNN-
GRU

0.996 0.995 0.021 0.013 0.359 0.993 0.991 0.040 0.030 0.823 0.985 0.967 0.075 0.057 1.559 0.906 0.896 0.226 0.185 5.079 0.895 0.787 0.230 0.186 5.098 0.869 0.714 0.255 0.201 5.493

CNN-GRU 0.967 0.892 0.135 0.112 3.061 0.966 0.918 0.117 0.094 2.569 0.945 0.861 0.152 0.121 3.330 0.892 0.770 0.235 0.193 5.285 0.899 0.788 0.210 0.168 4.594 0.851 0.765 0.238 0.181 4.945

CEEMDAN-
GRU

0.976 0.937 0.116 0.094 2.234 0.970 0.933 0.120 0.095 2.265 0.957 0.909 0.140 0.110 2.613 0.882 0.738 0.237 0.186 4.424 0.864 0.781 0.262 0.206 4.918 0.866 0.742 0.275 0.217 5.163

GRU 0.962 0.893 0.134 0.110 3.020 0.962 0.933 0.121 0.094 2.589 0.940 0.851 0.158 0.126 3.452 0.882 0.745 0.244 0.197 5.390 0.887 0.748 0.243 0.196 5.360 0.863 0.726 0.251 0.197 5.386

Study Station 2: Deniliquin

CEEMDAN-
CNN-
GRU

0.990 0.899 0.048 0.034 0.778 0.989 0.975 0.091 0.065 1.489 0.959 0.917 0.165 0.113 2.611 0.801 0.607 0.355 0.247 5.716 0.768 0.573 0.374 0.266 6.130 0.703 0.465 0.415 0.295 6.807

CNN-GRU 0.979 0.955 0.098 0.075 1.799 0.945 0.866 0.169 0.137 3.270 0.929 0.846 0.181 0.143 3.405 0.866 0.624 0.283 0.224 5.333 0.873 0.749 0.231 0.181 4.298 0.848 0.687 0.258 0.202 4.806

CEEMDAN-
GRU

0.987 0.958 0.106 0.081 1.930 0.968 0.929 0.123 0.096 2.279 0.969 0.920 0.131 0.106 2.524 0.872 0.730 0.240 0.189 4.505 0.859 0.712 0.249 0.197 4.701 0.869 0.671 0.264 0.207 4.926

GRU 0.967 0.927 0.125 0.099 2.350 0.947 0.889 0.154 0.121 2.874 0.918 0.822 0.195 0.153 3.655 0.867 0.722 0.244 0.191 4.560 0.868 0.695 0.256 0.201 4.787 0.850 0.659 0.269 0.217 5.152

Study Station 3: Fairfield

CEEMDAN-
CNN-
GRU

0.975 0.976 0.035 0.024 0.554 0.972 0.975 0.069 0.052 1.189 0.959 0.920 0.162 0.110 2.524 0.842 0.628 0.349 0.238 5.493 0.762 0.573 0.374 0.264 6.088 0.746 0.523 0.374 0.261 6.078

CNN-GRU 0.945 0.935 0.061 0.048 1.099 0.962 0.943 0.135 0.091 2.107 0.907 0.821 0.240 0.156 3.612 0.764 0.560 0.376 0.264 6.109 0.759 0.554 0.379 0.259 5.988 0.708 0.477 0.410 0.289 6.671

CEEMDAN-
GRU

0.947 0.943 0.048 0.034 0.778 0.939 0.935 0.091 0.065 1.489 0.929 0.917 0.165 0.113 2.611 0.801 0.607 0.355 0.247 5.716 0.768 0.573 0.374 0.266 6.130 0.703 0.465 0.415 0.295 6.807

GRU 0.925 0.919 0.153 0.096 2.205 0.913 0.905 0.177 0.115 2.659 0.904 0.809 0.250 0.168 3.864 0.778 0.585 0.369 0.254 5.850 0.775 0.568 0.376 0.267 6.165 0.666 0.411 0.435 0.314 7.267

Study Station 4: Gabo Island

CEEMDAN-
CNN-
GRU

0.988 0.966 0.085 0.067 1.455 0.987 0.971 0.079 0.062 1.346 0.978 0.944 0.109 0.086 1.887 0.931 0.899 0.188 0.147 3.206 0.909 0.764 0.224 0.175 3.829 0.913 0.807 0.202 0.158 3.456

CNN-GRU 0.979 0.951 0.101 0.078 1.707 0.973 0.944 0.109 0.084 1.826 0.948 0.897 0.147 0.113 2.457 0.921 0.843 0.182 0.141 3.087 0.911 0.803 0.204 0.160 3.493 0.879 0.862 0.193 0.151 3.284

CEEMDAN-
GRU 0.986 0.966 0.085 0.067 1.472 0.983 0.964 0.087 0.069 1.508 0.974 0.945 0.107 0.085 1.844 0.924 0.821 0.194 0.153 3.340 0.913 0.814 0.198 0.156 3.394 0.912 0.798 0.206 0.161 3.520

GRU 0.977 0.950 0.102 0.081 1.773 0.970 0.940 0.113 0.086 1.868 0.951 0.902 0.144 0.111 2.423 0.919 0.825 0.192 0.150 3.283 0.912 0.813 0.199 0.156 3.411 0.815 0.743 0.203 0.160 3.499
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Figure 6. Probability plot (95 percentiles) for hybrid CEEMDAN-CNN-GRU, CNN-GRU, CEEMDAN-GRU, and GRU. 

model for Menindee at different nth (n = 1, 5, 7, 14, 21 and 30) day lead time. 

Figure 8 shows a scatter plot of forecasted and observed SSM for the 1st and 7th days 
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Figure 8 shows a scatter plot of forecasted and observed SSM for the 1st and 7th
days across the Murray Darling Basin with a least square regression line, y = mx + C,
and the coefficient of determination in each sub-panel. Notably, the objective model (i.e.,
CEEMDAN-CNN-GRU) is seen to attain more accurate results with considerably larger
r2 values. The SSM forecast with a hybrid deep learning model for Menindee station
performed significantly better than the comparative model (i.e., CNN-GRU). In the case of
Menindee, for example, the values for m and r2 are in reasonably good agreement against
the 1:1 line representing the forecasted and observed SSM values in such a way that (m|r2)
is 0.994|0.995 for the hybrid CEEMDAN-CNN-GRU model relative to (0.931|0.933) for
CNN-GRU for the 1st day ahead of SSM forecasting. Moreover, for the 1st day of SSM
forecasting, the CEEMDAN-CNN-GRU model provided results in significant proximity
to the other three stations, such as Deniliquin: 0.962|0.966, Fairfield: 0.928|0.964, and the
Gabo Island: 0.958|0.976). Alternatively, the y-intercept of the regression line was close
to trivial, i.e., 0.002 (Menindee: 1st day), 0.193 (Deniliquin: 1st day), 0.05 (Fairfield:1st
day), and 0.303 (Gabo Island:1st day), revealing the efficacy of the deep learning hybrid
method for surface soil moisture forecasting. For the 14th, 21st, and 30th day ahead of SSM
forecasting, the y-intercept, as expected, deviated slightly from the ideal value of 0, caused
by more outliers between simulated and reference values in the testing phase.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 31 
   

 

 

Figure 8. Scatter plot of the forecasted and observed SSM for Menindee, Deniliquin, Fairfield, and Gabo Island stations at 

different nth (n = 1 and 7) day ahead. A least square regression line, y = mx + C, and coefficient of determination (R2) is 

shown in each sub-panel. 

 

Figure 9. Polar plot showing the Legates and McCabe’s Index (LM) in the testing period computed 

for the hybrid CEEMDAN-CNN-GRU against comparative models at different nth (n = 1, 5, 7, 14, 

21, and 30) day ahead forecasting of SSM. 

Figure 8. Scatter plot of the forecasted and observed SSM for Menindee, Deniliquin, Fairfield, and Gabo Island stations at
different nth (n = 1 and 7) day ahead. A least square regression line, y = mx + C, and coefficient of determination (R2) is
shown in each sub-panel.

To further analyse the tested models’ performances, we adopt the Legates and Mc-
Cabe’s Index [99] as a cross-validation metric for simulated data. This metric has a better
model penalisation skill when high SSM values are expected in the testing set [41]. This
is illustrated in Figure 9 in terms of a polar plot of the LM values for the hybrid deep
learning approach (i.e., CEEMDAN-CNN-GRU) and other models for the different day
ahead forecasting. The LM values accumulated across all stations in the case of CEEMDAN-
CNN-GRU have a superior result with the highest LM≈ 0.962 for Menindee and the lowest
LM for the case of Gabo Island (LM ≈ 0.846) in the 1st Day ahead SSM forecasting. In
agreement with earlier results, the LM values for the 14th, 21st, and 30th day ahead for
other models were comparatively smaller. Figure 10a,b is a contour plot of KGE and MAPE
for the hybrid DL approach (i.e., CEEMDAN-CNN-GRU) along with its benchmark (i.e.,
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CNN-GRU) and standalone (i.e., GRU) methods for all four stations in MDB at different nth
(n = 1, 5, 7, 14, 21 and 30) days in forecasting SSM. This infographic verifies the robustness
of the proposed objective model that attains the highest KGE values and the lowest MAPE
values for 1st and 5th day of SSM forecasting.
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However, for the 14th, 21st, and 30th day of SSM forecasting, the KGE values range
between 0.40 and 0.80, and the MAPE values range from 4–11%, demonstrating a slightly
lower forecast accuracy relative to the 1st and 5th day of SSM forecasting. Figure 11
illustrates the absolute forecasted error (|FE|) using all the four candidate study sites’ im-
plemented models. The box plot demonstrates the data dispersal in terms of the forecasted
(SSMfor) SSM. Figure 11 provides a clear visualisation of the closed distribution of error
values for Menindee and Fairfield stations in the hybrid CEEMDAN-CNN-GRU model
for 1st day ahead SSM forecasting. The lower end of the plot for |FE| is situated within
the lower quartile (25th) and upper quartile (75th). Moreover, the GRU and CNN-GRU
models for these stations show an increased distribution of |FE|, except for the Fairfield
station. Moreover, the forecasting of SSM for the 14th, 21st, and 30th day periods have
a comparatively higher value of the absolute forecasting error for all tested models. A
more comprehensive inspection of the absolute forecasting error (|FE|) in the case of
the hybrid GRU. model for the four study stations further cements the suitability of the
CEEMDAN-CNN-GRU model in forecasting SSM for the 1st, 5th, and 7th day ahead
periods in Australian Murray Darling Basin, evidenced by the narrowest error distribution
in comparison with the other models.
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Figure 11. Box plot of errors in the testing phase for hybrid CEEMDAN-CNN-GRU against comparative models at different
nth (n = 1, 7, and 30) day ahead lead time forecasting SSM. (Note: CEEMDAN-CNN-GRU = Hybrid Model integrating the
CEEMDAN and CNN algorithm with GRU; CEEMDAN-GRU = Hybrid Model integrating the CEEMDAN algorithm with
GRU; CNN-GRU = Hybrid Model integrating the CNN algorithm with GRU).

It is noteworthy that in this study, two distinct algorithms, namely the CEEMDAN
and CNN, are used to improve the GRU-based predictive model. Therefore Figure 12
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shows the effect of applying CEEMDAN and CNN as data pre-processing and feature
extraction methods incrementally, respectively, on the per cent change in RMAE values
within the testing SSM values. In terms of 1st, 5th, and 7th day of Menindee station, the
RMAE (%) values of CEEMDAN-CNN-GRU model (where both CEEMDAN and CNN are
integrated) appeared to decrease by ~87%, 68%, and 54%, respectively. Similarly, for the
1st-day forecasting taking the example of Fairfield station, the CNN feature-extraction skill
reduced the error of ~55%, whereas an additional decrease in RMAE of ~18% was noted
integration of the CEEMDAN selected variables (CEEMDAN-CNN-GRU). Additionally, for
Deniliquin and Gabo Island study sites, the SSM forecasting for the 1st day ahead evaluated
through RMAE values decreased by slightly less than 20%. It is worth mentioning that the
per cent increase in RMAE was ~5% for Menindee for the 30th day ahead SSM forecasting
with similar deductions for the other stations.
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Figure 12. The percentage change in RMAE generated by the objective, and benchmark models using
CEEMDAN and CNN methods (as data decomposition and feature extraction methods) adopted in
forecasting SSM at four study sites: Murray Darling Basin. (a) Menindee, (b) Deniliquin, (c) Fairfield,
(d) Gabo Island at different nth (n = 1, 5, 7, 14, 21, and 30) day ahead forecasting SSM.

We further show the CEEMDAN-CNN-GRU hybrid model’s skill for seasonal forecast-
ing for the different day ahead periods to better understand the seasonal effects of models
used in SSM prediction. Figure 13 displays the average observed vs forecasted SSM on a
seasonal basis (i.e., austral summer, autumn, winter, and spring) generated by CEEMDAN-
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CNN-GRU model in case of Menindee study site. The forecast error across these seasons is
relatively insignificant, occupying values of (0, 0.16) kg m−2 to demonstrate the exceptional
skill of the objective model. Notably, the 1st and 5th day ahead of observed and forecasted
SSM for austral summer, spring, winter, and autumn appear to match with the forecast
error (|FE|) < 0.04 kg m−2, whereas, for winter, the |FE| values are slightly higher for the
5th day ahead SSM forecasting. Not surprisingly, the CNN-GRU model possesses a larger
error, ranging from 0.04 to 0.18 kg m−2, establishing the CNN-GRU model’s relatively poor
performance compared with the hybrid CEEMDAN-CNN-GRU model. For the case of
the 30th day ahead SSM forecasting, the study site Menindee registered a higher uncer-
tainty for austral summer (0.18<|FE|< 0.18 kg m−2) compared with winter and spring
(0.14 < FE < 0.15 kg m−2). This indicates that the hybrid CEEMDAN-CNN-GRU model
developed with NCA and CEEMDAN algorithms employing MODIS-derived satellite
data, ground-based observations, and climate indices can be considered ideal in multi-step
SSM forecasting.
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Figure 13. The average forecasted SSM vs. observed SSM on a seasonal basis using hybrid
CEEMDAN-CNN-GRU and CNN-GRU models for Menindee at different nth (n = 1, 5, 7, 14, 21,
and 30) day ahead periods. The forecast error (|FE|) in each model is plotted on a secondary axis as
a line chart.

5. Discussions

Based on the results, we note the effects of climate indices on surface soil moisture as
non-negligible. In this paper, analysing this impact is undertaken using two ways. Firstly,
the NCA algorithm provides key information about how climate indices affect SSM. For
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example, for SSM forecasting, climate indices based on SOI, EPO, MJOs and SST were
found to significantly affect the SSM. Secondly, GCV values based on a MARS model were
calculated following Friedman [100] approach to deduce the importance of input features.
The contributory influence appeared to be between 12% and 53% according to GCV for
Menindee station, and similarly notable effect for the other study sites. Specifically, the
lowest percentage of ~12% of GCV was found for the 14th, and the highest percentage
(~53%) was found for the 28th Day ahead SMM forecasting. In a nutshell, we note that
climate indices make a moderate to high contribution in forecasting surface soil moisture
within the Murray Darling Basin.

Neighbourhood Component Analysis (NCA) was utilised to examine significant
features from a relatively large pool (or 52 different) data related to soil moisture. In
data-driven modelling, selecting predictor variables is crucial, as improper variables with
weak relationships against SSM can lead to undesirable uncertainties in the model. As
per evaluations in Tables S1–S6, a combination of predictor variables deduced by NCA
at six different lead time SSM forecasting was significant, and this result concurred with
previous studies [59,101].

The objective approach based on NCA yielded good accuracy (i.e., CEEMDAN-CNN-
GRU), demonstrating that best predictors were attained through a careful variable selection
stage (by NCA) and feature extraction stage (by CNN and CEEMDAN methods). Accord-
ingly, the proposed forecast model for SSM was sufficiently robust in daily and seasonal
tests, as well as through the inclusion of synoptic-scale features, i.e., those captured from
patterns in the SST and MJO series. The probability of absolute error placing within the
95th percentile and the substantial seasonal forecasting of SSM indicates that the model
can handle satellite-derived variables’ error. Our study also suggests that groundwater
recharge, deep percolation, and plant uptake, which are essential factors to concentrate
soil moisture in different layers [57], can be ideal variables to better understand SSM
characteristics while also assisting in the prediction of future changes.

The present model’s performance revealed that a shorter period forecast (i.e., 1st,
5th, or 7th) was more precise, whereas a longer forecast horizon (i.e., 14th, 21st, and 30th)
registered a lower accuracy than that of the shorter span of SSM forecasting. One plausible
reason for this is that our predictive model appeared to struggle to capture enough input
features from the dataset for a more extended time-step forecast (i.e., 30th day against
7th day). Considering the reduction in feature capturing capability of the model, we can
say that as the time series data approached close to the 7th-day boundary, the model
would capture it with good forecast accuracy. Undoubtedly, this occurs due to a loss
of data features in the predictor-target matrix. This indeed concurs with earlier studies
(e.g., [60,98], where models for the 1- and 2-day ahead modelling horizon was more
accurate than the 30-day horizon for river flow forecasting, and the 1- and 3-month runoff
model was more accurate than the 6-month runoff model predicting 1-, 3-, and 6-month
ahead runoff in the Yingluoxia watershed, Northwestern China. The hybrid deep learning
approach (i.e., CEEMDAN-CNN-GRU) incorporated with MODIS satellite-derived data,
ground-based SILO data, and climate mode indices (representing synoptic-scale climate
features) can be a good modelling tool to predict soil moisture or other hydrological
variables at multi-step lead times, including its future use in water resource management
and sustainable agriculture.

6. Conclusions

This study reports the performance efficacy of a DL data-driven (CEEMDAN-CNN-
GRU) model based on the Gated Recurrent Unit (GRU) for daily surface soil moisture
forecasting at multi-step horizons. The hybrid CEEMDAN-CNN-GRU model was built
by integrating MODIS sensors (satellite-derived data), ground-based observations, and
climate indices tested at important stations in the Australian Murray Darling Basin. To
attain an accurate and reliable model for soil moisture, a feature extraction (i.e., CNN) and
feature (or variable) selection algorithm (i.e., NCA) was used, with tests at 1st, 5th, 7th, 14th,
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21st, and 30th day ahead period. The input variables, comprised initially of 52 different
predictors, were extracted from March 2003 to March 2020 and screened accordingly, using
the NCA algorithm through a feature selection stage, to select the most relevant input
variables required to forecast daily-scale soil moisture. Three other benchmarking models
(i.e., CEEMDAN-GRU, CNN-GRU, and GRU) were built and evaluated against statistical
score metrics and visual analysis to ascertain the predictive skill of the objective model
of observed and forecasted datasets in the testing phase. The results revealed that NCA
was a practical approach to acquire the best features from an optimal set of predictor
variables. The hybrid CEEMDAN-CNN-GRU model has significantly improved the de-
composition of input variables to provide more defined soil moisture prediction features.
Thus, the proposed CEEMDAN-CNN-GRU model yielded an acceptable level of accuracy
when applied at the 1st, 5th, and 7th day ahead SSM forecasting against standalone GRU
model registering a comparatively higher forecast error at all these periods. This supe-
rior performance was also endorsed with low MAE values, ranging from 0.013 kg m−2

to 0.067 kg m−2, 0.030 kg m−2 to 0.075 kg m−2, and 0.057 kg m−2 to 0.113 kg m−2 for the
1st, 5th, and 7th day ahead period. Other results also supported the practical utility of
the CEEMDAN-CNN-GRU model. For example, the probability plot of absolute error for
Menindee station has 95% of SSM forecasting with the lowest error bracket (<0.1) at the 1st,
and 5th day SSM prediction, and these results were better than earlier studies on forecasting
soil moisture prediction, e.g., [23,36,59,102]. As the present study has focused on daily
scale prediction, in a future study, researchers may also adopt the CEEMDAN-CNN-GRU
model to utilise the global climate model (GCM) model-simulated variables to estimate
future SSM under global warming scenarios.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/4/554/s1, Table S1: Performance of CNN-GRU and GRU model to forecast the 1st day Surface
Soil moisture of Minendee Station with the optimum forecasting results based on the Nash-Sutcliffe
coefficient (NS) and mean absolute error (MAE; Kg m−2) for the testing phase, Table S2: Caption
identical to Table S1, except for the 5th day. Table S3: Caption identical to Table S1, except for the
7th day, Table S4: Caption identical to Table S1, except for the 14th day, Table S5: Caption identical
to Table S1, except for the 21st day, Table S6: Caption identical to Table S1, except for the 30th day,
Figure S1: Probability plot for the objective model (i.e., CEEMDAN-CNN-GRU), benchmark model
(i.e., CNN-GRU, CEEMDAN-GRU), and the standalone model (i.e., GRU) for (a) Deniliquin, (b)
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CHAPTER 7: MULTI-STEP AHEAD STREAMFLOW 

WATER LEVEL FORECASTING USING DOUBLE 

DECOMPOSITION AND DEEP LEARNING METHODS 

7.1 Foreword 

This Chapter is an exact copy of the published manuscript [under Review] to Science 

of the Total Environment, (Scopus Impact Factor 7.96). The title of the manuscript is:  

“New double decomposition deep learning methods for river water level forecasting.” 
 

 

This chapter discusses a newly developed double decomposed (CEEMDAN and VMD) 

deep learning hybrid model, CVMD-CBiLSTM comprising CNN and BiLSTM model 

coupled with ant colony optimization to forecast the streamflow water level at the multi-

step horizon. At 19 gauging stations on the Murray River, Australia, the streamflow 

water levels were forecasted using satellite-derived data, climate mode indices, and 

ground-based meteorological data. For SWL forecasting, the CVMD-CBiLSTM hybrid 

model performed better than the standalone model. Outperforming the benchmark 

models, almost 98% of the prediction errors were less than 0.020 meters and had a low 

relative error (RRMSE of 0.08%). The study concluded that integrating deep learning 

algorithms with ACO feature selection can improve water resource management 

decisions. 

7.2 Research Highlights  

• Deep learning CVMD-CBiLSTM model is proposed for streamflow water level 

forecasts 

• Satellite predictors are incorporated with climate indices and ground-based data 

• Two phases of feature decomposition (CEEMDAN, VMD) integrated with CNN 

and BiLSTM 

• CVMD-CBiLSTM with ACO feature selection has a distinct advantage in 

forecasting. 

• Our advanced AI model can empower strategic water management decisions. 
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CHAPTER 8: CONCLUSIONS AND FUTURE SCOPE 

8.1 Synthesis and Conclusions  

This study developed advanced deep learning hybrid forecasting models in 

Australia's Murray-Darling Basin. These are accurate and reliable data intelligence 

models for soil moisture, evapotranspiration, and streamflow water level forecasting. 

Several standalone, hybrid and high precision models were also presented at multi-

forecasting horizons, including the short-term (daily) and medium-term (monthly) 

periods. The streamflow water level and soil moisture were forecasted monthly and 

daily time periods. The reference evapotranspiration was forecasted at multi-step ahead 

horizon (week-1 to week-4 ahead forecasting) of daily data. In subsequent studies, the 

complex relationships between hydrological variables associated with extreme weather 

and climatic events are implemented. Therefore, the findings of this study can provide 

valuable information and powerful tools to hydrologists and climate scientists. The 

significant contributions of the study are summarised in this section. Finally, potentially 

interesting paths for future research are suggested at the end of this chapter. 

The study addressed three distinct issues: i) the problem of selecting appropriate 

predictor variables from sets of multivariate inputs in hydrological forecasting; ii) the 

overfitting of large datasets due to the complex and non-linear relationships between 

predictors, and iii) addressing non-stationarity and non-linearity issue of the 

hydrological predictor variables. The issue of selecting appropriate predictor variables 

was resolved by incorporating different feature selection algorithms, namely ant colony 

optimization, Boruta-random forest optimiser, and neighbourhood component analysis. 

In contrast, the latter was resolved by deep learning predictive models. In contrast, 

multi-resolution analysis, namely complete ensemble empirical mode decomposition 

with adaptive noise and variational mode decomposition, was used to address the non-

stationarity and non-linearity issue.  

The findings showed improved performances of hybridised models against the 

standalone counterparts. The outcomes from the Objective 1 served as the milestone 

of the future state of any river system through accurate predictive modelling 

considering the climate indicators. The results have demonstrated that the Boruta-
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Random forest feature selection algorithm is an important tool that can successfully 

identify the significant features within the predictor variable(s), as required to model 

the hydrological state of a river system. Objective 2 provided relevant information from 

a set of predictors, including climate mode indices, ground-based meteorological inputs, 

and satellite-derived data, to develop an early warning decision support system for 

reference crop evapotranspiration. The ant colony optimisation successfully selected 

appropriate inputs from three distinct datasets, and a convolutional neural network 

extracted the feature of the target in forecasting reference evapotranspiration. The ETo 

estimates are beneficial for future studies to characterize the water availability of 

terrestrial ecosystems, assess climate change impacts, and provide guidance to 

agriculture in the Murray-Darling Basin. 

The study from Objective 3 demonstrates the capability of a hybridised long 

short-term memory predictive framework to emulate soil moisture under global 

warming scenarios. The proposed model is developed by integrating the Boruta-

Random Forest feature selection. Significant antecedent memory of SM behaviour was 

successfully applied to estimate the future SM using a coupled model intercomparison 

phase-5 (CMIP5) repository. This study demonstrates the capability of the proposed 

algorithm to simulate future soil moisture under climate change, which can be 

implemented in hydrology, agriculture, soil use management, and environmental 

management. Objective 4 provides a deep learning hybrid model to forecast the surface 

soil moisture at a multi-step ahead horizon. The incorporation of neighbourhood 

component analysis with the model revealed that a shorter period forecast (i.e., 1st, 5th, 

and 7th) was more precise, whereas a longer forecast horizon (i.e., 14th, 21st, and 30th) 

registered a lower accuracy than that of the shorter span. Lastly, Objective 5 used a 

new double decomposition approach for forecasting stream-flow water levels using 

deep learning algorithms with remotely sensed MODIS satellites, climate mode indices, 

and ground-based atmospheric products. The results are critical to managing water 

quality and the availability of palatable water for many practical applications.  

Constructing parsimonious yet high-performing data-intelligent models 

requires feature selection. This study found the successful application of Boruta-

random forest, ant colony optimisation, and neighbourhood component analysis feature 

selection to identify the potential predictor variables for forecasting the hydrological 
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variables. Moreover, the CEEMDAN is a self-adaptive multi-resolution method; hence, 

the number of IMFs and residual components (i.e., resolved frequencies) is contingent 

upon the embedded features within the data. The CEEMDAN improved the model 

performance of the standalone models. The CEEMDAN based proposed model 

outperformed all other models in forecasting soil moisture. In addition, a multi-phase 

multi-resolution technique coupled with CEEMDAN and variational mode 

decomposition (VMD), referred to as CVMD, substantially improved streamflow water 

level forecasting. The CEEMDAN-decomposed high-frequency component is further 

decomposed into several components by VMD. The hybrid model requires minimal 

human interaction, which is a fundamental benefit of the self-adaptive MRA tool, 

CEEMDAN, coupled with CNN-LSTM. This might be integrated into advanced 

forecasting software for mobile devices like tablets and phones and provide 

hydrological forecasts at the farm level. 

In summary, various novel contributions were provided by this study in the 

development of data-intelligent predictive models for hydrologic forecasting. 

According to the results, the study found that the performances of the suggested models 

were relatively better than standalone models. Hence, new innovative approaches were 

explored, and the main contributions of the research could be summarized as follows:  

• The initial contribution was to investigate previously unexplored forecasting 

methodologies in hydrologic forecasting in the Murray-Darling Basin using 

deep learning hybrid models. 

• The current research enhances this general goal by combining a deep learning 

predictive method (i.e., LSTM and GRU) with the three feature selection 

algorithms for increased performance accuracy. According to the findings, the 

feature selection methods used in this study are promising tools for identifying 

relevant characteristics within the predictor variable(s), which is required for 

modelling the hydrological phenomena. 

• The developed hybrid two-phase model utilised the CEEMDAN method to 

address the data's non-stationarity and the NCA algorithm to choose the optimal 

parameters for the CNN-GRU model. 
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• Another contribution was a new double decomposition approach using 

CEEMDAN and VMD methods using deep learning algorithms. 

• The extreme values are represented by high peaks of a dominant wave moving  

along the field. The data pre-processing approaches such as feature selection 

(i.e., BRF, ACO and NCA), feature extraction (i.e., CNN) and feature 

decomposition (i.e., CEEMDAN, VMD and EEMD) successfully applied in 

gripping the extreme events of different hydrological phenomenon. 

• Moreover, our study, which has not been previously investigated, was the 

incorporation of predictor variables from three distinct datasets: climate mode 

indices, satellite-derived variables, and ground-based hydro-climatological 

variables. The inclusion of ground-based measurements, climate indicators, and 

atmospheric satellite data increased the diversity of the input signals, improving 

forecasting skills. 

• The study improved the hydrological forecast of the Murray-Darling Basin 

using antecedent memory of long and short-term climate indices, satellite-

derived variables, and ground-based hydro-climatological variables. 

• Finally, this study's novel and robust data-driven deep learning framework have 

developed a novel approach to assessing climate risk on agricultural production 

and water resource management that can be applied to other sectors. 

8.2 Limitations and Recommendations for Future Research 

The explored innovative approaches showed promising outcomes and could provide 

the scientific pathway for integrated on-farm decision-support systems for hydrological 

and precision agricultural purposes. 

• In the streamflow water level forecasting study, the critical limitation was the 

unavailability of concurrently recorded streamflow water level and hydro-

meteorological data at the same hydrological stations. In future studies, the use 

of concurrently observed data is recommended to improve the accuracy of the 

respective models. 

• Individual forecasts of high, moderate, and low streamflow events and soil 

moisture level events could also be explored independently.  



 
 
 
 

171 
 

• Studies with maximum overlap discrete wavelet transform (MODWT) and 

multivariate ensemble mode decomposition (MEMD) could also provide 

greater insight into the performance of these predictive models. 

• Integration of add-on optimizer algorithms (e.g., firefly optimizer algorithm 

(FFA) or quantum-behaved particle swarm optimization (Q-PSO)) could also 

be applied in these hydrological models.  

• Since the standard statistical approaches tend to avoid the hurdle of model 

uncertainty that potentially leads to over-confident inferences and risky 

agricultural decisions, alternative feature selection algorithms like iterative 

input selection (IIS), modified minimum redundancy maximum relevance 

(mMRMR) algorithm, or joint mutual information maximisation feature 

selection (JMIM) can be further explored. 

• Uncertainty is crucial to machine learning, although it is one of the factors that 

causes the most difficulties for adopting the machine learning problems. It is 

increasingly important to evaluate the reliability and efficacy of artificial 

intelligence (AI) systems before they could be applied in practise, since the 

predictions made by such models are subject to noise and model inference errors. 

It is therefore critically desirable for any AI-based system to express uncertainty 

in a reliable manner. The sources of uncertainty begin when the test and training 

data are mismatched, whereas data uncertainty arises from class overlap or noise 

in the data; therefore, estimating uncertainty is recommended for the future 

study. 

• The Spatio-temporal dependency of the stations and variables could be 

addressed in future studies. The contribution of neighbouring stations can 

provide important information in extracting the feature of the target variables.  

Finally, using new hybridised deep learning techniques, this study has made novel 

contributions to the practical problem of hydrological forecasting. The hybridised 

machine learning data-intelligent forecasting models are simple to implement with high 

computational efficiency and low latency. This approach can serve as an essential tool 

for water resource management applications for urban and agricultural management. 
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APPENDIX A: BIAS CORRECTION OF TOTAL CLOUD 

COVER FORECAST FROM GLOBAL FORECAST SYSTEM 

MODEL 

A1.1 Foreword 

This Chapter is an exact copy of the submitted manuscript to the Applied Energy 

Manuscript Number: APEN-S-21-14660 (Scopus Impact Factor 9.75). The title of the 

manuscript is:  

Development of Kernel Ridge Regression for bias correction of Total Cloud Cover 

forecast generated by Global Forecast System weather model 

In this Chapter, a new kernel ridge regression (KRR) approach is used to reduce bias in 

total cloud cover (TCDC) for inter-daily scales (i.e., 2–8 days ahead) of the GFS 

forecast datasets. The KRR model is compared against a multivariate recursive nesting 

bias correction (MRNBC) and classical machine learning (ML) approaches to 

determine its performance. A significant reduction in mean bias error (20–50%) relative 

to MRNBC and reference value during the model's testing phase indicates the objective 

model's efficacy. Because of this, it is concluded that the proposed KRR method should 

be investigated further to reduce the uncertainties in weather simulations, which has 

positive contributory implications and practicality in solar energy generation systems 

and energy conversion and monitoring systems.  

A1.2 Research Highlights  

• Kernel ridge regression (KRR) is constructed for bias correction of total cloud cover    

• KRR is evaluated using Global Forecast System 0 UTC, 3 UTC & 6 UTC 

simulation data 

• We see a reduction in the bias of GFS cloud cover for two-to-six-day forecasts 

• KRR is validated against multivariate recursive nested bias correction and ML 

model 

• KRR is a viable tool to correct cloud cover bias in solar energy monitoring systems  
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Abstract  

Accurate forecasting of total cloud cover (TCDC) in Global Forecast System (GFS) model with 3-h 

time horizon can monitor photovoltaic power production in solar energy generation systems. The bias 

in a GFS-based variable can hinder the monitoring and integration of energy into real electricity grids. 

This study proposes a new kernel ridge regression (KRR) strategy to reduce bias in TCDC for inter-

daily (i.e., 2–8 Day ahead) scales. The KRR model is evaluated against a multivariate recursive nesting 

bias correction (MRNBC) and competing machine learning (ML) methods. The testing phase showed 

that in terms of mean absolute error, the KRR model trained with cloud cover inputs (i.e., TCDCGFS-

Forecast) has outperformed MRNBC and all other ML models for Day 2-7 forecast (MAE  20.20–

27.47%). The appraisal of objective model’s effectiveness is ascertained by a notable reduction in mean 

bias error (20–50%) against MRNBC and reference accuracy values generated using the proxy-observed 

and the non-corrected GFS-forecasted TCDC data in model’s testing phase. The study, therefore, 

ascertains that the proposed KRR method could be explored to reduce the uncertainties in weather 

simulation that have positive contributory implication and practicality in solar energy generation, energy 

conversion, and monitoring systems. 

Keywords solar energy generation; bias correction in weather models; global forecast system, cloud 

cover study; solar radiation; energy conversion and management 

1.0 Introduction  

It is a relatively challenging yet an essential task to address biases in forecasted data generated by 

numerical weather prediction and physical models [1, 2]. These models have practical applications in 

solar energy integration and power monitoring in household rooftop systems and solar energy farms. 

The fidelity of any physical model or their predictive uncertainties can be associated with many factors, 

e.g., unrealistic estimates of greenhouse gases within the physical model, the model equation’s 

uncertainty, and incorrectly parametrized model’s internal climate variability effects [3]. Solar 

photovoltaic (PV) power forecasting, which uses weather simulations, is necessary to ensure supply of 

solar energy, economic viability, and stability of electricity grid. While it is attractive from an 
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environmental and economic viewpoint to harness this freely available solar energy, uncertainties from 

weather captured in solar simulation models can cause significant problems, particularly due to their 

strong dependence on uncontrolled weather elements such as the cloud cover, the positioning of the sun 

relative to a solar PV panel, bushfire dust, aerosols, ozone, and other conditions, which can change 

dramatically over an hourly and inter-hourly interval [4]. Therefore, greater understanding any weather 

model’s uncertainty, capability to generate accurate cloud cover patterns, and the use of a novel learning 

method to correct the bias in forecasted cloud cover is a crucial tool for management of solar energy 

farms, loop virtual power plant (VPP) as a new, technology-cent energy grid, rooftop solar energy 

production, and energy uptake by the consumers attained through automated intelligent solar monitoring 

systems.  

Total cloud cover, denoted in this paper as TCDC, is considered to be a chief cause of the 

intermittency in solar energy supply given that the performance of any solar photovoltaic (PV) system 

is likely to drop by as much as 60% within a few seconds of the passing clouds over a solar PV panel 

[5]. When the sun travels across the sky and is obscured by a cloud cover band, the intensity of solar 

radiation reaching the solar PV panel may also fluctuate, which may cause a significant drop in the solar 

power production. Consequently, this can reduce the quantity of solar power produced by solar energy 

companies. A cloudy day can impact the solar PV output much differently as the clouds affecting solar 

energy production quite diversely affects solar power from on a rooftop [5]. Therefore, accurate cloud 

forecasts, both at short-term (i.e., sub-hourly, hourly, or inter-hourly) and medium term (i.e., daily, or 

inter-daily) period has particular industry implications for solar energy monitoring with broader 

application in agriculture, natural disaster (e.g., cyclone) prediction, air quality and environmental 

monitoring tasks. 

To support growing renewable energy industries in decisions regarding the sustainability of solar 

supply and integration of power into national grids, reliable forecasts of cloud cover are crucial for 

studying the variations in ground-based solar and the underlying intermittencies in the supply of energy 

[6, 7]. Typically, cloud cover is defined as a “fraction of the sky covered by all the visible clouds” [8], 

so unlike weather variables, e.g., temperature or precipitation, TCDC observation data are somewhat 

different in terms of their characteristics [6]. For example, the movement of clouds over a solar PV 

panel can be relatively stochastic (i.e., rapidly changing, unpredictable, intermittent). These uncertain 

features of clouds no doubt hamper energy production rate, so it is highly desirable to create a better 

understanding of features present in total clouds that affect the overall solar energy generation system. 

This research aims to build machine learning approaches for bias correction of TCDC data 

derived from a Global Forecast System (GFS). Maintained by the National Centre for Environment 

Prediction, the GFS physics-based weather model has a 0.25 grid resolution and a 3h temporal 
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resolution with forecasts initialized six times per day for cloud cover, including the 2-meter temperature, 

zonal and meridional windspeed, downward shortwave radiation flux, and other atmospheric variables. 

These variables are widely employed in solar PV system prediction modules such as the pvlib package 

that is used to monitor solar energy generation by industries. The bias correction of these variables has 

traditionally focused on correcting individual variable representations across a single time (e.g., daily, 

monthly). However, these corrections aim to determine the bias in a statistical or a quantile sense and 

utilise the corrected data for future scenarios of solar energy production. Daily and monthly 

standardization can address systematic biases in mean and variance of simulated variables [9] to handle 

energy generation applications. Bias correction with non-parametric approaches, e.g., quantile matching 

[10-13] and equidistant quantile [14], were found to be successful methods. Still, a shortcoming of these 

techniques is that they tend to examine only the bias in distribution of GFS and GCM simulation and 

not an effect of their persistence [15]. The study of Johnson and Sharma [16] suggested a nested bias 

correction (NBC) to reduce variability and persistence at different time scales. In contrast, techniques 

like multivariate bias correction (MBC) [17], copula-based bias correction [18], empirical copula bias 

correction (EC-BC) [19], distribution transfer [13], power transformation [20-22] and local intensity 

scaling [22, 23] have also been utilized for numerous locations and a plethora of weather variables. To 

the best of the authors’ knowledge, no method has successfully eliminated the bias given that the 

relationships between simulated and observed variables are complex [24]. Machine learning (ML) 

approaches have thus been demonstrated as alternative methods to model highly non-linear features 

[25-27], appearing to offer a strong potential to correct bias in numerical weather variables such as those 

produced by GFS or another weather model. 

In general, ML discovers the associations between predictors and a predictand without 

considering the system’s operation [28-30]. The mathematical complexity of a physical model can also 

be reduced using ML algorithms, or the data features be better understood with a physical model 

employing partial differential equations with initial conditions [31, 32]. Such conditions are somewhat 

difficult to estimate over spatial and temporal domains. Artificial neural networks (ANN) are a 

multivariate non-parametric ML algorithm used to correct inter-instrument biases [33, 34] but as a 

“black box” model, ANN can only identify potential causal relationships [35]. However, support vector 

machines (SVM) have long been recognized as a sophisticated model with a sound theoretical 

foundation in statistical learning [36-38]. The use of SVMs has explored a kernel-based ANN to address 

the drawbacks of conventional ANNs [39]. SVM can be very resilient and efficient for non-linear 

modelling of noisy mixed data [25, 27, 40].  

The kernel ridge regression (KRR) [41] advocated in this study is based on the integration of the 

kernels and the ridge regression approach to capture non-linear correlative features and to address with 

regression-based over-fitting issues found in some of other ML models [42]. To its primary advantage, 
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the proposed KRR method can also use a regularized variant of least-squares to learn a global function, 

and therefore, predict any target variable. Although ML had been used for general bias correction, the 

proposed KRR technique has remained somewhat underexplored. It should also be noted that the 

proposed KRR model in its generic sense has been used in many research including the forecasting of 

precipitation [45], drought [46], wind speed [47-51] and solar power [52]. It has also been demonstrated 

that the KRR method offers significant benefits in terms of computational simplicity relative to an SVM 

model, thus limiting its practical applicability in real-time solar energy monitoring systems.  

This study, therefore, aims to build a new KRR-based bias correction method for GFS derived 

total cloud cover (TCDC) for Columboola Solar Farm in Queensland, Australia where solar energy 

projects are strategic to the cleaner energy utilisation efforts of the Queensland Government. To fulfil 

this zero-carbon vision envisaged by United Nations Sustainable Development Goal # 7 (i.e., cleaner & 

affordable energy), we have adopted two distinct modelling strategies: First, the KRR model is trained 

using the 2-m temperature, 10-m zonal (U)-wind, 10-m meridional (V)-wind, downward shortwave 

radiation flux, and the total cloud cover regressed against the proxy-observed (i.e., GFS-Analysis) 

dataset. Second, only the cloud cover data series (i.e., TCDCGFS-Forecast) are used as a single input with 

TCDCGFS-Analysis as a target to test this alternative method’s viability. The proposed KRR model is then 

evaluated extensively using conventional methods (i.e., MRNBC) and nine other ML methods. The 

proposed KRR and its counterpart models are tested over inter-daily horizons utilizing Day-2 to Day-8 

forecasts. Based on the potential computational capabilities, it is envisaged that the biases of GFS-

derived TCDC at multi-step horizons can be reduced, and that the new predictive system may be useful 

for solar generation monitoring to make important industry decisions for solar power utilisation in 

national electricity markets. 

2.0 Materials and Method   

2.1 Study Area 

We implement newly developed KRR model for cloud cover bias correction in Queensland, which is 

referred to as Australia’s “Sunshine State,” with enormous solar energy potential [53, 54]. Under the 

United Nations Sustainable Development Goal #7 (SDG7) [55], the State government is committed 

towards increasing renewable energy uptake to account for up to 50% of the overall future energy supply 

by 2030. These projects represent an investment of $8.5 billion, the creation of 7000 jobs, the generation 

of 4600 MW of renewable electricity, and the reduction of more than 11 million tonnes of air pollutants. 

As of January 2021, Queensland has 6200 megawatts (MW) of renewable energies including rooftop 

solar systems. According to Queensland Government, renewable energy accounts for 20% of electricity 

consumed [56] so they have set a 50% renewable energy generating capacity by 2030. To add value to 

research methodologies that assist solar energy producers, we aim to correct bias in TCDCGFS-Forecast 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 190



Prepared for: Applied Energy    

obtained from the Columboola Solar Farm in Queensland, Australia which is expected to support 

100,000 households. This Solar Farm is also expected to create ~440 GWh of renewable energy 

annually when it gets complete in 2022, which is enough to power 75,000 households over a 35-year 

period. Figure 1 shows the geographic location of the present study site where the KRR model for cloud 

cover bias correction was implemented. 

[FIGURE 1] 

2.2 Global Forecasting System 

We develop KRR model using the Global Forecasting System (GFS) managed by National Oceanic and 

Atmospheric Administration (NOAA) that aims to deliver operational set of global weather predictions 

[58]. The GFS data repository aims to produce forecast variables up to 16 days in advance with a 

temporal resolution of 3h and 6h, and a spatial resolution of 0.25× 0.25 [59]. The GFS is not a frozen 

system, so its dynamic core and physical package is modified regularly [60]. For example, after a single-

member prediction was replaced by GFS ensemble mean forecast in late 2001, this method was 

modified again in late 2003 to properly incorporate the bias-corrected GFS ensemble mean forecast [61, 

62].  

As this physics-based model is initialised every three hours, newly predicted variables are 

generated eight times a day at 0 UTC, 3 UTC, 6 UTC, 9 UTC, 12 UTC, 15 UTC, 18 UTC, 21 UTC, and 

24 UTC. The GFS utilises Global Data Assimilation System (GDAS) [63] that augments a gridded 

three-dimensional model space with surface observations, balloon data, wind profiler data, buoy 

observations, radar observations, or satellite observations. The GDAS Model output is emulated four 

times daily and includes projections for the next three hours, six hours, and nine hours. 

The present study attempts to build a new modelling strategy to correct inherent bias in GFS-

derived total cloud cover forecasts (i.e., TCDCGFS-Forecast) for 3 distinct forecast horizons, which 

according to Brisbane daytime zones, are: at 0 UTC (10 AEST), 3 UTC (13 AEST), and 6 UTC (16 

AEST). The 3-h GFS forecast experiments that are initialized from 0000 UTC compared to AEST 

(Australian Eastern Standard Time) as illustrated schematically in Figure 3. For comparison, the GFS- 

analysis total cloud cover (TCDCGFS-Analysis) is used as a proxy for observed variables. We also utilised 

temperature (T2mGFS-Forecast), downward shortwave radiation flux (DSWRFGFS-Forecast), windspeeds 

(UGFS-Forecast, and VGFS-Forecast) to further improve the bias through our newly proposed KRR modelling 

strategies.   

2.3 Theoretical Overview 

This section summarises the objective model (i.e., KRR) and the conventional bias correction model 

(i.e., MRNBC). Technical details of the other ML methods such as the decision tree [64], random forest 

[65, 66], multivariate adaptive ridge regression [67], Bayesian ridge regression [68], k-nearest 
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neighborhood [27, 69], gradient boosting regression [70] and the histogram-based gradient boosting 

regression [71] are explained elsewhere.  

2.3.1 Kernel ridge regression 

Kernel ridge regression (KRR) is a novel algorithm with an unlimited number of non-linear 

transformations of the independent variables used as regressors [72]. KRR model utilises ML strategy 

based on kernel and ridge regressions [41] to avoid issues of overfitting found in other regression 

methods. It therefore utilizes regularizations and a kernel technique to capture non-linear connections 

viz [46].  

arg 𝑚𝑖𝑛 
1

𝑞
∑ ‖𝑓0 − 𝑦0‖2 +  𝜆 ‖𝑓‖𝐻

2𝑞
𝑜=1       1 

𝑓𝑜 = ∑ 𝛼𝑝𝜔(𝑥𝑝, 𝑥𝑜)𝑞
𝑝=1         2 

The Hilbert normed space of equation (1) is defined as ‖ .  ‖𝐻. For a given m × m kernel matrix, K is 

developed by 𝜔(𝑥𝑝, 𝑥𝑜) from some fixed predictor variables where y is the input q x 1 regression vector 

and is the q x 1 unknown situation vector that reduces as follows:  

𝑦 = (𝐾 + 𝜆𝑞𝐼)         3 

𝑦̃ = ∑ 𝛼𝑜𝜔(𝑥𝑜 , 𝑥̃)𝑞
𝑝=1          4 

In model training stage, KRR technique is applied by solving Eq. (3) but utilised to predict the regression 

of an unknown sample x in Eq (4) in a testing step. To achieve highest accuracy possible, linear, 

polynomial, and Gaussian kernels are employed [42, 43, 73]. 

2.3.2 Multivariate recursive nesting bias correction (MRNBC):  

As a traditional method, the multivariate recursive nesting bias correction (MRNBC) approach aims to 

correct the seasonal and non-seasonal time series based on multivariate autoregressive modelling. First 

introduced by Mehrotra et al. (2018), the MRNBC aims to incorporate the Recursive Nested Bias 

Correction (RNBC) so in this approach, the TCDCGFS-Forecast simulations are nested into the observed 

data for all timescales of interest. Before applying the nesting, both timeseries are standardised to a 

mean of zero and a standard deviation of 1.  

With m predictor variables at an i time step for a Z (m × t) matrix, the lag-one autocorrelation 

and the lag-one and lag-zero cross-correlation in TCDCGFS-Forecast simulations can be modified to match 

the observed correlations in the time and space [74]. The multivariate autoregressive order 1 (MAR1) 

model for TCDCGFS-forecast data and observed variables is therefore expressed as follows [75]: 

𝑍̂𝑖
ℎ = 𝐶 𝑍̂𝑖−1

ℎ +  𝐷𝜀𝑖          5 

𝑍̂𝑖
𝑔

= 𝐸 𝑍̂𝑖−1
𝑔

+  𝐹𝜀𝑖         6 
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where Zh represents the observations and Zg is the TCDCGFS-forecast data. Data are standardised to 

construct a periodic time series 𝑍̂𝑖
𝑔

 to be modified to match the observation 𝑍̂𝑖
ℎ where 𝜀𝑖 is a mutually 

independent vector with random variation having zero mean value and an identity covariance matrix. C 

and D are lag-zero and lag-one cross-correlation coefficient matrices for observation 𝑍̂𝑖
ℎ and the 

coefficients E and F are calculated for the standardised TCDCGFS-forecast output.  

Equations (5) and (6) are rearranged and modified 𝑍̂𝑖
𝑔

 along with lag-zero and lag-one 

correlation matrices such as C and D to 𝑍̂𝑖
𝑔

 have the desired dependence properties [75].  

𝑍̂𝑖
′ ℎ = 𝐶 𝑍𝑖−1

′ 𝑔
+  𝐷𝐹−1𝑍̂𝑖

𝑔
− 𝐷𝐹−1𝐸𝑍̂𝑖−1

𝑔
      7 

For correction of periodic parameters, let vectors and 𝑍𝑡,𝑖
ℎ  and 𝑍𝑡,𝑖

𝑔
 represent the observations and the 

TCDCGFS forecast outputs, respectively, with m variables for month i and year t. The standardised periodic 

time series with a mean of zero and a unit variance is denoted as 𝑍̂𝑡,𝑖 Following Eq. (7), the series 

𝑍̂𝑡,𝑖
′ 𝑔

which maintains the observed lag-one serial and cross dependence as follows [75]: 

𝑍̂𝑡,𝑖
′ 𝑔

= 𝐶𝑖 𝑍𝑡,𝑖−1
′ 𝑔

+  𝐷𝑖  𝐹𝑖
−1𝑍̂𝑡,𝑖

𝑔
− 𝐷𝑖  𝐹𝑖

−1𝐸𝑖𝑍̂𝑡,𝑖−1
𝑔

     8 

Here 𝑍𝑡,𝑖−1
′𝑔

 = corrected time series from a previous month in year t. After corrections, the resulting time 

series Z′g is rescaled by observed mean and standard deviation to yield the final corrected time series 

𝑍̅𝑔 whose are found elsewhere [74, 76, 77].   

After correcting monthly timeseries, Z is combined to produce seasonal sequence and the 

periodic correction. This timeseries is connected to an annual time series and the correlation, standard 

deviation, and mean are corrected to form Ag (A = matrix of yearly data, p × n/12). Subsequently, each 

time, aggregation corrections can be applied to daily time series to create a simple correction step [78]: 

𝑍̅𝑖,𝑗,𝑠,𝑡
𝑔

= (
𝑌̅𝑗,𝑠,𝑡

𝑔

𝑌
𝑗,𝑠,𝑡
𝑔 ) 𝑥 (

𝑆̅ 𝑠,𝑡
𝑔

𝑆𝑠,𝑡
𝑔 ) 𝑥 (

𝐴̅ 𝑡
𝑔

𝐴𝑡
𝑔)  𝑥 𝑍𝑖,𝑗,𝑠,𝑡 

𝑔
      9 

Here 𝑌̅𝑗,𝑠,𝑡
𝑔

, 𝑆 ̅𝑠,𝑡
𝑔

 𝑎𝑛𝑑 𝐴̅ 𝑡
𝑔

 indicate the monthly, seasonally, and annually corrected values, respectively, 

and 𝑌𝑗,𝑠,𝑡
𝑔

, 𝑆𝑠,𝑡
𝑔

 and 𝐴𝑡
𝑔

 𝑟epresent the accumulated monthly, seasonal, and annual values accordingly. The 

subscript i stands for day, j for the day, s for the season, and t for the year. The three-step bias correction 

technique confirms that future variation is not influenced by bias correction procedure utilised to correct 

TCDCGFS-Forecast [76].  

2.4 Implementation of the Machine Learning (ML)-based Bias Correction  

The fundamental idea behind bias correction is to identify a sufficiently adaptable and flexible approach 

that is capable of learning from an available data and then constructing a prediction function that 

performs well across the projection period (i.e., forecast horizon). To develop a robust bias correction 

(i.e., one that can precisely reduce bias in TCDCGFS-Forecast data produced by GFS weather model at the 

Columboola solar farm), it was critical to firstly optimise the architecture of the proposed KRR model, 
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and then to take advantage of the associative links between the bias-corrected TCDC and the learned 

ML model. An ML-based Python package [79], scikit-learn [80, 81], was thus employed to develop the 

objective (i.e., KRR) and other benchmark (i.e., BNR, DTR, GBR, HGBR, KNN, MLR, XGB, and RF) 

models. For the case of MARS model, we have used py-earth package, and programming software R 

for traditional bias correction (i.e., MRNBC) prescribed by Mehrotra et al. [77]. As defined in Section 

2.5, six statistical measures are used to evaluate experimental outcome of the bias-corrected model, 

created using Intel i7 processor running at 3.6GHz and 16 GB RAM. Visualisation of bias-corrected 

TCDC dataset were made through matplotlib [82], seaborn [83] and Microsoft Excel.  

[FIGURE 2] 

[FIGURE 3] 

Figure 2 is a schematic representation of KRR-based bias correction approach including the 

conventional (i.e., multivariate recursive nested bias correction, MRNBC) methods. In summary we 

developed the proposed KRR method as follows: 

(a) Data: GFS-forecast and GFS-analysis data were downloaded from NCEP repository: 

https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast. As this repository 

provides 384-hours ahead data at a 3-hr interval, this study has only measured three time periods 

within the Brisbane daytime zone considering the relevance to solar PV power production at 0 UTC, 

3 UTC, and 6 UTC. Figure 3 shows a schematic illustration of 3-h GFS forecast experiments 

initialized at 0000 UTC, compared with the Australian Eastern Standard Time (AEST). We adopted 

the pygrib python package to extract five selected variables and the datasets were sorted for Day-2 

to Day-8 forecast. To apply the bias correction method, we adopted the TCDCGFS-Analysis dataset as 

a proxy for the observation and used these to correct the systemic biases that were present the 

TCDCGFS-Forecast dataset.  

(b) Pre-possessing and post-processing: Missing values were replaced using a preceding seven data 

point and all data normalised to be bounded by [0, 1] [84]. As the TCDC dataset had significant zero 

values which is normal for cloud cover properties (i.e., the presence of no clouds) and that this can 

affect an ML model’s performance, we used four normalization techniques and the best 

normalization technique was selected based on minimum mean absolute error (MAE). These 

techniques were: max-min normalization (𝑇𝑀𝑖𝑛𝑀𝑎𝑥), maximum absolute normalization (𝑇𝑀𝑎𝑥𝐴𝑏𝑠), 

z-score normalization (𝑇𝑆𝑡𝑑), and robust scaler normalization (𝑇𝑅𝑜𝑏𝑢𝑠𝑡) and their mathematical 

formulations are: 

(a) Max-min normalization (𝑇𝑀𝑖𝑛𝑀𝑎𝑥) =  
𝑇𝑖−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
      10 
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(b) z-score normalization (𝑇𝑆𝑡𝑑) =
𝑇𝑖−𝑇𝑖̅

𝑆𝑡𝑑
         11 

(c) Maximum Absolute normalization (𝑇𝑀𝑎𝑥𝐴𝑏𝑠) = 
𝑇𝑖

𝑀𝑎𝑥(𝐴𝑏𝑠(𝑥))
     12 

(d) Robust scaler normalization (𝑇𝑅𝑜𝑏𝑢𝑠𝑡) =
𝑇𝑖− 𝑇𝜔

(𝑄3− 𝑄1)
      13 

In Eq. (10 - 13), 𝑇𝑖 = respective predictors, 𝑇𝑖̅ = average of 𝑇𝑖,  𝑇𝑚𝑖𝑛 = minimum value for predictors, 

𝑇𝑚𝑎𝑥 = maximum value and 𝑆𝑡𝑑 = standard deviation, 𝑇𝜔 = median of 𝑇𝑖 and (𝑄3 −  𝑄1) = interquartile 

range between 1st quartile (25th) and 3rd quartile (75th) quantile. As there is no specific rule for data 

partitioning [84, 85] we used  70% training, 15% testing with a validation set as the last 15% of training 

set for all data collected between 1 January 2019 and 30 April 2020.  

(c) Implementation of ML-based Bias Correction 

This study has developed a total of 10 different ML models (i.e., KRR with nine other benchmark 

models) to correct the bias in TCDCGFS-Forecast for Day-2 to Day-8 forecasts. Our multivariate adaptive 

regression splines (MARS) model considers multivariate data with basic functions to investigate the 

predictor variable and identifies the predictor and target features [87]. The decision tree (DTR) was our 

non-parametric, supervised system to approximate a sine curve using ‘if-then-else’ decision where 

generally, the deeper the tree the more complicated a rule could be to fit a model. A prime task of ML 

is to set hyper-parameters for optimal bias correction method so an optimum architecture of the KRR 

model was created using GridSearchCV (regularization strength, α = 1.5; gamma parameter = None, 

with a degree of the polynomial kernel = 3 and kernel = linear; see Table 4). The performance of ML 

bias correction was compared with traditional bias corrections (i.e., MRNBC), and the reference value 

usually calculated between the TCDCGFS-Forecast and the TCDCGFS-Analysis was used with TCDCGFS-Analysis 

considered as the proxy of the observed cloud cover dataset.    

(d) Implementation of MRNBC Bias Correction Method 

In this section, we detail the procedure developed to correct bias using MRNBC methods, a traditional 

non-ML approach used previously. We made univariate adjustments followed by multivariate 

corrections using a time series with appropriate bias correction statistics generated for all variables and 

location. Therefore, the MRNBC method corrected the bias in TCDCGFS-Forecast by removing the current 

GFS mean and adding the observed mean. The time series adjusted in Step-2 are standardised, and this 

residual time series is adapted for bias using auto and cross-correlations for day lag-1 and lag-0. To 

summarise the corrections necessary at each time scale, a weighting factor may also be computed. The 

TCDCGFS-Forecast daily time series is multiplied by the weighting factor from each time scale to produce 

the final bias-corrected time series. The MRNBC bias correction procedure is schematized in Figure 4.  

[FIGURE 4] 

2.5 Evaluation of ML-Based Bias Correction Method  
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The effectiveness of an ML-based bias correction method in comparison with the traditional bias 

correction (i.e., MRNBC) and reference value (calculated between TCDCGFS-Analysis and TCDCGFS-

Forecast) method was evaluated using performance metrics such as the Pearson’s Correlation Coefficient 

(r), root means square error (RMSE, %), and mean absolute error (MAE, %) in the testing phase. In its 

most general sense, the effectiveness of any model is determined by the corrected (i.e., TCDCBC) and 

the proxy of the observed (TCDCGFS-analysis) datasets. While RMSE is a more appropriate measure of 

performance than MAE when error distribution is Gaussian [88], for a more persuasive model, the 

Willmott’s Index (WI) [89-91] and Legates –McCabe’s Index (LM) [92-94] are employed in this 

research. Mathematically, these are expressed as follows: 

 Correlation coefficient (r):  

𝑟 =  {
∑ (𝑇𝐶𝐷𝐶𝐵𝐶−𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅ 𝐴𝑁𝐿)(𝑇𝐶𝐷𝐶𝐵𝐶−𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅ 𝐵𝐶)𝑁

𝑖=1

√∑ (𝑇𝐶𝐷𝐶𝐴𝑁𝐿−𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅ 𝐴𝑁𝐿)2  ∑ (𝑇𝐶𝐷𝐶𝐵𝐶−𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅ 𝐵𝐶)𝑁
𝑖 =1

2𝑁
𝑖=1

}

2

             14 

Mean absolute error (MAE: %):   

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑇𝐶𝐷𝐶𝐵𝐶−𝑇𝐶𝐷𝐶𝐴𝑁𝐿| 𝑁

𝑖=1                        15 

Root mean squared error (RMSE: %):            

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑇𝐶𝐷𝐶𝐵𝐶 −𝑇𝐶𝐷𝐶𝐴𝑁𝐿)2𝑁

𝑖=1               16 

Willmott’s Index of Agreement (d):  

𝑑 =  1 −  [
∑ (𝑇𝐶𝐷𝐶BC−𝑇𝐶𝐷𝐶ANL)2N

i=1

∑ (|𝑇𝐶𝐷𝐶BC−𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅ ANL|+ |𝑇𝐶𝐷𝐶ANL−𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅ ANL|)2N
i=1

]                               17 

Legates –McCabe’s Index (LM):   

𝐿𝑀 =  1 − [
∑ |𝑇𝐶𝐷𝐶BC−𝑇𝐶𝐷𝐶ANL|N

i=1

∑ ||𝑇𝐶𝐷𝐶ANL−𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅ ANL||N
i=1

]                                        18 

Mean Absolute Percentage Deviation (MAPD: %):  

MAPD (%) =
1

N
 (∑ |

 (𝑇𝐶𝐷𝐶BC− 𝑇𝐶𝐷𝐶ANL)

𝑇𝐶𝐷𝐶𝐴𝑁𝐿
 |i=1

𝑁 ) ∗ 100      19 

In Eq. (14–19) we note that the 𝑇𝐶𝐷𝐶𝐴𝑁𝐿  and 𝑇𝐶𝐷𝐶BC, respectively, represents the proxy of the 

observed (TCDCGFS-Analysis) and bias-corrected data series for ith tested value, and 𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅
𝐴𝑁𝐿 and 𝑇𝐶𝐷𝐶̅̅ ̅̅ ̅̅ ̅̅

𝐵𝐶 

refer to their average values, accordingly, and the number of observations is denoted by N, while the 

coefficient of variation is denoted by CV.  
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In comparing the different models adopted to this bias correction problem, this study has used 

the promoting percentage of Legate McCabe’s Index (∆𝐿𝑀(%)) as a complementary measure of the 

model efficiency. The ∆𝐿𝑀(%) was thus calculated comparing the actual LM obtained using the 

proposed KRR and LM values generated by the KNN, MARS, and RF model. Mathematically, the 

∆𝐿𝑀(%) is computed as follows: 

∆𝐿𝑀(%) = (
𝐿𝑀𝐾𝑅𝑅 − 𝐿𝑀𝐶𝑂𝑀

𝐿𝑀𝐾𝑅𝑅
⁄ ) × 100      20 

In Eq. (20) the 𝐿𝑀𝐶𝑂𝑀 represents the LM value of the benchmark (e.g., KNN, MARS, or RF) model.  

3.0 Results and Discussion  

The practicality of ML-based bias correction method developed using KRR model is established using 

two distinct approaches where the bias in TCDCGFS-Forecast data is reduced relative to the observed 

(TCDCGFS-Analysis) data. The first approach integrates five GFS forecast data series (i.e., TCDCGFS-Forecast, 

T2mGFS-Forecast, DSWRFGFS-Forecast, UGFS-Forecast, VGFS-Forecast) as inputs in the model’s training phase while 

the 2nd approach uses a single TCDCGFS-Forecast data in the model’s training phase. In the initial phase, 

we examined 10 ML-based bias correction methods pooled together to broadly identify the bias 

correction performance in comparison with conventional bias correction method (i.e., MRNBC) and the 

respective reference values calculated between TCDCGFS-Forecast and TCDCGFS-Analysis for our study site. 

The ML models (i.e., BNR, DTR, GBR, HGBR, KNN, KRR, MARS, MLR, XGB, and RF) were 

assessed using statistical metrics (Eq. 15–19), infographics, and visualisations to determine the degree 

of agreement between TCDCGFS-Forecast and TCDCGFS-Analysis. Performance metrics indicate that the 

proposed KRR model outperforms all comparative counterpart models in the testing phase and that 

these models attain a superior value of r and d, with a low value of RMSE and MAE in the independent 

testing phase.  

 According to results presented in Figures 5 and 6, an in-depth examination of the Willmott’s 

Index (d) and root mean squared error (RMSE) accordingly provides a persuasive evidence that ML 

approach has substantial benefits in reducing the bias compared with the traditional MRNBC method 

and the respective reference values tested for all the days over which GFS total cloud cover forecast is 

considered. This figure clearly shows the closer distribution of RMSE and d values for the case of ML 

models using Approach 2 (see Figs. 5b & 6b) compared with Approach 1 (Figs. 5a & 6a). The lower 

end of the plot for the value of d is relatively situated within the lower quartile (25th) and the upper 

quartile (75th) range for the Day-2 GFS forecast data series.  

There appears to also be a single outlier found further than the 75th percentile. However, for the 

Day-3 to Day-8 forecasts, the bias correction of TCDCGFS-Forecast time series are found to result in a 

lesser improvement, except for Day-6 forecasts, which is reasonable as the uncertainties in TCDC are 
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likely to increase with an increment in forecast horizon. Noticeably, as the forecasting period changes 

from Day-2 to Day-8, the performance for our bias correction model decreases significantly. Despite 

this, we can note through the overall findings in the visualized result that the ML model can be 

considered the most potent strategy for bias correction at solar farms, at least for the present study site 

and the suite of models considered.  

  Further analysis is performed through a boxplot of errors (i.e., RMSE) for results obtained 

through Approach-2. This shows the bias-corrected total cloud cover (TCDCBC) vs. TCDCGFS-Analysis of 

all the ML models as illustrated in Figure 5b. For Day-2 TCDCGFS-Forecast data series, it is noticeable 

that the dispersion of RMSE for bias correction methods concerning the quartile values has distinct 

outliers. The lower end of the boxplot seems to precisely lie between lower quartile (25th percentile) 

and upper quartile (75th percentile). Likewise, the correlation coefficient (d) and RMSE are higher for 

the other days (Day-2 to Day-8) forecast except for Day-6. Therefore, the improvement of bias using 

ML methods signifies potentially improved performance compared with the MRNBC and the respective 

reference values of the TCDCGFS-Forecast and TCDCGFS-Analysis. When data from the other models were 

compared, the accuracy of KRR-based bias correction outweighed those of the other ML models (see 

Figure 5). 

[FIGURE 5] 

[FIGURE 6] 

To investigate the performance of ML-based bias correction, the mean absolute error (MAE) for 

ten machine learning models is listed (Table 2), along with traditional bias correction method (MRNBC) 

and the reference value method. The boxplots of bias-corrected root mean square error (RMSE) 

calculated between data for all the nine ML-based bias correction methods pooled together (i.e., KRR, 

BNR, DTR, GBR, HGBR, KNN, MARS, RF, XGB), conventional bias correction method (i.e., 

MRNBC) and along with their respective reference values (RMSE calculated between TCDCGFS-Forecast 

and TCDCGFS-Analysis) are also shown (Figure 6). When used to correct TCDC, it appears that the KRR 

model with Approach-2 produces the highest MAE compared to other machine learning models and 

reference value method. For Approach-2, the MAE for Day 2 forecast is bounded by [20.20, 26.75] %, 

with a best value obtained for the proposed KRR, which also indicates a modest 14% improvement over 

the reference MAE value. A similar type of improvement in the cloud cover bias is also seen for Day-3 

to Day-7. The KRR model’s performance is also compared to the KNN model’s performance for Day 

2 forecasting. However, it is imperative to note that Approach 1, which employs a MARS model, was 

more effective in correcting the TCDC bias for the Day 8 cloud cover forecasts relative to Approach 1. 

Consequently, the ML-based KRR model is seen to outperform the classic bias correction strategy in 

correcting the GFS-derived TCDC. In accordance with this result, the four best methods (i.e., KNN, 
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KRR, MARS, and RF) were then chosen to conduct an in-depth examination of the bias correction 

approaches utilizing these machine learning models. 

[FIGURE 7] 

An evaluation of the robustness of the four selected ML models (i.e., KNN, including the KRR, 

MARS, and RF), with the correlation coefficient (r) for the study site for Approach-1 and Approach-2 

are plotted in Figure 7. For the proposed model (i.e., KRR), the bias correction performance in terms of 

the r value shows substantial performance for Approach-1 (r ≈ 0.69) and Approach-2 (r ≈ 0.76) for 

Day-2 TCDCGFS-Forecast. The KRR model accuracy is then followed by the MARS model (r ≈ 0.731). 

For the Day-3 to Day-8 forecast data, the bias correction performance in terms of r ranged from 0.21 to 

0.60 for Approach-2; Day-6 forecast data has the highest (r ≈ 0.61). Reasonably, the proposed KRR 

model demonstrates the highest r values for Day-3 to Day-8 forecast data of TCDC bias correction. 

Considering the traditional bias correction method (i.e., MRNBC) and reference r-value, for Day-2 of 

GFS forecast TCDC for Approach-2, the bias correction performance in terms of r is increased by 22% 

and 53% accordingly. Similarly, for Day-3 to Day-8 of TCDC bias correction, the improvement is 70% 

to 75% which is significant. Because the benchmark models performed poorly, as demonstrated in 

Figure 7, the newly proposed KRR model was superior for the research study site.    

[FIGURE 8]  

The change () in mean absolute percentage error MAPD (%) generated by the proposed KRR 

method in respect to reference value deduced from TCDCGFS-Forecast and TCDCGFS-Analysis is presented in 

Figure 8. A positive change is expected to show the objective model (i.e., KRR) outperforming the 

benchmark model. For both approaches, MAPD (%) is significant for Day-2 GFS forecast whereas 

Approach 2 with KRR shows the lowest value at ~48%. For Approach 1, the MAE value from an SVR 

model is ~17.5% higher whereas for Day-3 to Day-8 forecasts, MAPD range from [5, 35] % for 

Approach 2 with some deviation noted for KNN model. In a rational sense, the proposed KRR model 

is seen to demonstrate the most significant improvement in MAPD (MAPD; %) ranging from 15% to 

14% for Day-2 to Day-8 in respect to a reduction in bias for the TCDC dataset. Accordingly, we can 

ascertain that our newly developed KRR model appears to fall within the criterion of an acceptable 

predictive model that can correct the bias in GFS-derived total cloud cover forecasts, and therefore, may 

be a useful tool for solar energy monitoring and forecasting systems.  

[FIGURE 9] 

To further demonstrate the KRR model’s particular skills to correct TCDCGFS-Forecast data biases 

for Day 2-8 forward periods, we show the LM values that aim to compare the promoting percentages 

referred to as an incremental performance in LM (∆𝐿𝑀,%) of the comparative model against our 
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objective model (i.e., KRR model). Figure 9 shows the result of KRR model against those of KNN, 

MARS, and RF applied to correct bias in TCDC data for Day-2 to Day-8 forecast horizons. The bias 

correction, evaluated in respect to the KRR model, is relatively diverse. Notwithstanding this, Figure 9 

shows that the bias correction using the proposed KRR method is more notable by 20% to 65% for all 

the forecasted days. Overall, the highest gain appears to have reached ~70% for the KNN model for the 

case of Day-4 forecasts of the total cloud cover conditions. 

[FIGURE 10] 

Figure 10 is an alternative representation of KRR model’s performance in respect to benchmark 

models using a Taylor diagram [95]. In this case, a significant correlation seems to exist between bias-

corrected TCDC (i.e., TCDCBC) and the proxy observed variable (TCDCGFS-Analysis) for the case of the 

proposed KRR model. It is therefore clear that the bias corrected TCDC data produced from KRR model 

is close match to the proxy of the observed TCDC data with the other ML models. Therefore, in a 

nutshell, based on the statistical performance measures, we can ascertain that the newly developed KRR 

model has the predictive skills to reduce the overall bias in total cloud cover generated by a weather 

simulation model used in this study. 

4.0 Conclusions and Future Research Insights 

This paper has utilised an ML-based bias correction (i.e., KRR) method to reduce bias in total cloud 

(TCDCGFS-Forecast) variable at solar energy farm. To demonstrate the feasibility of the developed KRR 

model, data from Columboola solar energy farm located in Queensland, Australia, were used where the 

findings indicated a superior performance of this objective model in respect to an ensemble of machine 

learning and conventional bias correction methods. We learned that the ML-based bias correction 

approach had a solid potential to significantly reduce, if not eradicate, the bias in TCDCGFS-Forecast by 

utilising cloud cover, temperature, windspeed and downward solar radiation flux that provides adequate 

predictive features and relationships in observed cloud cover variable. Precisely, the KRR model’s 

capability to correct the bias in TCDCGFS-Forecast dataset was established in terms of the percentage 

improvement in mean bias error that for this study site has ranged from ~20% to ~50% using traditional 

MRNBC method for Day-2 to Day-8 forecast. The study showed that the integration of multiple 

predictor variables such as the TCDCGFS-Forecast, T2mGFS-Forecast, DSWRFGFS-Forecast, UGFS-Forecast, and VGFS-

Forecast into the model’s input matrix was able to successfully correct the bias in cloud cover as it provided 

historical information on cloud evolution and its lagged stochastic behaviour. Nonetheless, we contend 

that the biases in all these individual forecasted variables that are produced by the numerical weather 

model may also affect the accuracy of the cloud cover bias correction task. Therefore, using a single set 

of model input variable (i.e., TCDCGFS-Forecast) was somewhat better suited compared to the multi-
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variable approach such that the results have established high predictive potency of employing a single 

variable to resolve the bias-related problem for this solar energy site.  

These results have shown that the performance of ML-based bis correction for longer-term 

forecast horizon (i.e., Day-8) was much better with Approach-1 where multiple predictor variables: 

TCDCGFS-Forecast, T2mGFS-Forecast, DSWRFGFS-Forecast, UGFS-Forecast, and VGFS-Forecast were incorporated in the 

KRR model’s input matrix. This outcome appears to reveal the interactions of these variables with 

proxy-observed cloud cover over the passage of time leading to improved overall performance i.e., for 

a longer-term Day-8 bias correction result although this multi-variable approach (i.e., Approach-1) 

registered comparatively large bias. While the results of this pilot study may not be explicitly conclusive 

and may require further investigations, one possible explanation for comparatively large bias could be 

the interference of disproportionately embedded biases within each of these forecast variables that could 

hinder the correlation among such bias to further affect TCDC produced by the GFS model. We 

therefore conclude that in a future study, the development of deep learning algorithms that have 

exceptional skills in terms of extracting the more complex data features may hold a greater promise to 

correct bias in real-time weather model data used for solar energy monitoring. Some relevance may be 

drawn from recent studies where deep learning was broadly implemented, for example, in hydrology 

[29, 31] and solar energy studies [97, 98]. Therefore, a deep learning hybrid approach could be adopted 

as a future bias correction method both for solar power production monitoring and power failure risk 

analysis when solar energy is integrated into real energy grids. 
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List of Figures 

 

 

Fig. 1. Geographic location of our study site: Columboola solar energy farm in Queensland 

Australia where the proposed kernel ridge regression (KRR)-based machine learning 

model (ML) model for bias correction of total cloud cover (TCDC) was developed 

utilizing Global Forecast System (GFS) analysis (i.e., proxy observed) and forecasted 

variables. 

 

 

  

Figure Click here to access/download;Figure;Paper_GFS-
Bias_Figure_December 2021.docx
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Fig. 2. Schematic of the proposed KRR-based bias correction method that is 

benchmarked with the conventional (i.e., multivariate recursive nesting bias 

correction, MRNBC) and nine ML (i.e., Bayesian ridge regression (BNR), 

Decision Tree (DTR), Gradient Boosting Regressor (GBR), Hist Gradient 

Boosting Regressor (HGBR), k- nearest regression (KNN), multivariate 

adaptive regression splines (MARS), extreme gradient boosting (XGB), and 

random forest (RF) methods adopted to correct the bias in total cloud cover 

(TCDC). 

  Interpretive Statement: The proposed KRR bias correction method uses: (i) 

Approach 1 taking in five GFS inputs: i.e., TCDCGFS-Forecast, downward short-

wave radiation flux DSWRFGFS-Forecast, 2-meter temperature (T2mGFS-forecast), 

zonal UGFS-Forecast and meridional VGFS-Forecast against the total cloud cover TCDC 

GFS-Analysis (reference or proxy observed) target, and (ii) Approach 2 taking in 

TCDCGFS-Forecast as an input with TCDCGFS-Analysis target for which bias is 

corrected. 
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Fig 3. Schematic illustration of the 3-h GFS forecasts initialized at 0000 UTC compared with 

Australian Eastern Standard Time (AEST) used to develop KRR bias correction 

method.    
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Fig. 4. Schematic of the traditional method, i.e., multivariate recursive nested bias correction 

(MRNBC) presented in this study as a comparison method against the proposed KRR 

bias correction method used to correct bias in total cloud cover (TCDC). 
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Fig. 5. Box plots of Willmott’s Index of Agreement (d) calculated for all nine ML-bias 

corrections models (i.e., KRR, BNR, DTR, GBR, HGBR, KNN, MARS, RF, XGB) 

pooled together including conventional bias correction (i.e., MRNBC) and their 

respective reference values (d calculated between TCDCGFS-Forecast and TCDCGFS-

Analysis) for (a) Approach 1, and (b) Approach 2. [For more details on each approach, 

see Fig. 2] 
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Fig. 6 Box plots of bias-corrected root mean square error (RMSE) calculated between 

data for all the nine ML-based bias correction methods pooled together (i.e., 

KRR, BNR, DTR, GBR, HGBR, KNN, MARS, RF, XGB), conventional bias 

correction method (i.e., MRNBC) and along with their respective reference 

values (RMSE calculated between TCDCGFS-Forecast and TCDCGFS-Analysis). (a) 

Approach 1 and (b) Approach 2. [For more details on each approach, see Fig. 

2]. 
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Fig. 7 Comparative analysis of four selected ML-based bias correction methods (i.e., KRR, 

MARS, KNN, RF) by means of correlation coefficient (r) between the corrected 

TCDC GFS-Forecasts and the reference TCDC GFS-Analysis. Included is a respective reference 

r-value computed using ‘non-corrected’ TCDC GFS-forecasts and bias-corrected TCDC GFS-

Forecasts but using a traditional method (i.e., MRNBC). (a) Approach 1, and (b) Approach 

2. [For more details on each approach, see Fig. 2]. 
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Fig. 8 Change () in mean absolute percentage error, MAPD (%) generated by proposed KRR 

bias correction method with respect to a reference value of MAPD deducted from 

TCDCGFS-Forecast and TCDCGFS-Analysis. (a) Approach 1, and (b) Approach 2. [For more details 

on each approach, see Fig. 2].  

Interpretive statement: a positive change is used to show the objective model (i.e., 

KRR) has outperformed the other benchmark models.  
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Fig. 9 The percentage change in Legates & McCabe’s Index (LM) was deduced by comparing 

the LM values obtained using the proposed KRR-bias correction model in respect to the 

LM values generated by KNN, MARS and RF Models. (a) Approach-1, (b) Approach-

2. 

Note that:  (∆𝐿𝑀(%) = (
𝐿𝑀𝐾𝑅𝑅 − 𝐿𝑀𝐶𝑂𝑀

𝐿𝑀𝐾𝑅𝑅
⁄ ) × 100)  

Note: 𝐿𝑀𝐶𝑂𝑀 represents the LM value of the benchmark (KNN, MARS or RF) model. 

[For more details on each approach, see Fig. 2]. 
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Fig. 10 Taylor diagram showing the correlation coefficient, standard deviation, and root 

mean square centered difference (RMSD). (a) The objective model (KRR) 

compared with (b) KNN, (c) MARS, and (d) RF) for the most accurate approach 

(i.e., Approach-2). [For more details on each approach, see Fig. 2]. 
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List of Tables 

Table 1 List of Global Forecast System (GFS)-forecast variables (i.e., 2-metre temperature, 10-metre wind 

speed, total cloud cover, and downward short-wave radiation flux) used as KRR model inputs, and 

GFS analysis variable (i.e., total cloud cover used as proxy observed) in the proposed KRR model 

used in bias correction problem.   

Variable Short 

Name 
Variable Description Level Units 

KRR Model Inputs: GFS Forecast (Inputs) 

T2mGFS-Forecast 2-metre temperature Height Above Ground K 

UGFS-Forecast 10-metre U wind component Height Above Ground m s-1 

VGFS-Forecast 10-metre V wind component Height Above Ground m s-1 

TCDCGFS-Forecast Total Cloud Cover Atmosphere % 

DSWRFGFS-Forecast Downward short-wave radiation flux Surface W m-2 

KRR Model Target: GFS Analysis (proxy observed) 

TCDCGFS-Analysis Total Cloud Cover Atmosphere % 

Table Click here to access/download;Table;Paper_GFS-
Bias_Table_December 2021.docx
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Table 2 Descriptive statistics of GFS forecast and GFS analysis data used to develop the proposed KRR 

model. Data were acquired from GFS model over January 1, 2019 and April 30, 2020 used for training 

70% and testing (30%) where the remaining 15% of training set is used for model validation. 

Variable Forecast 

Horizon

Max Min Mean Skewness Kurtosis 
D

S
W

R
F

G
F

S
-F

o
re

ca
st
 Day 2 1100 0.00 601.07 -0.22 -1.38

Day 3 1100 0.00 605.30 -0.23 -1.46

Day 4 1100 0.00 595.55 -0.20 -1.47

Day 5 1100 0.00 595.71 -0.20 -1.46

Day 6 1100 0.00 599.78 -0.20 -1.39

Day 7 1090 0.00 604.91 -0.24 -1.44

Day 8 1100 0.00 605.01 -0.27 -1.42

T
C

D
C

G
F

S
-F

o
re

ca
st
 Day 2 100 0.00 27.82 1.01 -0.56

Day 3 100 0.00 29.38 0.91 -0.74

Day 4 100 0.00 32.80 0.73 -1.04

Day 5 100 0.00 32.95 0.73 -1.05

Day 6 100 0.00 32.62 0.70 -1.12

Day 7 100 0.00 31.88 0.77 -0.96

Day 8 100 0.00 33.87 0.66 -1.11

T
2
m

G
F

S
-F

o
re

ca
st
 

Day 2 314.55 285.38 301.64 -0.31 -0.62

Day 3 314.76 285.36 301.57 -0.35 -0.59

Day 4 313.59 285.24 301.49 -0.33 -0.67

Day 5 314.74 284.35 301.45 -0.34 -0.61

Day 6 314.65 284.76 301.53 -0.33 -0.54

Day 7 315.22 285.20 301.45 -0.34 -0.55

Day 8 313.45 285.54 301.70 -0.45 -0.42

U
G

F
S

-F
o

re
ca

st
 

Day 2 10.49 -12.23 -4.25 0.99 0.94 

Day 3 7.38 -13.03 -3.50 0.49 -0.37

Day 4 8.56 -11.41 -4.37 1.08 1.09 

Day 5 8.80 -12.24 -4.37 1.02 0.95 

Day 6 8.83 -10.67 -4.46 1.13 1.25 

Day 7 10.93 -11.93 -4.52 1.19 1.74 

Day 8 8.85 -13.19 -4.05 0.66 0.01 

V
G

F
S

-F
o

re
ca

st
 

Day 2 10.29 -7.74 0.14 0.22 -0.08

Day 3 10.06 -9.55 -0.70 -0.03 -0.34

Day 4 8.53 -7.08 0.09 0.25 -0.10

Day 5 8.65 -7.22 0.12 0.31 -0.03

Day 6 9.57 -6.64 0.03 0.30 -0.10

Day 7 8.58 -10.66 -0.07 0.22 0.10 

Day 8 13.70 -7.37 -0.22 0.21 0.35 

T
C

D
C

G
F

S
-A

n
al

y
si

s 

Day 2 100 0.00 31.70 0.78 -1.01

Day 3 100 -5.83 31.82 0.78 -1.02

Day 4 100 -5.83 31.89 0.77 -1.03

Day 5 100 -5.83 31.95 0.77 -1.03

Day 6 100 -5.83 31.95 0.77 -1.03

Day 7 100 -5.83 31.92 0.77 -1.03

Day 8 100 -5.83 32.02 0.76 -1.04
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Table 3 Mean Absolute Error (MAE, %) between ‘proxy observed’ (TCDCGFS-Analysis) and ML-bias corrected 

TCDCBC using our proposed KRR model. Our conventional bias correction is a multivariate 

recursive nesting bias correction (MRNBC) method, whereas benchmark methods include BNR, 

DTR, GBR, HGBR, KNN, MARS, MLR, and RF model. In Approach 1, we used T2mGFS-Forecast, 

VGFS-Forecast, UGFS-Forecast, TCDCGFS-Forecast, and DSWRFGFS-Forecast. In contrast, in Approach 2, we used 

TCDCGFS-Forecast as a predictor (or input) variable against TCDCGFS-Analysis as a target variable. The 

reference MAE is computed between TCDCGFS-Forecast and TCDCGFS-Analysis data to provide additional 

benchmarks for the proposed KRR bias correction method. 

Model and Method 
Inter-daily Forecast Horizon 

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 

Based on TCDCGFS Forecast and 

TCDCGFS-Analysis datasets 
Reference 23.45 29.36 32.93 31.49 27.59 31.68 32.36 

Conventional Bias Correction MRNBC 25.90 32.05 32.65 32.76 30.28 33.57 34.50 

Approach 1 

Objective Model KRR 25.07 34.56 32.23 31.33 27.68 30.76 30.26 

Benchmark Machine Learning 

Models 

BNR 25.35 31.90 32.93 32.63 29.08 32.41 31.31 

DTR 35.65 30.47 41.35 37.00 38.24 37.98 34.46 

GBR 32.52 31.68 34.32 32.38 29.85 31.73 28.77 

HGBR 32.45 32.39 34.15 30.95 30.73 33.18 28.77 

KNN 26.76 29.90 30.32 30.48 29.98 32.20 31.31 

MARS 26.60 26.18 33.21 32.77 28.99 33.40 24.80 

RF 25.19 32.14 32.84 32.52 28.94 32.27 31.16 

XGB 26.47 30.74 32.96 32.17 28.80 32.08 30.08 

Approach 2 

Objective Model KRR 20.20 28.75 28.52 28.44 24.20 27.47 27.99 

Benchmark Machine Learning 

Models 

BNR 25.32 31.63 31.89 31.78 28.77 31.57 31.69 

DTR 26.75 32.22 33.19 31.82 29.23 31.55 32.74 

GBR 25.81 31.73 32.36 31.27 28.52 31.36 31.82 

HGBR 25.91 31.70 32.24 31.55 28.37 31.46 32.19 

KNN 21.22 38.64 33.39 36.67 30.29 41.85 38.18 

MARS 25.36 31.46 31.85 31.75 28.74 31.67 31.66 

RF 25.28 31.60 31.85 31.75 28.74 31.54 31.66 

XGB 25.48 31.50 31.52 31.20 28.36 31.49 31.52 
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Table 4 The optimal hyperparameter of the proposed KRR model, including that of the other benchmark 

models methods include machine learning (i.e., BNR, DTR, GBR, HGBR, KNN, MARS, MLR, 

and RF) 

Model 

Type

Name Hyper-parameters Acronym Optimum 

Objective 

Model 

KRR Regularization strength alpha 1.5 

Kernel mapping kernel linear 

Gamma parameter gamma None 

Degree of the polynomial kernel degree 3 

Zero coefficient for polynomial and sigmoid 

kernels

coef0 1.2 

Benchmark 

Machine 

Learning 

Models 

BNR Maximum number of iterations n_iter 200 

Stop the algorithm if w has converged tol 0.0001 

Shape parameter for Gamma distribution over 

alpha

alpha_1 1e-05 

Inverse scale parameter over alpha alpha_2 1e-05 

Shape parameter for Gamma distribution over 

lambda 

lambda_1 1e-06 

Inverse scale parameter for Gamma distribution 

over lambda 

lambda_2 1e-04 

The initial value for alpha alpha_init None 

DTR Maximum depth of the tree max_depth None 

Minimum number of samples for an internal node min_sample_split 2 

Number of features for the best split max_features Auto 

GBR Number of boosting stages n_estimators 102 

Minimum number of samples for an internal node min_sample_split 2 

Learning rate learning_rate 0.1 

Maximum depth of individual regression 

estimators’ estimators 

max_depth 3 

Number of features to consider for the best split max_feature None 

HGBR Learning rate learning_rate 0.1 

Maximum number of iterations max_iter 120 

maximum number of leaves for each tree max_leaf_nodes 31 

Maximum number of bins max_bins 260 

KNN Number of neighbours n_neighbors 5 

Weights Weights uniform 

The algorithm used to compute the nearest 

neighbours

algorithm auto 

Leaf-size passed leaf_size 30 

Power parameter for the Minkowski metric p 2 

The distance metric to use for the tree. metric minkowski 

Additional keyword arguments for the metric metric_params none 

The number of parallel jobs n_jobs int 

MARS maximum degree of terms max_degree 1 

Smoothing parameter used to calculate GCV penalty 3.0 

RF Number of trees in the forest n_estimators 120 

Maximum depth of the tree max_depth 2 

Minimum number of samples for an internal node min_sample_split 2 

Number of features for the best split max_features auto 
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APPENDIX B: WHEAT YIELD PREDICTION USING 

SATELLITE-DERIVED INFORMATION 

B1.1 Foreword 

This Chapter is an exact copy of the published manuscript to the Remote Sensing 

Manuscript Number: APEN-S-21-14660 (Scopus Impact Factor 4.85). The title of the 

manuscript is:  

“Kernel Ridge Regression hybrid method for wheat yield prediction using satellite-

derived predictors” 

In this Chapter, Wheat, which controls the Australian grain market and accounts for 10-

15% of the world's annual 100 million tonnes of wheat trade, dominates the Australian 

grain market, is predicted using the kernel ridge regression (KRR) method in 

conjunction with complete ensemble empirical mode decomposition with adaptive 

noise (CEEMDAN) and the grey wolf optimization (GWO). Remote satellite-based 

information is used in this paper to estimate yield in a wheat-growing region in South 

Australia. The GWO-CEEMDAN-KRR hybrid model outperforms all benchmark 

models and feature selection (ant colony, atom search, and particle swarm optimization). 

The GWO-CEEMDAN-KRR model, with this improved methodology, may be used in 

agricultural yield simulations that require remote sensing data to establish relationships 

between crop health, yield, and other productivity features to support precision 

agriculture, such as crop rotation. 

B1.2 Research Highlights 

• a hybrid kernel ridge regression (KRR) method that is developed to predict the

wheat yield of South Australia.

• KRR is coupled with CEEMDAN and GWO, referred to as GWO-CEEMDAN-

KRR.

• A pool of 23 different satellite-based predictors is used for wheat yield prediction.

• The predicted results show that prediction error can be reduced by ~20% by

employing the proposed GWO-CEEMDAN-KRR model.
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Kernel Ridge Regression Hybrid Method for Wheat Yield  

Prediction with Satellite-Derived Predictors 
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Abstract: Wheat dominates the Australian grain production market and accounts for 10–15% of the 

world’s 100 million tonnes annual global wheat trade. Accurate wheat yield prediction is critical to 

satisfying local consumption and increasing exports regionally and globally to meet human food 

security. This paper incorporates remote satellite-based information in a wheat-growing region in 

South Australia to estimate the yield by integrating the kernel ridge regression (KRR) method cou-

pled with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and 

the grey wolf optimisation (GWO). The hybrid model, ‘GWO-CEEMDAN-KRR,’ employing an ini-

tial pool of 23 different satellite-based predictors, is seen to outperform all the benchmark models 

and all the feature selection (ant colony, atom search, and particle swarm optimisation) methods 

that are implemented using a set of carefully screened satellite variables and a feature decomposi-

tion or CEEMDAN approach. A suite of statistical metrics and infographics comparing the pre-

dicted and measured yield shows a model prediction error that can be reduced by ~20% by employ-

ing the proposed GWO-CEEMDAN-KRR model. With the metrics verifying the accuracy of simu-

lations, we also show that it is possible to optimise the wheat yield to achieve agricultural profits 

by quantifying and including the effects of satellite variables on potential yield. With further im-

provements in the proposed methodology, the GWO-CEEMDAN-KRR model can be adopted in 

agricultural yield simulation that requires remote sensing data to establish the relationships be-

tween crop health, yield, and other productivity features to support precision agriculture. 

Keywords: wheat yield; satellite data; machine learning; kernel ridge regression; South Australia 

 

1. Introduction 

Agriculture and climate change are interrelated sciences [1], with adverse climate 

variability being a fundamental factor disrupting agricultural production. This may cor-

relate to food availability, decreased food access, and even food quality [2]. Such an effect 

is likely to happen with subsequent changes in temperature, rainfall, and extreme climatic 

conditions such as heatwaves, diseases, pest invasions, and varying nutritional quality of 

some foods, to name a few [3]. Quantifying and modelling the impacts of these factors on 

crop yield is vital for improving the resilience of our agricultural system in a highly 
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variable environment [4]. The authors in [5] state that three variables, such as crop yield, 

cropping area, and crop frequency, are fundamental to the crop production equation. 

Modelling crop yield has often been estimated based on the sensitivity of agricultural out-

puts to climate variability under global warming scenarios. It has also been estimated that 

changes in frequency and/or cropping can cause roughly 70% of the change in agricultural 

output driven by climate variability [6]. 

Several types of research have assessed climate change impacts on crop yields at local 

and global scales. Some examples stated in [7–10] use either deterministic or artificial in-

telligence methods for modelling. Romeijn et al. [11] have evaluated deterministic and 

complex analytical hierarchy process methods for agricultural land suitability analysis in 

a changing climate. Aschonitis et al. [12] assessed the intrinsic vulnerability of agricultural 

land to water and nitrogen losses via a deterministic approach and regression analysis. 

Several studies, such as [13–15], have used deterministic or probabilistic approaches for 

modelling. However, these methods lack automation and can be time-consuming, com-

plex, and resource-intensive [16,17]. Machine learning (ML) methods have gained signif-

icant attention from researchers keen to develop yield prediction models. One such study 

is the work of Kouadio et al. [18], which used soil fertility properties as fertiliser constitu-

ents (i.e., soil organic matter (SOM), available potassium, boron, sulfur, zinc, phosphorus, 

nitrogen, exchangeable calcium, magnesium, and pH) to predict Robusta coffee yield in 

Vietnam. 

Wheat yield predictions based on multi-source data from climate, satellite, soil, and 

historical yield records have developed rapidly using linear regression [19,20], machine 

learning [21,22], and deep learning algorithms [23,24]. The research interest has focused 

on identifying the most important predictors and developing robust prediction models. 

Kolotii et al. [25] applied single-factor linear regression to forecast winter wheat crop yield 

in Ukraine using normalised difference vegetation index (NDVI), leaf area index (LAI), 

and a fraction of absorbed photosynthetically active radiation (fAPAR) derived from sat-

ellite data and crop growth model. The author indicated that the satellite-based biophys-

ical parameter predictor, LAI, yielded the most accurate result at each scale. Cai et al. [26] 

combined climate and satellite data to achieve the best performance for wheat yield pre-

diction in Australia. The findings also indicated that the yield prediction models based on 

machine learning methods outperformed the regression methods used by earlier research-

ers, such as [27–29]. Among satellite-based inputs, using the enhanced vegetation index 

(EVI) provided better performance in yield prediction than the solar-induced chlorophyll 

fluorescence (SIF). Kamir et al. [30] integrated the benefits of machine learning and regres-

sion methods, climate records, and satellite image time series to estimate wheat yields 

across the Australian wheat belt. The results show that the combination of support vector 

regression (SVR) and radial basis function is the best model while the additional infor-

mation from climate (temperatures and rainfall) significantly improved yield predictions 

compared to the pure NDVI-based model. Moreover, the author suggested that the result-

ing yield estimates meet the accuracy requirements for mapping the yield gap and iden-

tifying yield gap hotspots that could be targeted for further work. Bali and Singla [31] 

demonstrated that deep learning-based Recurrent Neural Network (RNN)-long short-

term memory (LSTM) outperformed machine learning models, Artificial Neural Network 

(ANN), Random Forest (RF), and Multivariate Linear Regression (MLR) model in predict-

ing wheat yield in the northern region of India using climate variables. The results also 

show that machine and deep learning models outperformed the two linear regression 

methods in predicting wheat yield; however, the LSTM did not perform better than SVR. 

Overall, it is clear that studies focused on the importance of incorporating satellite data 

for modelling purposes to capture spatially relevant information for yield prediction, the 

performance of different predictors and models requires further investigation. 

This paper contributes to the development of the robust method for predictor selec-

tion and accuracy of wheat yield prediction using large datasets derived from satellites. 

The study also aims to report on the modelling impacts of climate variability on 
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agricultural crop yields in South Australia using satellite-derived information. This is why 

this study is necessary and has several advantages [32], such as eliminating the provision 

to collect unobstructed spatial data physically without a piece of measuring equipment 

and considering satellite sensors that can passively record electromagnetic energy re-

flected from or emitted by the phenomena of interest [33]. In other words, using the satel-

lite method to collect data means that passive remote sensing does not disturb the object 

or the area of interest and can help collect the data over relatively large spatial areas. The 

use of remote sensing methods in satellite datasets can also help to characterise the natural 

weather or climatic features without being affected by the physical objects on the ground 

surface. Using satellites to monitor the ground, the surface areas can be observed system-

atically, and the changes in soil or other properties affecting crop yield can also be moni-

tored systematically and regularly over time. Remote sensing methods also enable us to 

obtain repetitive coverage, which becomes quite handy when collecting data on dynamic 

themes such as soil moisture, water, agricultural fields, etc. Australian farmers are vul-

nerable to climate variability and change [34]. As for South Australia as a specific choice 

of an area of interest, it is observed that the region has varying rainfall patterns, droughts, 

and higher temperatures that pose significant risks to the state’s urban water supplies and 

agricultural areas [35,36]. This affects wheat production, a prime employment source in 

South Australia, and its export. Therefore, climate change variability in the region, espe-

cially during the austral winter, is a potential threat to production [35]. Lastly, this study 

maps ground conditions at small-to-medium scales, making the data acquisition methods 

cheaper and faster. 

2. Materials and Methods 

2.1. Theoretical Frameworks 

This section summarises the proposed objective model (i.e., KRR) and related algo-

rithms (i.e., CEEMDAN and GWO) used in this study. The use of hybrid models in the 

study can amplify the strengths of the individual techniques to provide a more robust 

approach to the modelling process and make the model more accurate and efficient [37–

39]. This paper aims to use the predictive merits of the CEEMDAN (a data decomposition 

method) combined with the KRR algorithm to achieve what has never been done in crop 

yield modelling before, especially in South Australia. To improve the CEEMDAN-KRR 

and other comparative models by selecting the most relevant satellite variables, we opti-

mise the overall predictive system using feature selections based on grey wolf optimisa-

tion (GWO), ant colony optimisation (ACO, [40]), atom search optimisation (ASO, [41]), 

and particle swarm optimisation (PSO) [42]. It is imperative to note that the CEEMDAN 

method is a variation of the Ensemble Empirical Mode Decomposition (EEMD) algorithm 

that provides a near-exact reconstruction of the original signal and a better spectral sepa-

ration of the Intrinsic Mode Functions (IMFs) [43]. Several other comparison approaches 

include CEEMDAN-MLR or Multiple Linear Regression, CEEMDAN-RF or Random For-

est, and CEEMDAN-SVR or Support Vector Regression, and their respective standalone 

counterparts such as KRR, MLR, RF, and SVR models are also used in this study. Technical 

details of multi-linear regression (MLR) [44], random forest (RF) [45], and support vector 

regression (SVR) [46,47], and the feature optimization methods ACO [40], ASO [41], and 

PSO [42] are explained elsewhere. 

2.1.1. Kernel Ridge Regression (KRR) 

Ridge Regression (RR) is a simple yet powerful non-linear regression for forecasting, 

especially when the kernel is introduced into RR (KRR) as it maps out the time-series non-

linearly transformed [48] input data to high dimensional space from low dimension [49] 

and the kernel function is a feature map from d dimensional Hilbert Space ℋ�, � ∶ � →

ℋ�  such that k�x�, x�� = ��(x�), ��x���
ℋ�

. In this study, we follow Li et al. [49] to 
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implement KRR. With kernel functions and n data samples (x�, y�), (x�, y�), … , (x�, y�) ∈

 � ∗ � (y� is the target value of corresponding xi, i =  1, 2, … , n), the kernel matrix equa-

tion is: 

K =  �

k(x�, x�) k(x�, x�) … k(x�, x�)

k(x�, x�) k(x�, x�) … k(x�, x�)
… … … …

k(x�, x�) k(x�, x�) … k(x�, x�)

� (1)

The KRR problem can be formulated as 

���
�

  ∥ � − K� ∥�+ � ∥ � ∥� (2)

Here � is the target vector of all � data samples, � is the unknown vector, �� is an 

n ∗ n identity matrix and regularisation item � ≥ 0 to avoid a large range of �. 

� = (K +  ���)��� (3)

2.1.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) is an improved version of ensemble mode decomposition (EMD) and em-

pirical ensemble mode decomposition (EEMD). The EMD is an adaptive time-space anal-

ysis used to process non-linear and non-stationary time series of data. Due to the nonlin-

earity of the data, EMD uses the divide and conquer strategy to decompose and ensemble 

complex signals into simple components and extract those components as intrinsic mode 

functions (IMFs) and residues [49]. To avoid EMD’s mode mixing problem, EEMD de-

composes signals by adding white Gaussian noise, but they cannot be offset after multiple 

averaging [50,51]. Moreover, this method’s intricacy and computational complexity are 

significantly raised when white noise is expanded numerous times [52]. The CEEMDAN 

overcomes this problem with adaptive noise by reconstructing the original input/output 

variables. Compared to EEMD, the reconstruction of CEEMDAN is comprehensive and 

noise-free, and it requires fewer trials [53]. This study follows Torres et al. [54] and Ahmed 

et al. [55] to implement CEEMDAN using the following steps. 
 

Step 1: Decompose by EMD P realisation x[n] + �� ω�[n] to receive the first modal 

component 

IMF�
�[n] =

1

p
�  

�

���

IMF�
�

[n] = IM� F�[n] (4)

Step 2: The first residual component is calculated by putting k = 1 in Equation (1), 

Res� [n] = χ[n] − IM� F�[n] (5)

Step 3: Putting k = 2, the second residual component is obtained as 

IM� F�[n] =
1

p
�  

�

���

E��r�[n] + ε�E�(ω�[n])� (6)

Step 4: Similarly calculating kth residue as 

Res� [n] = Res��� [n] − IM� F�[n]  (7)

Step 5: Decomposing the realizations Res�[n] + ε�E�(ω�[n]). Here, k = 1, … K until 

their first model of EMD reached and the (k + 1) is 

IM� F(���)[n] =
1

p
�  

�

���

E��r�[n] + ε�E�(ω�[n])� (8)
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Step 6: Here, the k value is incremented and steps 4–6 are repeated, and the final 

residue is achieved 

RES� [n] = χ[n] − �  

�

���

IM� F� (9)

Here, k is the highest number of modes. 

Therefore, the signal x[n] can be expressed as 

χ[n] = �  

�

���

IM� F� + RES�[n] (10)

2.1.3. Grey Wolf Optimizer (GWO) 

Grey wolf optimiser proposed by Mirjalili et al. (2014) depicts the interesting and 

systematic lifestyle of grey wolves belonging to the Canidae family. Grey wolves lie at the 

top of the food chain living in a pack of 5 to 12 with a social hierarchy naming alpha (α-

leaders), beta (β- advisors of alpha and commands δ and ω), gamma (δ- commands ω), 

and omega (ω-follow every other wolf’s command). During hunting, α, β, and δ work as 

guides and ω follow them. During encircling of prey for hunting, it is as described by Al-

Tashi et al. [56] 

�⃗ (� + 1) =  ��
����⃗ (�) +  �⃗ ∙ ���⃗  (11)

���⃗ = ��⃗ ⋅ X��⃗ �(�) − X
¯

(�)� (12)

where �  indicates the current iteration, �⃗  and � ���⃗  are coefficient vectors, ��
����⃗  is the 

prey’s positions vector, � is the position of the wolves in d dimensional space, as d is the 

variable number. �⃗ and C�⃗  can be calculated as the following: 

�⃗ = 2�⃗ × r����⃗ −  �⃗  (13)

� ���⃗ = 2× r����⃗   (14)

where r����⃗  and r����⃗  are vectors randomly in [0, 1] and �⃗ is a set vector that linearly de-

creases from 2 to 0 over iterations. In the hunting process, α, β, and δ command and ω 

follow them modifying their positions as required by the pack until a suitable position or, 

in this case, a solution is achieved. The position selection can be calculated as 

�⃗ (� + 1) =
x� + x� + x��������������������������⃗

3
 (15)

where x�, x�, and x� can be defined as: 

x����⃗ =  ��
����⃗ − ��× (��)�������⃗  (16)

x����⃗ =  ��
����⃗ − ��× (��)������⃗  (17)

x����⃗ =  ��
����⃗ − ��× (��)������⃗  (18)

where x�, x�, and x�  are the best solutions at iteration �, ��, ��, and ��  can be calcu-

lated using Equation (13) and ��
�����⃗ , ��

����⃗  and ��
����⃗  calculated from Equation (19) and 

��
����⃗ , ��

����⃗  and ��
����⃗  from Equation (14) 

��
�����⃗ = ���

����⃗ ⋅ �⃗� − �⃗�

��
����⃗ = ���

����⃗ ⋅ �⃗� − �⃗�

��
����⃗ = ���

����⃗ ⋅ �⃗� − �⃗�

 (19)
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In the main paper, to tune exploration and exploitation �⃗ vector is suggested to de-

crease for each dimension linearly proportional to the number of iterations from 2 to 0. 

The equation is as follows, and ter is the optimisation total iterations number: 

�⃗ = 2 − � ⋅
2

���� ���
 (20)

Figure 1 illustrates the flowchart of the grey wolf optimisation algorithm. The figure 

shows that only one wolf can conduct a mating action in a wolf pack. It is not required for 

the alpha (α) wolf to be the strongest wolf in the pack, but the wolf must have the finest 

management skills. The beta (β) wolf possesses the group’s second-best command. The 

wolf supports each other and serve as a liaison with all other wolves in the pack. The 

second is the delta (Δ) and omega (ω) wolves, respectively, maintaining the group’s di-

minishing authority level. The wolf is the group’s lowest level of the hierarchy, and it 

obeys the orders and instructions of a wolf. The GWO method uses four sorts of grey 

wolves for the simulation, representing the four fitness functions. 

 

Figure 1. Flowchart of the grey wolf optimisation (GWO) algorithm. 

2.1.4. Particle Swarm Optimiser (PSO) 

The particle swarm optimiser algorithm is a population-based stochastic optimisa-

tion inspired by social and psychological considerations [57]. The PSO relates to swarm 

intelligence principles, which imitate the social behaviour of flocking birds or schooling 

fish. The algorithm has gained popularity due to its several favourable properties, includ-

ing its basic structure, resilient mobility, and ease of implementation [58,59], which enable 

the training of various intelligent models. Each particle is considered a plausible solution 

in the search space of an optimisation problem. The control parameters determine the 

convergence of particle trajectories, keeping track of each particle’s unique best fitness 
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value, locating the global best particle, and updating each particle’s location and velocity. 

If convergence is not achieved, the iterative process is repeated until either the optimisa-

tion problem converges to an optimal solution, or the maximum number of iterations is 

reached. The number of particles is 10, with a maximum number of iterations of 150. The 

maximum and minimum bond inertia weights were 0.9 and 0.4, respectively. 

2.1.5. Atom Search Optimiser (ASO) 

Zhao et al. [60] introduced Atom Search Optimisation (ASO) as a new metaheuristic 

algorithm in 2019. The ASO simulates the fundamental concepts of molecular dynamics 

and atom movement principles, such as potential function characteristics, contact force, 

and geometric constraint force. In ASO, each atom keeps track of two vectors: position 

and velocity. When it comes to binary optimisation, the atoms only have to deal with two 

numbers (“1” or “0”). As a result, a means to leverage the atom’s velocity to alter the po-

sition from “0” to “1” or vice versa should be discovered. Previous research has shown 

that the transfer function helps convert a continuous optimisation algorithm to a binary 

one [61]. During the initial iterations of ASO, each atom interacts with others via attraction 

or repulsion. Repulsion can help avoid over-concentration of atoms and premature algo-

rithm convergence, improving exploration capability across the search space. As itera-

tions progress, the repulsion becomes weaker, and the attraction becomes more robust, 

indicating that exploration diminishes, and exploitation grows. Finally, each atom inter-

acts with other atoms by attraction, ensuring that the algorithm has a lot of power to use. 

2.1.6. Ant Colony Optimiser (ASO) 

Dorigo and Caro [62] proposed Ant Colony Optimization (ACO), which is technically 

motivated by the behaviours of ant colonies. We used an ACO algorithm to identify fea-

tures as a comparing approach in this work. According to the ACO algorithm’s theory, 

when ants discover a sign of food, they leave a fragrant chemical known as a pheromone 

to mark the trail [63]. When an ant seeks food, it follows the pheromone trail. Additionally, 

this ant deposits pheromones along the path, allowing other ants to follow suit. When an 

ant must choose between two roads, it chooses the one with a high pheromone level, in-

dicating that more ants have travelled the path. It is a question of convenience for the ants; 

shorter trails become more fragrant than longer paths. If an ant does not follow a trail, the 

pheromone degrades over time. As a result, the intensity of the pheromone is diminished 

[64], and over time, all ants will take the shorter route to food. Finally, “pheromone evap-

oration” and “probabilistic path selection” supply information to ants for them to identify 

the shortest food path. The notions enable elasticity in the solution of optimisation prob-

lems. In a nutshell, an ant can use the information contained in the bodies of other ants to 

select a more practical choice. 

2.1.7. Comparing Predictive Models 

Three machine learning models were also included in determining a viable approach 

to machine learning and a feature selection approach. Multiple Linear Regression (MLR) 

seeks to model the relationship between two or more explanatory variables and a target 

variable. It aids in determining the extent to which variables vary [65]. Support Vector 

Regression (SVR) is a machine learning kernel approach is used for various tasks, includ-

ing forecasting time series. SVRs that employ kernels can also learn the training data’s 

non-linear trend. Three SVR models are available, each with a unique kernel (RBF, poly, 

and linear) [66]. Additionally, the SVR model has been used in a variety of research appli-

cations, including precipitation [67], solar radiation [68], wind energy [69], flood forecast-

ing [68,70], evaporation [71], and crop yield [72,73] prediction. 

Breiman [74] developed the random forest (RF) model, and it contains regression and 

classification methods. The RF model assembles tree predictors linked to distinct values 

of randomly sampled random vectors. The model creates decor-related decision trees 
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during the training phase, and the overall model output is derived by averaging the out-

put values of all the individual trees [75]. The bootstrap resampling process generates a 

new set of training data from the initial training sample set N, and then K decision trees 

are used to construct bootstrap-set random forests. The complete specifications for the RF 

model may be found here [45]. RF is a collection (ensemble) of fundamental tree predic-

tors. Each tree can generate a response given a set of predictor values [75]. The random 

forest method has been successfully implemented in predicting different crop yields 

worldwide [75,76]. 

3. Study Area and Data 

3.1. Study Area and Wheat Yield Data 

This study focused on a wheat yield prediction problem in South Australia, the 

fourth largest state in southern central Australia. Australia has a Mediterranean climate 

with an abundance of rain suitable for rainfed agriculture and crops like wheat. Wheat is 

the largest broadacre winter crop typically sown from May to June and harvested by No-

vember and December [26,77]. In the 2019–2020 financial year, 14 million tonnes of wheat 

were harvested in Australia, 18% less than the previous year, and 2.689 million tonnes of 

wheat were produced in South Australia (SA) [78]. Several climatic conditions, such as 

rainfall, soil moisture, temperature, solar radiation, humidity, etc., determine wheat pro-

duction and are essential inputs to empirical and process-based models [26]. Delayed har-

vest due to a series of heavy rainfall in November and flooding in some regions is likely 

to cause a fall in wheat production in 2021–2022, which leads to poor grain quality [79]. 

Wang et al. [80] showed that climate variability could impact wheat production by 31% to 

47%. 

For this study, the average yearly wheat yield data for South Australia (SA) from 

1990 to 2020 was downloaded from the Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES) (http://apps.agriculture.gov.au/agsurf/, 29 December 

2021). The dataset was acquired through farm surveys where the farm population ranged 

from 1967 to 9018 farms, and the sample was between 73 and 206 farms. The farm popu-

lation was stratified based on operation size using the estimated value of the agricultural 

operation. The size of each stratum was decided using the Dalenius–Hodges method, 

while the sample was assigned to each stratum using a mixture of the Neyman allocation 

[81]. This dataset has been a prime source of information on the current and historical 

economic performance of Australian farm business units and has been used to undertake 

research and analysis on a range of industry issues and government policy areas. 

It is worth to mention that South Australia’s cropping zones are of three types, 

namely pastoral (411: SA North Pastoral), wheat-sheep (421: SA Eyre Peninsula; 422: SA 

Murray Lands and the Yorke Peninsula), and high rainfall (431: SA South East) zone [82]. 

Except for the Murray lands, where rainfall was generally average, most farming districts 

in South Australia experienced below-average rainfall in September. Most crops’ yield 

potential was increased by adequate rainfall and mild temperatures in October, especially 

those sown later. However, the recovery in growth conditions in October came too late 

for crops in the upper regions of the Eyre Peninsula and the Yorke Peninsula, which had 

been harmed by dry conditions in early spring [79]. 

3.2. Predictor Variables 

The monitoring of crop conditions using remote sensing is being used extensively to 

assess crop conditions, soil moisture, and the probability of natural disasters such as pest 

infestation, drought, and precipitation [83]. Ahmed et al. [55,63,84] has discussed the im-

portance of satellite-based remote sensing to forecasting and constant monitoring of soil 

moisture and its importance in agriculture and human activities. Several other studies 

have also projected the correlation between weather conditions and remote sensing infor-

mation to address the situation [26,85]. This study collected satellite data from NASA’s 
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GES-DISC Interactive Online Visualization and Analysis Infrastructure (GIOVANNI) re-

pository from 1991 to 2020. Specifically, the study used Modern-Era Retrospective Anal-

ysis for Research and Applications, Version 2 (MERRA-2), whose data set spans 1980 to 

the present. 

Along with the improvements to meteorological assimilation, MERRA-2 makes sig-

nificant progress towards the Earth System. MERRA-2 is the first long-term global reanal-

ysis that incorporates space-based aerosol observations and their interactions with other 

physical processes in the climate system. The MERRA-2 model has a native spatial reso-

lution of 0.5 lat × 0.625 long and four temporal resolutions: daily, hourly, 3-hourly, and 

monthly. The study used 32 monthly hydro-climatic variables converted to the yearly data 

to be correlated with wheat yield, as tabulated in Table 1. The predictor variables were 

extracted as area-averaged of the time series data, as the target data (i.e., wheat yield) was 

provided for the whole of South Australia. Figure 1 depicts the atmospheric domain of 

South Australia between 127.44°E, 38.79°S, and 141.77E, 23.76°S to extract the area-aver-

aged wheat yield data. Satellite data collection has significant advantages overground sta-

tions regarding costs and coverage range. Local factors significantly impact ground sta-

tions and do not typically have a logical distribution system [86]. On the other hand, sat-

ellite remote sensing is not impacted by local conditions and captures data with a uniform 

cell size throughout the world. Interestingly, satellite data tracks crop growth conditions 

and gradually captures the variability in yield as the growing season progresses, and their 

contribution to yield prediction peaks during the growing season’s peak [26,87]. 

Table 1. A description of the 32 predictors from the MERRA-2 satellite system used to design the 

hybrid GWO-CEEMDAN-KRR model for wheat yield prediction (tonnes) in South Australia. The 

feature selections were undertaken using GWO, ACO, PSO, and ASO, and a  shows the selected 

feature, whereas a × shows the rejected feature. 

Information of Satellite Derived Variables Results of Feature Selection 

Notation Description Units GWO ACO ASO PSO 

Q Specific humidity @1000 hPa kg/kg × √ √ √ 

TA Air temperature monthly @1000 hPa K √ √ √ × 

Q10 10-m specific humidity kg/kg × √ √ √ 

TO3 Total column ozone Dobsons √ × × √ 

T2X 2-m air temperature-daily max K √ × √ √ 

T2A 2-m air temperature-daily mean K √ √ √ √ 

T2M 2-m air temperature-daily min K √ × √ √ 

LE Total latent energy flux W/m−2 × × × × 

PR Total precipitation Kg/m2 × √ √ × 

TA Surface air temperature monthly K × √ × √ 

GRN Greenness fraction - √ × √ × 

SW Surface soil wetness - × √ × √ 

LAI Leaf area index - √ × × √ 

ALB Surface albedo - √ × × √ 

CL Total cloud area fraction - √ × √ × 

SSF Surface incoming shortwave flux W/m−2 × × × × 

Q250 Specific humidity at 250 hPa kg/kg √ × √ × 

Q500 Specific humidity at 500 hPa kg/kg × × √ √ 

Q850 Specific humidity at 850 hPa kg/kg × √ √ √ 

Q10 10-m specific humidity kg/kg × × √ √ 

Q2 2-m specific humidity kg/kg √ × √ × 

SLP Sea level pressure hPa √ √ √ × 

T10 Temperature at 10 m above surface K × × √ × 
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T2 2-m air temperature K × √ √ √ 

TS Surface skin temperature K √ √ × × 

U10 10-m eastward wind m/s × √ √ × 

U2 2-m eastward wind m/s √ × √ × 

U50 Eastward wind at 50-m m/s √ × √ √ 

V10 10-m northward wind m/s √ √ √ √ 

V2 2-m northward wind m/s √ √ √ √ 

V50 Northward wind at 50-m m/s √ √ √ × 

A Area Ha × × √ × 

Total Number of Selected Features 18 15 24 17 

3.3. Development of GWO-CEEMDAN-KRR Model 

The proposed GWO-CEEMDAN-KRR model was developed on a personal com-

puter (PC) equipped with an Intel i7 processor running at 3.6 GHz and 16 GB of RAM. A 

publicly available machine learning library, scikit-learn [88,89] using Python, was em-

ployed to execute the KRR model for the proposed framework. An implementation of the 

feature optimisation (i.e., GWO, ACO, ASO, and PSO) has been developed using 

MATLAB R2020b. The CEEMDAN method is executed with the programming language 

software R. To visualise further the anticipated wheat yield, tools such as matplotlib [90] 

and seaborn [91] are used, in addition to standalone methods. The following steps were 

carried out to develop the proposed GWO-CEEMDAN-KRR model. 

Step 1: The 31 predictor variables obtained from the MERRA-2 satellite model were 

combined to screen the best-correlated input predictors using grey wolf optimisation 

(GWO) techniques. The use of GWO resulted in the best-selected predictors being used 

for feature decomposition. The optimal values of four selected feature selection algo-

rithms are tabulated in Table 2. For the GWO, the optimal number of wolves is fixed at 10 

with 100 iterations. Similarly, ACO, PSO, and ASO algorithms provide essential infor-

mation on selecting significant predictor variables. 

Table 1 shows the optimal set of satellite-derived features selected by GWO, ACO, 

ASO, and PSO methods. 

Table 1 demonstrates that the GWO optimised diversified hydro-climatological var-

iables for the predictive model. 

Table 2 provides the optimum parameters of the GWO, ACO, ASO, and PSO algo-

rithms 

Step 2: In this step, each of the GWO optimised predictor variables was resolved into 

4-IMFs (i.e., IMF1, IMF2, IMF3, and IMF4) and 1-residual (RES) using the CEEMDAN 

method (18 × 5 = 90 IMFs in total). Gaussian Noise realisations (N = 500) and the provided 

amplitude in terms of added white noise (=0.2). The implementation of the CEEMDAN 

process is in Figure 1. The decomposed component was then correlated with the variable 

(i.e., wheat yield) by Pearson’s correlation, and the most highly correlated components 

were chosen as the target components for the KRR model. 

Table 2. The optimal parameter for the optimization algorithms such as grey wolf optimization 

(GWO), ant colony optimization (ACO), atom search optimization (ASO), and particle swarm opti-

mization (PSO). 

Characteristics Optimal Value 

Grey Wolf Optimization (GWO) 

Number of wolves 10 

Maximum number of iterates 100 

Curve Convergence 

Ant Colony Optimization (ACO) 

Number of ants 10 
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Maximum number of iterations 100 

Coefficient control tau 1 

Coefficient control eta 2 

Initial tau 1 

Initial beta 1 

Pheromone 0.2 

Coefficient  0.5 

Atom Search Optimization (ASO) 

Number of particles 10 

Maximum number of iterations 100 

Depth weight 50 

Multiplier weight 0.2 

Particle Swarm Optimization (PSO) 

Number of particles 10 

Maximum number of iterations 150 

Cognitive factor 2 

Social factor 2 

Maximum velocity 6 

Maximum bound on inertia weight 0.9 

Minimum bound on inertia weight 0.4 

Step 3: The selected predictor IMFs are normalised to minimise the overinfluence of 

one input to another. Using the following equation, all variable features were normalised 

to ensure that they received proportional attention in network training [0, 1] [26–28]. 

����� =
� − ����

���� − ����

 (21)

In Equation (21), � is the respective variable, ���� is the minimum variable, ���� 

is the maximum, and ����� is the normalised variable. After normalising the variables, 

the datasets are partitioned into training (1991–2010), validation (2011–2016), and testing 

(2017–2020) subsets. The data partitioning is done by the trial-and-error method. 

Figure 2 shows the methodological steps of the proposed GWO-CEEMDAN-KRR 

model. 
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Figure 2. Integrated workflow showing the study area and atmospheric domain of South Australia 

with a schematic structure of KRR model integrating with GWO and CEEMDAN methods for the 

proposed GWO-CEEMDAN-KRR model for wheat yield prediction. 

Step 4: To predict the wheat yield of South Australia, this study developed the KRR 

model to use the predictors’ data in step 3. GridSearchCV was used to create an optimal 

architecture of the KRR model (regularisation strength = 1.5; gamma parameter = None, 

with a degree of the polynomial kernel = 3 and kernel = rbf). The performance of the pro-

posed model was compared to that of standalone machine learning models. 

3.4. Predictive Model Evaluation 

The robustness of the proposed machine learning model (i.e., GWO-CEEMDAN-

KRR) and the benchmark model is assessed using numerous performance metrics, e.g., 

Pearson’s Correlation Coefficient (r), root mean square error (RMSE), and normalised root 

means square error (RMSE). Due to geographic differences between the study stations, 

we also employ the relative error-based metrics: i.e., relative MAE (denoted as RMAE), to 

compare geographically and climatologically diverse wheat yield sites. The accuracy of 

any predictive model is evaluated by comparing its predicted test values to the actual test 

results. The relative index of agreement (drel) can be a more sophisticated and compelling 

measure form than the RMSE when the error distribution in the tested data is Gaussian 

[92]. A sensitivity analysis was undertaken to evaluate the contributing response to the 

anticipated Y of the provided set of predictor variables to verify the prediction models 

created in our study. The goal was to see which predictor variables contributed the most 

to modelling the monthly evaporative loss value. Following previous research [93–95], we 

calculated the sensitivity % of the output (E) to each predictor (x) variable as follows: 

�� = ����(x�) − ����(x�) (22)

�� =
��

∑ ��
�
���

 ×  100 (23)

where fmax(xi) and fmax(xi) are, respectively, the maximum and the minimum predicted Y 

over the ith domain, where other variables are equal to their mean values. Zj is the pre-

dicted value 
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4. Results 

In this study, a hybrid KRR predictive model denoted as GWO-CEEMDAN-KRR is 

developed and evaluated for its capability to predict wheat yield (Y) in South Australia. 

The performance accuracy of wheat yield prediction is evaluated in comparison with sev-

eral comparing models (i.e., CEEMDAN-MLR, CEEMDAN-RF, and CEEMDAN-SVR) 

and standalone methods (e.g., KRR, RF, MLR, and SVR) with all models employing four 

competitive feature optimisation algorithms (i.e., GWO, ACO, ASO, and PSO). The out-

comes of the newly designed hybrid KRR predictive models were evaluated using statis-

tical score metrics in conjunction with the diagnostic plots of both the observed and the 

predicted Y for the testing datasets. 

Comparing the observed and predicted Y test data, we note that the newly developed 

CEEMDAN-KRR model can generate the highest value of R (showing a good degree of 

agreement between observed and predicted Y) while also generating the lowest values of 

NRMSE using the grey wolf optimisation method, according to the findings in Table 3. 

The GWO-CEEMDAN-KRR model with GWO produced R ≈ 0.998, NRMSE ≈ 0.437 %, 

followed by ACO-CEEMDAN-KRR (R ≈ 0.990 and NRMSE ≈ 0.452%), PSO- CEEMDAN-

KRR (R ≈ 0.980 and NRMSE ≈ 0.477%) model that also produced substantially good, yet a 

lower performance relative to the GWO-CEEMDAN-KRR model. We discovered that an 

MLR model could produce better performance with a high R-value (0.963) in the 

standalone model. However, this model still underperforms the objective GWO-

CEEMDAN-KRR model. Therefore, we note that the proposed CEEMDAN-KRR model 

using the grey wolf optimisation feature selection with an appropriate feature decompo-

sition using the CEEMDAN) method provided the most satisfactory performance. Re-

garding the benchmark models’ poor performance (as shown in Table 3), the newly pro-

posed hybrid KRR (i.e., GWO-CEEMDAN-KRR) predictive model has proven to be a su-

perior tool for predicting the wheat yield in South Australia using a carefully selected set 

of satellite-based predictor variables. 

Table 3. Evaluation of the hybrid CEEMDAN-KRR vs. the benchmark (i.e., CEEMDAN-MLR, 

CEEMDAN-RF, CEEMDAN-SVR) models and their respective standalone counterpart (i.e., KRR, 

MLR, RF, and SVR) models. The r and normalized root mean square error (NRMSE) is computed 

between predicted and observed Wheat Yield (Y, tonnes) South Australia. 

Predictive Model R NRMSE 

GWO–Objective Feature Selection Method 

CEEMDAN-KRR 0.998 0.437 

CEEMDAN-MLR 0.896 1.144 

CEEMDAN-RF 0.751 0.589 

CEEMDAN-SVR 0.840 0.614 

ACO–benchmark method 

CEEMDAN-KRR 0.990 0.452 

CEEMDAN-MLR 0.860 1.122 

CEEMDAN-RF 0.847 0.531 

CEEMDAN-SVR 0.681 0.743 

ASO–benchmark method 

CEEMDAN-KRR 0.974 0.738 

CEEMDAN-MLR 0.866 0.659 

CEEMDAN-RF 0.768 0.601 

CEEMDAN-SVR 0.849 0.523 

PSO–benchmark method 

CEEMDAN-KRR 0.980 0.475 

CEEMDAN-MLR 0.973 0.655 

CEEMDAN-RF 0.784 0.689 
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CEEMDAN-SVR 0.929 0.525 

Standalone 

KRR 0.738 0.761 

MLR 0.963 2.992 

RF 0.882 0.653 

SVR 0.758 0.710 

The predictive performance of the proposed hybrid GWO-CEEMDAN-KRR model 

is further evaluated by examining the relative error values (i.e., RMAE) and coefficient of 

determination (R2) between the observed and predicted wheat yield in the testing phase 

as shown in Figure 3. According to Figure 3, the newly developed CEEMDAN-KRR 

model, with GWO algorithm, has the lowest percentage of RMAE (≈32%) and the highest 

R2 value (≈0.997), which is an impressive result compared with the same model with other 

optimisation techniques. We also noted that the GWO method could produce the best 

performance when integrated with the KRR-based predictive model compared with the 

different feature selection techniques. 

 

Figure 3. Comparison of the predictive skill of the proposed wheat yield prediction models in terms 

of the relative error: RMAE (%) and the correlation of determination (R2) within the testing period. 

Interestingly, the KRR model performs best when the predictor variables are decom-

posed with the CEEMDAN method using all optimisation techniques. Our results range 

between 32% and 36% regarding the RMAE value. The improvement in the prediction 

performance is more evident after applying the feature decomposition (i.e., CEEMDAN) 

and the feature optimisation (i.e., GWO) techniques. By these results, the hybrid 

CEEMDAN-KRR model seems to outperform the comparison benchmark models and the 

standalone machine learning models, demonstrating superior performance. 

It is worth noting that this study has employed two distinct algorithms (one for fea-

ture selection, namely the GWO, and the other for decomposition of selected features, 

namely the CEEMDAN) to improve the overall performance of the hybrid KRR-based 

predictive model. As a result, in Figure 4, we illustrate the effects of incrementally 
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applying the CEEMDAN and different optimisation methods such as GWO, ACO, ASO, 

and PSO as the data pre-processing and the feature selection methods on the percentage 

change in error (i.e., RMAE) and percentage change in Willmott’s Index (i.e., drel) from 

their respective standalone models. The RMAE (%) values of the CEEMDAN-KRR model, 

which incorporates a GWO method for satellite predictor variable feature selection, ap-

pear to decrease by 20%. For drel, this is a 35% increment from the standalone KRR 

model. Moreover, for the case of the ACO feature selection method, the change of RMAE 

and drel is 16 and 34%, for ASO, this change is 18 and 31%, and for PSO, the change is 10 

and 30%, accordingly relative to the standalone KRR model. The other models, such as 

the SVR, RF, and MLR, showed a minimum improvement in utilising the four optimisa-

tion techniques and the CEEMDAN data decomposition technique. This indicates that in-

corporating the CEEMDAN and the GWO methods can improve the model’s predictive 

capability in simulating the wheat yield tested data values. This is notable by these values 

outperforming the indices generated for the comparison model by a significant margin. 

Therefore, this exemplifies that the proposed hybrid predictive model is more accurate 

than competing methods used to predict wheat yield. 

 

Figure 4. An assessment of four distinct feature selection methods regarding the percentage change 

in relative error (i.e., RMAE) and relative index of agreement (drel) with all methods using a 

CEEMDAN data decomposition approach in the model’s testing phase. 

To demonstrate a superior performance of the proposed GWO-CEEMDAN-KRR and 

its standalone counterpart models, we have also examined the prompting percentage of 

the correlation coefficient (ΔR), RMAE (ΔRMAE), and NRMSE (ΔNRMSE) for wheat yield 

prediction, as illustrated in Figure 5. Note that the promoting percentage, presented as the 

incremental performance (Δ) of the objective model over the competing approaches, aims 

to evaluate the difference in the R, RMAE, and NRMSE of the GWO-CEEMDAN-KRR 

against the other models. In general, the metrics ΔR, ΔRMAE, and ΔNRMSE are used to 

demonstrate a performance edge of the preferred (i.e., GWO-CEEMDAN-KRR) model 

over the comparative counterparts. Figure 5 shows the results as for the case of ΔR, the 

improvement is found to be 1% to 25%; for the case of ΔRMAE, the improvement is 2 

to 60%. Likewise, improving prediction performance in terms of ΔNRMSE also demon-

strates significant improvements. This demonstrates that our proposed model (i.e., GWO-

CEEMDAN-KRR) was the most responsive in the prediction process. 

The discrepancy ratio (Dr) is used to further investigate the proposed model’s ro-

bustness. In general, the discrepancy ratio (Dr) measures whether a model overestimates 

or underestimates a simulated wheat yield value. The Dr value that begins with a “one” 
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indicates that an exact prediction can be made for a specific observation. According to 

Figure 6, the GWO-CEEMDAN-KRR model shows that the distribution of Dr is within a 

± 30% band error for observation of the testing phase. As determined by the discrepancy 

ratio, hybrid machine learning approaches were the most accurate predictive models com-

pared to other models on the same basis. As shown in Figure 7, a scatter plot is used to 

perform an additional evaluation of the hybrid predictive model (i.e., CEEMDAN-KRR) 

where the GWO algorithm and the previous evaluation. The scatter plot is plotted with 

the goodness-of-fit between the predicted and observed Y, and a least-square fitting line 

to represent the relationship between the two variables. The suggested model outper-

forms the standalone model with an R2 value significantly higher than the baseline model. 

 

Figure 5. The prompting percentage (Δ) for correlation coefficient (ΔR), RMAE (ΔRMAE), and 

NRMSE (ΔNRMSE) between the proposed GWO-CEEMDAN-KRR model, other ACO, ASO, PSO 

used models, and the standalone models. 

 

Figure 6. The discrepancy ratio (i.e., the predicted Y/observed Y) generated by the proposed hybrid 

CEEMDAN-KRR model using the four optimization algorithms and their respective standalone 

counterparts. 
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Figure 7. Scatter plot of the predicted and observed Y generated by proposed GWO-CEEMDAN-

KRR model vs. the other models. A least square regression line, Y = mX + C, and the coefficient of 

determination (R2) are shown in each sub-panel. 

Concerning the proposed model with GWO algorithm, it performed significantly bet-

ter than the other feature optimisation algorithms (i.e., ACO, ASO, and PSO), registering 

magnitudes that were the closest to unity (m|R2 0.997|0.167), followed by the CEEMDAN-

KRR model with ACO (0.980|0.157). For the case of standalone KRR, the unity has far 

deviated from the proposed model’s exhibits statistically significant performance with the 

proposed model. Therefore, the learning hybrid CEEMDAN-KRR model with the GWO 

algorithm is exceptionally well suited for predicting wheat yield for South Australia. 

The performance of Wheat prediction using GWO-CEEMDAN-KRR that is shown in 

Figure 8a (ECDF) examines the plots of various prediction skills using an empirical cu-

mulative distribution function (ECDF). Comparing the performance of the proposed hy-

brid KRR model to the benchmark models, the generated error ranged from 50 to 300 

within the 95 per cent percentile, demonstrating that the CEEMDAN-KRR model with the 

GWO model was the most accurate and responsive wheat yield prediction model. A Tay-

lor diagram provides a more specific and conclusive argument about how strongly the 

predicted and observed Y are correlated than a simple correlation coefficient. As illus-

trated in Figure 8b, the output of the GWO-CEEMDAN-KRR model is significantly closer 

to the observation than the output of other comparing models, as indicated by the Taylor 

diagram. The GWO outperformed other models’ optimised CEEMDAN-KRR model to 

achieve the observed values’ closest match; however, the proposed model outperformed 

against other counterpart models. The study site had a higher R-value than the observed 

Y for the proposed CEEMDAN-KRR model, further supporting the findings of improved 

performance by this model, which was previously reported.  
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Figure 8. (a) An empirical cumulative distribution function (ECDF) plot of |FE| and (b) Taylor dia-

gram demonstrating the correlation coefficient, together with the standard deviation difference of 

the hybrid KRR model and standalone KRR with four optimisation algorithms (i.e., GWO, ASO, 

ACO, and PSO). 

In addition to understanding the contribution of the input variables to the yield pre-

diction, a sensitivity analysis of individual variables was performed. Figure 9 shows the 

results of sensitivity analysis for the proposed GWO-CEEMDAN-KRR model. It can be 

observed that almost all the parameters selected by GWO were significant, ranging from 

20% to 33%. Specifically, the leaf area index (LAI) had the highest sensitivity, which is 

endorsed by other researchers [96,97]. However, inputs like V50, V10, V2, T2A, TS, and 

Q2 show a similar sensitivity percentage, ranging from 28% to 31%. The high sensitivity 

of the northward wind values is substantial, which is needed to be explored in further 

study. Moreover, surface albedo and other meteorological variables were also found to be 

significant in predicting wheat yield in South Australia. 

 

Figure 9. Sensitivity (%) analysis of predictor variables for the prediction of wheat yield (Y). 

5. Discussion 

The useful information derived from space combined with advanced machine algo-

rithms enabled the development of more accurate near-real-time forecasts for different 

crops at different scales [98,99]. The findings from this study clearly showed that spatial 

information derived from MERRA-2 combined with the hybrid CEEMDAN-KRR model 

could provide an accurate forecast tool for wheat yield in Australia. The high accuracy of 

the proposed model has been proven through the reported model performance using dif-

ferent evaluation criteria and benchmark models. In this study, the CEEMDAN-KRR 

model with GWO generated R (0.998), and NRMSE (0.437%) outperformed other hybrid 

and standalone models. Furthermore, the integration of the GWO technique has indicated 

the most important predictors among 32 variables for wheat yield forecast. While the 
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present study contributes to the current research avenue, several limitations, challenges, 

and suggestions for further research are discussed. 

This study used the space-based MERRA-2 dataset to exploit many variables related 

to atmospheric, weather, and canopy conditions. However, this dataset’s coarse resolution 

(0.5° × 0.625°) might affect the forecast accuracy of wheat yield. The predictor variables 

obtained as area-averaged of the time series data for the whole of South Australia’s at-

mospheric domain would minimise the effect. Moreover, integrating vegetation indices 

(VIs), land surface temperature (LTS), and weather variables acquired from higher spatial 

resolution satellite data is highly recommended to overcome this issue. Multi-temporal 

VIs such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation 

Index (EVI) derived from MODIS (250 m), Landsat (30 m), and Sentinel (10 m) data have 

been successfully explored in predicting crop yield [100,101]. Furthermore, the compo-

sited products (e.g., from MODIS) on a near real-time basis of 8 days, 16 days, and months 

can overcome the cloud cover problem and, thus, improve the model performance. In ad-

dition, gridded precipitation retrieved from the Climate Hazards Group Infrared Precip-

itation with Stations (CHIRPS) dataset (~5.5 km) can provide helpful information to de-

velop crop yield forecast models [102]. 

One of the main challenges of using satellite-based data to predict crop yield at a 

regional level is the lack of cropland cover masks. Zhang et al. [103] reported a consistent 

improvement in yield prediction using crop-specific masks at all regions and scales. In 

contrast, Shao et al. [104] claimed that using available cropland masks (e.g., summer crop 

or cultivated crops) generated similar results to using an annual corn-specific mask. It is 

also worth noting that the MERRA-2 dataset used in this study was extracted in the at-

mospheric domain of South Australia between 127.44°E, 38.79°S and 141.77°E, 23.76°S to 

extract the area-averaged wheat yield data, which potentially affects the forecast results. 

Therefore, it is interesting to explore whether the wheat crop’s growing boundary could 

enhance the forecast accuracy. 

Another factor that may affect the model performance is the algorithms used for 

modelling relationships between crop yield and predictors. Methods such as RF or SVM 

might not perform well with time-ordered data such as multi-temporal VIs and weather 

variables [102]. The authors demonstrated that the LSTM neural network model outper-

formed the multivariate OLS regression and random forest in soybean yield prediction. 

Our results also showed that the CEEMDAN-KRR model is superior to MLR, RF, and 

SVR-based models. In addition, deep learning methods are up-and-coming for the crop 

yield prediction problem [105,106]. Therefore, future research can consider using space-

based datasets and deep learning approaches combined with automatic feature extraction 

to improve yield forecasts. This study has established an essential framework for building 

smart farming services. The high accuracy of crop yield prediction information in differ-

ent climatic conditions using the proposed model is an essential element that helps agri-

cultural producers and other stakeholders improve decision-making. In addition, this re-

search helps rural areas where gauge-based observations are not always available. This is 

because satellite data can be used to help this research. 

6. Conclusions 

The prediction of wheat, subsistence, or commercial agricultural commodities using 

freely available satellite data and remote sensing methods can add value to new initiatives 

in precision agriculture. The active promotion of Agriculture 4.0, an Austrade strategy, 

showcases our competitive advantage in agtech and foodtech to a global audience 

through digital practices such as modelling crop yields through machine learning meth-

ods. This paper has developed and implemented a hybrid machine learning algorithm 

with an artificial intelligence methodology for wheat yield prediction in South Australia. 

The new approach uses a feature selection strategy and the subsequent decomposition of 

the selected features as an optimisation algorithm to improve the proposed Kernel Ridge 

Regression (KRR) and a set of competitive compression models. To train the prescribed 
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models, we have used thirty-two predictors derived from the MERRA-2 satellite datasets 

to encapsulate the features to model wheat yield and quantify the relationships between 

satellite-derived information and ground-based wheat yield. Our novel method combined 

the CEEMDAN, a feature decomposition method, and the grey wolf optimisation, a fea-

ture selection method, to improve kernel ridge regression prediction accuracy. The pro-

posed hybrid GWO-CEEMDAN-KRR model, composed of five distinct modules for opti-

mal accuracy, was tested on area-aggregated wheat yield data in South Australia. A com-

mon problem in data-driven modelling was solved when the GWO algorithm was used 

in the machine learning model. It reduced the number of predictor variables to solve this 

problem. 

According to the results of this study, the proposed hybrid CEEMDAN-KRR model 

demonstrated the best performance in predicting wheat yield when it was optimised by 

the GWO method. The high R-value of the CEEMDAN-KRR predictive model, which 

ranged from 0.0980 to 0.998, and the low NRMSE value, which ranged from 0.437 to 0.475, 

supported the different feature selection techniques of the model’s superior testing per-

formance. More precisely, the CEEMDAN-KRR model improved with the GWO feature 

selection algorithm and registered the best performance. The scatterplot revealed that the 

merits of the CEEMDAN-KRR model with GWO are the closest to unity, supporting the 

applicability of the newly designed hybrid CEEMDAN-KRR model in real-time applica-

tions. Therefore, we ascertain that the proposed model can address a wide range of com-

plex or challenging prediction tasks in agriculture and can be a helpful method for pre-

dicting other variables such as rainfall, wind speed, flood, or drought index. Global cli-

mate model (GCM) datasets could be used in the future to predict crop yields under dif-

ferent global warming scenarios, assess CO2 emissions, and measure agricultural sustain-

ability to figure out how future climate change and climate variability will affect farming. 
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