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ABSTRACT 

With increased competition for land and water from the urban and industrial 

sectors and high population growth in the major rice producing nations, the 

possibility for expanding area under rice-based farming systems is limited. Use of 

marginal, coarse-textured soils of high permeability has increased over time for 

production of both upland and lowland irrigated rice to meet the demand for food 

and fibre to support growing populations. In irrigated rice fields with fine-textured 

soil, leaching losses of N are usually low because of low permeability. However, in 

highly permeable coarse-textured soils, the losses of N through leaching of nitrate-N 

(NO3-N) and other processes can be substantial. Information on water and nitrogen 

dynamics for rice crop on coarse-textures soils is limited. Since models can provide 

an insight of the interrelationships between various components of a complex system, 

the overall aim of this research is to improve crop growth simulation capability for a 

range of water and nitrogen management strategies for rice-based cropping systems 

in tropical environment. The specific objectives of this research project are: 

1. to examine variation in water use productivity in lowland rice-based cropping 

systems without significant effects on yield;  

2. to explore the nitrogen dynamics in rice-rice-legume crop sequences on a typical 

coarse-textured soil of lowland cropping systems in the tropics; 

3. to calibrate and validate a farming system model that can be used to simulate 

growth, yield, nitrogen uptake, nitrogen and water dynamics in the above rice-

based cropping systems. 

To achieve these objectives, field experiments were conducted at the 

Research Station of Assessment Institute for Agricultural Technology (BPTP) NTB 

Lombok Indonesia (08°35′Ν, 116°13′E, 150 m elevation) on a sandy loam soil using 

rice-rice-legume crop rotation over two years (2007-2009). The experiment was laid 

out in a randomised split-plot design with water management treatments 

(continuously submerged and alternate submerged and non-submerged, hereafter 

referred to as CS and ASNS, respectively) as main plot and N-fertiliser rates (0, 70 

and 140 kg N ha-1) treatments as subplot with three replications. Plant and soil 

samples were collected at four main phenological stages during rice growth period 

(tillering, panicle initiation, flowering and harvesting). Plant samples were measured 
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for dry biomass and total-N. Soil samples were taken within 0-100 cm depth from 

four soil layers (0-20, 20-40, 40-70 and 70-100 cm) and each sample was analysed 

for ammonium-N (NH4-N), NO3-N, total-N, and organic carbon (OC). Legumes 

(peanut and soybean) were sown immediately following the second rice crop in each 

calendar year. The experimental design was similar to rice by replacing CS and 

ASNS treatments with peanut and soybean, respectively and reducing N-fertiliser 

application rates to 0, 12 and 24 kg N ha-1. Crop and soil samples were collected at 

three main phenological stages of legume (maximum vegetative, flowering and 

harvesting) and analysed as for the rice crop. Data of field experiment were used to 

parameterise, calibrate and validate the APSIM-Oryza model. 

The results indicated that biomass, yield and N-uptake of rice were not 

significantly different between ASNS and CS. Any increase in yield and N-uptake 

was largely due to increased N-fertiliser application. Average irrigation water saved 

with ASNS varied in the range of 36% to 44% when compared with CS irrigation 

treatment. Furthermore, average water productivity in the ASNS treatment was 52% 

higher than for the CS irrigation treatment. Considering these results as typical for 

well-drained soils with deep ground water tables, ASNS practices can make 

considerable water-saving without substantial yield reduction in irrigated lowlands 

of eastern Indonesia. Furthermore, yield of both peanut and soybean crops following 

the second rice crop were not affected by N fertiliser rates. The implication of this 

study is that the farmers should consider ASNS as a water saving technology in this 

region of study and should not consider applying N-fertiliser for peanut and soybean 

crops when it follows the second rice crop. 

Seasonal variation in soil nitrogen and carbon in lowland rice-based cropping 

systems indicated significant effects of N-fertiliser treatments on NH4-N and NO3-N 

concentration in soil, but only on a few occasions for irrigation treatments. For 

example, NO3-N concentration in soil under ASNS treatment was higher than the CS 

treatment during panicle initiation and flowering stages in the later part of the rice 

growing seasons. Since rice prefers ammonium over the nitrate form of N, increased 

nitrate concentration during the periods of non-submergence in ASNS irrigation 

treatment could have adversely affected N-uptake by rice. However, no significant 

difference in N-uptake was observed between CS and ASNS possibly because of the 

small magnitude of NO3-N concentration differences between these irrigation 

treatments. . Since floodwater is another useful source of N for the rice crop, 
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measurements in this experiment showed NH4-N concentration in soil and 

floodwater to be mostly higher than NO3-N concentration that allowed adequate N-

uptake. Organic carbon as an indicator of soil organic matter and overall soil fertility 

was not affected by irrigation and N fertiliser treatments during the experiment. 

During the legume season, increased rates of N-fertiliser application 

increased NH4-N and NO3-N concentration at various soil depths throughout crop 

growth. Increased concentration of available forms of N as a result of increased level 

of N-fertiliser applied to legumes decreased the number and weight of root nodules 

on some occasions. Since increased N-fertiliser application increased N-uptake and 

seed N-uptake but not yield, N-fertiliser application is not recommended for legumes 

in this region on the basis of improved crop quality.  

The APSIM-Oryza model was mostly able to capture the variable effects of 

water and N management strategies on crop growth, nitrogen and carbon dynamic in 

soil, and the dynamics of ponded water depth under anaerobic and aerobic soil 

conditions in the rice-rice-legume crop sequence as practiced in the tropical region of 

eastern Indonesia. The model satisfactorily simulated crop variables such as biomass, 

yield, leaf area index (LAI) and N-uptake. The model also satisfactorily simulated 

the variation of water depth during rice growth period. However, the simulation of N 

dynamics and floodwater (ponding) in the ASNS irrigation treatment need further 

improvement. The APSIM-Oryza model provided an operational and a promising 

modelling framework to test future cropping practices and improve making farm 

decisions to develop more sustainable and effective lowland rice-based farming 

systems. This thesis has produced a dataset to calibrate and evaluate the model 

performance by capturing the dynamics of various forms of nitrogen and daily 

ponded water depth for water limited rice-based cropping systems. More extensive 

field experimental testing is needed to increase confidence with the widespread use 

of this model. 
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CHAPTER I  

Introduction 

1. 1  Background 

Rice is the staple food of almost half the earth’s population that is mostly 

concentrated in Asia, consisting of 135 million hectares of harvested area with 55% 

of which is irrigated (Calpe, 2001; FAO, 1999; Kennedy et al., 2002). It is predicted 

that the population of the world will increase and half of these will be dependent on 

rice. By 2015, sufficient rice will need to be produced to feed 4 billion people 

(Greenland, 1997) with the demand for rice is projected to increase from 571.9 

million tonnes in 2001 to 771.1 million tonnes in 2030 (FAO, 2003). Furthermore, 

the harvested area for rice has decreased globally by about 3.4 million hectares from 

1999 to 2005 (FAOSTAT, 2005). The possibility for expanding area under rice-

based farming systems will be limited within the major rice producing nations due to 

increased competition for land and water from the urban and industrial sectors where 

the population growth is concentrated (Nguyen, 2006; Tuong and Bhuiyan, 1994). 

Therefore, increasing the productivity of rice will continue to be a major challenge to 

meet the demand of increasing population with limited area of arable land.  

Most of the paddy soils around the world are fine textured soils (clay soils) 

with low permeability (percolation rate). However, with increasing demand on food 

and fibre to support the growing population, coarse-textured soils with high 

permeability are increasingly used in these regions to grow both upland and lowland 

irrigated rice (Aulakh and Bijay-Singh, 1997; Aulakh and Pasricha, 1997). It is 

difficult to maintain continuous flooding conditions for lowland rice in coarse 

textured soils due to high percolation rates requiring frequent irrigation.  Improved 

planning and management of water resources within the agricultural sector is a high 

national and global priority in major rice producing countries where rice production 

needs to increase by 70% over the current production level by 2025 (Tuong and 

Bhuiyan, 1999). 

Irrigated rice accounts for 75% of rice producing area in Asia because rice 

yield is higher under irrigated than under rainfed conditions (Maclean et al., 2002). 
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Consequently, irrigation management is a critical factor in determining crop 

production within Asia’s most important agro-ecosystem (rice) because limited-

irrigation can reduce yield and over-irrigation can result in a waste of water. Over-

irrigation can reduce profit with increased cost of water associated with over-

irrigation and increases the pollution risk through nutrients loss via leaching and 

runoff (Aboitiz et al., 1986; Guerra et al., 1998). Research on water management is 

needed to save water and produce more rice with less water in irrigated production 

systems (Guerra et al., 1998)  and to increase the efficient use of nutrients, especially 

nitrogen. Understanding the fate of soil water and nitrogen (N) is essential for 

improving crop yield and optimizing the management of water and N in rice-based 

cropping systems. 

Nitrogen fertilizer is the most important nutrient in rice production systems 

and has contributed immensely to the current level of productivity. Furthermore, N 

fertilizer will play a key role in future rice production as it accounts for 67% of total 

fertilizer applied to rice worldwide (Vlek and Byrens, 1986). Efficient management 

of N is important for both economical and environmental reasons (Powlson, 1993; 

Jervis, 1996). In flooded rice crop, only 20-40% of the applied N is used (Vlek and 

Byrens, 1986; Cassman et al., 1993, 1996). The main reasons for such low N 

fertiliser efficiency in flooded rice are due to N losses by leaching, volatilization and 

coupled nitrification-denitrification processes. If both nitrogen and irrigation are not 

correctly managed, significant amount of nitrogen can be leached below the root 

zone (Vlek and Byrens, 1986) reducing yield due to inadequate nitrogen supply to 

the crop. Therefore, it is important to optimise N and irrigation management in rice-

based cropping systems because fertiliser prices have continued to increase, water is 

becoming scarce and environmental pollution needs to be avoided (Ladha et al., 

2005). Thus, there is a need to identify management systems that help determine the 

fate of applied fertilizer-N and quantify the dynamics and losses of N at field, farm 

and regional scales. 

Rice-based cropping systems which include a legume crop  are important for 

maintaining soil fertility as legumes are capable of fixing atmospheric N which 

reduces the need for increased use of N-fertilizer and protects the environment from 

N losses. The rice-rice-legume cropping system with the occasional substitution of 

legume with other crops is a commonly practiced farming system in lowland of 

Indonesia and other parts of the world such as Bangladesh, Southern China, 
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Myanmar, Philippines and Vietnam (Kueneman, 2006). Legumes are a potential 

source of both nitrogen and carbon (organic matter) in soil as they are able to 

enhance soil fertility by supplying N to the succeeding crop and improving soil’s 

physical properties. In tropical regions, the dynamics of nitrogen released from 

legume crop residues have not received much attention. 

The transformation and distribution of N in a ponded rice field and in the 

dryland condition during the legume crop are very different, which makes it difficult 

to accurately assess the effects of applied fertilizer-N on the productivity of the 

rotated crop within the cropping system. Although various forms of N and its 

distribution can be measured in field experiment, these samplings and measurements 

are labour-intensive and expensive. To overcome the need for these measurements 

and to design optimal management systems, simulation modelling techniques have 

been suggested as an alternative for the analysis of system performance on different 

soils and climate types (Godwin and Jones, 1991; Godwin and Singh, 1998; Ritchie 

et al., 1998; Jones et al., 2003). Another drawback of field experiments is that 

experiments are conducted at a small plot scale, but experimental results are 

extrapolated to the whole region. Such recommendations may not account for soil 

and weather variability across various locations within a region (Matthew et al., 

2000). In these situations, crop simulation models have some advantage as these can 

synthesize much of the information from various experiments at diverse locations 

and provide a way to extrapolate this information to other regions of interest, with 

different soil and climatic characteristics (Matthew et al., 2000). Simulation of 

various crop and fertilizer management strategies using such models can also lead to 

better fertiliser decision-making (Godwin and Jones, 1991; Paz et al., 1999). 

Cropping system models integrate data management and knowledge of soil, 

plant and atmospheric systems to allow simulation of a cropping system over a wide 

range of environments and management practices (Larson et al., 1996; Pala et al., 

1996; Cavero et al., 1998; Hunt and Boote, 1998; Alves and Nortcliff, 2000; Mailhol 

et al., 2001). This makes them valuable tools for agricultural professionals around the 

world (Bouman et al., 1996; Jones et al., 2003). Development and evaluation of 

models require all of the aforementioned types of data together with additional data 

such as time-series data on crop development, soil moisture, and soil nutrients as well 

as yield and yield components (Hunt and Boote, 1998). For adaptation and 
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application to different  cropping systems, these models  need to be calibrated and 

validated for their performance in the agroclimate of the region of interest. 

Considerable efforts and progress have been made with the study of rice 

production systems resulting in the development of several simulation models of rice 

crop (Aggarwal et al., 1997; Bouman et al., 2001; Fukai et al., 1995; Godwin and 

Jones, 1991; Horie et al., 1992; McMennamy and O’Toole, 1983). ORYZA2000 is 

one of the most advanced simulation models for rice developed at the International 

Rice Research Institute in the Philippines with new features which include various 

options of irrigation and nitrogen management in rice. In addition, the ORYZA2000 

model has been intensively tested (Bouman et al., 2001). However, The 

ORYZA2000 model is based for a single season of rice. The model cannot simulate 

growth of multiple crops required for a rice-based crop sequence (cropping system). 

Furthermore, the model does not simulate the residual nitrogen and water that may 

be carried over from one crop to the next in a sequence of crops. In addition, there is 

an increased need for the modelling capability to simulate rice-based cropping 

systems in Asia. Such a system capability will allow investigation of residual 

nitrogen, crop sequence, intercropping, crop residue management and soil and water 

management.  

A cropping system model, APSIM (Agricultural Production System 

Simulator), developed in Australia is able to predict crop growth, yield, nitrogen 

uptake, nitrogen dynamics in soil and rotation effects on crop residue over a long 

period (Keating et al., 2003). System-related processes are available to any crop 

module from APSIM’s infrastructure and generic crop library (Wang et al., 2003). 

However, APSIM is based on the dryland farming system that does not include the 

capability to model lowland rice crop preferred in tropical regions. Lowland rice 

(Paddy) is a complex cropping situation as it involves transformation and leaching of 

N between the water-ponded surface and other oxidized and reduced soil layers. 

Currently the model is lacking the capability to simulate these processes (Keating et 

al., 2003; Zhang et al., 2007). In this situation, the versatility of the model can be 

increased if it is able to simulate the processes of nitrogen dynamics in lowland rice 

and is able to correctly simulate the growth and productivity of rice-rice-legume 

rotation systems of Asia.  

The APSIM-Oryza was developed in 2004 (Zhang et al., 2004) available at: 

http://www.regional.org.au/au/asa/2004/poster/2/8/1212_zhang.htm), aiming to 



Chapter 1 

 5

combine the strength of rice physiology simulation in ORYZA2000 (Bouman et al., 

2001) and the system capability of APSIM to simulate long-term rice-based 

agricultural production system. The model’s performance to simulate continuous 

long-term rice-based system under different nitrogen and other management 

practices for several rice varieties was tested against comprehensive datasets from 

Philippines (Zhang et al., 2004) and Korea (Zhang et al., 2007). The testing had 

found the previous version of APSIM-Oryza cannot simulate nitrogen dynamics in 

the soil profile over seasons and therefore developing a dynamic soil nitrogen 

module for paddy soils was recommended (Zhang et al., 2007). The results led to the 

development of new or modified modules (APSIM-Pond and APSIM-SoilN) to 

simulate nitrogen dynamics in pond water and paddy soil by Gaydon et al in 2009 

based on CERES-rice (Godwin and Singh, 1998). However, so far the newly-

developed APSIM-Pond and APSIM-SoilN and their integration with APSIM-Oryza 

remain untested especially in tropical conditions. The testing is crucially important to 

apply the model to explore optimal water and nitrogen management in the rice-rice-

legume cropping system in eastern Indonesia.  

1. 2  Research hypotheses: 

The research hypotheses proposed for this study are as follows: 

1. Water use productivity in rice-rice-legume crop sequences in lowland farming 

system of the tropical environment can be increased without significantly 

decreasing yield through improved water management. 

2. The dynamic aspects of nitrogen in soil-plant system for a rice-based cropping 

system can be quantified through a series of field experiments. 

3. Simulation models can be used to predict crop growth and development, yield, 

nitrogen uptake, nitrogen and water dynamics for a sequence of crops in lowland 

rice-based cropping systems.  

1. 3  Overall research aim  

The overall aim of this research is to improve crop growth simulation 

capability for a range of nitrogen and water management strategies for rice-based 

cropping systems in tropical environments. The research involved experiments and 

field measurements to determine the influences of nitrogen and water management 
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on continuous rice-rice-legume crop sequences for at least 2 years. A whole–farm 

model suitable for a rice-based production system was calibrated and validated 

which can be used to explore a range of fertiliser and water management responses 

to increase the sustainability of tropical rice-based production systems. 

1. 4  Objectives  

The specific objectives of this research project are: 

1. to examine variation in water use productivity within the above rice-rice-legume 

crop sequence without significant effects on yield;  

2. to explore nitrogen dynamics in rice-rice-legume crop sequences on a typical 

coarse-textured soil of lowland farming systems in the tropics; 

3. to calibrate and validate a farming system model that can be used to simulate 

growth, yield, nitrogen uptake, nitrogen and water dynamics in the above rice-

based cropping system.  

1. 5  Outcomes of the study  

The main outcomes from this study include: 

1. Strategies and recommendations for nitrogen and water management in rice-rice-

legume crop sequence as practised in coarse-textured soils of lowland farming 

systems in a tropical climate; 

2. A calibrated and validated farming system model and associated program useful 

for rice-based cropping systems in the lowland farming systems.  

1. 6  Structure of the Thesis  

This thesis contains eight chapters including this chapter. A brief summary of 

each chapter is outlined below.  

Chapter 1 consists of a brief outline of the background to this research, research 

hypotheses and the overall research aim. It also includes the objective and outcomes 

of the study followed by a brief overview of the dissertation structure. 

Chapter 2 presents a comprehensive literature review related to the broad aims of 

the research. This chapter includes a brief overview of the lowland rice-based 

cropping systems in the tropical environment, typical aspects of nitrogen dynamics 
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highlighting various processes of the nitrogen cycle in both aerobic and anaerobic 

conditions and water management practices. This chapter also highlights the 

importance of modelling rice-based cropping systems. All these are essential for 

improving the effectiveness of nitrogen fertilizer and irrigation water management 

and for modelling management of rice-based cropping systems in tropical 

environment. 

Chapter 3 includes an outline of the field experimental design and its layout, 

management of crop, fertiliser and irrigation treatments and the details of sampling 

and measurements for the collection of all data. The field experiment was conducted 

for a rice-rice-legume crop sequence over two years that included peanut and 

soybean as legumes. Data collected in this chapter were also used for calibration and 

validation of APSIM-Oryza model.  

Chapter 4 details the effects of irrigation treatments (the traditional practice of 

continuously submerged compared (CS) water regime with alternately submerged 

and non-submerged (ASNS) water regime) and N-fertilizer treatments on growth and 

yield of rice and discusses their implications.  

Chapter 5 includes the nitrogen dynamics for various water and N fertilizer 

treatments during two years rice-rice-legume crop sequence. The differences in 

temporal variation in various forms of soil nitrogen under flooded and ASNS 

conditions as affected by irrigation regimes and its implication to ammonium and 

nitrate nutrition of the crop are discussed in this chapter.  

Chapter 6 discusses the performance of legume crop in relation to the nitrogen 

dynamics in soil during the dry season that follows two seasons of lowland rice in 

tropical climate. Legumes (peanut and soybean) are commonly planted as cash crops 

which influence various forms of N in soil (NO3-N and NH4-N) and their 

performance in relation to fertilizer-N management is explored in this chapter. 

Chapter 7 tests the performance of the APSIM-Oryza model to simulate lowland 

rice-based cropping systems as practiced in the tropics. In this chapter, the capability 

of APSIM-Oryza to simulate floodwater dynamics in CS and ASNS water treatments, 

growth and development of rice, peanut and soybean, and variation in various forms 

of N (NH4-N and NO3-N) and organic carbon in soil is evaluated along with the 

effects of various N fertiliser rates. Description and overview of the model are 
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briefly outlined to include crop modules (rice, peanut and soybean), SoilWat, SoilN 

and Pond modules. Parameterisation of the model for rice-rice-peanut and rice-rice-

soybean crop sequences are discussed here along with the features of the new 

module of APSIM-Pond (developed elsewhere). Calibration and validation of the 

model using two years of field experimental data for rice-rice-legume crop 

sequences are described. Relative strengths and weaknesses of the model to simulate 

rice-rice-legume crop sequence are discussed along with the future directions for 

improvement. 

Chapter 8 presents a general discussion of the results from all chapters with specific 

conclusions arising from this research and recommendations for future research in 

this area.  

Full details of all references used within various chapters are given in the References 

section and any specific experimental data or other information not directly relevant 

to a chapter’s contents is given in the Appendices section. 
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CHAPTER II  

Review of literature 

2.1 Lowland rice-based cropping systems  

Rice (Oryza sativa L.) is consumed by about 3 billion people and is the most 

common staple food of the largest number of people in the world (Maclean et al., 

2002). Irrigated rice is mostly grown with supplementary irrigation in the wet season, 

and is entirely reliant on irrigation in the dry season. Lowland rice or irrigated rice 

usually refers to rice grown on the both flat and slopping bunded fields with surface 

flooded during most of growing season (George et al., 1992). Upland rice usually 

refers to rice grown on both flat and sloping fields without bunding where land is 

prepared under dry conditions with irrigation depending on rainfall (De Datta, 1975).  

In many irrigated areas, rice is grown in a monoculture system with 2-3 crops 

per year depending on water availability. However, significant areas of rice are also 

grown in rotation with a range of other crops during non-rice season of year. The 

area under such rotation systems include rice–wheat (Triticum aestivum L.) rotation 

systems (Dawe et al., 2004; Timsina and Connor, 2001; Ladha et al., 2003) and rice-

rice-oilseed and rice-maize (Zea mays L.) rotation systems (Bijay-Singh et al., 2008). 

Other crop rotation systems such as rice-rice-legume with occasional substitution of 

legume with another crop is a commonly practiced farming system by farmers in 

lowland of Indonesia, Bangladesh, Southern China, Myanmar, Philippines and 

Vietnam (Kueneman, 2006; George et al., 1992). Furthermore, legume crops are a 

potential source of nitrogen and carbon in soil that influence the soil’s N supplying 

capacity for the succeeding crops, and may also enhance other aspects of soil fertility 

via improvement of other soil physical and chemical properties. Legume is usually 

planted as cash crop following rice as its residues improve the nitrogen and carbon 

status of the soil. Moore et al. (2000) reported that multi-cropping systems usually 

improve the organic carbon and nitrogen content of soil than monocropping systems. 

However, the extents and rates of legume residues and its effects on the succeeding 

crops remain unclear under the alternation of anaerobic during rice flooded and 

aerobic during legumes planted conditions in the tropical climatic.  
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Rice is usually transplanted into the puddled soil and farmers try to maintain 

a fixed depth of ponded water on soil surface throughout the cropping season. This 

practice of (lowland) rice production modifies soil structure considerably which may 

have negative implications for all the following cereal crops such as wheat, soybean 

and peanut (Hobbs and Gupta, 2003; Timsina and Connor, 2001). The cyclic 

transitions from anaerobic soil conditions during the rice crop to aerobic soil 

conditions during the succeeding legume crop and vice versa may have dramatic 

effects on the chemical and biological soil conditions affecting nutrient status and 

availability to these crops. Adverse effects of such crop sequences may cause yield 

stagnation or even decline which is a major concern for the sustainability of lowland 

rice cropping systems (Ladha et al., 2003). In addition, there can be additional 

impacts of crops rotation on land degradation and biological productivity (yield loses, 

carry over diseases of plant, reduce fertility of soil, etc.). Therefore, whole-farm 

models that include crop rotations are important components of research.  

Most lowland rice-based cropping systems usually use fine texture soils with 

low percolation rates that allow an extended period of submergence. Soils become 

anaerobic under flooded that reduces nitrification allowing accumulation of NH4–N 

which essential for growing lowland rice (De Datta, 1995). However, with increasing 

demand for rice and other crops to support growing population within major rice 

growing nations, coarse-textured soils are being used increasingly for both upland 

and lowland irrigated rice (Aulakh and Bijay-Singh, 1997; Aulakh and Pasricha, 

1997).  

Coarse-textured soils generally contain silt and clay in the range of 0.5 to 12 

and 3 to 10%, respectively. These soils include sand, loamy sand and sandy loam in 

textural classes. These occur on a variety of land forms and relief such as dunes of 

various types, interdunes, sandy hummocky plains, sandy plains and recent alluvium 

along stream banks. Coarse-textures soils generally manifests in poor to weak 

structural development, low moisture and nutrient retention capacity, high 

infiltration rates and susceptibility to erosion. With high infiltration rates, coarse 

soils are usually characterised as a problematic group of soils for their land use, 

management and sustained productivity (Aulakh and Bijay-Singh, 1997).  

In coarse-textured soils, flooding cannot be maintained over extended period 

due to high soil percolation rates. In these soils, the development of appropriate 

irrigation strategies to maintain yield with limited water supply is a high priority as 
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globally rice production needs to increase by 70% by 2025 (Tuong and Bhuiyan, 

1999) to meet projected demand.  

2.2 Nitrogen dynamics in lowland rice-based farming systems  

If water is not a limiting factor, crop growth and yield greatly depends on 

soil-N supply. Demand for nitrogenous fertiliser has been increasing in agriculture 

with the evolution of high-yielding crop varieties. Farmers generally apply as much 

fertilizer as resources permit to increase yield with little information on the amount 

of N required to sustain crop yield on different soils. Consequently, there is 

opportunity for residue of N to be left in the soil which may find its way into the 

atmosphere and surface and ground water sources through various chemical and 

physical processes, leading to environmental pollution. Enhanced above-ground 

biomass growth stimulated by excessive N availability in the soil can also cause 

higher transpiration rates, reducing available soil water during flowering and grain 

filling that may reduce grain yield as for winter wheat (Ritchie and Johnson, 1990; 

Nielsen and Halvorson, 1991). Hence, appropriate management of N fertiliser holds 

the key for a better environment and improved crop production. 

The greatest source of available N is the atmospheric dinitrogen gas (N2) 

which is relatively inert. Significant amounts of N enter the soil via rainfall or 

through the effects of lightning (Coyne and Frye, 2005). Dinitrogen (N2) can be only 

used by specialized micro-organisms like bacteria, actionmycetes and cyanobactertia 

through symbiosis. Members of the bean family (legumes) and a few other plants 

form mutualistic, symbiotic relationships with nitrogen fixing bacteria. In exchange 

for nitrogen, the bacteria receive carbohydrates from the plants and form special 

structures (nodules) in roots as they can exist mostly in a moist environment 

(Stevenson and Cole, 1999).  

Nitrogen is used by living organisms to produce a number of complex 

organic molecules like amino acids, proteins and nucleic acids. The store of nitrogen 

found in the atmosphere, where it exists as a gas (mainly N2), plays an important role 

in all life processes. Other major stores of nitrogen include organic matter in soil and 

the oceans. However, nitrogen is often the most limiting nutrient and required in 

large quantities for plant growth. Plants can only take up nitrogen in two forms: 

ammonium ion (NH4
+) and nitrate ion (NO3

-). Most plants obtain the nitrogen they 
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need as inorganic nitrate and ammonium from the soil solution (Stevenson and Cole, 

1999). 

Nitrogen is an important element in the soil and the biosphere (O’Hara et al., 

2002), and has contributed much to the remarkable increase in food production that 

has occurred during the past 50 years in the form of nitrogenous fertilizers (Smil, 

1999). In flooded rice, nitrogenous fertilizers are the most important sources of N 

nutrient. As rice production needs to be increased in future to cope with the food 

demand of a growing population, N fertilizer will need to be applied at nearly 

threefold the present rates (Cassman et al., 1998). However, N fertilizer efficiency in 

irrigated rice is low, with an apparent recovery of <40% (Cassman et al., 1993; 

1996). The main reasons for low fertilizer efficiency are N losses by volatilization in 

the form of NH3 gas and the processes of nitrification and denitrification. N loss by 

volatilization of NH3 is influenced by algal photosynthesis in the floodwater that 

increases pH (Vlek and Byrnes, 1986).  

The dynamics of nitrogen and carbon in rice-based cropping systems is 

affected by the alternation of anaerobic and aerobic soil conditions (Fierer and 

Schimel, 2002; Gu et al., 2009). Under flooded conditions, most N is available in 

ammonium (NH4-N) form and taken up by rice and nitrification is restricted by a 

limited oxygen (George et al., 1992). When soil is dried, NH4-N is transformed to 

NO3-N via nitrification. As a result, nitrate accumulates in the soil during the aerobic 

condition. Upon flooding during rice growth period, excess mineral N that may not 

be taken up by the crops may be lost through leaching and denitrification (Reddy et 

al., 1989; Qiu and McComb, 1996). The extent of N loss mechanism depends on the 

amount of the nitrate in soil solution, the quantity of easily mineralisable carbon 

sources, the intensity of rain and the flow of water in the soil profile (Li, 2000; 

Pathak et al., 2002). The dynamics of soil mineral N under the alternation of 

anaerobic and aerobic soil conditions in lowland rice-based cropping systems is 

conceptualised in Fig. 2.1. These complex processes need to be clearly understood 

and quantified as a basis for improvement in yields as well as nitrogen and water use 

efficiencies in rice-based farming systems. Further details are given below on 

nitrogen transformation processes that include mineralisation, immobilisation, 

nitrification, denitrification and fixation. 
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2.2.1  Nitrogen mineralisation and immobilisation  

Mineralisation refers to the decay or break down of organic-nitrogen fraction 

in soil and organic matter that can release mineral N (Socolow, 1999). Mineralisation 

also refers to ammonification because the reaction mainly releases mineral N in the 

form of ammonia, as in Eqn. 2.1 (Coyne and Frye, 2005). Organic fractions of N are 

usually present in the plant residues, fast and easily decomposable soil organic 

matter fractions and dead microbial material. Mineralisation of N from soil organic 

matter, dead animal or animal wastes and green manures, and crop residues (dead 

plant matter) contribute greatly to the soil N budget and to total N available to plants 

(Kolberg et al., 1996).  

 

 

Figure 2.1 Schematic of soil mineral N dynamics under aerobic and anaerobic 
conditions in lowland rice-based cropping systems (George et al., 1992). 

Various groups of soil microbes use the carbon in these organic matter 

fractions for development and growth as each group of microbes is specialised in 

feeding on a particular fraction of the soil organic matter (Paul and Clark, 1995). A 

flow of mineralised N mainly in the form of ammonium enters the inorganic nitrogen 

pools in the soil depending upon the C and N content of the decomposing organic 

material. The rates of N transformation processes can vary considerably as it is 
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controlled by a diverse group of soil microorganisms that operate at different speeds 

depending on the type of organic sources present in the soil. For example, organic 

source of lignin is more resistant to microbial decomposition than other organic 

constituents in soil (van Veen and Paul, 1981; Parton et al., 1987). 

 

 (2.1) 

 

Immobilisation or assimilation refers to a process opposite to mineralisation 

as inorganic N compounds in soil (mainly in the form of NH4
+ and NO3

-) are 

transformed into the organic form (such as N incorporated into plant and a microbial 

biomass) as given in Eqns. 2.2 and 2.3). This process renders N to become 

temporarily unavailable to the crop (Socolow, 1999; Coyne and Frye, 2005). 

Immobilisation primarily occurs during the growth of organisms which are involved 

in the decaying of organic matter. Microbes need carbon and nitrogen in order to 

grow. If the N requirement for microbial growth is not met, the microorganisms will 

immobilise the plant-available form of nitrogen i.e. ammonium and nitrate (van 

Veen et al., 1985; Tate, 1995). Immobilization can also sometimes refer to the 

binding of NH4 ion to soil clays during to the interaction of inorganic N with soil 

organic matter (Coyne and Frye, 2005). Mineralisation and immobilisation processes 

occur widely in nature while fixation, nitrification and denitrification occur in some 

situations as it is accomplished only by special type of microorganisms.  

 

  (2.2) 

 

 (2.3) 

 

2.2.2  Nitrification  

Nitrification refers to the process of oxidation of ammonium form of N to 

nitrate form (Martens, 2001). This process occurs under aerobic conditions and is 

facilitated by species of nitrifying organisms (Prosser, 2005). The ammonium form 

of nitrogen (NH4
+) can be adsorbed on the surfaces of clay and organic colloids and 

which can be released into soil solution from these colloids through cation exchange 

+
2 3 4OrganicN(R-NH ) NH NH→ →

+
4 2NH OrganicN(R-NH )→

- - +
3 2 4 2NO  or NO   NH   OrganicN(R-NH )→ →
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process. Upon release, most of the ammonium ions often chemically converted into 

nitrite ion (NO2
-) by a specific type of autotrophic bacteria in soil (Delwiche, 1970; 

Coyne and Frye, 2005). Further modification of NO2
- can occur rapidly in soil into 

nitrate (NO3
-) by another type of bacteria (Eqn. 2.4). The conversion process is 

influenced by the availability of ammonium, oxygen, soil pH, temperature and soil 

water (Muller, 2000; Martin et al., 1998). Process-based crop growth models often 

use these parameters to elucidate the mechanisms of nitrification. Since NO3
- is 

highly mobile and can be lost from the root zone of crops and contaminate the 

ground water in intensively fertilized cropping systems, management strategies can 

be used to reduce this type of N loss (Martens, 2001). 

 

  (2.4) 

 

2.2.3  Denitrification  

Denitrification is the process by which oxidised forms of nitrogen (NO3
- and 

NO2
-) are transformed into reduced and gaseous molecular components (NO, N2O 

and N2) (Stevenson, 1982; Martens, 2001). Denitrification is commonly an anaerobic 

soil process, where micro-organisms use nitrate as oxygen donor when decomposing 

organic matter. Schematic pathway and enzymes involved in the denitrification 

process is presented in Fig. 2.1. This process is controlled by soil moisture and redox 

potential (Steven et al., 1998), temperature and pH (Heinen, 2006; Ashby et al., 

1998) and availability of substrates (e.g. dissolved organic carbon, NO3, NO2, NO, 

and N2O). Denitrification tends to reduce soil nitrate content, so that less nitrate is 

available for uptake by plant and leaching (Haynes, 1986). Denitrification is also a 

cause of environmental concerns, as it contributes to emission of greenhouse gas of 

nitrous oxide (N2O) from crop fields. Simulation models can be very helpful in 

examining the effects of denitrification on the nitrogen balance in agricultural 

systems.  

A number of different approaches have been used to develop denitrification 

sub-models within the N-cycling models (Parton et al., 1996) using a combination of 

microbial growth models, soil structural models and simplified process models. The 

+

+
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microbial growth models consider the dynamics of microbial organisms responsible 

for the N cycling processes. This approach has been used for the RZWQM (Root 

Zone Water Quality Model) model (Ma et al., 2001), the ECOSYS (Ecosystems) 

model (Grant, 2001) and for the DNDC (Denitrification-Decomposition) model (Li 

et al., 1992; Li et al., 2000). 

 

 

 

 

 

Figure 2.2 Schematic pathway and enzymes involved with denitrification of nitrogen 
(Martens, 2005). 

The soil structural models consider diffusion of nitrogen various forms of 

gases into and out of soil aggregates. The distribution of aggregates in soil is also 

considered important as denitrification occurs only in the anoxic parts of aggregates 

(Arah and Smith, 1989; Grant, 2001; Vinten et al., 1996). The simplified process 

models consider the degree of saturation, soil temperature and nitrate content of the 

soil (Heinen, 2006). However, there are very few modelling attempts made to 

describe N-transformation in lowland rice-based cropping systems. Nitrogen 

transformation and distribution processes in ponded rice fields are different from 

other dryland crops (e.g. a legume crop) which may follow rice in the same field. For 

this reason, it is usually difficult to accurately assess the effects of nitrogen fertiliser 

application on N-transformation and productivity of an entire cropping system that 

includes rice and other crops.  

2.2.4  Fixation  

Fixation refers to biogeochemical conversion of N2 gas in the atmosphere to 

the ammonia form arising from biological plant and microorganism association or 

lighting (Fisher and Newton, 2002). Giller (2001) proposed 5 groups of N2-fixing 

organism. The first group includes class of bacteria known as rhizobia, the second 

group cyanobacteria (include a blue green algae), which are free-living species and 

form association with variety of plants. The third group includes actinomycetes, 
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which form symbiotic association with flowering plants from a number of different 

families; the forth group is known as Azospirillum species, which are more loosely 

associated with plants and colonise the root epidermis of host species such as wheat, 

maize and rice plants (Vande-Broek et al., 1993); and the final group includes free-

living N2-fixers such as Azotobacter sp. that live in the soil. Biological fixation of 

atmospheric nitrogen gas (N2) is critical in maintaining sustainable level of crop 

yields without requiring high level of external fertiliser-N inputs. The actual and 

potential contribution of biological N2-fixation with N-nutrition in tropical cropping 

systems has been reviewed in detail by Giller (2001) and Postgate (1998). The 

remainder of this section will focus on rhizobia bacteria as the dominant group of 

N2-fixing species that is known for its contribution to the productivity of tropical 

cropping systems. 

Rhizobia are bacteria of several genera that induce and infect nodules on the 

roots and/or stems of plants of the family Leguminosae (Giller, 2001). These plants 

are also known to have the ability to form root nodules that host rhizobium. 

Decomposition of root nodules releases N into soil is helpful for plant nutrition. For 

this reason, legumes contribute to increased productivity of other crops when 

incorporated into a cropping system by directly increasing agricultural productivity 

and indirectly with restoration of soil fertility. The process of N2-fixation is the 

reduction of N2 gas in the atmosphere (including soil atmospheric) to a biologically 

useful form of ammonia-N. Because N2 is highly stable, it needs high energy to 

break the molecules during conversion to ammonia and involves the enzymes of 

nitrogenase as follows (Giller, 2001): 

 

 (2.5) 

Nitrogen-fixing crops and pastures are essential components of many 

agricultural systems in sustaining productivity (Graham and Vance, 2000). As 

mentioned above, a clear benefit from use of these symbiotic legumes in many 

agricultural systems is primarily due to the fixation of atmospheric nitrogen by the 

root-nodule bacteria located in the root nodules of legume (Fisher and Newton, 

2002). The productivity and nitrogen fixation by legumes in farming systems are 

+ -
2 3 2N +8H +8e +16ATP  2NH +H +16ADP+16Pi→
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affected by several abiotic factors including temperature, water, nutrients availability 

and pH (O’Hara et al., 2002). 

Excess availability of nitrate in soil can affect nodule formation in many rice-

based farming systems as shown with application of nitrogenous fertiliser to the 

legumes (Chen et al. 1992; Starling et al. 1998; Daimon et al. 1999; Taylor et al. 

2005; Ray et al. 2006; Basu et al. 2008; Selamat and Gardner 1985; Daimon and 

Yoshioka, 2001).  

2.3 Water management practices in lowland rice farming systems   

On a global scale, irrigated agriculture uses about 70% of the available fresh 

water resources (FAO, 2007). With rapid increase of the world population and the 

corresponding increase in demand for extra water by other sectors such as industries 

and municipalities has forced the agricultural sector to use irrigation water more 

efficiently by using less water to produce more food. Defining strategies in planning 

and management of available water resources in the agricultural sector has become a 

national and global priority (Smith, 2000). Rice is one of the biggest users of the 

world’s freshwater resources because it is mostly grown under flooded or submerged 

condition (Tuong and Bouman, 2003; Bouman and Tuong, 2001; Tuong et al., 2005). 

However, water is becoming increasingly scarce raising concerns over the 

sustainability of irrigated agriculture (Rijsberman, 2006). Bouman et al., (2007) 

predicted that by 2025, 15-20 million hectares of irrigated rice will experience some 

degree of water scarcity. Many rainfed areas are already drought-prone under present 

climatic conditions and are likely to experience more intense and more frequent 

drought events in the future due to climate change (Wassmann et al., 2009). 

Increasing water productivity is especially important because many processes in rice 

production area are related to water (Bouman, 2007). Therefore, efforts to reduce 

water use are of great significance in the rice-based cropping systems.  

Most irrigated rice in the tropical Asian countries are raised in a seedbed and 

then transplanted into a main field (De Datta, 1981). Preparation of the main field 

consists of soaking, plowing and puddling (i.e. harrowing under shallow submerged 

conditions). Puddling is not only done for weed control, but also to increase water 

retention and reduce soil permeability, making it convenient to level the top field and 

transplanting (De Datta, 1981). After land preparation, the main growth period of 
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rice starts from transplanting to harvest. At the field level, large reduction in water 

input can potentially be realised by reducing the seepage and percolation flows and 

by minimising land preparation time. Seepage and percolation losses can be reduced 

by effective water management. The opportunities and constraints of various water 

management approaches in lowland rice includes saturated soil culture (Borell et al., 

1997; Tabbal et al., 2002), submerged and non-submerged water regime also known 

as alternate wetting and drying (Li, 2001; Tabbal et al., 2002) and aerobic rice 

(Bouman et al., 2002). These water management practices are briefly discussed in 

the next sections including continuously submerged water regime. 

2.3.1 Continuously submerged soil  

The rice crop grows better under continuously submerged soil conditions than 

other crops because its root can tolerate the anaerobic soil condition. This water 

regime keeps the rice field continuously flooded with water ponded depth of 5–10 

cm from transplanting to harvesting. Continuously submerged irrigation practice 

changes the quality of soil organic matter (Olk and Senesi, 2000), but it is 

remarkable sustainable in maintaining adequate nutrient-supplying capacity and  soil 

carbon (soil organic matter) and yield (Dawe et al., 2000). However, the cultivation 

of rice under continuously submerged irrigation practices requires 

approximately1000 - 3000 m3 of water to produce 1000 kg of rice grain which is up 

to 3 times higher than the water required to produce a similar quantity of wheat 

(Wassmann et al., 2009). 

2.3.2 Alternately submerged and non-submerged (ASNS) 

Alternately submerged and non-submerged (ASNS) irrigation practice or 

alternately wetting and drying (AWD) is the technique of irrigation which requires 

water to sufficiently maintain 2-5 cm of floodwater depth over the field 2-7 days 

after the disappearance of floodwater. Changes from saturation to partially aerobic 

soil conditions in ASNS affect the form, availability and losses of nutrients such as 

nitrogen from the crop field. Tabbal et al. (1992) reported the level of ammonium in 

the soil to be lower and nitrate higher under ASNS than under fully flooded rice 

fields. Upon subsequent flooding, nitrate could be leached or undergo denitrification 

losses making overall N losses under ASNS higher than under conventional flooding. 

However, Belder et al. (2004) reported N uptake and fertilizer-N recoveries to be 
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similar under flooded and AWD conditions in experiments, where the shallow 

groundwater table kept the soil relatively wet during the non-submergence period. 

Further research is needed to determine the level of “dryness” under ASNS that does 

not reduce N-use efficiency. In coarse-textured, alkaline soils with a high pH, the 

other problems may arise due to deficiency of certain availability of micronutrients 

under conditions of non-saturated soil as such under raised beds, aerobic rice and 

ASNS water regime as suggested by Bouman et al. (2005). Sharma et al. (2002) and 

Singh et al. (2002) have also reported iron and zinc deficiencies in raised beds and in 

direct-seeded rice systems under the ASNS irrigation regime.  

The performance of ASNS in terms of rice yield, water input and water 

productivity depends much on the other environmental conditions such as soil type, 

water table depth and the number of days of absence of floodwater. When the water 

table coincides with root zone, the drying period may not sufficiently expose the rice 

plant to water stress to give comparable rice yield as with continuously submerged 

conditions. Belder et al. (2004) reported that biomass and yield of rice was not 

significantly different between ASNS and continuously submerged water regimes, 

but water productivity was significantly higher under ASNS than under continuously 

submerged in two out of three experiments on silty clay loam soils with shallow 

groundwater table and a percolation rate of 1-4.5 mm day-1. However, when the 

water table was below the rooting zone, rice yield under ASNS was lower than under 

continuously submerged water regimes. Cabangon et al. (2003) reported that rice 

yield declined significantly under ASNS when the soil water potentials at 10 cm 

depth dropped below -20 kPa. Similar results have been also reported by Hira et al. 

(2002). 

2.3.3 Saturated soil culture  

The main water management in saturated soil culture is that the soil is kept as 

close to saturation as possible by shallow irrigation so that about 1-cm floodwater 

depth is obtained everyday after disappearance of standing water (Tuong et al., 2005). 

Tabbal et al. (2002) reported that saturated soil culture reduced water input by 30-

60% compared with the conventional practice in Central Luzon, Philippines, while 

reduction of yield was only 4-9%. However, implementation of saturated soil culture 

requires assured water supply throughout the growth period at the field level and 

frequent shallow irrigation is labour intensive. In coarse-textured soils with a deep 
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water table, the saturated soil culture can be difficult to accomplish because of higher 

percolation rates compared with fine-textured soil. 

2.3.4 Aerobic rice 

Bouman (2001) has introduced the term of ‘aerobic rice’ to describe a system 

of growing high-yielding rice varieties in non-puddled soil without standing water 

similar to irrigated upland crops such as maize or wheat. Peng et al. (2006) reported 

that yield difference between aerobic and flooded rice ranged from 8 to 69% 

depending on the number of seasons that aerobic rice is grown continuously, the 

length of dry and wet seasons, and the suitability of variety. Total water use of 

aerobic rice was 27–51% lower and water productivity 32–88% higher than that of 

continuously submerged water regime in fine-textures soil in Philippines. After six 

continuous seasons of aerobic rice cropping, there was a gradual decline in yield for 

variety Apo (compared with flooded conditions), although such a trend was not 

obvious when all tested varieties of rice were considered together (Bouman et al., 

2005). However, the large yield gap (8 - 69%) between aerobic and flooded rice and 

reduction in yield of continuous aerobic rice could outweigh the benefit of water 

saving irrigation practices. 

The reasons for yield decline in aerobic rice system need further investigation. 

Recent reports by Kato et al. (2009) indicate that the average yield under aerobic 

conditions can be similar or even higher than that with the flooded condition with 

yield of 7.9 t ha-1 in 2007 and 9.4 t ha-1 in 2008 for aerobic versus 8.2 t ha-1 for 

flooded water regimes. In this study, the average water productivity under aerobic 

conditions was 0.8–1.0 kg grain m-3 water using a super-high-yielding rice cultivar. 

In general, cultivation of high-yielding rice varieties in aerobic soil is a promising 

technology that maintains high productivity and conserves water. With a continued 

breeding program, future aerobic rice varieties will possess increased number of 

spikelets and sufficient adaptation to aerobic conditions such that yields comparable 

to the potential yield under flooded rice can be achieved consistently (Kato et al., 

2009). 
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2.4 Water balance  

Lowland rice is traditionally grown under continuously flooded condition that 

requires maintenance of about 5–10 cm of standing water throughout the growing 

period. This practice not only meets the water needs of rice, but provides an efficient 

supply of nutrients and is an effective method for weed control;. This and related 

practices of  soil puddling  to reduces percolation rates and construction of bunds 

(embankments) along the field boundary to prevent runoff complicates the 

computation of soil water balance. The estimation of soil water balance requires 

information on rainfall, irrigation amount, evapotranspiration, infiltration and runoff 

(Ritchie, 1998) as shown in Fig. 2.3.In general, the water balance of a puddled rice 

field is given by: 

 

  (2.6) 

 

where W is the depth of water stored within root zone; R is the rainfall over the 

surface; ET is the crop evapotranspiration including any evaporation of free water 

from the standing pool of water; DP the deep percolation beyond the root zone; IR is 

the amount of irrigation and Q the surface runoff. These components are usually 

expressed in units of (mm) depth and can be computed on daily basis. Contribution 

of capillary rise from the groundwater is usually ignored as the puddled soil layer 

remains saturated for a considerable period during the crop growth and has  a higher 

soil moisture potential than at the capillary fringe located below the puddled soil 

layer (Odhiambo and Murthy, 1996).  

W = R + IR - ET - DP - Q
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Figure 2.3 Components of water balance in flooded rice field (Tabbal, 2002) 

2.4.1  Surface runoff (Q) 

Runoff is generated from a field when infiltration rate exceeds the rainfall 

rate at the soil surface. Surface ponding occurs first when rainfall occurs over a 

saturated soil surface (McFarlane et al., 1993). In lowland rice cropping systems, 

rainfall in excess of bund height leaves the system as surface runoff: 

 

  (2.7)  

 

where BH is the bund height (mm) and R the accumulated rainfall over the surface 

(mm). This surface runoff can be an input of overland flow to a neighbouring field. 

However, when this is involved in a sequence of fields, neighbouring fields will also 

pass on the surface runoff from adjusting fields until the runoff reaches a drain.  

2.4.2  Deep percolation (P)  

Percolation is one of the negative components of water balance as it is the 

vertical downward loss of water beyond the crop’s root zone. Percolated water is 

unavailable to the crop. The rate of percolation is governed by the hydraulic 

conductivity of the soil within the root zone and the depth of standing water in the 

field. Variation in percolation rate is usually influenced by the water regime within 

Q = R - BH
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and around the field. An increased in the depth of ponded water increases percolation 

due to an increase in the hydraulic gradient (Sanchez, 1973). Because of puddling, 

the soil layer at the bottom of the root zone, i.e. approximately 20-30 cm below the 

soil surface, gets compacted that reduces the saturated hydraulic conductivity 

compared to the unpuddled fields. Darcy’s law is commonly used for the estimation 

of daily percolation rate below the root zone (Odhiambo and Murthy, 1996; Singh et 

al., 2001) and this given as: 

 

  (2.8) 

 

where DP is deep percolation beyond the root zone (mm per day); ks is the saturated 

hydraulic conductivity (mm per day; after accounting for puddling effects) and 

∆H/∆Z is the hydraulic gradient.  

2.4.3  Evapotranspiration (ET) 

Evaporation from the water covered soil surface and transpiration from the 

plant leaves are combined and treated together as evapotranspiration (ET). ET for a 

rice crop is strongly dependent on climatic conditions. Maintaining ET at the 

potential rate, i.e. the rate at which it is not hindered by water shortage, is essential 

for obtaining high yield of rice (IRRI, 1987) because rice yield usually declines with 

decreasing rate of ET. Crop coefficients are often used in the estimation of actual 

evapotranspiration from reference ET for specific regions as recommended by FAO 

(Doorenbos and Pruitt, 1977). The following relationship will be used to estimate 

daily mean evapotranspiration (Doorenbos and Pruitt, 1977): 

 

  (2.9) 

 

where ET0 is the reference crop evapotranspiration (mm); Kc the crop coefficient and 

ET the crop evapotranspiration.  

s

∆H
DP = K

∆Z

c 0ET = K  × ET
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2.5 Modelling rice-based cropping systems   

 Crop growth simulation models are recognized as valuable tools in 

agricultural research. It can help to compare experimental research findings across 

sites, extrapolate experimental field data to wider environments, develop 

management recommendations and decision-support systems, explore the effects of 

climate change, and make yield predictions (Bouman et al., 1996; Jones et al., 2003). 

Cropping system models integrate data by using the knowledge of soil, plant, 

and atmosphere systems to allow simulation of cropping systems over a wide range 

of environments and management practices (Larson et al., 1996; Pala et al., 1996; 

Cavero et al., 1998; Alves and Nortcliff, 2000; Mailhol et al., 2001). Such simulation 

models have been developed for a number of annual crops including wheat, rice and 

potatoes (van Laar et al., 1997; Bouman et al., 2001; Wolf, 2002). This makes them 

valuable tools for agricultural professionals around the world as these can provide an 

insight of the functioning of cropping systems by applying a system approach 

(Leffelaar, 1999). However, effective application of cropping system models 

requires a minimum set of weather, soil, and management data (Hunt and Boote, 

1998) together with additional data such as time-series data on crop development, 

yield and yield components, soil moisture, and soil nutrients.  

2.5.1  Rice model  

Modelling of growth, development and production of rice began more than 

30 years ago. The development of rice model has been reviewed in detail by Bouman 

and van Laar (2006). In brief, the International Rice Research Institute (IRRI) 

published the model RICEMOD (rice model) for potential production of rice in 

rainfed environments in 1983 (McMennamy and O’Toole 1983). Due to its 

simplicity, the model did not receive widespread recognition. Further progress with 

rice model was developed by Horie et al. (1992; 1995) which allowed development 

of Simulation Model for Rice-Weather Relationships (SIMRIW) to predict 

production potential of rice in Japan and to predict the effects of climate change.  

CERES-Rice is a generic and dynamic simulation model which is a part of 

the DSSAT (Decision Support System for Agricultural Technology) suite of models 

(Godwin and Jones 1991; Godwin and Singh 1998; Ritchie et al., 1998; Jones et al., 

2003). This model includes a detailed description of crop growth under optimal, 
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nitrogen-limited and water-limited conditions. It is relatively widely used although 

the model has been only partially described in different publications (Timsina and 

Humphreys, 2003; 2006). From all the cases that Timsina and Humphreys (2003) 

investigated, CERES-rice was found to be calibrated and evaluated only once using 

experimental data for more than one site or for more than one season. Model 

evaluations were generally limited to graphical comparison of simulated and 

measured crop growth output with little indication of quantitative goodness-of-fit 

parameters.  

In the mid 1990s, IRRI in collaboration with Wageningen University and 

Research Centre developed the ORYZA model series to simulate growth and 

development of tropical lowland rice (Ten Berge and Kropff, 1995). The first model 

was ORYZA1 for potential production of rice (Kropff et al., 1994), that was soon 

followed by ORYZA_W for water-limited production (Wopereis et al., 1994), and 

ORYZA-N (Drenth et al., 1994) and ORYZA1N (Aggarwal et al., 1997) for 

nitrogen-limited production of rice. A new version in the ORYZA model was 

released in 2001 that improved and integrated all previous versions into one model 

called ORYZA2000 (Bouman et al., 2001). ORYZA2000 simulates growth and 

development of lowland rice without any limitation to potential production, and with 

water and nitrogen limitation. However, the ORYZA2000 model can be used for 

single crop and single season of rice. The model cannot simulate growth of multiple 

crops within a cropping system and cannot simulate residual effect of nitrogen and 

soil water remaining in soil for the subsequent crops as expected within a cropping 

system. In ORYZA2000, N availability in soil is modelled as a simple book-keeping 

routine and does not compute how N transformation processes vary in the soil over 

time (Bouman and van Laar, 2006).  

2.5.2  APSIM-Oryza model 

With the increased focus on sustainable landscapes in which farms are an 

important part of the landscape, there is an increased focus on building models of 

farming systems to assess the agricultural, economical and environmental impacts of 

farming at various scales. These whole-farm models are able to predict the impacts 

of different scenarios such as different farm management options and the effects of 

changes in policies, markets, resources or other regulations. Furthermore, there is an 
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increasing demand to simulate the sustainability of rice-based cropping systems, 

especially in Asia. Such a modelling capability will allow investigation of nitrogen 

dynamics, crop sequence, intercropping, crop residue management and soil and 

water management in rice-based cropping systems (Keating et al., 2003; Wang et al., 

2003). 

A cropping system model, APSIM (Agricultural Production System 

Simulator), developed in Australia is able to predict crop growth, yield, nitrogen 

uptake, nitrogen dynamics in soil and rotation effects on crop residue over a long 

period (Keating et al., 2003). System-related processes are available to any crop 

module from APSIM’s infrastructure and generic crop library (Wang et al., 2003). 

However, APSIM is based on dryland farming systems rather than lowland paddy 

farming systems and have been rarely used for cropping system of the tropical 

regions. Furthermore, APSIM has not been developed simulate growth of upland or 

lowland paddy (Keating et al., 2003). Lowland rice has a relatively more complex 

carbon and nitrogen dynamics compared to other crops because it includes 

transformation and leaching of nitrogen between a water-ponded region and oxidized 

and reduced soil layers. The alternation between anaerobic condition during ponded 

rice growth period and aerobic condition during the dry season of a succeeding 

legume crop in a rice-rice-legume rotation provides a modelling challenge to 

simulate these characteristics of lowland rice-based cropping systems. Currently the 

model is lacking the capability to simulate these processes (Keating et al., 2003; 

Zhang et al., 2007). Various relevant chemical and biological processes that occur in 

a long-term ponded field have been unavailable within APSIM modules. 

Gaydon et al. (2009) has recently developed a new functionality, ‘Pond 

module’, that can be incorporated into the framework of APSIM (Keating et al., 

2003). APSIM-Pond describes the biological and chemical processes responsible for 

the loss/gain of C and N in rice ponds including algal turnover and biomass 

incorporated in rice-based farming systems (Gaydon et al., 2009). APSIM now has a 

capability to simulate growth and development of rice and it includes other important 

features of a rice cropping system such as fertilisation, transplanting and field 

management practices for the alternation of aerobic and anaerobic environments in 

rice-based cropping systems. It also includes important aspects of rice physiology, 

such as photosynthesis, phenological development and yield as simulated in 

ORYZA2000 using the existing APSIM modules for water, nitrogen and other soil 
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properties and management aspects. Such a system capability will allow 

investigation of rice-based cropping systems and carry-over effects for improved 

decision-making in the management of a wide range of crops. The versatility of the 

model can be increased to simulate the nitrogen dynamics of lowland paddy and 

productivity of rice-rice-legume rotation systems typically practiced in Asian 

countries. 

2.6 Summary  

Increased rice production is needed to meet the future population growth with 

limited area of arable land and restricted water supply. Coarse-textured soils are now 

used in tropical regions for raising both upland crops and lowland irrigated rice. 

However, it is difficult to maintain continuous flooding conditions in porous soils 

under rice due to high losses of water via percolation. Since rice is one of the biggest 

users of fresh water, it is clear from this literature review that research on water 

management is needed to conserve water and increase water use efficiency by 

producing more rice with less water in an irrigated production system. Crop growth 

and yield greatly depend on supply and availability of soil N. However, efficient 

utilisation of the applied N via fertilisers remains very low, that is around 20-40%. If 

nitrogen application and irrigation are not appropriately managed, significant amount 

of nitrogen could be lost. The fate of applied N should be studied quantitatively to 

determine the extent of negative impacts on the environment. Nitrogen 

transformation and distribution in rice-based cropping systems are too complex to 

accurately assess the effects of applied nitrogen fertiliser on the productivity of the 

succeeding crop within the cropping system.  Crop simulation models of APSIM-

Oryza can help synthesize this and other information and may provide a way of 

extrapolating this information to other regions of interest. However, models of rice-

based cropping systems of APSIM-Oryza are yet to be calibrated and validated to 

increase our confidence in simulating rice-based cropping systems over a sufficient 

period. 

 



 

Methodology

This chapter provides details of the materials and methods used in this study 

including details of experimental site and design, soil type, climate data and 

sampling method for lowland rice

crops.  

3.1  Site and climate

A field experiment 

legumes (details given later in this chapter) 

Station of the Assessment Institute for Agricultural Technology

Lombok island, West Nusa Tenggara Province (NTB) of Indonesia 

116°13′E, 150 m elevation) to evaluate water and nitrogen management strategies in 

the tropical lowland rice

the typical crop sequences

 

Figure 3.1 Map of Indonesia and Lombok Island where 
located (dot red). 
political-map.jpg). 

 

CHAPTER III 

Methodology of Field Experiment

This chapter provides details of the materials and methods used in this study 

including details of experimental site and design, soil type, climate data and 

sampling method for lowland rice-based cropping systems involving rice and legume 

climate  

experiment with lowland rice (Oryza sativa L. cv Cigeulis) and 

legumes (details given later in this chapter) was conducted at the Experiment

Assessment Institute for Agricultural Technology

Lombok island, West Nusa Tenggara Province (NTB) of Indonesia 

m elevation) to evaluate water and nitrogen management strategies in 

the tropical lowland rice-based cropping systems (Fig. 3.1). Rice

equences practiced in this region.  

Map of Indonesia and Lombok Island where the experimental site was 
 (Source:http://www.mapsofworld.com/indonesia/maps/indonesia
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of Field Experiment 

This chapter provides details of the materials and methods used in this study 

including details of experimental site and design, soil type, climate data and 

based cropping systems involving rice and legume 

L. cv Cigeulis) and 

at the Experimental 

Assessment Institute for Agricultural Technology (BPTP) in the 

Lombok island, West Nusa Tenggara Province (NTB) of Indonesia (08°35′Ν, 

m elevation) to evaluate water and nitrogen management strategies in 

. Rice–rice-legumes are 

 

the experimental site was 
(Source:http://www.mapsofworld.com/indonesia/maps/indonesia-
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Daily weather data consisting of maximum and minimum temperature, 

radiation and rainfall were collected from a weather station at the experimental site. 

The climate of this region is tropical and humid and is strongly influenced by the 

monsoon with a long-term annual average rainfall of 2376 mm. Approximately 70–

80% of the total rainfall is distributed during November-April (Fig. 3.2). The mean 

daily minimum air temperature ranged from 20.12°C in August to 24.0°C in 

December, while maximum temperature ranged from 29.98°C in July to 31.76°C in 

November. The low and high mean radiation ranged from 16.48 - 20.7 MJ m-2 day-1 

in November to March and from 22.04 - 25.03 MJ m-2 day-1 in April to October, 

respectively (Fig. 3.3). 

 

 
 

Figure 3.2 Average monthly rainfall and evaporation (ET) over 13 years (1997-2009) at 
the experimental site. 
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Figure 3.3 Average daily radiation (Radn), maximum (maxT) and minimum (minT) 
temperature over 13 years (1997-2009) at the experimental site. 
 
 

The soil at the experimental site is classified as a Typic Ustochrept (Soil 

Survey Staff, 2006). Selected physical and chemical properties of the soil at the 

experimental site are presented in Table 3.1. Soil texture was determined by 

sedimentation methods described by Gee and Bauder (1986). Soil texture within the 

top 100 cm at the experimental site varied with depth from sandy loam (within the 

upper 40 cm depth) to sand (at 70-100 cm depth). The sand and clay percentage of 

the soil varied within 56-90% and 4-14%, respectively with sand fraction increasing 

with soil depth while silt and clay fractions decreasing with depth. Soil bulk density 

also varied with depth in the range of 1.19-1.35 Mg m-3. The highest bulk density 

was found at 20-40 cm, indicating that compacted zone (hardpan) was established at 

the experimental site Soil organic carbon was determined following Walkley and 

Black method as described by Allison (1965) Organic carbon content in the upper 20 

cm soil was 1.61% and declined sharply to very low level (0.07%) at 70-100 m depth. 

This indicated that most of the organic carbon accumulated near the soil surface (0-

20 cm). Soil pH (1:5 soil-water suspensions) remained close to neutral (7.0-7.4). 

Cation exchange capacity (CEC) was determined using methods described by 

Rayment and Higginson (1992). The CEC was within a range of 6.71 - 17.31 cmolc 

kg-1  and was highest at soil surface (0-20 cm depth) and decreased with soil. The 

level of mineral nitrogen in the soil varied with depth ranging from 0.06 – 0.12%, 
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3.98 – 12.28 mg kg-1 and 3.77 – 6.76 mg kg-1 for total-N, NO3-N and NH4-N, 

respectively.  

 

Table 3.1 Properties of soil at various depths at the experimental site. 

Soil 
depth (cm) 

pH Total-N NO3
--N NH4

+-N P2O5 OC CEC 
(1:5) (%) ------------mg kg-1-------------- (%) cmolc kg-1 

0-20 7.24 0.12 12.281 6.759 90.77 1.61 17.31 
20-40 7.36 0.11 6.721 4.547 71.93 0.80 14.18 
40-70 6.97 0.08 5.071 4.270 40.59 0.09 8.12 
70-100 7.19 0.06 3.981 3.770 21.38 0.07 6.71 

Soil 
depth (cm) 

Soil fraction (%)  DUL BD Porosity  
Sand Silt Clay (%) g cm-3 (%) 

0-20 56 32 12 29.6 1.19 55.1 
20-40 73 13 14 27.2 1.35 49.2 
40-70 85 9 6 23.1 1.27 51.9 
70-100 90 6 4 20.9 1.23 53.4 

Notes: pH measured at 1:5 soil: water suspensions; OC = organic carbon; CEC = 
Cation Exchange Capacity; DUL = Drain Upper Limit (field capacity); BD = bulk 
density. Phosphate was analysed using Bray’s method. Porosity was calculated from 
Soil Bulk Density using; Porosity (%) = 1-(BD/2.65)*100. 

3.2  Rice experiment  

3.2.1  Experimental design  

The field experiments were conducted during October 2007 to November 

2009 over 6 cropping seasons to grow two crops of wet rice, dry rice and legumes. 

The cropping calendar for various seasons of rice in wet and dry seasons including 

growth stages for the field experiment, crop management and sampling activities is 

shown in Table 3.2. The experiment was based on a split-plot design consisting of 

three replicates of all treatments within a given block. Two irrigation treatments 

(referred to as CS and ASNS to indicate continuously submerged and alternately 

submerged and non-submerged treatments, respectively) were randomly allocated as 

main plots and three rates of N-fertilization (referred to as F0, F1 and F2 treatments 

to indicate the application of 0, 70 and 140 kg N ha−1, respectively) as subplots 

within each main plot (Figure 3.4).  
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Figure 3.4 Layout of the field experiment. CS = continuously submerged; ASNS = alternately submerged and non-submerged; F0, 
F1 and F2 = 0, 70 and 140 kg N ha−1 respectively. Arrows indicate inflow and out flow water  
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Plot size was 5 x 6 m2 and black polyethylene plastic sheets were inserted to 

a depth of 0.8 m from surface in the middle of the bund (mounds to separate 

adjoining plots) to minimise seepage of water and loss of fertiliser from plots. Bund 

size was 0.4 m height by 0.4 m width and distance between a block was 0.4 m for 

inflow and outflow irrigation.   

3.2.2  Field preparation  

Preparation of the rice plots started about one month before the rice was 

transplanted. The plots were first flooded for a few days and ploughed twice by hand 

with a hoe across the plots to disturb the soil within a depth of 15-20 cm. The soil 

was then puddled 3-5 days after ploughing and finally levelled using a levelling 

board. A space of 20 × 20 cm was marked and used at the time of transplanting rice 

seedlings. 

3.2.3  Rice planting  

Rice seeds of the high yielding inbred variety ‘Cigeulis’ were first pre-

germinated by soaking in water for 24 hours and placed under shade by covering the 

seeds with hessian (gunny) bags for 2 days. Pre-germinated seeds were then 

broadcast in nursery beds and covered with some decomposed manure. Once the 

seedlings were established, the nursery was irrigated to raise the water level 

gradually to accommodate the growing plant. This method of raising seedlings is 

referred to as wet-bed method (Basra et al. 2007). After 17 days, seedlings were 

removed by hand from the nursery and transplanted into experimental plots by hand 

at a spacing of 0.2 × 0.2 m with 1 seedling per hill. 

3.2.4  Fertiliser application  

Urea was used as nitrogen fertiliser and was split into 3 applications viz. 20% 

at 7 days after transplanting (DAT), 30% at 29-34 DAT, and 50% at panicle 

initiation (45-50 DAT). Nitrogen fertiliser rates were 0, 70 and 140 kg N ha-1 

hereafter referred to as F0, F1 and F2, respectively. The 140 kg N ha-1 was locally 

recommended N fertiliser application rates in the area of study. However, farmers 

usually apply 184-230 kg N ha-1 which is higher than the recommended rate 

(Wirajaswadi et al., 2002). Phosphorus and potassium fertilizers were applied to all 
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plots at the rates of 100 kg TSP (triple superphosphate) ha−1 and 50 kg KCl 

(potassium chloride) ha−1, respectively as basal fertiliser before transplanting of rice. 

3.2.5  Irrigation  

Each main plot was irrigated separately and the amount of water measured 

using V-notch weirs installed at the entry point of each main plot. Simplified 

discharge rate of V-notch weirs can be expressed as follows (US Bureau of 

Reclamation, 2001):  

 

 (3.1) 

 
where Q = flow rate ft3 s-1, C = effective discharge coefficient; h = head on the weir 

in ft; k = head correction factor at any notch angle. The head correction factor (k) and 

discharge coefficient (C) are both functions of notch angle (θ) as shown in Fig. 3.5. 

A schematic diagram of V-notch weir is shown in Fig. 3.6. Measurement of h over 

the duration of irrigation time (s) allowed calculating the volume of water applied 

during an irrigation event. Water depth of irrigation was calculated by dividing the 

volume of water applied by main plot area.  

A pump with discharge rates of 33 m3 h-1 was also installed to pump water in 

a storage pond close to the experimental site to irrigate the plots when water was not 

available at irrigation channel. The date and amount of irrigation applied were 

recorded.  

 

 

5/24.28 tan( 2) ( )Q C h kθ= × × × +
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Table 3.2 Cropping calendar for four rice growing seasons during 2007 – 2009 at the field experiment. 

Crop management and 
sampling activities 

Rice seasons 
Comments 2007-2008 

(wet season) 
2008  

(dry season) 
2008-2009 

(wet season) 
2009  

(dry season) 
Nursery sowing 06 Nov 07 14 Mar 08 15 Nov 08 13 Mar 09  

Basal fertiliser 20 Nov 07 30 Mar 08 1 Dec 08 29 Mar 09 
100 kg TSP ha−1 (triple super 
phosphate) and 50 kg KCl ha−1 

Transplanting 23 Nov 07 02 Apr 08 02-Dec 08 01 Apr 09 Plant spacing: 20 × 20 cm 
1st urea fertiliser applied 30 Nov 07 10 Apr 08 10 Dec 08 9 Apr 09 20% of total N fertiliser 
Floodwater sampling,  pH and 
temperature measurement 

30 Nov 10 
Dec 07 

10-20 Apr 08 10-20 Dec 08 9-19 Apr 09 
One before and 10 consecutive 
days after fertiliser application 

Soil and plant sampling at 
tillering 

31 Dec 07 1 May 08 2 Jan 09 30 Apr 09 Sampling taken each plot 

2nd urea fertiliser applied at 
tillering stage 

1 Jan 08 2 may 08 3 Jan 09 1 May 09 30% of total N fertiliser 

Floodwater sampling,pH and 
temperature measurement 

1-11 Jan 08 2-12 May 08 3-13 Jan 09 1-11 May 09 
before and 10 consecutive days 
after fertiliser application 

Soil and plant sampling at 
panicle initiation 

14 Jan 08 24 May 08 22 Jan 09 19 May 09  

3rd urea fertiliser applied at 
panicle initiation stage 

15 Jan 08 25 May 23 Jan 09 20 May 09 50% of total urea fertiliser 

Floodwater sampling ,  pH and 
temperature measurement 

15-25 Jan 08 
25 May – 4 
Jun 08 

23 Jan -2 Feb 
09 

20-30 May 09 
before and 10 consecutive days 
after fertiliser application 

Soil and plant sampling at 
flowering stage 

30 Jan-08 09 Jun 08 05 Feb 09 09 Jun 09  

Harvesting 05 Mar 08 16 Jul 08 12 Mar 09 11 Jul 09  
 



Chapter 3 
 

37 

 

Figure 3.5 Value of discharge coefficient (C) and head correction factor (k) for various 
notch angles of a V-notch weir (Boman et al., 2008)  

 

 

 

 

 

 

 

 

Figure 3.6 A schematic representation of V-notch weir installed in the experimental 
sites and associated measurements. 

For both CS and ASNS irrigation treatments, ponded water depths in the field 

were maintained between 0 - 2 cm within the first 7 days after transplanting (DAT). 

After this period, the treatments were introduced. For all plots of CS treatment, 

Irrigation in each block was applied in the morning to maximum 10 cm and allowed 

to reach about 0-1cm before re-irrigation. When water input from rainfall exceeded 

above the maximum ponding depth, the plots were drained to the desired water depth 

and regarded as surface runoff. The quantity of surface runoff in both CS and ASNS 

plots was estimated by subtracting rainfall with maximum ponding depth of each CS 

and ASNS treatment. 

For all plots under the ASNS treatment, maximum ponding depth of 5 cm 

was achieved and any excess rainfall was drained to maintain the desired ponding 

depth within the plot during rice growth period. ASNS plots remained without 

         θ 
h 

Water flow 
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submergence 4-6 times for approx. 5–7 days depending on antecedent rainfall. 

During this period, water depth was allowed to drop down to 10 cm below the soil 

surface although the soil remained saturated before re-irrigation.  

The depth of ponding was measured daily in the morning during the rice 

growth period using PVC stand pipes (15 cm diameter and 40 cm long) which were 

installed in each plot to a depth of 20 cm below the soil surface (Fig. 3.7). The 

bottom of the pipe was sealed was an end cap and was perforated with approx. 0.5-

cm diameter holes at spacing of 2-cm on the side at the bottom of the pipe. During 

non-submergence period in ASNS plots, the depth of water level reaching below soil 

surface was also recorded from inside the pipes.  

 

 

Figure 3.7 PVC pipes installed at all experimental plots to measure daily ponding 
depth and water depth below soil surface. 

The ground water table at the experimental site was measured daily using a 

well located 20 m from the experimental site. A long ruler was installed inside the 

well up to the soil surface and the depth of ground water table was recorded daily. 

The daily percolation rate of experimental sites was measured daily using a covered 

metal cylinder of 60 cm diameter inserted into soil to a depth of 25 cm. The cylinder 
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was initially filled with water and the difference in water level from the previous day 

indicated daily percolation rate (Figure 3.8). Floodwater from all plots was drained 

10 days before harvesting. McCauley and Way (2002) reported that there was no 

reduction in yield or milling quality of rice when the field is drained two weeks 

before harvesting rather than the common practice of draining four weeks after 50% 

heading.  

3.2.6  Pest and weed control  

All weeds and pests were controlled in the field experiment. Weeds were 

removed manually by hand. Carbofuran (carbamate as the active ingredient) was 

applied at a rate of 2.2 kg ha-1 at flowering stage of each season to control the out 

breaks of rice stem borers (Scirpophaga incertulas). 

 

 

 

Figure 3.8 Covered metal cylinder installed just outside of the experimental plots for 
the measurement of daily percolation rates for the experimental site. 1, Cylinder just 
installed; 2, cylinder covered to minimise evaporation; 3, observing water depth in 
cylinder.  

3.2.7  Sampling and measurements  

3.2.7.1  Floodwater sampling 

Floodwater of each rice plot was sampled the day before and 10 days after 

each application of N-fertiliser. Five subsamples of floodwater (100 ml) were 

collected from each plot and mixed to make a single sample. All floodwater samples 

were immediately brought to the laboratory and filtered with Whatman filter paper 

no. 42. The filtrate was analysed for NH4-N and NO3-N using the standard methods 

for examination of water and wastewater as described by Eaton et al. (1995).  

1 2 3 
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3.2.7.2  Soil sampling  

Soil was sampled at each stage of rice growth (tillering, panicle initiation, 

flowering and harvesting) concomitantly with plant sampling. Soil samples were 

taken from each plot with an augur for 0-20, 20-40, 40-70, 70-100 cm soil depths. 

The sampled hole was filled with clay from outside of the plots to maintain soil 

continuity within the plot. Representative subsamples of these soil samples were 

immediately analysed for NO3-N and NH4-N. The remains of the soil samples were 

air dried for further analyses for total-N and organic carbon. Additional 

representative soil samples from the experimental site were also collected to 

characterise physical and chemical properties. These measurements included soil 

texture, pH, EC, organic carbon, Cation Exchange Capacity (CEC), exchangeable 

cations (Ca+2, Na+, Mg+2 and K+), total-N, NO3-N, NH4-N, and Phosphate. These soil 

properties were reported early in Table 3.1.  

Moist soil samples when collected in the field were thoroughly mixed and 

representative subsamples were extracted immediately in the laboratory by shaking 

the soil samples with 2 M KCl solution (at a 1:6 soil:water ratio) for one hour on a 

mechanical shaker. The soil samples were filtered and the extracts were analysed for 

NH4–N and (NO3 + NO2)-N by a micro-Kjeldahl procedure (Mulvany, 1996). The 

remainder of the soil samples were air dried for 5-6 days before total-N and organic 

carbon analysed. Total-N was measured using micro-Kjeldahl procedure following 

digestion, distillation and titration procedures as described by Mulvaney (1996). 

Organic carbon of each soil sample was determined following Walkley and Black 

method as described by Allison (1965). Water content of subsamples in both moist 

and dried soil samples was estimated to apply correction for soil moisture. 

3.2.7.3  Plant sampling  

 For each rice crop, plant samples were collected four times: tillering (30 

DAT), panicle initiation (52 DAT), flowering (66 DAT), and harvesting (100 – 110 

DAT). Six hills of rice plants were cut at the ground level and separated into green 

leaf (blade), dead leaf, stem and panicle (if any) as components of the above ground 

biomass. Dry weight of each fraction of biomass was recorded after drying samples 

at 70οC for three days or constant as described by Miller (1998). Total-N 

concentration of each plant sample was determined using the same method as for 
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total-N of soil. N uptake of rice was estimated as the product of total-N 

concentration and biomass.  

3.2.7.4  Leaf area index  

Leaf area index (LAI) for rice was estimated using the direct method 

described by Breda (2003). A leaf area meter (Model CI-202, CID Bio-Science, Inc., 

USA) was used to measure leaf area of the green leaf fraction of plant biomass. 

Specific leaf area (SLA) was calculated by dividing leaf area by the dry mass of the 

green leaf sample. LAI was estimated by multiplying SLA by the total dry mass of 

leaves over a known ground area.  

3.2.7.5   Yield and productivity  

A 2 m × 2 m area within each plot was used to estimate grain yield in kg ha-1 

at 14% grain moisture content. Previous biomass sampling locations in all plots were 

avoided for accurate measurement of yield. From the 6-hills within the sampled area, 

grain samples were dried in a convection oven at 70οC for 2 days or to a constant 

weight for the estimation of 1000 grain weight, grain-N and grain-protein. Grain-N 

concentration was determined using the same method as for plant total-N. Grain-

protein concentration was converted from grain-N concentration to protein by 

multiplying it with the protein conversion ratio of 5.13 (Mosse, 1990). Nitrogen 

utilisation efficiency for the crops was computed by dividing the grain mass (kg 

grain) by the N content of plants (kg N) (Samonte et al., 2006). Water productivity 

(kg grain m-3 water) was calculated as grain yield divided by the total net water input 

(irrigation + rainfall-runoff) that was summed for the period of transplanting to 

harvest (Molden, 1997). 

3.3  Legume experiment  

The experiment with legume was conducted over 2 cropping seasons 

following the second rice crops during July to November in 2008 and 2009. Peanut 

(Arachis hypogaea L.) cultivar Garuda and soybean (Glycine max L. Merr.) cultivar 

Wilis were immediately planted after the harvest of the second season of rice. The 

cropping calendar for legumes including growth stages for the field experiment is 

shown in Table 3.3. The experiment was based on a split-plot design consisting of 
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three replicates of treatment within blocks similar to the experiment with rice. The 

main treatments, was two irrigation treatments CS and ASNS for rice, were 

substituted with peanut and soybean crops and the subplot involved three rates of N-

fertilisation (referred to as F0, F1 and F2 treatments to indicate 0, 12 and 24 

kg N ha−1, respectively). 

3.3.1  Soil preparation and legume crops cultivation 

The soybean plots were not cultivated as it is common practice in irrigated 

areas in this region. The peanut plots were ploughed and harrowed prior to peanut 

sowing. Certified seeds of peanut and soybean were sown with 2 seedlings per hill at 

a spacing of 30 × 20 cm for soybean and 40 × 20 cm for peanut. Sowing date of each 

crop in various seasons are given in Table 3.3. Rice straw was returned to each plot 

as mulch for both peanut and soybean. 

For Soybean, phosphorus (P) and potassium (K) fertilisers were applied 10 

days after sowing (DAS) at the rates of 75 kg TSP36 per ha and 50 kg KCl per ha, 

respectively (as locally recommended). Nitrogen fertiliser was applied according to 

the treatments schedule. N treatments for both soybean and peanut included three 

rates: 0, 12 and 24 kg N ha−1. For soybean, N treatments were applied as 30% at 10 

DAS, and 70% at 30 DAS. For peanut, all N fertiliser treatments, P and K fertilisers 

were applied at the rates of 100 kg SP36 per ha and 50 kg KCl per ha, respectively 

(as locally recommended) at10 DAT. Irrigation water was applied to prevent plants 

from water stress. The amount and time of irrigation was estimated from a lysimeter 

installed in experimental plots. All weeds and pests were controlled in the field 

experiment. Weeds were removed manually by hand. Insecticide Decis 1.5EC 

(Deltamethrin as the active ingredient) was applied at a rate of 150 ml ha-1 at 23 and 

32 DAS in 2008 and 2009 seasons to control pests during soybean and peanut 

growth periods.  
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Table 3. 3 Cropping calendar used for legume crops during the field experiment. 

Crop management and 
sampling activities 

2008 2009 Comments 
Peanut Soybean  Peanut Soybean   

sowing 19 July 08 19 July 08 19 July 09 19 July 09 
Spacing for peanut:40×20 cm; for 
soybean:30×20cm 

Basal and 1st N fertiliser  28 July 08 28 July 08 28 July 09 28 July 09 
N fertiliser applied at once for 
peanut and of 30% of total N 
fertiliser was applied for soybean 

Soil and plant sampling at 
Vegetative stage 

21 Aug 08 21 Aug. 08 20 Aug. 09 20 Aug. 09 Sampling taken each plot 

2nd urea fertiliser applied at 
vegetative stage 

 22 Aug. 08 
 

22 Aug. 09 
70% of total N fertiliser for 
soybean 

Soil and plant sampling at 
flowering 

3 Sep. 08 5 Sep. 08 30 Aug. 09 30 Aug. 09  

Plant sampling   10 Sep. 09 10 Sep. 09  
Plant sampling   20 Sep. 09 20 Sep. 09  
Plant sampling   30 Sep. 09 30 Sep. 09  
Plant sampling   10 Oct. 09 10 Oct. 09  
Harvesting 18 Oct. 08 24 Oct. 08 20 Oct. 09 24 Oct. 09  
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3.3.2  Plant sampling 

For each plot, plant samples were collected three times coinciding to the key 

growth stages of the crop. These included vegetative stage (30 DAS), reproductive 

stage (flowering: 45 and 48 DAS for peanut and soybean, respectively) and 

harvesting stage (91-93 DAS and 97 DAS for soybean and peanut, respectively). 

About 8-hill and 6-hill plant samples for soybean and peanut, respectively were 

taken from  sample areas of 0.50 m2 to determine crop biomass, leaf area index and 

total-N crops. The sampling and measurement procedures for these crops were 

similar to that for the rice crop.  

Soybean and peanut crops were harvested at physiological maturity and yield 

recorded at 11% moisture content. A 3 m × 2 m and 4 m×2 m area within each plot 

for soybean and peanut respectively were used to sample grain yield and converted 

to kg ha-1. In the 2009 legume crop season, additional plant samples were collected 

at 10-day intervals to estimate biomass and number and weight of root nodules. 

3.3.3  Soil sampling 

Soil was sampled at each growth stage of peanut and soybean, the same times 

with plant sampling that coincided with the vegetative, reproductive and harvesting 

stages. The soil sampling and measurement procedures for the legume seasons were 

similar to that for the rice crop. 

3.3.4  Nodulation  

The root systems of three hills of plants collected from each plot were gently 

taken using a core barrel (8 cm in diameter) to a depth of 20 cm. Samples were 

washed gently with water to remove soil. Root nodules were counted for each plant, 

air dried and weighted. Root nodule samples were collected at vegetative, flowering, 

pod filling, full pod fill and full seed growth stages for both peanut and soybean. 

3.4  Statistical analysis  

 Most data were subjected to analysis of variance (ANOVA) with irrigation or 

legume crops as mean plot treatment and N treatments as sub- plot treatments using 

the Genstat Software (Version 9.2.0.153, VSN International Ltd, Oxford). When one 

or more treatments had a significant effect on a measured parameter, least significant 

difference (LSD) was calculated to compare mean values of treatments. 
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CHAPTER IV 

Growth and yield of lowland rice on coarse soils in 

response to water-saving irrigation and nitrogen 

management strategies 

4.1 Introduction  

Rice is the staple food crop in Asia occupying 135 million hectares of land, 

over half of which is irrigated (Calpe, 2001; FAO, 1999; Kennedy et al., 2002). 

Since there has been a global decline in harvested area for rice during 1999 to 2005 

(FAOSTAT, 2005) and a growing need for rice to feed 4000 million people 

(Greenland, 1997) by 2015, there is an ever-increasing need and challenge to 

increase rice productivity. The possibility for expanding the area under rice-based 

farming systems is also limited due to increased competition for land and water from 

the urban and industrial sectors with the population growth within the major rice 

producing nations (Nguyen, 2006; Tuong and Bhuiyan, 1999). 

Most of the soils used to grow lowland rice (also referred to as paddy) have 

fine texture with low percolation rates that allow extended periods of submergence. 

These soils become anaerobic when submerged (flooded) that reduces nitrification 

allowing accumulation of NH4–N essential for growing lowland rice (De Data, 1995). 

However, with increasing demand for rice and other crops to support the growing 

population within major rice growing nations, coarse-textured soils are being used 

increasingly for both upland and lowland irrigated rice (Aulakh and Bijay-Singh, 

1997; Aulakh and Pasricha, 1997). It is difficult to maintain flooding in coarse-

textured soils over a long period due to inherently high soil permeability leading to 

high water percolation rates.  Development of appropriate irrigation strategies to 

maintain rice production with available water resources within the agricultural sector 

is a high national and global priority as rice production needs to increase by 70% 

over the current production levels by 2025 (Tuong and Bhuiyan, 1999). 

Conventional water management in lowland rice is aimed at maintaining 

continuously submerged (CS) conditions from transplanting to crop maturity. Water 
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and nitrogen managements in eastern Indonesia are generally similar to any other 

rice growing region in SE-Asia. Continuous submergence and broad application of N 

fertiliser at the farmer’s recommended rate is a general practice throughout the 

region. More rigorous examination of this practice is needed including comparing it 

to alternative practices such as maintaining intermittent nonsubmerged conditions 

over several days throughout the growing season (Bouman and Tuong, 2001). 

Systems of alternate submergence-nonsubmergence (ASNS; also known as alternate 

wetting and drying, AWD) conditions have been reported to maintain or even 

increase yield of rice in some parts of China (Li, 2001; Mao, 1993). However, 

similar benefits of ASNS systems have not been observed in the Philippines, India or 

Australia when compared with CS systems (Heenan and Thompson, 1984; 1985; 

Mishra et al., 1990; Tabbal et al., 2002; Tripathi et al., 1986). The success of ASNS 

systems possibly depends on other environmental conditions, such as soil type, depth 

to groundwater, the timing and duration of nonsubmerged condition, the nature of 

the rice cultivar, and crop management aspects including nitrogen fertilization 

(Bouman and Tuong, 2001; Tabbal et al., 2002, Tuong et al., 2005). Most of the 

experiments with ASNS systems have been conducted on clayey soils with a shallow 

ground water table. However, the hydrological and environmental conditions of 

coarse soils under which current and future rice-based cropping systems might be 

located is limited. Further studies will extend our knowledge of the response of rice-

based irrigated cropping systems to coarse textured soils where the competition for 

land with urban and industrial sectors is high. 

When rice is grown in areas with fine textured soils (e.g. silty clay loam) and 

shallow water tables (within 0.5 m from soil surface), rice yield with alternately 

submerged and non-submerged (ASNS) irrigation regimes is either similar or 

slightly lower than continuously submerged (CS) irrigation regimes (Belder et al., 

2004). In this situation, with ASNS type of irrigation regime, rice is not exposed to 

significant water stress due to capillary contribution from the shallow water table 

(Tuong et al., 2005). However, in areas with a deep water table and coarse textured 

soils, reduced capillary contribution of the water table to water used by the rice crop 

may reduce yield for ASNS water regime compared to CS. Soil water deficit within 

the crop’s root zone also contributes to yield reduction. A soil water potential <-20 

kPa within the top 10 cm depth has been reported to reduce yield significantly 

(Cabangon et al., 2003) while no adverse impact on yield was observed when the soil 
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water potential within 15-20 cm depth was maintained within -8 to -16 kPa (Hira et 

al., 2002). The aim of this study was to compare the relative effectiveness of ASNS 

and CS irrigation practices in maintaining productivity when it is combined with 

various N-fertilizer rates on a coarse soil with deep water table in the tropical region 

of eastern Indonesia using four rice growing seasons from October 2007 to July 2009.  

4.2 Materials and methods  

Full details of the field experiments related to this study are described in 

Chapter 3. Essential aspects of the experiment are briefly discussed below. The 

experiment consisted of a randomised split plot design with two irrigation 

treatments: CS and ASNSas main plot and three nitrogen fertiliser rates (0, 70 and 

140 kg N ha-1 hereafter referred to as F0, F1 and F2 respectively) as subplot 

treatments with three replications. In plots under the CS water irrigation, the ponding 

depth was allowed to fluctuate between 0-10 cm throughout the rice growth period, 

whereas for the ASNS irrigation treatment, the maximum ponding depth was 50 cm. 

Water irrigation was applied to maximum ponding depth in the morning when water 

depths were close to zero. Any rainfall occurring above maximum ponding level was 

drained during the growth period of rice. Plots under the ASNS treatment remained 

without submergence for around 5–7 days for 4-6 times during the growth period, 

depending on the amount and rainfall received. During this period, water ponded 

depth was allowed to drop down to 10 cm below the soil surface..  

The field experiment was conducted during October 2007 to July 2009 which 

consisted of two wet and dry seasons. First rice was planted in the wet season 

(transplanted on 23rd November 2007 and harvested on 5th March 2008). Plant and 

soil samples were taken at four main phenological stages of rice (tillering, panicle 

initiation, flowering and harvesting). Soil samples of four soil layers (0-20, 20-40, 

40-70 and 70-100 cm) were analysed for NH4-N, NO3-N, total-N, and organic 

carbon (OC). Plant samples were measured for dry biomass and the concentration of 

total-N. At harvesting stage, rice plants were sampled in an area of 100 m2 to obtain 

grain yield, which was converted to kg of grain yield ha-1 and presented at 14% grain 

water content. The second rice crop was transplanted at approximately one month 

after first harvest of the first rice crop at the end of the wet season, coinciding with 

the dry season (transplanted on 1st April 2008 and harvested on 16th July 2008). All 

cultural practices and sampling procedures were similar to the first rice season. The 
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cultural practices and sampling procedures were repeated for these seasons in the 

following year (2008-2009). All data were analysed with the Genstat software 

(Version 9.2.0.153, VSN International Ltd, Oxford). 

4.3 Results  

4.3.1 Weather  

Average daily weather data (minimum and maximum temperature, radiation 

and rainfall) during rice growth seasons are presented in Table 4.1. Cumulative 

rainfall during the wet season of 2007/2008 was more than three times the rainfall 

received during the dry season of 2008. Similarly, cumulative rainfall during the wet 

season of 2008/2009 was more than twice the rainfall received during the dry season 

of 2009. Table 4.1 shows that the climate of the experimental site is typical of a 

tropical and humid monsoon region and accounts for 70–80% of total annual rainfall 

during November to March/April. Seasonal year to year variation was changed to 

seasonal and inter annual variation. Seasonal and inter annual variation in radiation 

was also small, except that it was much lower during the rice dry season of 2009. 

However, the long term climate data (Chapter III) shows that radiation in the dry 

season was higher than in wet season while maximum and minimum temperatures 

were in a reverse pattern.  

Table 4.1 Average radiation maximum and minimum temperatures and total rainfall 
during the two wet and dry rice growing seasons. 

Seasons 
Radiation 

(MJ m-2 day-1), 

Maximum 
temperature 

(°C) 

Minimum 
temperature 

(°C) 

Rainfall 
(mm) 

2007/2008 (wet) 20.1 32.1 24.0 1051 

2008 (dry) 22.2 31.5 22.9 298 

2008/2009 (wet) 17.3 30.4 23.5 998 

2009 (dry) 14.3 31.7 20.5 409 

4.3.2 Ground water table  

Variation with the daily water table depth over time for the experimental site 

is presented in Fig. 4.1. In general, the water table remained close to the soil surface 



Chapter 4 
 

49 

at 470 cm during December to June due to the high rainfall during the wet season as 

described in Table 4.1. The water table dropped rapidly to around 520 cm thereafter 

from July and remained around a similar depth until mid October. Recovery of the 

water table after October 2008 could be due to rainfall which occurs usually during 

November to April. During the dry rice season, irrigation water of the rice field was 

supplied from an irrigation channel which may have contributed to the water table 

remaining close to soil surface. Since the irrigation channel was drained at the end of 

the rice growth period in the dry season (early July), a rapid drop in the depth of the 

water table to the lowest level principally occurred during the dry seasons.  

 

Figure 4.1 Daily fluctuation in groundwater table depth at the experimental site from 
23 November 2007 to 31 December 2008. 

4.3.3 Flood water dynamics during rice growth periods  

Daily variation in ponded water depth and rainfall for CS and ASNS 

irrigation treatments during the rice growing seasons of 2007-2008 and 2008-2009 

are shown in Figs. 4.2 and 4.3, respectively. Ponding depths for both CS and ASNS 

irrigation treatments remained within 0-2 cm in the first 7 DAT and drained at 10 

days before rice was harvested and irrigation treatments introduced between these 

periods. Water depth varied across rice seasons and irrigation treatments. There was 

a clear difference in the water regimes between the two irrigation treatments. In the 

CS irrigation treatment, water depth fluctuated from 0 – 10 cm throughout the rice 

400

440

480

520

560

W
at

er
 ta

bl
e 

de
pt

h 
(c

m
)

Date



Chapter 4 
 

50 

growing season. In the ASNS treated plots, there were periods without standing 

water for 5-7 days. Maximum water depth was less than 50 mm during rice growing 

seasons with minimum water depth of 64 mm, 79 mm, 50 mm, and 99 mm in 

2007/2008, 2008, 2008/2009 and 2009 rice growing seasons respectively. In ASNS, 

water depth dropped below the soil surface to a greater depth in dry seasons than in 

wet seasons. 

 

  

Figure 4.2 Variation in daily water depth and rainfall for CS and ASNS irrigation 
treatments during 2007/2008 (A) and 2008 (B) rice growing seasons. Negative value of 
water depth indicates presence of water level below soil surface. 
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Figure 4.3 Variation in daily water depth and rainfall for CS and ASNS irrigation 
treatments during 2008/2009 (C) and 2009 (D) rice growing seasons. Negative value of 
water depth indicates presence of water level below soil surface. 

Total water input during the wet seasons (2007/2008 and 2008/2009) was 

always higher than during the dry seasons (2008 and 2009) (Table 4.2) which was 

probably due to higher rainfall during the wet season than during the dry season. At 

all times, water input from irrigation was higher under CS than under the ASNS. 

Furthermore, percentage of days without ponding water in the ASNS treatment was 

higher in dry seasons than in wet seasons. Total water input into plots from irrigation 

and rainfall during the four growing seasons of rice ranged from 2053 to 2272 mm 
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for CS and from 1335 to 1590 mm for ASNS. These differences allowed irrigation 

water to be saved in the range of 36 – 44% with ASNS compared to CS irrigation 

regimes during 2007-2009. When combined with water captured from rainfall during 

the growing seasons, there was water saving of 23% to 35% during the four rice 

seasons. Mean percolation rate during 2007-2008 growing seasons was around 10.4 

mm and increased further to 17.1 mm day-1 during 2008-2009 growing seasons 

(details not given).  

Table 4.2 Water input for CS and ASNS irrigation treatments and water saved and 
days without ponding for ASNS during four rice growing seasons (2007-2009). 

Water input 
2007/2008 2008 2008/2009 2009 

CS ASNS CS ASNS CS ASNS CS ASNS 

Rainfall (mm)* 1051 1051 298 298 998 998 409 409 

Net rainfall (R, mm)# 1046 940 233 233 965 849 409 392 

Irrigation (I, mm) 1080 690 1820 1102 1234 689 1864 1198 

Total water input  
(I+R) 2126 1630 2053 1335 2199 1538 2272 1590 

Irrigation water saved 
with ASNS (%)  36  39  44  36 

Total water saved with 
ASNS (%)  23  35  30  30 

Days without ponding 

water in ASNS   22  35   28  32 

*, total rainfall during rice growth period; #, net rainfall retained within plots 

4.3.4 Water productivity at various irrigation and N fert iliser treatments  

Both irrigation treatments and N fertiliser application rates, and their 

interactions had a significant effect on water productivity of rice in all rice growing 

seasons (Table 4.3). The influence of irrigation treatments and N fertiliser 

application rates on water productivity over four rice growing seasons is presented in 

Fig. 4.4. Water productivity based on total water input (irrigation+rainfall) was 

highest with the ASNS and F2 combination of irrigation and N fertiliser treatment. 

Water productivity increased significantly as nitrogen fertiliser application increased.  
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Table 4.3 Variation in water productivity of rice as affected by various irrigation 
treatments (I) and N fertiliser application rates (F) during four seasons. CS is 
continuously submerged; ASNS is alternately submerged and non-submerged; F0, F1 
and F2 indicate the application of  0, 70 and 140 kg N ha-1, respectively; *, ** and *** 
indicate significant effects at P = 0.05, 0.01 and 0.001, respectively. 

Irrigation (I) Fertiliser 
(F) 

water productivity of rice (kg grain m-3water) 

2007/2008 2008 2008/2009 2009 

 F0 0.189 0.179 0.176 0.115 

CS F1 0.295 0.252 0.275 0.153 

 F2 0.369 0.302 0.343 0.188 

 F0 0.244 0.251 0.257 0.175 

ASNS F1 0.382 0.356 0.385 0.233 

 F2 0.475 0.433 0.482 0.286 

 Main plot (I) ** *** * ** 

F-test Subplot (F) *** *** *** *** 

 I×F ** * * * 

 

Water productivity in the ASNS treatment was significantly higher than that 

in CS treatment at given level of N fertiliser treatment. The mean water productivity 

ranged from 0.11 to 0.37 kg grain m-3 water and 0.25 to 0.48 kg grain m-3 water for 

CS and ASNS, respectively. Water productivity based on irrigation input was higher 

than based on total water input, ranging from 0.13 to 0.73 kg grain m-3 water for CS 

and 0.22 to 1.12 kg grain m-3 water for ASNS. Water productivity during the wet 

seasons (2007/2008 and 2008/2009) was slightly higher than during the dry season 

(2008 and 2009), probably due to less irrigation applied (Table 4. 3) and higher grain 

yield in the wet season than in the dry season (Table 4.5).  

 



 

Figure 4.4 The effects of 
application rates (F0, F1 and F2) on water productivity 
For specific water productivity component, similar letter(s) 
(2007/2008, 2008, 2008/2009 and 2009) indicate the difference between mean values to 
be less than LSD. LSD values for the interaction of irrigation×nitrogen on water 
productivity for four consecutive seasons were 0.02, 0.04, 0.02 and 0.02 kg grain m
water. Vertical bars indicate SE (n = 3).

4.3.5 Nitrogen uptake 

The effects of water and N fertil

rice growing seasons are presented in Table 4.4. N uptake was significantly 

influenced by nitrogen fertiliser but not by irrigation treatments. There was also no 

interaction effect of N fertiliser and irrigation t

uptake significantly increased as nitrogen fertiliser rates increased. In CS, nitrogen 

uptake ranged from 47 to 69 kg N

ha-1 for no fertiliser, 70

uptake ranged from 44 to 66 kg N

ha-1 for no fertiliser, 70

uptakes were higher in CS than in ASNS, the difference was not statistically 

ffects of irrigation treatments (CS and ASNS) and 
rates (F0, F1 and F2) on water productivity over four rice growing seasons.

For specific water productivity component, similar letter(s) for a given season
2008/2009 and 2009) indicate the difference between mean values to 

LSD values for the interaction of irrigation×nitrogen on water 
productivity for four consecutive seasons were 0.02, 0.04, 0.02 and 0.02 kg grain m
water. Vertical bars indicate SE (n = 3). 

Nitrogen uptake  

The effects of water and N fertiliser treatments on nitrogen uptake in four 

rice growing seasons are presented in Table 4.4. N uptake was significantly 

influenced by nitrogen fertiliser but not by irrigation treatments. There was also no 

interaction effect of N fertiliser and irrigation treatments on N uptake. Nitrogen 

uptake significantly increased as nitrogen fertiliser rates increased. In CS, nitrogen 

uptake ranged from 47 to 69 kg N ha-1, 83 to 111 kg N ha-1 and from 140 to 163 kg N 

for no fertiliser, 70 kg N ha-1 and 140 kg N ha-1, respectively. In ASNS, nitrogen 

uptake ranged from 44 to 66 kg N ha-1, 90 to 109 kg N ha-1 and from 139 to 162 kg N 

for no fertiliser, 70 kg N ha-1 and 140 kg N ha-1, respectively. Although nitrogen 

uptakes were higher in CS than in ASNS, the difference was not statistically 
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significant. Nitrogen uptake was higher during the wet season (2007/2008 and 

2008/2009) than during the dry seasons (2008 and 2009). 

Table 4.4 Variation in N-uptake of rice as affected by various irrigation treatments (I) 
and N fertiliser application rates (F) during four seasons of rice growth. . CS is 
continuously submerged; ASNS is alternate submerged and non-submerged; 0, 1 and 2, 
are 0, 70 and 140 kg N ha-1 respectively; values in the bracket are standard deviation. *, 
** and *** indicate significant at P = 0.05, 0.01 and 0.001, respectively. NS = not 
significant at P > 0.05. 

Irrigation (I) 
Fertiliser 

(F) 

N-uptake (kg N ha-1) 

2007/2008 2008 2008/2009 2009 

 F0 68.8 (12) 49.5 (3) 58.2 4) 47.3 (5) 

CS F1 111.2 (2) 82.9 (4) 107.7 (4) 96.6 (4) 

 F2 163.8 (4) 152.4 (6) 157.0 (12) 140. (5) 

 F0 65.7 (5) 47.1 (6) 53.1 (4) 44.2 (4) 

ASNS F1 109.4 (3) 91.1 (8) 98.7 (5) 90.4 (13) 

 F2 162.0 (11) 142.8 (5) 146.7 (7) 138.7 (5) 

 Main plot (I) NS NS NS NS 

F-test Subplot (F) *** *** *** *** 

 I×F NS NS NS NS 

4.3.6 Crop growth and development  

The effects of irrigation and nitrogen fertiliser treatments on above ground 

biomass at different phenological stages of rice over four growing seasons are shown 

in Fig. 4.5. Irrigation treatments did not significantly affect biomass accumulation 

during development of the rice crop in any of the four rice seasons studied. Biomass 

in each phenological stage of rice increased as N fertiliser application rates increased. 

In all rice growing seasons, the crop matured 4-5 days earlier in F0 than in F1 and F2 

N treatments. In most cases, above ground biomass was higher in CS than in ASNS 

during all rice seasons, although this difference was not statistically significant. 

Above ground biomass was higher in wet seasons (2007/2008 and 2008/2009) than 

in the dry season (2008 and 2009). 
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Figure 4.5 Effects of irrigation treatments (CS and ASNS) and nitrogen fertiliser rates 
(F0, F1 and F2) on above ground biomass at various stages of growth during four rice 
growing seasons of 2007/2008, 2008, 2008/2009 and 2009.    

The effects of irrigation treatments and N fertiliser on leaf area index (LAI) 

at various growth stages of rice over four growing seasons are shown in Fig. 4.6. 

Nitrogen fertiliser application rates significantly influenced LAI in each 

phenological stage of plant growth regardless of irrigation treatments. Mean LAI 

ranged from 0.7 to 3.0 for F0, 0.9 to 5.6 for F1 and from 1.3 to 7.0 for F2. The 

highest LAI was found at the flowering stage in the F2 treatment during the 

2007/2008 rice growing season. LAI was higher in CS than in ASNS treatments 

during panicle initiation and flowering stages in the F2 for all rice growing seasons 

except for 2007/2008 season, although the differences were statistically not 

significant. In most cases, LAI in the CS irrigation treatment was higher than in the 

ASNS irrigation treatments at lower N fertiliser application rates (F0 and F1) during 

the flowering stage in all rice growing seasons except for F0 during 2008/2009 

season.  
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Figure 4.6 Effects of irrigation treatments (CS and ASNS) and nitrogen fertiliser rates 
(F0, F1 and F2) on leaf area index at different stages of rice growth in four rice 
growing seasons. 

4.3.7 Yield and grain quality 

Rice yield (expressed at 14% of moisture content) and 1000 grain weight for 

various nitrogen fertiliser and irrigation treatments over four rice growing seasons 

are presented in Table 4.5. Large variation in grain yield was mainly due to yield 

responses to various treatments. Both rice yield and 1000 grain weight of rice 

significantly increased as N fertiliser application rates increased, but not by irrigation 

treatments. Grain yield ranged from 3550 to 4025 kg ha−1, 5042 to 6287 kg ha−1 and 

5833 to 7842 kg ha− 1 in F0, F1 and F2, respectively regardless of irrigation 

treatments. Grain yield during the wet season was higher than during the dry season. 

There was no interaction effect of irrigation treatments and N fertilisation on rice 

yield and 1000 gram weight of rice. Rice yield in SC was slightly higher than that in 

ASNS for about 1 to 5% during the four rice growing seasons although these 

differences were not significant. However, total water input in ASNS was 

significantly lower than in CS in all rice growing seasons (Table 4.2). 
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Table 4.5 Effects of irrigation treatments (I) and nitrogen fertiliser application rates 
(F) on grain yield and 1000 grain weight in four rice growing seasons. CS = 
continuously submerged; ASNS = alternate submerged and non-submerged; 0, 1 and 2, 
= 0, 70 and 140 kg N ha-1 respectively; *, ** and *** indicate significant at P = 0.05, 
0.01 and 0.001, respectively; NS = not significant at P > 0.05.  

Irrigation (I) Fertiliser 
(F) 

Yield (kg ha-1) 

2007/2008 2008 2008/2009 2009 

 F0 4025.0 3683.3 3875.0 3750.0 

CS F1 6266.7 5175.0 6041.7 5000.0 

 F2 7841.7 6208.3 7541.7 6166.7 

 F0 3975.0 3550.0 3958.3 3583.3 

ASNS F1 6225.0 5041.7 5916.7 4750.0 

 F2 7741.7 6133.3 7416.7 5833.3 

 Main plot (I) NS NS NS NS 

F-test Subplot (F) *** *** *** *** 

 I×F NS NS NS NS 

Irrigation (I) Fertiliser 
(F) 

1000 grain weight (gram) 

2007/2008 2008 2008/2009 2009 

 F0 23.1 26.4 27.2 26.7 

CS F1 25.0 27.5 28.6 27.5 

 F2 25.3 28.6 29.1 28.2 

 F0 22.9 26.7 27.3 26.6 

ASNS F1 25.0 27.7 29.1 27.5 

 F2 25.4 28.4 29.6 28.3 

 Main plot (I) NS NS NS NS 

F-test Subplot (F) ** * ** ** 

 I×F NS NS NS NS 

 

The effects of irrigation treatments and N fertiliser application rates on total 

grain-N and protein content of rice are presented in Table 4.6. There was a 

significant effect of N fertiliser treatments on total N concentration in grain and 

protein content of rice on four growing seasons of rice. Total grain-N and protein 

contents increased as N fertiliser application rates increased. The interaction of 

irrigation treatments with N fertiliser had no significant effect on either total N 
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concentration in grain or protein content of grain. Although grain-N and protein 

content of grain tended to be higher under CS than under ASNS irrigation treatments, 

the differences were not significant and total grain-N and protein content tended to 

higher in the wet season than in the dry season. 

Table 4.6 Variation in protein contents and total grain-N of rice as affected by 
irrigation treatments (I) and N fertiliser applicat ion rates (F) for four rice growing 
seasons. CS = continuously submerged; ASNS = alternate submerged and non-
submerged; F0, F1 and F2, = 0, 70 and 140 kg N ha-1 respectively; *, ** and *** 
indicate significance at P = 0.05, 0.01 and 0.001, respectively; NS = not significant. 

Irrigation (I) Fertiliser 
(F) 

Protein (%) 

2007/2008 2008 2008/2009 2009 

 F0 5.77 6.32 6.59 6.07 

CS F1 6.50 7.42 7.03 7.32 

 F2 7.16 8.42 7.74 8.91 

 F0 5.7 5.98 6.43 5.74 

ASNS F1 6.17 7.33 7.13 7.20 

 F2 7.01 8.10 7.65 8.49 

 Main plot (I) NS NS NS * 

F-test Subplot (F) *** *** *** *** 

 I×F NS NS NS NS 

Irrigation (I) Fertiliser 
(F) 

Total grain-N (%) 

2007/2008 2008 2008/2009 2009 

 F0 0.97 1.06 1.11 1.02 

CS F1 1.09 1.25 1.18 1.23 

 F2 1.20 1.41 1.30 1.50 

 F0 0.96 1.01 1.08 0.96 

ASNS F1 1.04 1.23 1.20 1.21 

 F2 1.18 1.36 1.29 1.43 

 Main plot (I) NS NS NS * 

F-test Subplot (F) *** *** ** *** 

 I×F NS NS NS NS 
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4.4 Discussion  

The study has clearly shown that the use of alternative submerged and non-

submerged (ASNS) irrigation in coarse soils did not result in unusually dry soil 

conditions as compared to the continuously submerged (CS) irrigation system. The 

impact of ASNS on yield and yield components was minimal and did not 

significantly differ from the CS treatment. However, average  water saved with 

ASNS ranged from 36% to 44% compared with CS.  

The differences in yield and yield components were significant with various 

N application rates without a strong influence of irrigation treatments. This is 

consistent with previous studies of Belder et al. (2004), Bouman and Tuong (2001) 

5and Qi Jing et al. (2007). Although surface ponding of water in the ASNS varied 

considerably from the CS irrigation treatment, the soil remained close to saturation 

condition as the level of water did not drop 10 cm below the soil surface (Figure 4.2) 

before the next irrigation was applied. Bouman and Tuong (2001) argued that 

drought effects in lowland rice can occur when soil water content drops below the 

saturation level. Results from this study were found to be similar to the studies of 

Belder et al. (2004) for a soil of high clay content (silty clay) with percolation rates 

of 1-4.5 mm per day and a shallow ground water table. They reported LAI in ASNS 

water regime was lower than that in CS at the panicle initiation and flowering stage 

at the N level of 180 kg/ha. This reduction was thought to be due to reduced leaf 

expansion as a result of reduced soil water potential from 0 to -10 kPa. Result of this 

experiment also showed LAI under ASNS to be lower than under CS at panicle 

initiation and flowering stages with N supplied at the rate of 140 kg ha-1, but these 

were not significantly different. This indicates that leaf expansion and its effect on 

yield may not be as significant as previously thought by allowing soil water content 

to drop below saturation level during non submergence periods. This is supported by 

studies of Lu et al. (2000) who reported significant decrease in LAI when soil water 

potential dropped down to -10 kPa under ASNS irrigation treatment without 

significantly affecting dry matter biomass and grain yield. Similar results have been 

reported for soil of heavier textures, e.g. silty clay loam (Cabangon et al., 2001). 

Although the soil at this experimental site was of light texture i.e. sandy loam in the 

top of 40 cm depth and sandy soil layer below 40 cm depth, there was a hardpan 
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layer within 20-30 cm depth that might have contributed to reducing percolation 

rates.  

4.5 Concluding remarks 

 This study indicates that the ASNS treatment on coarse soil could result in a 

water saving of 36-44% compared with CS treatment without significantly reducing 

biomass, yield and components of yield. Mean water productivity in the ASNS was 

52% higher than that in the CS irrigation treatment. Success in the ASNS treatment 

in maintaining soil moisture close to saturation without significant interactive effects 

with N-treatments, suggest that these results may be considered as typical for well-

drained soils with deep ground water tables, irrigated lowlands in eastern Indonesia. 
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CHAPTER V 

Nitrogen dynamics in rice-based cropping systems 

under irrigation and nitrogen fertiliser management 

practices 

5.1 Introduction 

Nitrogen is one of the most critical nutrient elements limiting growth in most 

rice-growing soils around the world (Smil, 1999). Improved understanding of the 

availability of N from the native organic N sources and the fate of added N fertiliser 

should aid in developing innovative N management practices and an increase in the 

efficiency of fertilizer (De Datta, 1995). Nitrogen uptake patterns in rice over the 

growing season depend on the availability of N from soil and fertiliser sources 

(Bufogle et al., 1997) and can increase significantly with fertiliser application 

(Guindo et al., 1994) and increasing amount of fertiliser N available (Bufogle et al., 

1997).  

In most of the tropical rice lowlands including eastern Indonesia, rice is 

planted once or twice during early wet to early dry seasons in continuously flooded 

condition. Furthermore, farmers sometimes plant three rice crops each year in the 

same field when irrigation water is available (Cassman and Pingali, 1995). Optimal 

productivity of such an intensive rice production system is dependent on relatively 

large inputs of inorganic N-fertiliser as grain yield is closely correlated with N 

uptake (Cassman et al., 1993). Despite the importance of N-fertiliser with 

productivity, the amount of N fertilizer applied by farmers and the native soil-N 

supply are not well matched. This imbalance contributes to low N fertiliser use-

efficiency in these production systems (Cassman et al., 1996; Olk et al., 1999). 

Common soil management practices that affect N cycling in these cropping 

systems are the incorporation of crop residues in puddled soil under mostly 

anaerobic conditions, repetitive cropping in flooded soil with or without an upland 

crop rotation, or fallowing soil drying during  a week to three months between rice 

crops. Long-term experiments indicate that continuous cropping of irrigated rice may 
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cause a decline in soil N supply over time although soil organic carbon and total soil 

nitrogen are conserved or even increased occasionally (Cassman et al., 1995; 

Dobermann et al., 2000). 

Following the harvest of second season of rice, the field usually reverts to dry, 

aerobic condition after a prolonged period of anaerobic conditions during the growth 

of two rice crops. During the dry season, the fields are usually planted with legumes 

such as soybean, peanut, maize and green bean as cash crops. Rotation with some 

legume crops in aerated soil conditions together with tillage are likely to influence C 

and N cycling, particularly N availability. However, information on the magnitude of 

these effects for irrigated lowland rice systems is not well documented (Cassman et 

al., 1998).  

The behaviour of soil nitrogen under wet soil conditions of lowland rice is 

markedly different from its behaviour under dry soil conditions. Under anaerobic 

conditions during flooding, the soil tends to accumulate NH4-N and instability of 

NO3-N, results in less N for organic matter decomposition, less efficient in using 

applied N, amoniacal-N fixation by clays and loss of N via volatilisation, leaching, 

seepage and nitrification (De Datta, 1995).  

Under flooded conditions, most N is available to rice to be taken up is 

ammonium form. Under alternate submerged and non-submerged (ASNS) conditions, 

nitrate can be formed during non-submerged periods. Tabbal et al. (1992) showed 

that the level of ammonium in the soil was lower, and that of nitrate was higher in 

ASNS than in flooded rice fields. Upon subsequent submerged conditions, nitrate 

could be leached or undergo denitrification losses making total N losses to be higher 

under ASNS than under conventional flooding. In contrast, Belder et al. (2004) 

found N uptake and recoveries were similar under flooded and ASNS conditions 

when the experiment was conducted under the influence of shallow groundwater 

tables that kept the soil relatively wet during non-submerged periods. However, there 

is limited information on nitrogen dynamics when the soil is fully or partly 

submerged for some time and the soil remains mainly saturated during the 

nonsubmergence periods in coarse-textured soils with a relatively deep groundwater 

table. Further research is needed to determine the level of “dryness” in ASNS that 

does not reduce N-use efficiency (Tuong et al., 2005).  

The objective of this study was to evaluate the effects of irrigation and N 

fertiliser management practices on the dynamics of nitrogen (NH4-N and NO3-N) 
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during rice growth over two years as part of the rice-rice-legume crop sequences in 

the tropical environment. There is also a need to capture N dynamics in order to test 

the ability of the models to incorporate the related processes. 

5.2 Materials and methods  

Full details of the materials and methods related to this study are given in 

Chapter 3. In brief, the field experiment was conducted on a sandy loam soil at an 

irrigated rice field of the Research Station of Assessment Institute for Agricultural 

Technology NTB Lombok Indonesia. Two irrigation treatments (continuously 

submerged and alternate submerged and non-submerged, hereafter referred to as CS 

and ASNS, respectively) and three nitrogen fertiliser rates (0, 70 and 140 kg N ha-1 

hereafter referred to as F0, F1 and F2 respectively) were arranged in a randomised 

split plot design as main plot and subplot respectively with three replications. The 

field experiment was conducted during October 2007 to July 2009 involving two 

wet- (October - March) and two dry-seasons (April – July). First rice was planted in 

wet season (transplanted on 23rd November 2007 and harvested on 5th March 2008). 

Ponding depth under the CS irrigation treatment was allowed to fluctuate 

between 0-10 cm throughout the rice growth period. In the ASNS irrigation 

treatment, maximum ponding depth was 5 cm and any rainfall occurred above that 

level during rice growth was drained and remained without submergence for around 

5–7 days for 4-6 times during the season. During this period, water level was 

allowed to drop down to 10 cm below the soil surface before re-irrigation took place. 

Floodwater of each rice plot was sampled one before and 10 days after N fertiliser 

application. Five sub-samples of floodwater (100 ml each) were collected from each 

plot and mixed to make a single sample. All samples were brought to the laboratory 

and immediately analysed for NH4-N and NO3-N. Soil samples were collected at 

four main phenological stages of rice (tillering, panicle initiation, flowering and 

harvesting) from 0-20, 20-40, 40-70 and 70-100 cm soil depths and analysed for 

NH4-N, NO3-N, total-N, and organic carbon (OC). The second rice crop was 

transplanted at the end of wet season to dry season (1st April - 16th July 2008). The 

crop management and sampling procedures were similar to the first rice season. 

Similar crop management and sampling procedures were adopted for the second year 

of 2008-2009 experiment. Data were analysed using Genstat software (Version 

9.2.0.153, VSN International Ltd, Oxford). 
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5.3 Results and discussion  

5.3.1 NH4-N dynamics in soil under various irrigation and N fertiliser 

treatments  

The effects of irrigation and N fertiliser treatments on the NH4-N 

concentration in soil during four rice growth seasons (2 wet seasons in 2007/2008 

and 2008/2009 and 2 dry seasons in 2008 and 2009) at various soil layers and rice 

phenological stages are presented in Table 5.1. The seasons chronologically of 1st 

wet season of 2007 – 2008, 2nd dry season of 2008, 3rd wet season of 2008 – 2009 

and 4th dry season of 2009 will be referred to as rice I, II, III and IV respectively.  

Increased N fertiliser application rates had a significant effect on NH4-N 

concentration in soil mainly in the top 20 cm depth in all four rice seasons and its 

influence mostly less prominent beyond the first soil layer in early stages of rice 

growth. Furthermore, significant influences of N fertiliser on NH4-N concentration in 

soil were pronounced as development of rice growth progressed. Irrigation 

treatments had a much smaller influence than N fertiliser treatments on soil NH4-N 

concentration in all rice seasons. In rice III and IV, irrigation treatment significantly 

influenced NH4-N concentration in the top of 20 cm of soil mostly in the middle of 

growth periods (panicle initiation and flowering stages and harvesting stage in rice 

III). The interactive effect of irrigation and N fertiliser treatments on NH4-N 

concentration in soil was observed on a rare occasion (only at flowering in the rice 

season III for 40-70 cm depth).  

Figure 5.1 shows the variation of NH4-N concentration at various soil depths 

and rice growth stages as affected by N fertiliser treatments during rice I and II. 

NH4-N concentration in soil increased as N fertiliser application rates increased and 

accumulated mainly in the first 20 cm soil depth. The concentration of NH4-N in soil 

was higher at tillering stage (33 days after transplanting, DAT) due to the application 

of first split of 20 % of total N fertiliser rate at 7 DAT and decreased at panicle 

initiation (53 DAT) although second split of 30% of total N fertiliser rate was 

applied at 34 DAT. At flowering stage (63 DAT), NH4-N concentration in soil 

increased again due to the application third split of 50 % of total N fertiliser at 54 

DAT and it decreased at harvesting stage. The decrease of soil NH4-N concentration 

was probably due to uptake by the rice plants (Chapter IV, section 4.3.4) that 

increased as N fertiliser application rates increased.  
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Table 5.1 Summary of analysis of variance (ANOVA) for the effects of irrigation (I) 
and N fertiliser (F) treatments on NH4-N concentration in soil at various soil depths 
and growth stages of rice over four seasons. Significance of treatment effects is denoted 
as ‘***’ for p ≤0.001; ‘**’ as p ≤ 0.01; ‘*’ for p ≤ 0.05 and ‘NS’ for not significant. 

Soil layer 
(cm) 

Rice wet season (2007-2008) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 NS ***  NS NS *** NS NS ***  NS NS ***  NS 
20-40 NS NS NS NS *** NS NS ***  NS NS * NS 
40-70 NS NS NS NS NS NS NS * NS NS ** NS 
70-100 NS NS NS NS NS NS NS NS NS NS ***  NS 

Soil layer 
(cm) 

Rice dry season (2008) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 NS ***  NS NS *** NS NS ***  NS NS ***  NS 
20-40 NS NS NS NS * NS NS ***  NS NS ***  NS 
40-70 NS NS NS NS NS NS NS ***  NS NS ***  NS 
70-100 NS NS NS NS NS NS NS NS NS NS ***  NS 

Soil layer 
(cm) 

Rice wet season (2008-2009) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 NS ***  NS * *** NS * ***  NS * ***  NS 
20-40 NS ***  NS NS *** NS NS ***  NS NS ** NS 
40-70 NS ** NS NS * NS NS ***  * NS ***  NS 
70-100 NS NS NS NS NS NS NS ** NS NS ***  NS 

Soil layer 
(cm) 

Rice dry season (2009) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 NS ***  NS * *** NS * ***  NS NS ***  NS 
20-40 NS ***  NS NS *** NS NS ***  NS NS ***  NS 
40-70 NS NS NS NS ** NS NS ***  NS NS ***  NS 
70-100 NS NS NS NS * NS NS ** NS NS ** NS 
 

The increased N-uptake by rice crop with increases in N fertiliser application 

rates has also reported in a number of previous studies (Arth and Frenzel, 2000; 

George et al., 1993; Ta and Ohira, 1982) although NH4-N can be lost via NH3 

volatilization and other gaseous form of N via nitrification and denitrification 

(Adhya et al., 1996; Smith and DeLaune, 1984). Keerthisingshe et al. (1985) 

reported that application of ammonium fertiliser clearly increased exchangeable and 
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non exchangeable forms of soil NH4
+ in field experiments conducted in three sites in 

major rice growing areas in the Philippines. 

In the current experiment, N fertiliser application rates significantly increased 

NH4-N concentration in deeper soil layers as rice growth progressed, indicating that 

the applied of N fertiliser was transported to lower soil layers. At panicle initiation 

stage, NH4-N of soil significantly increased with 0-40 cm soil depth as N fertiliser 

increased but not beyond this zone. Furthermore, soon after flowering, N fertiliser 

treatments strongly increased the NH4-N concentration throughout 0-70 cm soil 

depth. Any increase of NH4-N concentration in soil within 20-70 cm soil depth was 

under N fertiliser rate at flowering stage. At harvest, significant increased NH4-N 

concentration at all soil depths occurred under F2 but not for F0 and F1.  

During rice II, the trend of soil NH4-N concentration was similar to that for 

rice I. However, the influence of N fertiliser application rates on NH4-N 

concentration in soil in rice II was greater than in rice I, while the amount of soil 

NH4-N concentration in rice II (dry rice season of 2008) was lower than in rice I 

(rice wet season of 2007/2008). The high concentration of soil NH4-N during wet 

season period could be due to mineralisation of soil organic matter and plant residues 

left in the field from previous planting. Similar results were also found by Phongpan 

and Mosier (2003) where NH4-N accumulated in wet season was higher than in dry 

season in Central Plain region of Thailand. Low soil NH4-N concentration during the 

dry season in lowland rice cropping systems in the Philippines was also recorded by 

George et al. (1994) and Tripathi et al. (1997). 

The variation of soil NH4-N concentration at various soil depths and rice 

growth stages as affected by N fertiliser treatments during rice wet season 2008/2009 

(Rice III) and dry season 2009 (Rice IV) are presented in Fig. 5.2. The trend of soil 

NH4-N concentration in rice III and IV seasons were almost similar to rice season in 

rice I and II. N fertiliser application rates increased NH4-N concentration in soil in 

all rice growth periods in various soil layers. The interactive effect of irrigation and 

N fertiliser treatments on NH4-N concentration in soil was not significantly different 

during rice growth periods in the second year of field experiment. However, NH4-N 

concentration in soil was greater in the first year of rice seasons (2007-2008) than in 

the second year of rice seasons (2008-2009). In both years rice cropping cycles of 

2007-2008 and 2008-2009 showed that NH4-N concentration in soil was higher in 

the surface soil layer (0-20 cm) and less prominent beyond the soil surface layer. A 
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similar result was found by Aulakh el at. (2000) where soil NH4-N concentration was 

generally greatest in surface layer (0-15) and less effect below surface layer on a 

sandy loam soil in the Punjab of India. They also found that rapid distribution of 

applied N fertiliser to lower soil depths in irrigated porous soil was evident where the 

amount of NH4-N differed significantly between 0 N and 120 kg N ha-1 fertiliser 

treatments.  

The influence of irrigation treatments on NH4-N concentration in soil at 0-20 

cm soil depth in the second year of the rice season 2008-2009 at various 

phenological stages are presented in Fig. 5.3. Soil NH4-N concentration was higher 

in CS than in ASNS from panicle initiation to harvesting stages in rice III and at 

panicle initiation and flowering stages in rice IV. This was probably due to the 

effects of non-submergence periods in the middle of rice growth that caused NH4-N 

in soil to be transformed to NO3-N via nitrification (Reddy and Patrick, 1986; 

Aulakh and Bijay-Singh, 1997). 
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Figure 5.1 Influence of N fertiliser (F0 = 0 kg N ha-1); F1 = 70 kg N ha-1 and F2 = 140 kg 
N ha-1) on NH4-N concentration in soil in various soil depths at tillering (A), panicle 
initiation (B), flowering (C) and harvesting (D) stages in rice wet season 2007/2008 (2). 
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Figure 5.2 Influence of N fertiliser ((F0 = 0 kg N ha-1); F1 = 70 kg N ha-1 and F2 = 140 
kg N ha-1) on NH4-N concentration in soil in various soil depths at tillering (A), panicle 
initiation (B), flowering (C) and harvesting (D) stages in rice wet season 2008/2009 (4). 
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Figure 5.3 Influence of irrigation treatment (CS = continuously submerged and ASNS 
= alternately submerged and non-submerged) on NH4-N concentration in soil at 0-20 
cm soil depth at panicle initiation (PI), flowering (F) and harvesting (H) stages in rice 
reasons of 2008/2009 and 2009. For specific NH4-N concentration in soil, similar 
letter(s) within the set of phenological stages (PI, F, H, PI and F) indicate that the 
difference between mean values are less than LSD. LSD values in each phenological 
stages were 0.049, 0.046, 0.036, 0.048 and 0.048 mg kg-1, respectively.  

5.3.2 NO3-N dynamics in soil under various irrigation and N fertiliser 

treatments  

The effects of irrigation and N fertiliser treatments on NO3-N concentration 

in soil during four rice seasons (2 wet seasons of 2007/2008 and 2008/2009 and 2 

dry seasons of 2008 and 2009) at various soil depth and phenological stages are 

presented in Table 5.2. NO3-N concentration in soil was highly effected by N 

fertiliser application rates in most soil layers in all rice growing seasons. Irrigation 

treatment had no effect on NO3-N concentration in soil in rice I, while in rice II, III 

and IV, irrigation treatment significantly influenced NO3-N concentration in the top 

20 cm soil depth mostly during the middle of growth periods (panicle initiation and 

flowering stages and only at harvesting stage in the rice III for 70-100 cm depth). 

The interactive effect of irrigation and N fertiliser treatments on NO3-N 

concentration in soil was observed on rare occasion (only at tillering stage in the rice 

II season of rice for 20-40 cm depth).  
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Table 5.2 Summary of analysis of variance (ANOVA) for the effects of irrigation (I) 
and N fertiliser (F) treatments on NO3-N of soil in various soil layers and growth stages 
of rice crop in various seasons. Significance of treatment effects is denoted as ‘***’ for 
p ≤0.001; ‘**’ as p ≤ 0.01; ‘*’ for p ≤ 0.05 and ‘NS’ for not significant.   

Soil layer 
(cm) 

Rice wet season (2007/2008) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 NS ***  NS NS ***  NS NS *** NS NS ** NS 
20-40 NS NS NS NS ***  NS NS *** NS NS * NS 
40-70 NS NS NS NS * NS NS NS NS NS ** NS 
70-100 NS NS NS NS NS NS NS *** NS NS ***  NS 

Soil layer 
(cm) 

Rice dry season (2008) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 NS ***  NS * ***  NS * ***  NS NS ***  NS 
20-40 NS ***  * NS ** NS NS ***  NS NS ** NS 
40-70 NS NS NS NS ***  NS NS ** NS NS ***  NS 
70-100 NS NS NS NS ** NS NS ***  NS ** ***  NS 

Soil layer 
(cm) 

Rice wet season (2008/2009) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 NS ***  NS * ** NS * ***  NS NS ***  NS 
20-40 NS ***  NS NS ***  NS * ***  NS NS ***  NS 
40-70 NS ** NS NS NS NS NS ** NS NS ***  NS 
70-100 NS ***  NS NS ***  NS NS *** NS NS ***  NS 

Soil layer 
(cm) 

Rice dry season (2009) 

Tillering Panicle initiation Flowering Harvesting 
I F I×F I F I×F I F I×F I F I×F 

0-20 * ***  NS * ***  NS ** ***  NS NS ***  NS 
20-40 NS ***  NS * ***  NS * ***  NS NS ***  NS 
40-70 NS ***  NS NS * NS NS ** NS NS ***  NS 
70-100 NS ** NS NS * NS NS NS NS NS ***  NS 
 

Figure 5.4 shows the variation of soil NO3-N concentration at various soil 

depths and phenological stages of rice growth as affected by N fertiliser treatments 

during rice season of 2007/2008 and 2008 (rice I and II). NO3-N concentration in 

soil significantly increased as N fertiliser increased at 0-20 cm soil depth in all 

phenological stages of all rice seasons although it values was lower as rice growth 

progressed. Increase in soil NO3-N concentration at flowering stage was probably 

due to the application of N fertiliser 15 days before flowering stage.  
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Figure 5.4 Influence of N fertiliser (F0 = 0 kg N ha-1); F1 = 70 kg N ha-1 and F2 = 140 kg 
N ha-1) on NO3-N concentration in soil in various soil depths at tillering (A), panicle 
initiation (B), flowering (C) and harvesting (D) stages in rice season 2007/2008 (1) and 
2008 (2) 
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The trend of soil NO3-N concentration in 2008/2009 and 2009 seasons (rice 

III and IV) was similar to rice I and II (Fig. 5.5). However, NO3-N concentration in 

soil was lower in the second year of experiment (2008-2009) than that in the first 

year of experiment (2007-2008). Regardless of N fertiliser and irrigation treatments, 

during the early stage of 2007/2008 and 2008/2009 rice growths, NO3-N 

concentration in soil generally increased as soil depth increased. This was probably 

due to nitrate residues accumulated during dry to wet transition condition of soil 

where the experiment site was planted with peanut and soybean following second 

rice during dry season from July – November 2007. This also indicated that NO3-N 

in soil was leached below root zone which cannot be taken up by plant. 

Accumulation of NO3-N during dry to wet transition was prone to loss through 

denitrification and leached below root zone (George et al., 1993; Buresh et al., 1993; 

Ladha et al,. 1996). N losses through denitrification are well documented and 

reported (Bacon et al., 1986; George et al., 1994; Pande and Becker, 2003). 

Variation of NO3-N concentration in soil as affected by irrigation treatments 

in 0-20 cm soil depth in rice II, III and IV seasons at various phenological stages are 

presented in Fig. 5.6. Soil NO3-N concentration was higher in ASNS than that in CS 

at panicle initiation and flowering stages in rice II, III and IV seasons. At the same 

time, soil NH4-N concentration was higher in CS than that in ASNS mainly in the 

middle of rice growth periods in rice III and IV (section 5.3.1). This may be due to 

the effect of drainage condition during nonsubmergence periods which surface soil 

become aerobic condition.  

When surface soil was exposed to aerobic condition, nitrification started to 

take place which reduced the availability of NH4-N (Reddy and Patrick, 1986; 

Aulakh and Bijay-Singh, 1997). A large number of nitrifying organisms have been 

shown to occur in the surface layers of flood soils although nitrifying activity in 

flooded soils may be substantially lower than in unflooded soils (Engler and Patrick, 

1974). Furthermore, most of NH4-N concentration was in surface soil which may 

accelerate nitrification. Lower NH4-N concentration and higher NO3-N concentration 

in soil in ASNS than in CS could explain the occurrence of nitrification during 

nonsubmergence period in surface soil.  
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Figure 5.5 Influence of N fertiliser (F0 = 0 kg N ha-1); F1 = 70 kg N ha-1 and F2 = 140 kg 
N ha-1) on NO3-N concentration in soil in various soil depths at tillering (A), panicle 
initiation (B), flowering (C) and harvesting (D) stages in rice season 2008/2009 (3) and 
2009 (4). 
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Figure 5. 6 Influence of irrigation treatment (CS = continuously submerged and ASNS 
= alternately submerged and non-submerged) on NO3-N concentration in soil in 
various soil depths at panicle initiation (B) and flowering (C) stages of rice reason 2008 
(2), 2008/2009 (3) and 2009 (4). 
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Tabbal et al. (1992) showed that the level of ammonium in soil was lower, 

and that of nitrate was higher, in ASNS than in flooded rice fields. Upon subsequent 

flooding, nitrate could be leached or undergo denitrification losses and N losses may 

be higher in ASNS than in conventional flooding. However, Belder et al. (2004) 

found similar N uptake and (fertilizer-N) recoveries under flooded and ASNS 

conditions, in experiments where shallow groundwater tables kept the soil relatively 

wet during non-submerged periods. There was no significant affect of irrigation at 

the harvesting stage in all rice seasons, which may be due to the fact that all plots 

were drained 10 days before harvest which may be soil exposed to an aerobic 

condition. However, the amounts of NO3-N concentration in soil at 70-100 cm soil 

tended to higher in CS than in ASNS. This indicated that ASNS water regime may 

also reduce nitrogen contamination to the groundwater. 

5.3.3 Total-N dynamics in soil under various irrigation and N fertiliser 

treatments  

Table 5.3 shows the effects of irrigation and N fertiliser treatments on total-N 

of soil during four rice growth seasons (2 wet seasons of 2007/2008 and 2008/2009 

and 2 dry seasons of 2008 and 2009) at various soil layers and phenological stages. 

N fertiliser significantly influenced total-N soil as rice growth progressed mostly at 

0-40 cm soil depth and this effect was more pronounced as rice cycling season 

progressed. There was no interactive effect of irrigation and N fertiliser treatment on 

soil total-N during rice growth in all growing seasons. Total-N of soil was not 

influenced by irrigation treatment in all rice seasons in the first year (2007-2008) and 

in rice season 2008/2009 of field experiment except at harvesting stage. However, 

irrigation treatments had significant affect on total-N concentration in soil in season 

2009 at 0-20 cm soil depth except at tillering stage.  

Figure 5.7 shows the distribution of soil total-N content at various soil depths 

and phenological stages of rice growth as affected by N fertiliser during rice season 

of 2007/2008 and 2008. Total-N concentration in soil increased as N fertiliser 

increased during rice growth periods. Total-N concentration in soil was mostly 

accumulated in soil surface (0-20 cm depth) and sharply decreased as soil depth 

increased. A similar trend of total-N concentration in soil was also observed at 

2008/2009 and 2009 seasons (Fig. 5.8). Soil total-N in 2008/2009 rice wet season 
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was higher than that in 2007/2008 rice wet season, probably as results of 

mineralisation of soil organic matter or residues during legumes planting prior to rice 

crop. Soybean and peanut crops were planted after harvesting the rice dry season of 

2008 and 2009. In addition, rice straw was returned on each plot as mulch during 

soybean and peanut growth periods. 

The irrigation treatment had no effect on total-N concentration in soil during 

the first year of field experiment (2007-2008). As rice growth cycles progressed 

however, total-N concentration in soil was significantly higher in CS than that in 

ASNS (Fig. 5.9). This was probably due to frequent wetting and drying cycles in 

ASNS treatment that accelerate decomposition of organic carbon resulting in N 

mineralisation. Drying and rewetting of soils is well known to enhance carbon and 

nitrogen mineralisation (van Gestel et al., 1993). Mikha et al. (2005) reported that 

repeated drying and wetting cycles significantly reduced cumulative N 

mineralisation compared with constant water content. The reduction in cumulative 

mineralized C resulting from drying and wetting compared with constant water 

content treatments increased as the drying and wetting treatments were subjected to 

additional cycles. According to Franzluebbers et al. (1994), repeated drying and 

wetting cycles could cause a reduction in net N mineralisation, either because of 

chemical reactions during the drying period, which reduce the amount of available N 

or reduce the active microbial biomass, or because of a change in species 

composition, in which instance more N could be retained in the microbial cells. 

Accumulation of N in a less-available portion of dead microbial biomass after each 

rewetting event could further reduce net N mineralisation (Franzluebbers et al., 

1994). Furthermore, total-N concentration in soil decreased as rice growth 

progressed. This trend was support the previous study by Kyaw et al. (2005) in FM 

Hommachi, FS Centre, Japan that the inorganic N contents of the soil surface (0-15 

cm depth) after harvesting in two years experiment were about half of those before 

cultivation. 
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Table 5.3 Summary of analysis of variance (ANOVA) for irrigation (I) and N fertiliser 
(F) treatments on total-N of soil in various soil layers and growth stages of rice crop at 
various seasons. Significance of treatment effects is denoted as ‘***’ for p ≤0.001; ‘**’ 
as p ≤ 0.01; ‘*’ for p ≤ 0.05 and ‘NS’ for not significant. 

Soil layer 
(cm) 

Rice wet season (2007/2008) 
Tillering Panicle initiation Flowering Harvesting 

I F I×F I F I×F I F I×F I F I×F 
0-20 NS NS NS NS NS NS NS * NS NS * NS 
20-40 NS NS NS NS NS NS NS NS NS NS ***  NS 
40-70 NS NS NS NS NS NS NS NS NS NS NS NS 
70-100 NS NS NS NS NS NS NS NS NS NS NS NS 

Soil layer 
(cm) 

Rice dry season (2008) 
Tillering Panicle initiation Flowering Harvesting 

I F I×F I F I×F I F I×F I F I×F 
0-20 NS ***  NS NS ** NS NS ***  NS NS ***  NS 
20-40 NS NS NS NS * NS NS ***  NS NS ***  NS 
40-70 NS NS NS NS NS NS NS NS NS NS NS NS 
70-100 NS NS NS NS NS NS NS NS NS NS NS NS 

Soil layer 
(cm) 

Rice wet season (2008/2009) 
Tillering Panicle initiation Flowering Harvesting 

I F I×F I F I×F I F I×F I F I×F 
0-20 NS * NS NS ***  NS NS ***  NS ** ***  NS 
20-40 NS NS NS NS ** NS NS ** NS NS NS NS 
40-70 NS NS NS NS NS NS NS NS NS NS NS NS 
70-100 NS NS NS NS NS NS NS NS NS NS NS NS 

Soil layer 
(cm) 

Rice dry season (2009) 
Tillering Panicle initiation Flowering Harvesting 

I F I×F I F I×F I F I×F I F I×F 
0-20 NS ***  NS * ***  NS * ***  NS * ***  NS 
20-40 NS NS NS NS NS NS NS ** NS NS * NS 
40-70 NS NS NS NS NS NS NS NS NS NS NS NS 
70-100 NS NS NS NS NS NS NS NS NS NS NS NS 
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Figure 5.7 Influence of N fertiliser (F0 = 0 kg N ha-1); F1 = 70 kg N ha-1 and F2 = 140 kg 
N ha-1) on total-N concentration in various soil depths at tillering (A), panicle initiation 
(B), flowering (C) and harvesting (D) stages in rice season 2007/2008 (1) and 2008 (2). 
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Figure 5.8 Influence of N fertiliser (F0 = 0 kg N ha-1); F1 = 70 kg N ha-1 and F2 = 140 kg 
N ha-1) on total-N concentration in various soil depths at tillering (A), panicle initiation 
(B), flowering (C) and harvesting (D) stages of rice season 2008/2009 (3) and 2009 (4). 
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Figure 5.9 Influence of irrigation treatments (CS = continuously submerged and ASNS 
= alternately submerged and non-submerged) on total-N concentration in soil at 0-20 
cm soil depth at panicle initiation (PI), flowering (F) and harvesting (H) stages during 
rice reasons of 2008/2009 and 2009. For specific total-N, similar letter(s) within the set 
of four phenological stages (H, PI, F and H) indicate that the differences between mean 
values are less than LSD. LSD values in each phenological stages were 0.005, 0.031, 
0.045, 0.047 g kg-1, respectively. 

5.3.4 Organic carbon dynamics in soil under various irrigation and N fertiliser 

treatments  

In all seasons, the effect of N fertiliser application rates and irrigation 

treatments on soil organic carbon was rarely observed during rice growth periods in 

2007-2008 and 2008/2009. Significance effect of irrigation treatments on OC 

concentration was only observed at harvesting in the rice III season and at flowering 

and harvesting in the rice IV season at  the  0-20 cm depth. 

Irrigation treatment had no effect on OC concentration in soil during the first 

year of field experiment (2007-2008). However, as rice growth cycles progressed, 

OC concentration in soil was significantly higher in CS than that in ASNS (Fig. 

5.10). This was probably due to frequent wetting and drying cycles in ASNS 

treatment that accelerate decomposition of organic carbon as discussed in the section 

5.3.3.  
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Figure 5.10 Effects of irrigation treatments (CS = continuously submerged and ASNS = 
alternately submerged and non-submerged) on organic carbon (OC) concentration in 
soil at 0-20 cm soil depth at panicle initiation (PI), flowering (F) and harvesting (H) 
stages in rice reasons of 2008/2009 and 2009. For specific total-N, similar letter(s) 
within the set of four phenological stages (H, PI, F and H) indicate that the differences 
between mean values are less than LSD. LSD values in each phenological stages were 
0.042, 0.049, 0.045 and 0.047 g kg-1, respectively. 

5.3.5 NH4-N and NO3-N in floodwater during rice growth periods  

The dynamics of NH4-N and NO3-N in floodwater at various irrigation and N 
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floodwater increased during the first 6 days after urea fertiliser was applied. The 

results in this experiment have shown that the increases in NH4-N concentration of 
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floodwater lasted for 5, 6, 7 days after the first, second and third N fertiliser 

application, respectively. In F2 treatment, the increase in NH4-N concentration lasted 

for 6, 7 and 9 days after the first, second and third N fertiliser application 

respectively. 

NO3-N concentration in floodwater increased soon after N fertiliser was 

applied and decreased with time (Fig. 5.12). However, NH4-N concentration in 

floodwater was higher than NO3-N concentration during observation. The higher 

concentration NH4-N than NO3-N was probably due to water flooding condition. 

Applied urea may transform to NH4-N by hydrolysis processes (Chowdary et al., 

2004) and small portion of NH4-N tends to change to NO3-N because the 

nitrification rate is slow under flooding condition (Cho and Han, 2002). It has been 

well understood that nitrification of NH4-N is slower in anaerobic condition than in 

aerobic because microorganisms involved in nitrification prefer in aerobic to 

anaerobic conditions (Choi et al., 2003). Furthermore, retardation of vertical 

movement of NH4
+ due to adsorption of negative charged of soil particles might also 

contribute to the higher concentration of NH4
+ in the floodwater. Yoon et al. (2006) 

reported that inorganic N in rice floodwater consists of 65% NH4-N and 30% NO3-N 

on silty loam soil (Fluventic Haplaquepts) at Maryung-myun, Chonbuk province of 

Korea. In this study, the inorganic N in rice floodwater during whole seasons 

consisted of 63% NH4-N and 37% NO3-N.  The proportion of NO3-N in this study 

was higher than reported by Yoon et al. (2006) probably due to soil type used in this 

study and rice culture managements. 
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Figure 5.11 NH4-N dynamics in floodwater during rice growth as influenced by N 
fertiliser and irrigation treatments during four ri ce growth periods in 2007/2008, 2008, 
2008/2009 and 2009 seasons. For N fertiliser treatments, significance of treatments is 
denoted as ‘***’ for p ≤ 0.001; ‘**’ for p ≤ 0.01 and ‘*’ for p ≤ 0.05. 
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Figure 5.12 NO3-N dynamics in floodwater during rice growth as influenced by N 
fertiliser and irrigation treatments during four ri ce growth periods in 2007/2008, 2008, 
2008/2009 and 2009 seasons. For N fertiliser treatments, significance of treatments is 
denoted as ‘***’ for p ≤ 0.001; ‘**’ for p ≤ 0.01 and ‘*’ for p ≤ 0.05. 
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5.4 Concluding remarks 

The results of two years field study on the effects of irrigation and N fertiliser 

treatments on the dynamics of nitrogen in rice-based cropping systems showed that 

NH4-N and NO3-N concentration in soil increased as N fertiliser application rates 

increased during the rice growth periods. Soil NH4-N concentration was not affected 

by irrigation in early rice season but its effect was more pronounced as season 

progressed especially during panicle initiation and flowering. During this  period, 

NH4-N concentration in soil was higher in CS than in ASNS mostly in the 0-20 cm 

soil depth whereas NO3-N concentration in soil was lower. This suggests that 

nitrification occurred during nonsubmergence periods. Total-N and organic carbon 

of soil was not influenced by irrigation treatments in the first year (2007-2008) of the 

experiment but its effects were pronounced in the second year (2008-2009) of the 

experiment. Total-N and organic carbon of soil was higher in CS than that in ASNS 

treatments at 0-20 cm soil depth, indicating that frequent drying and rewetting of 

soils subsequently enhanced carbon and nitrogen mineralisation. NH4-N 

concentration of floodwater increased soon after N fertiliser was applied which 

suggests that urea (N fertiliser) was hydrolysed rapidly and  some which may have  

transformed to NO3-N through nitrification, although NH4-N concentration in 

floodwater was higher than the NO3-N concentration during the observation. 
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CHAPTER VI 

Growth and yield of legumes and nitrogen dynamics 

following rice in tropical lowland rice-based 

cropping system  

6.1 Introduction 

Legumes are important opportunity crops which are usually planted during the 

dry season (July to October) after consecutive seasons of irrigated rice in the tropical 

lowland rice-based cropping systems.. Since rice is grown in anaerobic conditions 

for most part of its growth, aerobic conditions are essential to grow legumes in most 

tropical lowland rice-rice-legume crop sequence in eastern Indonesia.Legume crops 

such as soybean (Glycine max (L.) Mer) and peanut (Arachis hypogaea L.) are 

capable of biological nitrogen fixation (BNF) which reduce the need for N fertiliser. 

Although soybean and peanut can derive N through BNF, it may not fully meet the 

N-requirement of legumes throughout the season producing variable results with N 

fertiliser application. Many studies have shown an increase in yield and associated 

dry matter accumulation as a result of N application (Touchton and Rickerl, 1986; 

Afza et al., 1987; Wood et al., 1993; Lanier et al., 2005), while others have shown 

little or no response (Deibert et al., 1979; Schmitt et al., 2001; Barker and Sawyer, 

2005) or even reduced yield and dry matter production (Peterson and Varvel, 1989). 

Other studies have also shown that application of N to legumes may reduce nodule 

formation (Chen et al., 1992; Starling et al., 1998; Daimon et al., 1999; Taylor et al., 

2005; Ray et al., 2006; Basu et al., 2008). Reddy et al. (1981) suggested that variable 

response of the legumes to N fertiliser could be due to the differences in edaphic, 

environmental conditions and management decisions made during cropping. The 

performance of legumes in relation to N dynamics during the dry season in rice-

based cropping systems of eastern Indonesia has not received much attention. As the 

rice-rice-legume cropping systems are important in maintaining soil-nitrogen balance 

which has important implication towards economic, environmental and biophysical 

sustainability of the system, further research is essential. 
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Understanding of N dynamics, especially the dynamics of NO3-N during dry 

legume season under rice-rice-legume crop sequence is important not only to gain 

insight NO3-N into potential loss into surface and ground water, but also for 

retention of N on land for its productive use. In upland crops fields, native and most 

applied forms of N may be readily nitrified so that NO3 is the dominant form of N in 

the soil mineral fraction (Li et al., 2009). During an irrigation or rainfall event, this 

form of N may be lost primarily via leaching and to some extent via denitrification 

(Ponnamperuma, 1985; Buresh et al., 1989; George et al., 1993). Urea or 

ammonium-based fertilisers placed on the surface of coarse soils may be more prone 

to losses via ammonia volatilisation than in fine-textured soils. Monitoring 

concentrations and uptake of N is helpful for the understanding of plant and soil N 

status and in devising N-fertilizer strategies for both individual crops and a cropping 

system (Li et al., 2009). Data on N dynamics under legume crops in dry season of 

rice-rice-legume crops sequence are necessary to advice growers/farmers to conserve 

and effectively use soil N in lowland rice-based cropping systems. 

The objectives of this study were: (i) to measure changes in soil N during 

legume crops period in the dry season; (ii) to evaluate response of legumes after the 

second rice crop is harvested in the dry season to N fertiliser. 

6.2 Materials and methods 

Full details of materials and methods related to this study are given in 

Chapter 3. In brief, peanut and soybean (Indonesia national varieties of ‘garuda’ and 

‘wilis’, respectively) were immediately planted after the dry seasons of rice crop 

were harvested over 2 cropping seasons during July to November in 2008 and 2009. 

The experiment was based on a split-plot design with peanut and soybean as main 

plots and three rates of N-fertilisation (referred to as F0, F1 and F2 treatments to 

indicate 0, 12 and 24 kg N ha−1, respectively) as subplots within each main plot in 

three blocks. Plant samples were collected at three key growth stages at vegetative, 

reproductive and harvesting to determine crop biomass, leaf area, total-N of crops 

and number and weight of nodules. Soil was sampled at the same time as crops 

sampling. Collection and measurement procedures were similar to the soil sampling 

for the rice crop. Soybean and peanut were harvested at physiological maturity and 

expressed at 11% moisture content. A 3 m x 2 m and 4 m x 2 m area within each plot 
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for soybean and peanut respectively was used to sample grain yield and estimated in 

kg ha-1. In the 2009 legume crops season, additional crop samples at 10 day intervals 

were collected to estimate biomass and number and weight of nodules. Data were 

analysed for Analysis of variance (ANOVA) using Genstat software (Version 

9.2.0.153, VSN International Ltd, Oxford) and least significant difference (LSD) was 

calculated to explain the difference if one or more treatments had a significant effect 

on measured parameters.  

6.3 Result and discussion 

6.3.1  Dynamics of organic carbon and nitrogen under legumes and N fertiliser 

treatments  

The effects of N fertiliser treatments and the types of legume crops planted following 

the harvesting of the second rice crop on nitrogen and organic carbon dynamics 

during 2008 and 2009 seasons are presented in Table 6.1The concentration of 

ammonium-N (NH4-N) and nitrate-N (NO3-N) in soil varied during the growth 

period of each legume depending on the type of crop and N fertiliser treatments. The 

concentration of NH4-N and NO3-N also varied with soil depth as a result of these 

treatments. The type of legume crops had little significant effects on NH4-N and 

NO3-N concentrations at various soil depths in both years. The effects of N fertiliser 

treatments were more pronounced than the type of legume with same interaction 

between the two factors. 

Organic carbon concentration in soil at various depth and growth stages were 

not significantly affected by types of legume and N fertiliser treatments during both 

2008 and 2009 cropping seasons. Total-N concentration in soil was not significantly 

affected by irrigation treatment, while N treatment had only small effect on total-N 

in soil within the top 40 cm soil depth at the harvesting of legume in 2009. Total-N 

and carbon content in soil may take several years to change (Wood et al., 1990; 

Curtin et al., 2000) as it is dependent on various soil, crops and climatic factors. 

Studies conducted in eastern Canada have shown that initial increase in soil organic 

carbon may vary within the first 12 years of continuous corn production (Liang et al., 

1998). Organic carbon levels on a silt loam cropped with wheat in Saskatchewan, 

Canada, were thought to have reached a steady state after 10 years of cropping under 

no-tillage management (Curtin et al., 2000). Fortune at al. (2008) reported that 
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nitrogen fertilizer treatments had no significant effects on total soil N or soil organic 

carbon at any depth at the Kentucky Agricultural Experimental Station in Lexington. 

Due to the inconspicuous effect of legume and N fertiliser treatments on total-N and 

organic carbon, these have been omitted from the summary of ANOVA in the Table 

6.1 

Figure 6.1 illustrates the dynamics of NH4-N concentration at various soil 

depths as affected by N fertiliser and legume type treatments during 2008 and 2009 

season following the harvest of the second rice crop. These types of legume are 

preferred by farmers in managing lowland rice-based cropping systems for more 

than 30 years in the region. As shown in Fig 6.1, NH4-N concentration varied mostly 

due to N fertiliser application rates increase from F0 to F2. The concentration of 

NH4-N was generally the highest in the surface soil layers (0-20 cm) and that 

declined with depth. Concentration of NH4-N at all soil depths significantly 

increased with increase in N fertiliser application rates, although these differences 

were relative small at below 75 cm depth. Since the applied N fertiliser rapidly 

converts to NH4-N components, high concentration of NH4-N is imparted within the 

upper soil layers at least for some periods before it is converted into NO3-N. Similar 

trends for NH4-N concentration in soil have been previously observed by Aulakh et 

al. (2000) in rice-wheat crop sequence.  

Spatial and temporal distribution of NO3-N in soil for 2008 and 2009 seasons 

is shown in Fig. 6.2. Concentration of NO3-N in soil varied with N fertiliser 

application rates and soil depth. The distribution of NO3-N also peaked in the top 25 

cm soil depth and declined with depth and decreased with N fertiliser application 

rates on order of F0<F1<F2 except for the vegetative stage in 2008 (A1). The 

concentration of NO3-N in soil was 2-3 times higher than that the concentration of 

NH4-N since NH4-N form of nitrogen readily oxidises into NO3-N in aerobic soil 

condition (nitrification).  
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Table 6.1 Summary of analysis of variance (ANOVA) of the type of legume crop (L) 
and N fertiliser (F) treatments on NH4-N and NO3-N at various soil depths and growth 
stages of legume crops during the 2008 and 2009 cropping seasons. Significance of 
treatments is denoted as ‘***’ for p ≤ 0.001; ‘**’ as p ≤ 0.01; ‘*’ for p ≤0.05 and ‘NS’ 
for not significant. 

Parameters 
Soil depths 

(cm) 

Legume season 2008 

Vegetative Flowering  Harvesting 

L F L×F L F L×F L F L×F 

NH4-N 

0-20 NS *** NS NS ** NS NS *** NS 

20-40 * *** ** NS ** NS NS *** NS 

40-70 NS ** * NS NS NS NS NS NS 

70-100 NS *** * NS NS NS NS *** NS 

NO3-N 

0-20 NS *** NS NS *** * NS * NS 

20-40 * *** NS NS *** NS NS *** NS 

40-70 NS *** NS NS * NS NS *** NS 

70-100 NS *** NS NS *** NS NS *** NS 

Parameters 
Soil depths 

(cm) 

Legume season 2009 

Vegetative Flowering Harvesting 

L F L×F L F L×F L F L×F 

NH4-N 

0-20 * *** NS NS *** NS NS *** NS 

20-40 * *** NS NS ** NS NS *** NS 

40-70 NS *** NS NS NS NS NS NS NS 

70-100 NS * NS NS NS NS NS * NS 

NO3-N 

0-20 NS *** NS NS *** * NS NS NS 

20-40 * *** NS NS *** NS NS *** NS 

40-70 * *** NS NS *** NS NS *** NS 

70-100 NS ** NS NS *** NS NS *** NS 
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Figure 6.1 Spatial and temporal variation of NH4-N concentration in soil as affected by 
N fertiliser application rates at vegetative (A; 31 DAS), flowering (B; 45 and 48 DAS 
for peanut and soybean respectively) and harvesting stages (C; 98 and 94 DAS for 
peanut and soybean, respectively) during 2008 (1) and  2009 (2)seasons. 
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Figure 6.2 Spatial and temporal variation of NO3-N concentration in soil as affected by 
N fertiliser application rates at vegetative (A; 31 DAS), flowering (B; 45 and 48 DAS 
for peanut and soybean respectively) and harvesting stages (C; 98 and 94 DAS for 
peanut and soybean, respectively) during (1) 2008 and (2) 2009 seasons. 

During the early growth stage of the legume in both seasons (Fig. 6.2 A1 and 

A2; 31 DAS), the highest concentration of NO3-N was oberved in 70-100 cm soil 

layer. The concentration of NO3-N reduced by more than half at flowering stage (B1 

and B2) in the same soil layer. Since NO3-N is mobile and easily moved with 

percolating water, its concentration can be similar or higher in the subsoil (> 75 cm 
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depth) than in the surface soil (at 25 cm depth) especially in the early period of 

growth in legumes (see Fig. 6.2 A1 and A2). NO3-N can be also readily uptaken by 

the plant or lost beyond the root zone by leaching (Buresh and De Datta, 1991; 

George et al., 1992).  

6.3.2   Nodulation  

The influence of N fertiliser treatments on nodulation was examined during 

peanut and soybean growth periods in 2008 and 2009 seasons (Fig. 6.3 and 6.4). 

Nodules formation varied for both peanut and soybean growth throughout the 

growing seasons in both years and due to various N fertiliser treatments.  

During the early growth stage of peanut in 2008, the number and weight of 

nodules were small and not affected significantly by N fertiliser application rates 

(Fig. 6.3). However, as peanut growth entered reproductive growth stage (55 DAS), 

nodule number was significantly high (p = 0.032) in F0 (no applied N) and decreased 

with increased N fertiliser application rates. Nonetheless, nodule weight was not 

affected by N fertiliser application rates at 55 DAS and the peak number and weight 

of nodules reached for peanut. This indicates that the maximum formation of nodules 

is reached at this stage. At this time, the reduction in nodule formation in peanut was 

12% and 18%, respectively with fertiliser application rates of 12 and 24 kg N ha-1. 

As the peanut crop approached physiological maturity, the rate of nodule formation 

slightly increased.  

A similar trend in nodule formation was reported by Bell et al. (1994). The 

rate of N2 fixation in peanut did not decline during the later stages of pod fill under 

irrigated and well fertilised conditions (with N fertiliser). Although the number and 

weight of nodules without N application (F0) were consistently higher than with 

increased N-application (F1 and F2), the difference were not significant. This is 

consistent with the observation of Reddy and Tanner (1980) who reported a decrease 

with the nodule number and dry weight of nodule, and also N-fixation of peanut 

inoculated with Rhizobium. Mean number and weight of nodules during peanut 

growth in 2008 and 2009 seasons was in order of F0>F1>F1. In the 2008 season, 

mean of nodules number during peanut growth were 256, 242 and 240 for F0, F1 and 

F2, respectively and mean of nodules weight were 1.88, 1.85 and 1.82 for F0, F1 and 

F2, respectively. In the 2009 season, mean of nodules number during peanut growth 
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were 323, 302 and 293 for F0, F1 and F2 respectively and mean of nodules weight 

were 2.05, 2.01 and 1.96 for F0, F1 and F2, respectively. 

For soybean, the variation of nodules number and weight were similar to 

peanut during 2008 season. Although nodule number varied over time, the effect of 

N fertiliser rates was not significantly different, except at 82 DAS (on 09 October 

2008). The highest nodule number for soybean was observed at the pod development 

stage (R3 close to 61 DAS) and it reduced as soybean approached physiological 

maturity. This result supported the observation of Zapata et al. (1987) that maximum 

N fixation for soybean occurs between the R3 and R5 stages of soybean 

development. As soybean approached physiological maturity, the nodule number 

declined coinciding with R7 (beginning of pod maturity) growth stage. In general, 

nodule weight in soybean was similar to peanut (Fig. 6.3), although the nodule 

numbers were much lower. This indicated that soybean nodules were much larger 

than that of peanut. Unlike peanut, both weight and number of nodules appeared to 

decline in soybean although the reduction in nodule weight per plant appeared to be 

due to a reduction in the nodule number.  

 

Figure 6.3 Mean weight and number of nodule/hill during soybean and peanut growth 
periods in 2008 season as affected by N fertiliser.  * indicates p≤0.05. 
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The variation in nodule number and weight over the growth period in 2009 

was similar to 2008 for both peanut and soybean (Fig. 6.3 and 6.4). However, nodule 

formation in 2008 was higher than that in 2009. Moreover, the peak time of nodule 

formation for both peanut and soybean occurred earlier in 2009 than in 2008. For 

both crops, the highest nodule numbers were observed at the beginning of pod 

formation (11 September 2008 or 55 DAS for peanut and 18 September 2008 or 61 

DAS for soybean) that was approximately 13 days after flowering in 2008 (30 

August 2009 or 42 DAS). This may have been affected by the concentration of NH4-

N and NO3-N of soil that was slightly higher in 2008 than in 2009 (Fig. 6.5). If 

nitrate availability limits plant growth during the vegetative stage, root nodulation 

may occur earlier during the growth period (Lawn and Brun, 1974; Imsande, 1989).  

 

Figure 6.4 Mean weight and number of nodules/hill during soybean and peanut growth 
periods in 2009 season as affected by N fertiliser.  * indicates p≤0.05. 
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Figure 6.5 Relation between nodule numbers and NH4-N and NO3-N concentration in 
soils at 0-20 cm depth in peanut (solid lines) and soybean (dash lines) at various 
phenological stages (maximum vegetative (ж) flowering (■) and maturity (▲)) during 
2008 and 2009 seasons.  

The relationship between nodule numbers and NH4-N and NO3-N 

concentration in the soil at 0-20 cm depth at various growth stages of peanut and 

soybean in 2008 and 2009 season is presented in Fig. 6.5. Generally, there was an 

inverse relation between nodule number and NH4-N and NO3-N concentration in soil 

during the growth period of peanut and soybean. The number of nodules decreased 

with increasing in NH4-N and NO3-N concentration in soil, although this trend was 

not significant. Less significant effect of NH4-N and NO3-N concentration in soil on 

number and weight of nodule could be attributed to the small rates of N fertiliser 

applied, although the concentrations of NO3-N and NH4-N in soil were significantly 
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increased as N fertiliser rates increased (Fig. 6.1 and 6.2). However, their 

significance may not affect the formation of nodules during peanut and soybean 

growth periods. Some previous researchers indicated that nodule formation was 

inhibited by application of N fertiliser to the growth media of legumes (Selamat and 

Gardner, 1985; Daimon et al., 1999; Taylor et al., 2005; Ray et al., 2006; Basu et al., 

2008). Starling et al. (1998) found that nodule number and weight were reduced by 

application of 50 kg N ha-1 as starter N during the crop growth period of soybean. 

Moreover, Chen et al. (1992) reported that nitrogen fertiliser reduced nodule number, 

nodule weight and mean nodule size of soybean at three sites in Quebec, Canada. 

Daimon and Yoshioka (2001) reported that induction of NO3-N to the growth media 

inhibited nodulation and nodule development of peanut. 

6.3.3   Above ground biomass of legumes 

The effect of various N fertiliser treatments on the above ground biomass at 

various growth stages of legumes in the 2008 and 2009 seasons is shown in Fig. 6.6. 

During the 2008 legume season, biomass samples were collected 5 times at various 

phenological stages of peanut and soybean to include one sample at vegetative stage 

and four samples at reproductive stage. During the early vegetative stage of peanut in 

the 2008 (plant sampled on 20-August), there was no significant effect of N fertiliser 

application rates on the above-ground biomass. However, above ground biomass 

increased significantly at flowering stage (sampled on 3rd September) and pod filling 

stage (sampled at 11th September) as N fertiliser application rates increased. This 

could be due to a significant increase in green leaf biomass and leaf area with 

increase in N fertiliser rates at flowering (Table 6.2). The above-ground biomass of 

peanut tended to increase as N fertiliser rates increased. At harvest, only stem 

biomass was significantly affected by N fertiliser rates. This indicates that N 

fertiliser tended to have a positive influence on vegetative growth and leaf area index 

as shown by Selamat and Gardner (1985) for nodulating and non-nodulating 

genotypes of peanut.  

In soybean crop, above-ground biomass increased slightly although there was 

no overall significant effect of N-fertiliser rates. This suggests that reduced nodule 

formation due to an increase in N fertiliser rates (Fig. 6.4) did not cause significant 

reduction in above-ground biomass development during the growth period of both 

peanut and soybean legumes in rice-based cropping systems of the study site. 
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Figure 6.6 Biomass development during peanut and soybean growth periods as affected 
by N fertiliser treatments in 2008 and 2009 seasons. 

In 2009, the crops were sampled more frequently (at 10-day intervals) to 

examine the effects of N fertiliser rates on legumes biomass (Fig. 6.6). These results 

showed that biomass of both peanut and soybean increase with increase in N 

fertiliser application rates but do not respond significantly to N fertiliser rates 

throughout the season except on some occasions e.g. at 53 DAS (at 10 September 

2009) on peanut crop at flowering stage. This positive response of peanut at that 

stage to N fertiliser rates could be due to increased leaf biomass and leaf area (Table 

6.2). These results indicate that applying N fertiliser to peanut and soybean crops in 

the rice-rice-legume crops sequence at the study site may increase biomass slightly 

but not at harvest.  
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Table 6.2 Summary of variance analysis (ANOVA) of legumes (L) and N fertiliser (F) 
treatments on green leaf biomass, stem biomass, leaf area hill-1, green leaf total-N and 
stem total-N at varies growth stages in 2008 and 2009 crop seasons. Significance of 
treatments is denoted as ‘***’ for p ≤ 0.001; ‘**’ as p ≤ 0.01; ‘*’ for p ≤0.05 and ‘NS’ 
for not significant. 

Parameters 

Legume crop season 2008 

Vegetative Flowering Harvesting 

L F L×F L F L×F L F L×F 

Green leaf biomass  ** NS NS NS * * N/A NS N/A 

Stem biomass  * NS NS NS NS NS ** ** * 

Leaf area hill-1 * * NS NS * NS N/A NS N/A 

Parameters 

Legume crop season 2009 

Vegetative Flowering Harvesting 

L F L×F L F L×F L F L×F 

Green leaf biomass  NS NS NS * ** NS N/A * N/A 

Stem biomass  *** NS NS NS NS NS ** NS NS 

Leaf area hill-1 NS NS NS ** ** NS N/A  NS N/A 

N/A = not applicable for split plot analysis as all leaf of soybean were senescenced 
and felt down at harvesting stages 

Application of N fertiliser to  legumes following the second rice crops may 

also restrict biological N fixation. Soybean is known to use biological N fixation to 

meet its N demand unless there are soil restrictions affecting normal nodule activity 

(Harper, 1987; Salvagiotti et al., 2008). Any part of the N that is not met by 

biological N-fixation may be derived from inorganic N sources in soil from 

mineralised organic matter and/or residual N from the previous crop. Pedersen 

(2004) stated that NO3-N in soil is the main N source utilised by legumes up to the 

beginning of the pod development (R3). However, it may not affect maximum 

biomass for soybean at the R6 growth stage (full pod filling) as found in this study 

and others (Schmitt et al., 2001) as evident from biomass samples at the R6 growth 

stage (9 October 2008 and 10 October 2009; 82-83 DAS). A similar result has also 

been found by Barker and Sawyer (2005), that dry matter was not influenced by N 

fertiliser at the R6 soybean growth stage. 



Chapter 6 
 

102 

6.3.4   Yield and harvest index of legumes  

Variations of yield and harvest index of legumes as affected by N fertiliser 

treatments in 2008 and 2009 seasons are presented in Table 6.3. Yield of legumes 

varied due to N fertiliser application rates in both seasons and ranged from 1970 kg 

ha-1 to 2019 kg ha-1 and from 1961 kg ha-1 to 2361 kg ha-1 for peanut and soybean, 

respectively. Yield of soybean in both 2008 and 2009 seasons increased at 12 kg N 

ha-1 applied (F1) but it decreased at 24 kg N ha-1 applied (F2) to lower than  when 

not applied N (F0), although this trend was not significantly different. In peanut, 

grain yield decreased with increased N fertiliser application rates, although this was 

not significantly different. Yield of soybean was higher in 2008 than that in 2009, 

while yield of peanut was similar in both seasons. This finding was in agreement 

with other previous studies (Deibert et al. 1979; Peterson and Varvel 1989; Schmitt 

et al. 2001; Barker and Sawyer 2005). Schmitt et al. (2001) reported that there was 

no significant effect of fertiliser N on soybean seed yield at 12 sites of field 

experiment in St. Paul Minnesota, MN. Furthermore, Peterson and Varvel (1989) 

found reduced grain and dry matter yield with application of N fertilizer. Barker and 

Sawyer (2005) conducted a field experiment to determine the impact of N fertiliser 

applied to the soil at the beginning pod growth stage on soybean yield and grain 

quality for two years at five locations in Iowa. They reported that there was no 

significant effect of N fertiliser applied on grain yield, grain protein, oil contents, and 

fibre concentrations. Crusciol and Soratto (2009) reported that seed yield of peanut 

was not influenced by application of 60 kg N ha-1 on cover crops prior to peanut 

planting. The decrease in yield with increasing levels of fertiliser N rates observed in 

this experiment could be attributed to reduced formation of nodule in peanuts (Figure 

6.3 and 6.4). The poorly developed symbiotic system might fail to meet the N 

requirements of the plant as a result of this early inhibition. 

Harvest index (HI) for both peanut and soybean varied in both seasons 

ranging from 0.26 to 0.36 and 0.26 to 0.34 for peanut and soybean respectively. N 

fertiliser treatments did not significantly affect the HI for both peanut and soybean in 

both seasons. In addition, HI for both peanut and soybean was higher in the 2009 

than that in the 2008 season. In the 2009 season, mean HI of peanut in this study was 

similar to that reported by Kiniry et al. (2005).  
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Table 6.3 Effect of N fertiliser on yield (kg ha-1) and harvest index (HI) of peanut and 
soybean crops in 2008 and 2009 seasons. The values in bracket are indicate standard 
error (n=3). * indicate significant at p ≤0.05 and NS = not significant. 

Legumes 

(L) 

N rates (F) 

(kg ha-1) 

Yield Harvest index (HI) 

2008 2009 2008 2009 

 0 2110 (28) 2120 (87) 0.29 (0.01) 0.35 (0.03) 

Peanut 12 2019 (38) 2109 (12) 0.26 (0.02) 0.36 (0.02) 

 24 2010 (35) 1970 (90) 0.27 (0.02) 0.35 (0.01) 

 0 2233 (113) 2039 (31) 0.29 (0.04) 0.34 (0.05) 

Soybean 12 2361 (15) 2150 (29) 0.27 (0.01) 0.34 (0.04) 

 24 2211 (125) 1961 (99) 0.26 (0.03) 0.31 (0.05) 

 Main plot (L) NS NS NS NS 

F-test Subplot (F) NS NS NS NS 

 L×F NS NS NS NS 

6.3.5  Various aspects of crop N  

The effects of N fertiliser treatments on seed-N uptake, nitrogen harvest 

index (NHI), total-N in seed and total-N uptake, are presented in Table 6.4 and 6.5. 

Total-N, total-N uptake, seed-N uptake and NHI varied with type of legume and N 

fertiliser treatments. Seed-N uptake, which was calculated by multiplying dry seed 

yield by total-N in seed, ranged from 122 to 157 kg N ha-1 and from 81 to 86 kg N 

ha-1 for soybean and peanut respectively. Seed-N uptake for soybean in this study 

was lower than that reported by Varvel and Peterson (1992) who found that seed N 

uptake ranged from 150 to 200 kg N ha-1, probably due to a potential genetic effect 

of the cultivar used in this study and environmental conditions of crop to grow 

(Reddy et al. 1981). Seed-N uptake and NHI were not significantly affected by N 

fertiliser treatments, but legume types affected seed-N uptake and NHI in 2008 and 

2009 seasons. Seed-N uptake and NHI in soybean was significantly higher than that 

in peanut, indicating greater N removed by soybean. NHI was 1.26 and 1.46 times 

greater than HI for peanut, and 3 and 2 times greater for soybean in 2008 and 2009 

seasons respectively. This indicates that N removed from grain was higher than the 

other parts of crops. Bell et al. (1994) reported that NHI was 1.46 to 1.80 times 

greater than HI in various cultivars of peanut.  
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Table 6.4 The effect of N fertiliser on seed N uptake and N harvest index (NHI) of 
peanut and soybean crops in 2008 and 2009 season. The values in bracket are indicate 
standard error (n=3). * indicate significant at p ≤0.05 and NS = not significant. 

Legumes (L) 
N rates (F) 
(kg ha-1) 

Seed-N uptake 
(kg N ha-1) 

N harvest index (NHI) 

2008 2009 2008 2009 

 0 82 (3.5) 85 (3.6) 0.38 (0.02) 0.55 (0.04) 

Peanut 12 83 (3.7) 86 (5.5) 0.32 (0.02) 0.50 (0.01) 

 24 83 (2.4) 81 (7.3) 0.32 (0.01) 0.48 (0.03) 

 0 150 (12.9) 124 (1.3) 0.83 (0.01) 0.65 (0.02) 

Soybean 12 157 (1.6) 133 (0.6) 0.84 (0.01) 0.67 (0.02) 

 24 151 (9.8) 122 (5.9) 0.83 (0.01) 0.65 (0.02) 

 Main plot (L) * * * * 

F-test Subplot (F) NS NS NS NS 

 L×F NS NS NS NS 

 

Table 6.5 The effect of N fertiliser treatments on total-N and total-N uptake of peanut 
and soybean crops in 2008 and 2009 seasons. The values in bracket are indicate 
standard error (n=3). * indicates significant at P ≤0.05 and NS = not significant. 

Legumes (L) N rates (F) 
(kg ha-1) 

Total-N Total-N uptake 

2008 2009 2008 2009 

 0 2.37 (0.07) 2.50 (0.02) 218 (6.5) 216 (3.6) 

Peanut 12 2.72 (0.04) 2.63 (0.05) 255 (9.4) 226 (1.9) 

 24 2.86 (0.09) 2.68 (0.02) 263 (10.3) 230 (3.2) 

 0 3.21 (0.09) 3.14 (0.07) 180 (13.7) 215 (6.7) 

Soybean 12 3.28 (0.05) 3.17 (0.03) 189 (2.6) 224 (2.1) 

 24 3.32 (0.02) 3.21 (0.05) 182 (10.8) 209 (5.9) 

 Main plot (L) * * * NS 

F-test Subplot (F) * NS * * 

 L×F NS NS NS NS 

 

Total-N and total-N uptake varied with N fertiliser treatments and legume 

types. Total-N and total-N uptake increased as N fertiliser rates increased in both 

peanut and soybean crops, except at 2009 season for total-N (Table 6.5). Total N 
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uptake, which was calculated by multiplying dry biomass by total-N, ranged from 

180 to 224 kg N ha-1 and from 210 – 263 kg N ha-1 for soybean and peanut 

respectively. Although total-N and N-uptake of peanut and soybean generally 

increased with N fertiliser application, seed-N uptake and NHI was not affected by N 

fertiliser.  

6.4 Concluding remarks  

Nitrogen fertiliser influenced NH4-N and NO3-N concentrations in soil during 

the growth period of each legume. Legume types appeared to have influence on 

NH4-N and NO3-N concentration in soil at the vegetative stage of growth and there 

was no significant influence as growth progressed. Nodule number and weight 

decreased as N fertiliser rates increased during the growth period of legume crops, 

although this trend was not significant. Nodule formation during the vegetative stage 

of legume was small but it peaked between flowering and pod formation stages. The 

rate of nodule formation declined in soybean while a slightly increased in peanut as 

the crops approached physiological maturity. N fertiliser appeared to have a 

significant effect on biomass development between flowering and pod filling stages 

of peanut growth and no significant effect at harvesting stage. In soybean, there was 

no significant effect of N fertilisers on biomass. N fertiliser treatment did not 

significantly affect the seed yield, harvest index or N harvest index for both peanut 

and soybean legumes, although total-N and total-N uptake was affected by N 

fertiliser treatments. These results reveal that applying N fertiliser to peanut and 

soybean crops in the rice-rice-legume crops sequence in the study site would not 

increase biomass and yield substantially. The implication of this study is farmers 

may consider not applying N fertiliser during peanut and soybean season in the 

region represented by this study site. 
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CHAPTER VII 

Simulation of tropical lowland rice-based cropping 

systems at various nitrogen and water managements  

7.1 Introduction 

Rice is one of the biggest users of the world’s developed freshwater resources 

because it is mostly grown under flooded or submerged condition (Tuong and 

Bouman, 2003; Bouman and Tuong, 2001; Tuong et al., 2005). However, water is 

becoming increasingly scarce raising concerns about the sustainability of irrigated 

agriculture (Rijsberman, 2006). Many rainfed areas are already drought-prone under 

present climatic conditions and are likely to experience more intense and more 

frequent drought events in the future due to climate change (Wassmann et al., 2009). 

Increasing water productivity is especially important because many processes in rice 

production area are related to water (Bouman, 2007). Therefore, efforts to reduce 

water use are of great significance in the rice-based cropping systems. 

Lowland rice-based cropping systems are characterised by the alternation of 

anaerobic and aerobic soil conditions during flooded rice crops in the wet season and 

non-flooded crops in the dry season (Kundu and Ladha, 1999; De Data, 1995; Ladha 

et al., 1996; George et al., 1993). These conditions strongly affect microbial C and N 

dynamics (Fierer and Schimel, 2002; Gu et al., 2009) and increase inorganic soil 

nitrogen during rewetting (Qiu and McComb, 1996; Appel, 1998; Lundquist et al., 

1999). Excess mineral N that may not be taken up by the crop may be lost through 

denitrification or leaching (George et al., 1993; Buresh and De Data, 1991; Reddy et 

al., 1989; Qiu and McComb, 1996). These complex processes need to be better 

understood and quantified as a basis for improvements in crop management in rice-

based farming systems to increase yields and nitrogen and water use efficiencies 

(Jing et al., 2010). Modelling is an important and effective tool for explicitly 

describing the relationships among the components of complex systems. Modelling 

contributes to increased insight into relevant processes and their interactions, and can 

be applied to study effects of crop management, and to explore possible 
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consequences of management modifications (van Keulen, 2001). The challenges for 

application of existing models to simulate rice-rice-legume crop rotation systems are 

the regular alternation between anaerobic and aerobic conditions and associated 

consequences for decomposition of soil organic matter, nitrogen transformation and 

translocation (Probert, 2002). 

Cropping system models integrate data management and knowledge of soil, 

plant and atmospheric systems to allow simulation of cropping system over a wide 

range of environments and management practices (Larson et al., 1996; Pala et al., 

1996; Cavero et al., 1998; Hunt and Boote 1998; Alves and Nortcliff 2000; Mailhol 

et al., 2001). This makes them valuable tools for agricultural professionals around the 

world (Bouman et al., 1996; Jones et al., 2003). Development and evaluation of 

models require all of the aforementioned types of data together with additional data 

such as time-series data on crop development, soil moisture, and soil nutrients as well 

as yield and yield components (Hunt and Boote 1998). For adaptation and 

application of state-of-the-art agricultural system models for such purposes, they 

need to be well-calibrated and thoroughly validated for their performance in the 

agroclimate of the region of interest. 

There have been intensive efforts to study the rice production system resulting 

in the development of several rice simulation models (McMennamy and O’Toole 

1983; Godwin and Jones 1991; Horie et al., 1992; Aggarwal et al., 1997; Bouman et 

al., 2001). ORYZA2000 is one of the most widely used and intensively tested 

simulation models for rice developed at the International Rice Research Institute 

(IRRI, Philippines) in collaboration with Wageningen University (The Netherlands). 

The model has capability to simulate crop management options such as irrigation and 

nitrogen management (Bouman et al., 2001; Bouman and van Laar, 2006). (). 

However, the ORYZA2000 model is based for rice crop in single growing season. 

The model may not simulate crops sequence under any cropping system, which may 

include rice. Furthermore, the model does not able to simulate the dynamic aspects 

of nutrients, especially nitrogen, and soil water for the sequences of crops and 

fallows within a cropping system. There is an increasing demand for the model to 

simulate rice-based cropping systems, especially in Asia. Such the model will allow 

investigation of nitrogen dynamics, crop sequence, intercropping, crop residue 

management and soil and water management.  
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Cropping systems models such as Agricultural Production Systems sIMulator, 

APSIM (Keating et al., 2003) describe the dynamics of crop growth, soil water, soil 

nutrients, and plant residues as a function of climate, cropping history and soil/crop 

management on a daily time step. Through the linking of crop growth with soil 

processes, APSIM is particularly suited for the evaluation of likely impacts of 

alternative management practices on the soil resource and crop productivity. The 

model has been used successfully in the search for strategies for more efficient 

production, improved risk management, crop adaptation, and sustainable production 

(Keating et al., 2003). However, APSIM was developed for dryland farming systems 

rather than lowland paddy farming systems and not for rice simulation in either 

dryland, or paddy lowland (Keating et al., 2003). Paddy lowland is usually more 

complex in terms of nitrogen dynamics because it includes nitrogen transformation 

and leaching between water-ponded surface layers and oxidized and reduced soil 

layers. Currently the model is lacking the capability to simulate those processes 

(Keating et al., 2003; Zhang et al., 2007). 

New systems elements which were required in APSIM (Keating et al., 2003) to 

simulate the complete C and N dynamics in  complex farming systems involving 

rice-rice-legumes crops sequence where anaerobic and aerobic systems occur has 

been recently developed by Gaydon et al. (2009). This new capability of APSIM-

Oryza to simulate crop rotations in rice-based cropping systems has undergone 

limited testing and validation to this point under wide variety of field management 

and cropping systems. In a previous study, Zhang et al. (2007) tested the APSIM-

Oryza model to simulate nitrogen dynamics of paddy soil by using existing nitrogen 

module in the Oryza2000 model, but found that the model was not able to simulate 

the nitrogen response using the simple book keeping N module in APSIM-Oryza. 

This was probably due to the complex nitrogen dynamics including transformation 

and translocation in reduced layers that occurred particularly in paddy soil which 

differ from those in dryland soil (Godwin and Singh, 1998). In this situation, the 

versatility of the APSIM-Oryza model can be increased if it is able to simulate the 

processes of nitrogen dynamics in paddy lowland and is able to correctly simulate 

the productivity of rice-rice-legume rotation system in lowland Asian countries. The 

objectives of this study were:  

1. To parameterise and calibrate the APSIM-Oryza model in lowland rice-based 

cropping systems in tropical climate;  
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2. To evaluate the performance of the model at various nitrogen and water 

managements.  

3. To improve understanding of water and N dynamics in continuously submerged 

and alternately submerged and non-submerged irrigation water management 

related to the model. 

7.2 Material and methods 

7.2.1 Description of field experiment 

The details of field experiment for calibrating and validating the APSIM-

Oryza model are presented in Chapter 3. Data from first 2007-2008 and second 

2008-2009 years of field experiment were used to parameterise and calibrate, and 

validate the model respectively. Briefly, the experiment was laid out in a randomised 

split plot design with water management (continuously submerged and alternate 

submerged and non-submerged, hereafter referred as CS and ASNS respectively) as 

main plot and fertiliser rates (0, 70 and 140 kg N ha-1) as subplot with three 

replications. First rice was planted in wet season (transplanted on 13th November 

2007 and harvested on 5th March 2008). Plant and soil samples were collected at four 

main phenological stages of rice (tillering, panicle initiation, flowering and 

harvesting). Soil samples were taken up to 100 cm depth, fractioned to 4 layers (0-20, 

20-40, 40-70 and 70-100 cm) and each layer was analysed for NH4-N, NO3-N, total-

N, and organic carbon (OC). Plant samples were measured for dry biomass and total-

N. At harvesting stage, rice was sampled at 100 m2 to obtain grain yield, converted 

to kg grain yield ha-1 and presented at 14% water content. Second rice was 

transplanted at approximately one month after first rice was harvested which was at 

the end of wet season to dry season (transplanted on 1st April 2008 and harvested on 

16th July 2008). The cultivation management and sampling procedures were similar 

to first rice season. Immediately after the second rice crop was harvested, legumes 

were sown at the same plot to rice. The experimental design was similar to rice with 

legume types as the main plot replacing CS and ASNS treatments with peanut and 

soybean respectively and fertiliser rates as subplot. Legume crops were sown on 19th 

July 2008 and harvested on 18th and 24th October 2008 for soybean and peanut 

respectively. Legume crops and soil were sampled at three main phenological stages 

(maximum vegetative, flowering and harvesting). Legumes crops were separated to 
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green leave, stem, dead leave and pod if any and measured dry biomass and total-N. 

Soil samples were treated similar to soil sampling at rice season. The cultivation 

management and sampling procedures were repeated in the second year of 2008-

2009 experiment of rice-rice-legume crop sequence. Additional biomass sampling 

for legumes crops were collected every 10 days starting from vegetative stage 

onwards. Summary of experimental inputs for the model calibration and validation 

are presented in the Table 3.2 of Chapter 3. 

7.2.2 Model overview and description 

APSIM is a dynamic crop growth model that combines biophysical and 

management modules within a central engine to simulate cropping systems, rotations, 

fallowing, crop and environmental dynamics (McCown et al. 1996; Keating et al. 

2003). APSIM-Oryza allows simulating development of rice such as transplanting, 

crop growth, yield, nitrogen uptake of crop, and deals with other important features 

of a rice cropping system such as fertilisation, nitrogen dynamic of soil, field 

management issues and rotation effects on crop residue over a long period.  

The key APSIM (version 7.1) modules deployed in this study were Rice 

(Oryza sativa L), Peanut (Archis hypogaea L) and Soybean (Glicin max Mer.), 

SoilN (soil nitrogen), SoilWat (soil water balance), Surface Organic Matter and 

Pond. These modules were linked via a central engine of APSIM to simulate the rice 

based cropping systems .These modules are briefly described below and logic 

commands of rice-rice-legume crops sequence simulation in the general manager of 

APSIM are described in Appendix 1.  

7.2.2.1 Rice module  

The rice module of APSIM, was derived from ORYZA2000 rice crop growth 

model (Bouman et al. 2001), which simulates phenological development, biomass 

accumulation, yield, and nitrogen accumulation in response to temperature, radiation, 

photoperiod, soil water, and nitrogen supply in a daily time-step (Keating et al. 

2003). The details of the rice module are described by Bouman et al. (2001). Briefly, 

the model calculates growth and development of rice as a function of daily weather 

data, crop characteristics, and management parameters. The total daily rate of CO2 

assimilation is estimated from the daily incoming radiation, temperature, and leaf 
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area index (LAI) based on an assumed sinusoidal pattern of radiation over the day 

and exponential light within canopy. The integration over LAI of the canopy and 

over the day gives the daily CO2 assimilation rate. Maintenance respiration 

requirements are subtracted from the gross assimilation rate to obtain net daily 

growth. The dry matter produced is partitioned among the various plant organs 

including roots, leaves, stem, and storage organ (panicle) as a function of 

development stage (DS). The phenological development stage is tracked as a 

function of mean ambient daily temperature and photoperiod. The rice crop module 

has four phenological development stages: 

1. Juvenile stage, starting from emergence (DS = 0) to start of photoperiod-

sensitive phase (DS = 0.4),  

2. Photoperiod-sensitive stage, starting from DS = 0.4 to panicle initiation (DS = 

0.65), 

3. Panicle development stage, starting from DS = 0.65 to 50% flowering (DS = 

1.0), and  

4. Grain-fill stage, starting from DS = 1.0 to physiological maturity (DS = 2.0).  

Each of these four stages has variety-specific development rate constants (DRC). 

Differences among varieties in total duration are caused primarily by differences in 

the duration of the juvenile phase. Sub-optimal photoperiod less than the optimal 

photoperiod, results in a longer photoperiod sensitive phase. In grain crops, 

carbohydrate production during grain-fill can be higher or lower than the storage 

capacity of grains, which is determined by the number and maximum growth rate of 

grains. The number of spikelets at flowering is calculated from biomass 

accumulation from panicle initiation up to first flowering. Spikelet sterility due to 

either too-high or too-low temperature is considered. Leaf area growth includes a 

source- and sink-limited phase. In the early stage, leaf area grows exponentially as a 

function of temperature sum, and relative leaf growth rate. After LAI is larger than 

one, increase in leaf area during the linear phase is calculated from increase in leaf 

mass and specific leaf area (SLA) that depends on DS. From flowering onwards, leaf 

loss rate is accounted for using a DS dependent loss rate factor and green leaf 

biomass. When the rice crop is transplanted, LAI and all biomass values are reset 

based on planting density after transplanting relative to plant density in the seedbed. 
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Crop growth resumes only after a ‘transplanting shock’ has elapsed duration of 

which has a linear correspondence with seedling age at transplanting. In transplanted 

rice, transplanting shock also causes a delay in phenological development that 

depends on seedling age (Bouman et al., 2001; Bouman and van Laar, 2006). 

7.2.2.2 Peanut and soybean modules  

The peanut and soybean crop modules of APSIM simulate phenological 

development, biomass accumulation, yield, and nitrogen accumulation in response to 

temperature, radiation, photoperiod, soil water, and nitrogen supply in a daily time-

step. Keating et al. (2003) outlined the crop module, which provides references for 

more detailed crop simulation descriptions. In brief, approaches used in modelling 

crop processes balance the need for comprehensive description of the observed 

variation in crop performance across diverse production environments and the need 

to avoid large numbers of parameters that are difficult to measure. Crop development 

is controlled by temperature (thermal degree days) and photoperiod. Thermal time 

accumulations were derived using the algorithm described by Jones and Kiniry 

(1986) using observed phenology and weather data. Growth development parameters 

of peanut and soybean have been described in details by Roberston et al. (2002). 

Potential biomass growth is a function of the intercepted radiation and the radiation-

use efficiency. Water-limited growth is a function of water supply and the 

transpiration efficiency of the crop, which varies daily as a function of vapour 

pressure deficit. Actual biomass increase is simulated from either potential or water-

limited growth as modified by temperature and N stresses. Daily weather data such 

as minimum and maximum temperature, radiation, and rainfall were collected from 

the site of experiment from 1997-2009.  

7.2.2.3 SoilN module  

The SoilN module simulates the transformations of C and N in the soil. 

These include soil organic matter decomposition, N immobilisation–mineralisation, 

nitrification and denitrification. The conceptual soil organic carbon pool that 

represented in the module is treated as a three-pool system; HUM, BIOM and FOM 

(Probert et al., 1998). HUM is the more stable component while BIOM generally 

represents the more active and labile soil microbial biomass and microbial products. 



Chapter 7 

113 

FOM is the fresh soil organic matter pool including plant roots and aboveground 

matter incorporated into soil through tillage. Flows between these pools are regulated 

by the C:N ratio of the receiving pool. To allow for slower rates of decomposition in 

the deeper soil layers, part of the soil organic matter is considered to be non-

susceptible to microbial decomposition over the growing season (Keating et al. 

2003).  

Gaydon et al. (2009) has modified the organic matter decomposition rate 

constant as input parameters to APSIM SoilN module with two values instead of 

one; a value for aerobic conditions and a value for anaerobic conditions which was 

adapted from Jing et al. (2007). Transformation of C and N under aerobic condition 

is different to anaerobic condition. Under anaerobic conditions, organic matter 

cycling takes place in the absence of oxygen with rate a 2-3 times lower than in 

aerobic condition (DeBusk and Reddy, 1998; Kirk & Olk, 2000; Jing et al., 2007; 

Jing et al., 2010). It has assumed that anaerobic soil conditions develop rapidly after 

flooding and there is no lag whilst the micro-organisms adapt to the changed 

conditions. That is a new APSIM-SoilN code structure enabling seamless switching 

between aerobic and anaerobic conditions within the soil (Gaydon et al., 2009). 

7.2.2.4 SoilWat module  

SoilWat module simulates soil water dynamics in the soil systems. Soil water 

dynamics between soil layers were defined by the cascading water balance method 

(Probert et al., 1998, Richie, 1998; Keating et al., 2003). Its characteristics in the 

model are specified by the drained upper limit (DUL), lower limit of plant 

extractable water (LL15) and saturated water content (SAT). Soil water content 

measurements before rice transplanting defined the initial soil water content of the 

soil.  

7.2.2.5 Pond module  

Pond module is a new module in the APSIM model that has been recently 

developed and described in details by Gaydon et al. (2009). In brief, the APSIM-

Pond module simulates key chemical and biological processes occurring within a 

ponded layer of surface water. Pond temperature and pH are important variables 

governing chemical and biological processes. In the pond module, a fully dynamic 
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pond temperature and pH balance is maintained and calculated on a two-hourly 

timestep basis to capture the rapid reaction rates. The chemical processes in the 

ponded and soil layers are modelled by APSIM-Pond and APSIM-SoilN respectively. 

These two modules communicate with each other on a daily basis to transfer 

nutrients via a central engine according to standard APSIM protocols (Keating et al. 

2003). It assumes that N is only available for uptake by the rice crop once it is in the 

soil layers (i.e. from the SoilN module). 

The APSIM-Pond module is a transient module in any simulation. It becomes 

active whenever the soil water balance module (SoilWat) determines that water is 

ponded on the soil surface. The APSIM-Pond module only handles the chemical 

processes while the soil water balance module simulates the water balance of pond 

and soil alike, as a continuum. When rainfall and/or irrigation cease, the pond depth 

will decrease by infiltration into the soil until there is no pond at all. APSIM-Pond 

checks with the water balance module on a daily basis to see whether it should be 

‘active’ or not, as well as obtaining information on evaporation and current ponded 

depth. Effectively, the APSIM-Pond module may be conceptualised as a ‘filter’ of 

nutrients – not allowing all applied N to reach the crop, and simulating loss (but 

also) gain mechanisms for both C and N. If the pond has ‘drained down’, the 

APSIM-Pond module becomes inactive and the nutrient ‘filter’ is removed. When 

the pond is hydraulically re-established (as determined by the soil water balance 

module), APSIM-Pond becomes active and once again begins its role filtering N and 

potentially producing new C and N in the system through algal growth (if conditions 

are appropriate). Chemical processes in pond are discussed in details by Gaydon et al. 

(2009) and briefly explained below include urea hydrolysis, nitrification, ammonia 

volatilisation, alga growth and turnover, immobilization of pond mineral N, and flux 

of solutes to/from soil. 

A. Urea hydrolysis. The breakdown of applied urea fertiliser to NH4
+ is described as 

a function of pond temperature and a soil-determined hydrolysis rate (a function of 

organic carbon in top soil layer) or an algal activity determined rate, whichever is 

greater (Godwin and Singh, 1991).  

B. Nitrification. Nitrification of NH4
+ to NO3

- is calculated as a function of pond 

temperature and pH. 
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C. Denitrification. This process is controlled by soil moisture and redox potential 

(Steven et al., 1998), temperature and pH (Heinen, 2006; Ashby et al., 1998). 

Denitrification is calculated as function of pond temperature and pH 

D. Ammonia volatilization. Pond ammonia (NH3) exists in both aqueous and gaseous 

forms in equilibrium. The overall pond ammonia concentration is calculated from the 

pond ammonium (NH4
+) concentration as a function of pond temperature and pH. 

The partial pressure of ammonia is calculated from the overall ammonia 

concentration as a function of pond temperature. This partial pressure of ammonia 

provides the potential for ammonia volatilization and N-loss to the atmosphere. This 

loss potential is a function of wind and pond depth. In the absence of wind data, 

evaporation is used as a surrogate (Godwin and Singh, 1991). 

E. Algae growth and turnover. Godwin and Singh (1991) described the calculation 

of an algal activity factor, which influences urea hydrolysis and floodwater pH. This 

factor is used here with additional calculation of the daily algal growth and 

accumulated biomass as follows: 

    dlt_pab =  maxrate_pab × algact             7.1 

where dlt_pab is the daily growth of algae (kg ha-1), maxrate_pab is the maximum 

daily growth rate of algae, which is about 20 kg ha-1 day-1 (Roger, 1996), and algact 

is the daily algal activity factor (Godwin and Singh 1991). Pond algal biomass 

(PAB) is allowed to reach a maximum of 500 kg dry weight ha-1, with C content of 

40% and C:N of approximately 8 (Roger, 1996). As PAB accumulates biomass, N 

uptake is from mineral N in the floodwater. When N demand outstrips supply, it has 

assumed that the shortfall is made up via N fixation, and algal growth remains 

unaffected. A significant new element of APSIM-Pond is the description of algal 

turnover. The natural limitation on algal growth is rice canopy closure and algal 

deprivation of solar radiation. If the maximum algal biomass of 500 kg ha-1 is 

reached before full canopy closure, further algal production is theoretically possible, 

and it has assumed that subsequent potential daily algal growth is matched by algal 

senescence which is added to the APSIM-SurfaceOM pool on a daily basis. This 

assumption was made to partially address the criticism of CERES-Rice’s inability to 

capture long-term trends in soil organic carbon. In simulation of long-term rice 

experiments at IRRI, CERES-Rice simulated a rundown in soil organic carbon, when 
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in fact none was measured. Another key element in addressing this issue is the 

addition of the complete PAB biomass to the surface organic matter pool after 

draining-down of the rice paddy. There it can decompose or be incorporated into the 

soil as per standard APSIM residue simulation. To simulate situations where live 

algae may sit viably on the wet surface of the soil during intermittent of drained 

period of a rice pond (such as in alternate submerged and non-submerged (ASNS) 

irrigation practice (Bouman et al., 2007) and then spring back to life on re-flooding, 

there is no add the PAB to the ASPIM surface organic matter pool until a period of 5 

days with no ponding has passed.  

F. Immobilisation of pond mineral N. When surface organic matter is decomposed in 

traditional dryland APSIM simulations, the APSIM-SurfaceOM module creates an 

immobilisation demand which it attempts to satisfy from APSIM-SoilN. When 

APSIM-Pond is present, this demand is sought from APSIM-Pond mineral N pools. 

Similarly, mineral N released in decomposition becomes part of the APSIM-Pond 

mineral N pools. If a pond is present, the moisture factor for decomposition of 

residues is set to 0.5 to account for slower decomposition in water. 

G. Flux of solutes to/from soil. APSIM-Pond pools of urea, NH4
+ and NO3

- are 

transferred to the soil on a daily basis via the processes of mass flow, diffusion, and 

via adsorption in the case of NH4
+ ion. For NO3-N and urea, which are highly 

soluble, concentrations in the pond are compared with those in soil solution. When 

the concentrations are different in the two compartments, a “diffusion process” is 

invoked to determine the flux. The flux of NH4
+ ion between pond and soil depend 

on the soil cation exchange capacity (CEC) (Godwin and Singh 1998). This is a new 

APSIM-SoilN input parameter.   

7.2.3 Model parameterisation and calibration 

7.2.3.1 Rice module  

Rice variety of ‘cigeulis’ was calibrated using the IR72 standard crop 

parameters (Bouman et al., 2001) following the procedure described by Bouman and 

Van Laar (2006). Data from the 2007/2008 field experiment were used to 

parameterise the rice module. Phenological development rates were calculated using 

the recorded dates of emergence, maximum tillering, panicle initiation, flowering, 
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and maturity in the field experiment. The specific leaf area was computed from 

measured green leaf surface area and green leaf dry weight (see Chapter III, section 

3.2.7.4). The dry matter partitioning factors were first estimated from the measured 

biomass of leaves, stems, and panicles, and further finetuned by model fitting (Table 

7.1). Refining the parameter value was done until simulated biomass and 

phenological development stages values best agreed with measured values. All other 

crop parameters were parameterised with similar methods as in ORYZA2000’s 

standard crop data file for IR72 (Bouman et al., 2001). 

Flowering stage is an important phenological event for crop management and 

is strongly affected by the photoperiod and that a short day length during the 

photoperiod-sensitive phase accelerates the flowering process and vice versa (Yin et 

al. 1997; Yin and Kropff 1998). In the ORYZA2000 model, the photoperiod 

sensitivity of rice is quantified by a variety specific factor derived from a non-

photoperiod-sensitive variety (IR72). Due to lack of measurements in this study, the 

default values for IR72 were used for APSIM model.  

Table 7.1 Calibrated phenological development rate of rice variety of 'Ciugelis' 

Acronym Definition of parameters/variables Values Unit 

DVRJ Development rate in juvenile phase. 600 oCd-1 

DVRI Development rate in photoperiod-
sensitive phase. 

570 oCd-1 

DVRP Development rate in panicle 
development 

884 oCd-1 

DVRR Development rate in reproductive 
phase. 

1580 oCd-1 

MOPP Maximum optimum photoperiod 11.50 h 

PPSE Photoperiod sensitivity default h-1 

7.2.3.2 Peanut and soybean modules  

Local varieties of ‘garuda and wilis’ for peanut and soybean respectively were used 

in this study and parameterised using standard crop parameters of ‘Virginia Bunch 

and Davis’ varieties, respectively. Peanut and soybean data from the 2008 field 

experiment were used to parameterise and calibrate the crop components in the 
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model. Detailed crop phenology recorded during this experiment served to compute 

the thermal time durations between crop phases from germination to maturity. The 

method for calibrating peanut and soybean modules was similar to rice module. The 

calibrated values of peanut and soybean phenological rates are presented in Table 7.2. 

Table 7.2 Calibrated phenological development rate of peanut variety of 
‘Garuda “and soybean variety of ‘Wilis’ for model simulation 

Acronym 
Definition of 

parameters/variables 
Values 

Unit 
Peanut Soybean 

y_hi_incr  Rate of harvest index. 0.0058 0.015 1/day 
TT_Emergence units TT from emergence to 

end of juvenile 
5.0 70.0 oCd-1 

x_pp_end_of_juvenile 
description 

photoperiod 12.17 12.0 h 

y_tt_floral_initiation 
units 

TT from initiation to 
flowering 

370.0 400  900 oCd-1 

y_tt_flowering units TT from flowering to 
start grain fill 

300.0 24 oCd-1 

y_tt_start_grain_fill 
units 

Start grain fill to end 
grain fill 

800.0 460  460 oCd-1 

tt_maturity units TT from maturity to 
harvest ripe 

5.0 5.0 oCd-1 

7.2.3.3 SoilN module  

Parameters influencing soil fertility are mainly represented in the APSIM-

SoilN module. Initial state variables (NO3-N, NH4-N, soil organic carbon, pH and 

C:N ratio for soil) were measured for each soil layer from the experimental site and 

used to parameterise APSIM-SoilN module. In the module, part of soil organic 

matter that is considered to be non-susceptible to microbial decomposition over the 

growing season is specified as ‘finert’ which typically will increase with depth. 

‘fbiom’ specifies the initial BIOM pool as a fraction of the non-inert soil organic 

matter which more labile soil microbial biomass and microbial products (Table 7.3). 

Fbiom and Finert values were defined by fitting the measured and simulated OC. 

SoilN module was calibrated using values of NO3-N, NH4-N and soil organic carbon 

obtained from field experiment during the rice growth period in wet and dry seasons 

of 2007-2008. 
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Table 7.3 Soil Bulk density (BD), saturation (sat), lower limit of plant-available water 
(LL15), drained upper limit of water (DUL), organic  carbon (OC), fraction of active 
soil organic material as microbial biomass (FBiom) and fraction of inert organic 
matter (Finert) at various soil depths for initiation of the APSIM model. 

Depth  BD Sat DUL LL15 MWcon  KS OC F F 

(cm) (g cm-3) (mm/mm) (0-1) mm/d (%) biom inert  

0-20 1.19 0.55 0.35 0.21 1 20 1.5 0.04 0.4 

20-40 1.23 0.53 0.34 0.2 0 10.4 0.8 0.02 0.6 

40-70 1.27 0.51 0.29 0.19 1 100 0.09 0.02 0.8 

70-100 1.35 0.49 0.28 0.2 1 100 0.07 0.01 1.0 

Fbiom and Finert values are default values from the APSIM model. Mwcon is 
calibrated values of drainage rate of each soil layer; a value of 0 indicates the layer is 
considered more impermeable to cascading flow. KS is calibrated value of saturated 
conductivity. 

7.2.3.4 SoilWat modules  

The soilWat module was parameterised using data from the field experiment 

includes soil bulk density, saturated water content, drained upper limit water content 

at field capacity (DUL) and crop lower limit (Table 7.3), and two parameters, U and 

CONA, which determine first and second stage soil evaporation coefficients. The 

later parameters were set at 6 mm and 3 mm day-1 respectively where the values 

accepted for tropical conditions such as those described here. After a rainfall event, a 

proportion of water in excess of field capacity that drains within a day was specified 

through a coefficient called SWCON, which was varied depending on soil texture. 

Poorly draining clay soils will characteristically have values <0.5 while sandy soils 

that have high water conductivity can have values >0.8. Soil water content 

measurements before sowing defined the initial soil water content of the soil (Table 

7.3). The soil percolation rate was first estimated from daily observations on field 

water depths, and then fine-tuned by model fitting. Refining the parameter value was 

done when simulated field-water depths and infiltration rate best agreed with 

measured field-water depths. 

7.2.3.5 Pond modules  

Pond module was calibrated using the field experiment for daily water depth 

during the rice growth period in wet and dry seasons in 2007-2008. The dynamics of 
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daily ponding depth was first estimated from daily observations of field water depths, 

and then fine-tuned by model fitting. Model parameters were further refined by trial 

and error until the simulated daily ponding depths best agreed with measured 

ponding depths (Table 7.3). A similar method was used for the calibration of NO3-N, 

NH4-N, temperature and pH of ponding water. 

7.2.4 Model validation  

The calibrated APSIM-Oryza model was validated using field experimental 

data from the rice-rice-legume crops sequence in 2008-2009. The details of 

methodology of the experiment are presented in Chapter 3 and brief description of 

methodology is presented in section 7.2.1 in this chapter. 

7.2.5 Data analysis  

The performance of the APSIM-Oryza model was evaluated using the 

absolute root mean square error (RMSEa) and normalised root mean square error 

(RMSEn) (Mayer and Butler, 1993; Yang et al., 2000; Bouman and van Laar, 2006; 

Zhang et al., 2007). Simulated and measured values of parameters were also 

graphically compared. The student’s t test of means assuming unequal variance p(t) 

and linear regression analysis were also used to assess the goodness-of-fit between 

the measured and simulated results using the Genstat software (Version 9.2.0.153, 

VSN International Ltd, Oxford, 2008). The values of slope (α), intercept (β), and 

determination coefficient (R2) of the linear regression between simulated and 

measured values were also calculated. If the p(t) was greater than 0.05, it was 

concluded that no significant differences between measured and simulated values 

was existed. A model also reproduces experimental data best when α is equal to 1, β 

is equal to 0, R2 is equal to 1 and absolute RMSEa is similar to SD (Bouman and van 

Laar, 2006). Another statistical analysis used to evaluate the performance of the 

model in this study was efficiency of forecasting (EF) which has been used 

extensively in this type of study (Loague and Green, 1991). The value of EF 

represents the overall goodness-of-fit of the data with negative values indicating 

poor performance of the model, and values close to one representing high 

performance (Mayer and Butler, 1993).  
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  (7.4) 

 
where n is number of observations; Mi and Si are measured and simulated values, 

respectively.  is the mean of all measured values. The variable Mi itself is a mean 

value over the three replicates of the field experiments, which has a standard 

deviation associated with it. Mostly in model evaluation, any difference between 

simulated and measured values is attributed to model errors, whereas the variation in 

the measured value is not taken into account (Kobayashi and Salam, 2000; Gauch et 

al., 2003). 

7.3 Results  

7.3.1 Model calibration  

The APSIM-Oryza model was calibrated using experimental data of rice-

rice-legume crop sequences in 2007-2008. The performance of the model simulating 

the soil, crops and pond dynamics are presented below. 

7.3.1.1 Floodwater dynamics during rice growth period 

Simulated and measured daily water depth during rice growth period in wet-

season of 2007/2008 and dry-season of 2008 for continuously submerged (CS) and 

alternately submerged and non-submerged (ASNS) irrigation treatments are 

graphically presented in Fig. 7. 1. In both wet and dry seasons for CS treatment, the 

dynamics of simulated daily ponded depth closely followed measured values at most 

level of ponded depth, ranging from 0 to 100 mm. Ponded depth at the beginning of 

rice growth was kept at 0-20 mm for 7 days after transplanting (DAT). However, 
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APSIM-Oryza simulation produced 0 mm during this period. Floodwater was 

drained 10 days before rice harvested and ponded depth was zero during this period. 

APSIM simulation was able to reproduce similar results with measured values in this 

period. In ASNS irrigation treatment, simulated values generally followed the pattern 

of measured values. However, the performance of simulated daily ponded depth in 

the ASNS irrigation treatment was weaker than that in the CS irrigation treatment 

compared with measured values in both wet- and dry- seasons. Nevertheless, when 

water depth was below soil surface during nonsubmergence periods of rice growth, 

the model was unable to simulate the water depth in this case.  

Goodness-of-fit parameters for water depth during calibration period were 

used to statistically define the performance of the model. Table 7.4 shows the 

goodness-of-fit parameters of water depth during rice growth periods for CS and 

ASNS irrigation treatments in wet-season of 2007/2008 and dry-season of 2008. For 

CS treatment in both wet- and dry-seasons, the values of student’s t-test were 0.56 

and 0.50 in the wet- and dry-seasons, respectively. This indicates that all simulated 

values are not significantly different with measured values at 95% confidence level. 

The values of slope (α) for both 2007/2008 and 2008 seasons (0.81 and 0.74, 

respectively) were close to one, although the intercept of linear relation between 

measured and simulated values (β) was higher than zero, which indicates the general 

overestimation of simulated values. Coefficients of determination (R2) are all 

significant, although their values were low, indicating the scattered of the data as 

shown in Fig.7.1. The mean values of simulated ponded depth were close to the 

mean values of measured data with the simulated values being 5.27 % and 6.84 % 

higher in wet-season 2007/2008 and early dry-season 2008, respectively. Standard 

deviations (SD) of simulated values were similar to measured values. This indicates 

that the simulated values were in strong agreement with measured values (Jones and 

Kiniry, 1986). Furthermore, the EF value was 0.61 and 0.52 for both wet-season of 

2007/2008 and dry-season of 2008 respectively, indicating good performance of the 

model simulation. The RMSE of simulated ponded depth was lower than SD 

measured values in both wet- and dry-seasons. 

In general, all of these indicators strongly suggest that the performance of the 

model was good for CS irrigation treatment in simulating the dynamics of ponded 

depth during rice growth periods of wet-season of 2007/2008 and dry-season of 2008 
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for calibration test. However, performance of the model in wet season of 2007/2008 

was better than in dry season of 2008. The values of student’s t-test, α and R2 were 

higher in wet season of 2007/2008 than in dry season 2008 while β values were 

similar. In addition, absolute RMSE and normal RMSE% were also higher in wet 

season of 2007/2008 than in dry season of 2008.  

Table 7.4 Statistical analysis of model simulation of daily water depth in wet-season of 
2007/2008 and dry-season of 2008 of rice at various irrigation treatments for 
calibration data sets. 

Indicator 
CS ASNS 

2007/2008 2008 2007/2008 2008 

N 90 90 90 90 

Xm (SD) 55.38 (28) 40.78(27) 9.3 (26.9) -4.62 

Xs (SD) 58.3 (27.6) 43.57 (26.5) 20.8 (18.4) 15.95 

P(t) 0.56* 0.5* 0.01 <0.01 

α 0.81 0.74 0.3 0.03 

β 13.1 13.5 17.32 16.1 

R2 0.66 0.58 0.2 0.05 

RMSEa 16.4 17.2 17.8 15.2 

RMSEn 28.9 42.3 191.5 63.4 

EF 0.61 0.52 0.02 -0.59 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; 
Xs, mean of simulated values in each season; (SD), standard deviation of whole population; 
P(t), significance of student’s t-test; in a column P(t), * means simulated and measured 
values are not significantly different at 95% confidence level; α, slope of linear correlation 

coefficient between measured and simulated values; β, intercept of linear relation between 
measured and simulated values; R2, determination coefficient between measured and 
simulated values; RMSEa, absolute root mean square error; RMSEn, normalised root mean 
square error; EF, efficiency of forecasting.  

In contrast, goodness-of-fit parameters indicated that the performance of the 

model to simulate water depth in ASNS irrigation treatment was lower than that in 

CS irrigation treatment. The student’s t-test values indicated that simulated and 

measured values were significantly different at 95% confidence level. Moreover, the 

values of α and R2 were low although RMSE was lower than SD measured values. 

The simulated ponded depth for ASNS irrigation treatment in rice wet-season of 
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2007/2008 was better than simulated values in rice dry-season of 2008 as indicated 

by higher value of R2 and positive value of EF. The simulated values in early period 

of rice growth were quite good for both wet- and dry-seasons of 2007/2008 and 2008 

in ASNS irrigation treatment. However, when measured water depth reached below 

soil surface, the simulated values deviated from measured values. 

Simulated and measured water input during the rice growth period for CS 

and ASNS irrigation treatments in 2007/2008 and 2008 seasons are presented in 

Table 7.5. Simulated water input varied during rice growth periods in CS and ASNS 

irrigation treatments for both seasons. In CS irrigation treatment, simulated irrigation 

input was close to measured values with the difference of 13.1% and 5.8% for 

2007/2008 and 2008 seasons respectively. Moreover, the difference between 

simulated and measured in total water input (irrigation+rainfall) was smaller than in 

irrigation input with 6.7% and 5.2% for 2007/2008 and 2008 seasons respectively. In 

ASNS irrigation treatment, the performance of the model to simulate water input was 

similar to CS irrigation treatment. Total water input was 3.7% and 14.8% higher in 

simulated values than that measured values for 2007/1008 and 2008 seasons 

respectively. This indicates that the model generally reproduced total water input in 

similar to measured values, although simulated daily water depth was in less 

agreement with measured values in the ASNS irrigation treatment. 
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Figure 7.1 Simulated and measured daily water depth during rice growth period for 
continuously submerged (CS) and alternately submerged and non-submerged 
irrigation treatments in early wet-season of 2007/2008 and dry-season of 2008 for the 
calibration data sets. Negative value of water depth indicates presence of water level 
below soil surface. 
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Table 7.5 Measured and simulated water input during rice growth periods of 2007/2008 and 2008 seasons for calibration data set. 

Seasons 
Water input 

(mm) 

CS ASNS 

Measured Simulated Difference Measured Simulated Difference 

(M) (S) (M-S) (%) (M) (S) (M-S) (%) 

 Irrigation 1080.3 938.4 142.0 13.1 690.0 750 -59.6 -8.6 

2007/2008 Rainfall 1046 1046 0.0 0.0 940.0 940 0 0.0 

 Total water input 2126.3 1984.4 142.0 6.7 1630.4 1690.0 -59.6 -3.7 

 Irrigation 1820.4 1714 106.4 5.8 1102.0 1300 -197.8 -17.9 

2008 Rainfall 233 233 0.0 0.0 233.0 233 0 0.0 

 Total water input 2053.4 1947.0 106.4 5.2 1335.2 1533.0 -197.8 -14.8 
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7.3.1.2 pH and temperature of floodwater  

Figure 7.2 shows the dynamics of pH and temperature during rice growth 

periods. pH and temperature were measured one day before and for ten days after the 

application of N fertiliser. In general, pH increased slightly to about 8 after the 

application of N fertiliser, then reducing to between 6.5 and 7.  The reduction was 

more prominent during the 2008/2009 season. Denitrification of N mostly occur 

around pH=7 to 7.5, and almost ceases for pH<4 or pH>10 (Heinen, 2006). The 

simulated values were generally close to the measured values. Temperature of 

floodwater was around 25οC and it tended to decrease with time. The data of 

temperature during 2008-2009 rice growth periods were not complete as the 

temperature equipment was out of order. In general, simulated values was higher 

than the measured values particularly during 2007/2008 season. 

 

Figure 7.2 Simulated and measured pH and temperature during rice growth periods.  

0

1

2

3

4

5

6

7

8

9

4/11/07 24/12/07 12/2/08 2/4/08 22/5/08 11/7/08 30/8/08 19/10/08 8/12/08 27/1/09 18/3/09 7/5/09 26/6/09

pH

Date

measured

Simulated

Wet 2007/2008 Dry 2008
Wet 2008/2009 Dry 2009

0

5

10

15

20

25

30

35

4/11/0724/12/0712/2/08 2/4/08 22/5/08 11/7/08 30/8/08 19/10/088/12/08 27/1/09 18/3/09 7/5/09 26/6/09

Te
m

pe
ra

tu
re

 (o C
)

Date

Measured

Simulated



Chapter 7 

128 

7.3.1.3 Soil organic carbon (OC) dynamics  

Figure 7.3 shows the dynamics of soil OC during crop growth periods of 

rice-rice-legume crops sequence in 2007-2008. Since there was no statistically 

difference in soil organic carbon between irrigation treatments (CS and ASNS) and 

fertiliser rates during the whole crop sequence of 2007/2008, the values of measured 

soil OC were pooled together for goodness-of-fit parameters analysis and compared 

with simulated soil OC (see Chapter 5 section 5.3 and Chapter 6 section 6.3). In 

general, measured values of OC were more scattered than simulated values, 

indicating the dynamics change of organic carbon thorough crop sequence, although 

their variation were not significantly different. Measured OC values decreased with 

increased soil depth and simulated OC values followed the trend of measured values.  

Table 7.6 shows the goodness-of-fit parameter of OC at different soil layers 

during crop growth periods of rice-rice-legume crops sequences in 2007-2008. 

Analysis of student’s t-test showed that P(t) values were larger than 0.05, indicating 

that all simulated values are statistically similar to measured values except soil at 

layer 2 which is highly significant. The β values were generally close to zero 

indicating good agreement between simulated and measured values except for layer 

1. The α value was small which indicates the general underestimation of simulated 

values and coefficients of determination (R2) were low. Mean and SD of simulated 

values were lower than measured values in all soil layers. SD of simulated values 

decreased with increase in soil depth and SD values at layers 3 and 4 were zero, 

meaning that the layers have a single constant value. This indicates that no or very 

slow decomposition of organic carbon in a deeper soil layers in the model, while the 

decomposition processes existed in field although it was slow with measured values 

were more dispersed than simulated values as shown in Fig. 7.3. The EF values were 

small although these are greater than zero and the RMSE value was lower than SD 

measured values in all soil layers. In general, all of these indicators suggest that the 

performance of the model was quite good in simulating the dynamics of soil OC 

during crop growth periods of rice-rice-legume crops sequence in 2007-2008 for 

calibration test. 
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Figure 7.3 Simulated and measured soil organic carbon at different soil layers during 
crop growth periods in whole year of rice-rice-legume crops sequence of 2007-2008.  

0.0

0.4

0.8

1.2

1.6

24/11/07 13/1/08 3/3/08 22/4/08 11/6/08 31/7/08 19/9/08 8/11/08

O
C

 (%
)

Soil layer 1 (0-20 cm)

0.0

0.4

0.8

1.2

1.6

24/11/07 13/1/08 3/3/08 22/4/08 11/6/08 31/7/08 19/9/08 8/11/08

O
C

 (
%

)

Measured

Simulated
Soil layer 2 (20-40 cm)

0.0

0.4

0.8

1.2

1.6

24/11/07 13/1/08 3/3/08 22/4/08 11/6/08 31/7/08 19/9/08 8/11/08

O
C

 (
%

)

Soil layer 3 (40-70 cm)

0.0

0.4

0.8

1.2

1.6

24/11/07 13/1/08 3/3/08 22/4/08 11/6/08 31/7/08 19/9/08 8/11/08

O
C

 (
%

)

Date

Soil layer 4 (70-100 cm)



Chapter 7 

130 

Table 7.6 Goodness-of-fit parameter of model simulation of organic carbon (OC) in rice-rice-legume crops sequence of 2007-2008 at different soil 
layers for calibration data sets.  

Parameters N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

 Layer 1 48 1.346 (0.14) 1.383 (0.009) 0.145* 0.036 1.33 0.38 0.01 0.49 0.005 

OC Layer 2 48 0.351 (0.07) 0.397 (0.004) 0.001 0.009 0.39 0.63 0.002 0.62 0.42 

 Layer 3 48 0.239 (0.07) 0.23 (0) 0.46* -0.0006 0.23 0.08 0.0005 0.19 0.022 

 Layer 4 48 0.188 (0.6) 0.19 (0) 0.788* -9.00E-15 0.19 0.01 0.00 0.00 0.002 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), standard 
deviation of whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are no significantly different at 
95% confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept of linear relation between measured 
and simulated values; R2, determination coefficient between measured and simulated values; RMSEa, absolute root mean square error; RMSEn, normalised 
root mean square error; EF, efficiency of forecasting.  
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7.3.1.4 Simulated and measured of ammonium-N concentration in soil  

Simulated and measured ammonium-N (NH4-N) concentration in soil at 

various soil layers and N fertiliser rates in continuously submerged (CS) irrigation 

treatment during crops growth periods in whole year of rice-rice-peanut crops 

sequence of 2007-2008 are presented in Fig. 7.4 and 7.5. In general, the trend in 

simulated soil NH4-N followed the measured values although the measured values 

were higher than that the simulated values. Measured NH4-N values increased with 

increased in N fertiliser application rates and decreased with increased in soil depth. 

Simulated NH4-N concentration in soil also followed this pattern. Moreover, 

simulated values were close to zero at deeper soil depth during rice and legume crops 

growth periods suggesting that the simulated movement of NH4-N through deeper 

soil layers was very slow compared with higher measured values. Simulated NH4-N 

concentration in soil during aerobic period of the legume crops were also close to 

zero compared with higher measured values.  

Figures 7.6 and 7.7 show the simulated and measured NH4-N concentration 

in soil at various soil layers and N fertiliser rates in alternately submerged and non-

submerged (ASNS) irrigation treatment during crops growth periods of rice-rice-

soybean crops sequence of 2007-2008. The performance of the model to simulate 

NH4-N dynamics during rice-rice-legume crops growth periods in ASNS irrigation 

treatment was similar to CS irrigation treatment. The ability of the model to simulate 

NH4-N concentration in soil under various irrigation treatments and N fertiliser rates 

was assessed by comparing the simulated values with the measured data (Table 7.7). 

In all irrigation and N fertiliser variables, student’s t-test values were highly 

significantly different, EF values were lower than zero, R2 and α values were low, 

indicating that simulated values did not match with measured values although SD of 

measured values were higher than RMSE and β values were close to zero. These 

results suggests that there was a large discrepancy between simulated and measured 

NH4-N concentration in soil at various soil layers and N fertiliser rates in both CS 

and ASNS irrigation treatments and that the performance of the model in this case 

was poor. 
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Figure 7.4 Simulated and measured NH4-N concentration in soil at various soil layers 
(1 = 0-20 cm; 2 = 20-40 cm depth) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-1 
and c = 140 kg N ha-1) in CS irrigation treatment during crop growth per iods in whole 
year of rice-rice-peanut crops sequence of 2007-2008. 
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Figure 7.5 Simulated and measured NH4-N concentration in soil at various soil depths 
(3 = 40-70 cm; 4 = 70-100 cm depth) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-
1 and c = 140 kg N ha-1) in CS irrigation treatment during crop growth per iods in whole 
year of rice-rice-peanut crops sequence of 2007-2008. 
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Figure 7.6 Simulated and measured NH4-N concentration in soil at various soil layers 
(1 = 0-20 cm; 2 = 20-40 cm depth) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-1 
and c = 140 kg N ha-1) in ASNS irrigation treatment during crop growth periods in 
whole year of rice-rice-soybean crops sequence of 2007-2008. 
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Figure 7.7 Simulated and measured NH4-N concentration in soil at various soil depths 
(3 = 40-70 cm; 4 = 70-100 cm depth) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-
1 and c = 140 kg N ha-1) in ASNS irrigation treatment during crop growth periods in 
whole year of rice-rice-soybean crops sequence of 2007-2008. 
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Table 7.7 Statistical analysis of model simulation of ammonium-N (NH4-N) concentration in soil at various irrigation treatments and N fertiliser 
rates in rice-rice-legume crops sequence of 2007-2008 for calibration data sets. 

Variable N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

CS 132 4.92 (4.39) 0.55 (2.4) <0.001 0.19 -0.37 0.12 2.28 46.36 -0.92 

ASNS 132 4.92 (4.37) 0.55 (2.42) <0.001 0.2 -0.41 0.13 2.27 46.13 -0.92 

F0 88 3.17 (1.66) 0.08 (0.18) <0.001 0.02 0.03 0.02 0.17 5.5 -3.49 

F1 88 4.61 (3.21) 0.45 (1.43) <0.001 0.15 -0.26 0.12 1.35 29.23 -1.58 

F2 88 6.98 (6.11) 1.12 (3.88) <0.001 0.05 0.19 0.14 3.69 52.92 -0.94 

CS, continuously submerged; ASNS, alternately submerged and non-submerged; F0, 0 kg N ha-1; F1, 70 kg N ha-1; F2, 140 kg N ha-1; N, number of 
measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), standard deviation of 
whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are no significantly different at 95% 
confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept of linear relation between measured and 
simulated values; R2, determination coefficient between measured and simulated values; RMSEa, absolute root mean square error; RMSEn, normalised root 
mean square error; EF, efficiency of forecasting.  
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7.3.1.5 Simulated and measured nitrate-N concentration in soil  

Figures 7.8 and 7.9 show simulated and measured nitrate-N (NO3-N) 

concentration in soil at various soil layers and N fertiliser rates for CS and Fig 7.10 

and 7.11 for ASNS irrigation treatments during crops growth periods in whole year 

of rice-rice-legume crops sequence of 2007-2008. The model performance in 

simulating NO3-N concentration in soil was similar to NH4-N concentration in soil. 

The simulated NO3-N concentration in soil was lower than that of measured values 

in all variables of irrigation and N fertiliser treatments. Measured NO3-N 

concentration in soil increased as N fertiliser increased and as soil depth increased, 

indicating there was NO3-N leaching occurring through deeper soil layers. The 

model could not simulate this condition where simulated values were zero for most 

of the time during rice growth periods except at break periods between rice wet and 

dry seasons, and between rice and legume crops seasons. During the legume crops 

season, simulated NO3-N increased as N fertiliser rates increased because of 

nitrification during aerobic condition and decreased as soil depth increased in both 

CS and ASNS irrigation treatments. However, measured values were higher than 

simulated values. Table 7.8 shows statistical analysis of goodness-of-fit parameters 

of simulated NO3-N concentration in soil under various irrigation treatments and N 

fertiliser rates. These analyses generally show that the simulated NO3-N 

concentration in soil did not match with measured values, suggesting that there was a 

discrepancy between simulated and measured NO3-N at various soil layers and N 

fertiliser rates in both CS and ASNS irrigation treatments. Simulated NO3-N 

concentration in soil during legume crops growth periods was higher than during the 

rice growth periods although its values were lower than measured values.  
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Figure 7.8 Simulated and measured NO3-N concentration in soil at various soil layers 
(1 = 0-20 cm; 2 = 20-40 cm depth) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-1 
and c = 140 kg N ha-1) in CS irrigation treatment during crop growth per iods in whole 
year of rice-rice-peanut crops sequence of 2007-2008. 
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Figure 7.9 Simulated and measured NO3-N concentration in soil at various soil depths 
(3 = 40-70 cm; 4 = 70-100 cm) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-1 and 
c = 140 kg N ha-1) in CS irrigation treatment during crop growth per iods in whole year 
of rice-rice-peanut crops sequence of 2007-2008. 
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Figure 7.10 Simulated and measured NO3-N concentration in soil at various soil layers 
(1 = 0-20 cm; 2 = 20-40 cm) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-1 and c = 
140 kg N ha-1) in ASNS irrigation treatment during crop growth periods in whole year 
of rice-rice-soybean crops sequence of 2007-2008. 
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Figure 7.11 Simulated and measured NO3-N concentration in soil at various soil depths 
(3 = 40-70 cm; 4 = 70-100 cm depth) and N fertiliser rates (a = 0 kg ha-1, b = 70 kg N ha-
1 and c = 140 kg N ha-1) in ASNS irrigation treatment during crop growth periods in 
whole year of rice-rice-soybean crops sequence of 2007-2008. 
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Table 7.8 Statistical analysis of model simulation of nitrate-N (NO3-N) concentration in soil at various irrigation treatments and N fertiliser rates 
in rice-rice-legume crops sequence of 2007- 2008 for calibration data sets. 

Variable N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

CS 132 7.88 (9.5) 0.53 (1.2) <0.001 0.05 0.14 0.17 1.06 13.44 -0.52 

ASNS 132 7.78 (9.0) 0.6 (1.2) <0.001 0.06 0.14 0.2 1.08 13.92 -0.54 

F0 88 5.44 (6.7) 0.48 (1.1) <0.001 0.09 -0.01 0.32 0.88 16.25 -0.4 

F1 88 7.79 (9.3) 0.56 (1.2) <0.001 0.05 0.17 0.16 1.07 13.44 -0.55 

F2 88 10.09 (10.7) 0.66 (1.3) <0.001 0.05 0.19 0.14 1.22 12.05 -0.71 

 

CS, continuously submerged; ASNS, alternately submerged and non-submerged; F0, 0 kg N ha-1; F1, 70 kg N ha-1; F2, 140 kg N ha-1; N, 
number of measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), 
standard deviation of whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are no 
significantly different at 95% confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept 
of linear relation between measured and simulated values; R2, determination coefficient between measured and simulated values; RMSEa, 
absolute root mean square error; RMSEn, normalised root mean square error; EF, efficiency of forecasting. 
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7.3.1.6 Biomass and yield  

The dynamincs of the simulated and measured biomass variable at various of 

N fertiliser rates ranging from 0 to 140 kg ha-1 and irrigation management (CS and 

ASNS) in whole year of rice-rice-peanut and rice-rice-soybean crops sequences in 

2007-2008 are presented in Fig 7.12 and Fig. 7.13 respectively. For statistical 

analysis, rice yields in all seasons were pooled together regardless of irrigation and N 

fertiliser treatments due to small sample size, while yield of peanut and soybean 

were analysed by simply comparing between measured and simulated values. The 

model starts simulating rice growth from emergence to harvest stage. Simulated 

growth development at transplating date was delayed (Fig. 7.12 and 7.13) because 

growth recovery during transplanting shock which causes a delay in phenological 

development (Bouman et al., 2001).  

In the wet-season  CS treatment, simulated biomass at different growth stages 

was very close to measured values at all levels of N fertiliser. In the dry-season, 

however, simulated biomass was higher than measured values at all levels of N 

fertiliser. The simulated biomass was close to measured values during tillering stage 

and exceeded measured biomass from panicle initiation onward at all levels of N 

fertiliser, although simulated biomass was closer to measured values at panicle 

initiation and flowering stages at 140 kg N ha-1. However, these patterns were 

slightly different in ASNS irrigation treatment. In the wet-season ASNS treatment, 

the simulated biomass at all rice growth stages was close to measured values, except 

at harvesting stage at all levels of N fertiliser which was below measured values. 

Under-simulated values increased as N fertiliser increased at harversting stage. In the 

dry-season, however, simulated biomass during the growth period of rice was close 

to measured biomass at all levels of N fertiliser. The APSIM-Oryza was able to 

satisfactoraly simulate growth development of legume crops planted following the 

rice dry season of the rice-rice-legume crops sequence. Simulated biomass of peanut 

growth followed measured values closely at all levels of N fertiliserbut soybean 

biomass slightly over-estimated at productive stages for all levels of N fertiliser.  

Figure 7.14 shows the comparison between measured and simulated yield of 

rice in the rice-rice-legume crop sequence in 2007-2008. In general, simulated yield 

matched the pattern of measured yield with slight over-prediction under both F2 and 
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F1 treatments and with slight under-prediction under F0 treatment. Coefficient of 

determination (R2) was 0.70 which indicate the close agreement between measured 

and simulated values (Table 7.10).  

Measured and simulated yield of peanut and soybean at different N fertiliser 

rates are presented in Table 7.9. The APSIM-Oryza was satisfactorily able to 

simulate yield of legume crops at all N fertiliser rates. Simulated peanut yields 

matched well with measured values while soybean yields slightly under-estimated at 

all levels of N fertiliser. This indicated better performance of the model in simulating 

peanut yield than soybean in this condition. The mean diference between simulated 

and measured yields of peanut and soybean regardless of N fertiliser rates were 

1.63% and 17.26% respectively. Measured yield tended to decrease at the highest N 

fertiliser rate in both peanut and soybean crops. This pattern was also followed by 

the model where simulated yield decreased as N fertiliser rates increased. 

Table 7.10 shows the goodness-of-fit parameters of biomass of rice at various 

irrigation managements, peanut and soybean biomass, and rice yield in the wet-

season of 2007/2008 and the dry-season of 2008. The student’s t-test values of 

biomass and yield for rice in both CS and ASNS irrigation treatments and legume 

crops indicate that all simulated values were not significantly different with 

measured values at 95% confidence level. The values of slope (α) were close to one 

although the intercept of linear relation between measured and simulated values (β) 

were higher than zero. Coefficient of determinations (R2) is  all significant with their 

values close to one which indicate the close agreement between measured and 

simulated values. The mean values of simulated biomass of rice were higher than 

mean of measured values by 18 % and 20 % different for CS and ASNS irrigation 

treatments respectively. Standard deviation (SD) of simulated biomass was close to 

measured values although their values were high which indicate the scatter of data. 

Furthermore, mean and SD of simulated legume crops were very close to measured 

values. These indicate that the simulated values were in good agreement with 

measured values in both CS and ASNS irrigation treatments of rice and legume 

crops. The EF value for rice biomass in CS and ASNS and legume crop biomass 

were close to one except for rice yield, indicating high performance of the model 

simulation. EF for rice yield was positive but low at 0.19. The RMSE of simulated 

biomass of rice and legume crops and yield of rice were lower than SD measured 



values. In general, all of these indicators suggest that the performance of the model is 

acceptable in simulating the dynamics of biomass and yiel

ASNS irrigation treatments and for legume crops biomass during the growth periods 

of the calibration test.

 

 

Figure 7.12 Simulated and measured total biomass of rice in CS irrigation treatment 
and peanut in whole year of rice
rates; (a) is 0 kg ha-1 for both rice and peanut crops; (b) is 70 and 12 kg N ha
and peanut crop respectively; (c) is 140 and 24 kg N ha
respectively.  

values. In general, all of these indicators suggest that the performance of the model is 

acceptable in simulating the dynamics of biomass and yield for rice in the CS and 

ASNS irrigation treatments and for legume crops biomass during the growth periods 

of the calibration test. 

Simulated and measured total biomass of rice in CS irrigation treatment 
ut in whole year of rice-rice-peanut crops sequence at various urea fertiliser 

1 for both rice and peanut crops; (b) is 70 and 12 kg N ha
and peanut crop respectively; (c) is 140 and 24 kg N ha-1 for rice and peanut 
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values. In general, all of these indicators suggest that the performance of the model is 

d for rice in the CS and 

ASNS irrigation treatments and for legume crops biomass during the growth periods 

 

Simulated and measured total biomass of rice in CS irrigation treatment 
peanut crops sequence at various urea fertiliser 

1 for both rice and peanut crops; (b) is 70 and 12 kg N ha-1 for rice 
for rice and peanut 



 

Figure 7.13 Simulated and measured total biomass of rice in ASNS irrigation treatment 
and soybean in whole year of rice
rates; (a) is 0 kg ha-1 for both rice and soybean crops; (b) is 70 and 12 kg N ha
and soybean crops respectively; (c) is 140 and 24 kg N ha
respectively.  

 

 

 

Simulated and measured total biomass of rice in ASNS irrigation treatment 
and soybean in whole year of rice-rice-soybean crops sequence at various N fertiliser 

for both rice and soybean crops; (b) is 70 and 12 kg N ha
and soybean crops respectively; (c) is 140 and 24 kg N ha-1 for rice and soybean 
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Simulated and measured total biomass of rice in ASNS irrigation treatment 
soybean crops sequence at various N fertiliser 

for both rice and soybean crops; (b) is 70 and 12 kg N ha -1 for rice 
for rice and soybean 



Figure 7.14 Simulated and measured yield of rice i
crops sequence of 2007

Table 7.9 Measured and simulated yield of peanut and soybean at various N fertiliser 
rates in dry-season of 2008 fo
standard deviation, n = 3)

Crops 
N rates

(kg ha
 

0

Peanut 12

 24

 0

Soybean  12

 24

 

 
 

 

 

Simulated and measured yield of rice in whole year of rice
crops sequence of 2007-2008 calibration data set solid line is 1:1 relationship

Measured and simulated yield of peanut and soybean at various N fertiliser 
season of 2008 for calibration data set. Values in brackets indicate 

standard deviation, n = 3).  

rates 
(kg ha-1) 

Measured 
(M) 

Simulated 
(S) 

M

0 2077 (25) 2075.9 1.1

12 2019 (38) 2076.4 -57.4

24 2010 (36) 2050.0 -

0 2233 (113) 1968.8 264.2

12 2361 (15) 1862.6 498.4

24 2211 (125) 1794.5 416.5
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n whole year of rice-rice-legume 
line is 1:1 relationship. 

Measured and simulated yield of peanut and soybean at various N fertiliser 
r calibration data set. Values in brackets indicate 

M-S 
Difference 

(%) 

1.1 0.05 

57.4 -2.84 

-40 -1.99 

264.2 11.83 

498.4 21.11 

416.5 18.84 
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Table 7.10 Statistical analysis of model simulation of biomass of rice, peanut and soybean, and rice yield in rice-rice-legume crops sequence of 
2007-2008 for calibration data sets.  

Variable parameters N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

Rice-CS Biomass 24 5202 (4472) 6151 (4058) 0.52* 1.06 590 0.91 1474 26.0 0.84 

Rice-ASNS Biomass 24 5119 (4439) 6165 (4936) 0.44* 1.06 754 0.94 1201 21.3 0.87 

peanut Biomass 15 4095 (2426 ) 3748 (2161) 0.68* 0.88 129 0.99 279 7.1 0.95 

Soybean  Biomass 15 4067 (2132) 4021 (2243) 0.96* 1.04 -192 0.97 407 10.1 0.96 

Rice yield 12 5489 (1491) 5913 (2214) 0.59* 1.24 -897 0.70 1276 22.4 0.19 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), standard 
deviation of whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are not significantly different at 

95% confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept of linear relation between measured 
and simulated values; R2, coefficient determination between measured and simulated values; RMSEa, absolute root mean square error; RMSEn, normalised 
root mean square error; EF, efficiency of forecasting.  
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7.3.1.7 Leaf area index (LAI) of rice and legume crops  

Figures 7.15 and 7.16 show the dynamics of LAI of rice in the wet and dry 

seasons, and legume crops following dry season of rice at various N fertiliser rates 

for CS and ASNS irrigation treatments, respectively. In general, simulated LAI 

followed closely the pattern of measured values. In the wet season for both CS and 

ASNS irrigation treatments, simulated LAI followed closely measured values in 

early growth and at harvesting stages. However, simulated values were higher than 

measured values at flowering stage for zero N fertiliser, but this trend was reversed 

at higher N fertiliser rates. The simulated LAI patterns for rice in the dry season were 

similar to the wet season. Simulated LAI for peanut and soybean followed closely 

the pattern of measured values in all N fertiliser rates. It was not possible to measure 

the LAI for soybean at harvesting stage as all leaves were senescenced at harvest 

stage.  

Table 7.11 shows the goodness-of-fit parameters of LAI for rice at various 

irrigation treatments and legume crops in rice-rice-legume crops sequence of 2007-

2008. The t-test values of LAI for rice in both CS and ASNS irrigation treatments 

and legume crops indicate that simulated values statistically was similar to measured 

values at 95% confidence level. The values of α and R2 were close to one, which 

indicate the close agreement between measured and simulated values and the values 

of β were higher than zero. The mean values and SD of simulated LAI were similar 

to the mean and SD of measured values in both CS and ASNS irrigation treatments 

and legume crops. These indicate that the simulated values were in close agreement 

with measured values in both CS and ASNS irrigation treatments and legume crops. 

Furthermore, the EF value for CS and ASNS and legume crops were close to one, 

indicating high performance of the model simulation. The RMSE of simulated LAI 

for rice and legume crops were lower than SD measured values. In general, all of 

these statistical indicators suggest that the performance of the model is acceptable in 

simulating the dynamics of LAI for rice in the CS and ASNS irrigation treatments 

and legume crops. 

 



Figure 7.15 Simulated and measured leaf area index (LAI) of rice in CS irrigation 
treatment and peanut in 
various N fertiliser rates; (a) is 0 kg ha
12 kg N ha-1 for rice and 
and peanut respectively. 

 
 

Simulated and measured leaf area index (LAI) of rice in CS irrigation 
treatment and peanut in whole year of rice-rice-peanut crops sequence in 2007
various N fertiliser rates; (a) is 0 kg ha-1 for both rice and peanut crops; (b) is 70 and

for rice and peanut crops respectively; (c) is 140 and 24 kg N ha
spectively.  
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Simulated and measured leaf area index (LAI) of rice in CS irrigation 

peanut crops sequence in 2007-2008 at 
for both rice and peanut crops; (b) is 70 and 

crops respectively; (c) is 140 and 24 kg N ha-1 for rice 



 

Figure 7.16 Simulated and measured leaf area index (LAI) of rice for ASNS irrigation 
treatment and soybean in whole year of rice
fertiliser rates; (a) is 0 kg ha
ha -1 for rice and soybean crops respectively; (c) is 140 and 24 kg N ha
soybean respectively. 

 
 
 
 

Simulated and measured leaf area index (LAI) of rice for ASNS irrigation 
treatment and soybean in whole year of rice-rice-soybean crops sequence at various N 
fertiliser rates; (a) is 0 kg ha-1 for both rice and soybean crops; (b) is 70 and 12 kg N 

for rice and soybean crops respectively; (c) is 140 and 24 kg N ha
 

Chapter 7 

151 

 

Simulated and measured leaf area index (LAI) of rice for ASNS irrigation 
soybean crops sequence at various N 

oth rice and soybean crops; (b) is 70 and 12 kg N 
for rice and soybean crops respectively; (c) is 140 and 24 kg N ha-1 for rice and 
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Table 7. 11 Statistical analysis of model simulation of leaf area index (LAI) of rice at various irrigation treatments and legume crops 
(peanut and soybean) in rice-rice-legume crops sequence of 2007-2008 for calibration data sets.  

Crops Irrigation 
treatments 

N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

Rice CS 24 2.77 (1.94) 2.82 (1.93) 0.93* 0.87 0.42 0.74 1 36.7 0.7 

Rice ASNS 24 2.57 (1.82) 3.13 (2.08) 0.32* 1.00 0.54 0.78 1 34.9 0.6 

Legumes  18 2.42 (1.34) 2.34 (1.34) 0.90* 0.97 0.01 0.89 0.4 16.2 0.9 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), 
standard deviation of whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are not 
significantly different at 95% confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept of 
linear relation between measured and simulated values; R2, coefficient determination between measured and simulated values; RMSEa, absolute root 
mean square error; RMSEn, normalised root mean square error; EF, efficiency of forecasting. 
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7.3.1.8 N-uptake of rice and legume crops  

Graphical comparison between simulated and measured N-uptake of rice for 

the CS and ASNS irrigation treatments and legume crops at various N fertiliser rates 

in rice-rice-legume crops sequence of 2007-2008 are shown in Fig. 7.17 and 7.18 

respectively. In the wet season for both CS and ASNS irrigation treatments, 

simulated N-uptake closely matched with measured values during growth periods of 

rice at zero N fertiliser. However, overestimation of N-uptake increased as N 

fertiliser rates increased and more pronounced in the dry season than in the wet 

season for both CS and ASNS irrigation treatments. For legume crops, simulated N-

uptake matched well with measured values during the growth period in all N 

fertiliser rates although measured values were slightly higher than simulated values 

in the peanut crop at harvesting stage as N fertiliser rates increased. 

Table 7.12 shows the statistical analysis of model simulation for N-uptake of 

rice for various irrigation treatments, peanut and soybean in rice-rice-legume crops 

sequence of 2007-2008. Simulated mean and SD values were higher than measured 

values except for peanut, which indicated the model has over-predicted N-uptake as 

is shown in Fig. 7.17 and 7.18. The student’s t-test of N-uptake for rice in both CS 

and ASNS irrigation treatments and legume crops indicate that N-uptake was not 

significantly different between measured and simulated values at 95% confidence 

level. The values of α and R2 for rice and legumes were close to one, which indicates 

the close agreement between measured and simulated values. In both CS and ASNS 

irrigation treatments, the values of β were higher than zero, indicating general 

overestimation of simulated values. Furthermore, the EF value for CS and ASNS and 

legume crops were close to one, indicating high performance of the model 

simulation. The RMSE of simulated LAI for rice and legume crops were lower than 

SD measured values. In general, these statistical indicators suggest that the 

performance of the model was acceptable in simulating the dynamics of N-uptake for 

rice in CS and ASNS irrigation treatments and legume crop in rice-rice-legume crops 

sequence in the tropical climate. 



Figure 7.17 Simulated and measured N
peanut in whole year of rice
fertiliser rates; (a) is 0 kg ha
for rice and peanut crops respectively; (c) is 140 and 24 kg N ha
respectively.  

 

Simulated and measured N-uptake of rice in CS irrigation treatment and 
peanut in whole year of rice-rice-peanut crops sequence in 2007
fertiliser rates; (a) is 0 kg ha-1 for both rice and peanut crops; (b) is 70 and 12 kg N ha

crops respectively; (c) is 140 and 24 kg N ha-1 
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uptake of rice in CS irrigation treatment and 
peanut crops sequence in 2007-2008 at various N 

for both rice and peanut crops; (b) is 70 and 12 kg N ha-1 
 for rice and peanut 



Figure 7.18 Simulated and measured N
and soybean in whole year of rice
rates; (a) is 0 kg ha-1 for both rice and soybean crops; (b) is 70 and 12 kg N ha
and soybean crops respectively; (c) is 140 and 24 kg N ha
respectively.  

 

 

ulated and measured N-uptake of rice in ASNS irrigation treatment 
and soybean in whole year of rice-rice-soybean crops sequence at various N fertiliser 

for both rice and soybean crops; (b) is 70 and 12 kg N ha
crops respectively; (c) is 140 and 24 kg N ha-1 for rice and soybean 
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uptake of rice in ASNS irrigation treatment 
soybean crops sequence at various N fertiliser 

for both rice and soybean crops; (b) is 70 and 12 kg N ha-1 for rice 
for rice and soybean 
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Table 7.12 Statistical analysis of model simulation of N-uptake of rice, peanut and soybean in rice-rice-legume crops sequence of 2007-2008 for 
calibration data sets.  

Variable N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

Rice-CS 24 56.3 (47.3) 77.3 (57.6) 0.17* 1.17 11.13 0.93 15.2 27 0.7 

Rice-ASNS 24 56.0 (47.4) 71.9 (54.0) 0.29* 1.09 10.2 0.93 14.6 26.1 0.8 

Peanut 9 11.3 (10.1) 8.7 (8.1) 0.60* 0.79 -0.23 0.98 1.1 10.1 0.9 

Soybean 9 9.9 (6.96) 10.6 (8.21) 0.85* 1.17 -0.97 0.83 1.1 10.8 0.9 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), standard 
deviation of whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are not significantly different at 
95% confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept of linear relation between measured 
and simulated values; R2, coefficient determination between measured and simulated values; RMSEa, absolute root mean square error; RMSEn, normalised 
root mean square error; EF, efficiency of forecasting.  
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7.3.2 Model validation 

The APSIM-Oryza model was validated using field experiment data of rice-

rice-legume crops sequence in 2008-2009. The details of field experiment are 

presented in Chapter 3 and brief description in section 7.3 in this chapter.  

7.3.2.1 Floodwater dynamics during rice growth period  

Figure 7.19 shows the dynamics of simulated and measured daily water depth 

during rice the growth periods in the CS and ASNS irrigation treatments in the wet-

season of 2008/2009 and dry-season of 2009 for validation data sets. Simulated and 

measured daily water depth varied during the rice growth periods in both CS and 

ASNS irrigation treatments. The dynamics of simulated daily water depth generally 

followed the pattern of measured values during the rice growth period in both wet- 

and dry-seasons, although simulated maximum and minimum water depth varied 

with measured values. However, the performance of APSIM–Oryza to simulate daily 

water depth in CS was better in the calibration than that in the validation processes.  

In the ASNS irrigation treatment, the performance of the model to simulate 

the dynamics of water depth during rice growth in validation data sets was similar to 

calibration data set. The dynamic of daily water depth between simulated and 

measured values varied most of the time during the rice growth period. Maximum 

and minimum water depth for simulated values mostly deviated from measured 

values. Moreover, when measured water depth was below the soil surface, the 

simulated values did not follow this pattern.  

Table 7.13 shows statistical analysis of the performance APSIM-Oryza in 

simulating daily water depth during rice growth periods in the wet-season of 

2008/2009 and dry-season of 2009. In the CS irrigation treatment for both wet and 

dry seasons, student’s t-test values were not significantly different at 95% confidence 

level and SD of measured values were higher than RMSE which indicate the 

performance of the model was acceptable. However, the values of slope (α) and 

coefficient of determinations (R2) of linear regression between simulated and 

measured values were low and RMSEn and (β) were high. Moreover, the value of EF 

was negative in both wet- and dry-seasons. The performance of the model in the 

ASNS irrigation treatment to simulate water depth during rice growth was lower than 
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that in the CS irrigation treatment. These indicators suggest that the performance of 

the model was poor in simulating the dynamics of daily water depth during rice 

growth periods in wet-/ and dry seasons of 2008/2009 and 2009 respectively for 

validation data sets. 

When percolation rates of the soil in the second layer (hardpan soil layer) were 

reset at 17.1 mm day-1 for wet and dry seasons respectively for the CS irrigation 

treatment, performance of the model matched quite well (Fig. 7.20). The simulated 

values generally followed the measured values. The statistical analyses of goodness-

of-fit parameters also indicated that simulated and measured values were matched 

quite good (Table 7.14). In this case, the performance of the model for validation 

data sets was similar to calibration data sets. This indicates that the disturbance of 

subsoil hardpan may affect the performance of the model to simulate the dynamics 

of daily ponded water depth during rice growth. 

Simulated and measured water input during rice growth period in the CS and 

ASNS irrigation treatments in 2007/2008 and 2008 seasons for validation data sets is 

presented in Table 7.15. Simulated water input varied with irrigation treatments and 

seasons during rice growth period ranging from 1549 to 2210 mm in 2008/2009 

season and from 1492 to 2190 mm in 2009 season. The performance of the model to 

reproduce irrigation input was close to measured values in both wet- and dry-seasons 

for CS and ASNS irrigation treatments. In the CS irrigation treatment, simulated 

total irrigation input was close to measured values with 0.5 % and 3.6 % difference 

to measured values in 2008/2009 and 2009 seasons respectively. The performance of 

the model to reproduce total irrigation input in ASNS irrigation treatment was 

similar to the CS irrigation treatment. Simulated total irrigation input in the ASNS 

irrigation treatment was 0.7% and 6.2% difference to measured values in 2008/2009 

and 2009 seasons respectively. Moreover, the performance of the model to simulated 

total irrigation input in both the CS and ASNS irrigation treatments was greater in 

2008/2009 season than that in 2009 season. This indicates that the simulated total 

irrigation input was in agreement with measured values, although simulated daily 

water depth was in less agreement with measured values. 
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Figure 7.19 Simulated and measured daily depth during rice growth periods at 10.4 
mm day-1 infiltration rate for continuously submerged (CS) and alternately submerged 
and non-submerged (ASNS) irrigation treatments in wet- 2008/2009 and dry-season 
2009 for the validation data sets. Negative value of water depth indicates presence of 
water level below soil surface. 
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Figure 7.20 Simulated and measured daily water depth during rice growth period 
when percolation rates reset to 17.1 mm day-1 in continuously submerged (CS) 
irrigation treatment in wet-season of 2008/2009 and dry-season of 2009 for the 
validation data sets. 
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Table 7.13 Statistical analysis of model simulation for daily water depth at CS and 
ASNS irrigation treatments in wet- and dry-seasons of 2008/2009 and 2009 for 
validation data sets at percolation rate of 10.4 mm d-1.  

Indicators 
CS ASNS 

2008/2009 2009 2008/2009 2009 

N 90 90 90 90 

Xm (SD) 50.18 (27.6) 42.76 (27.33) 10.28 (24.1) 1.28 (38.7) 

Xs (SD) 56.15 (27.1) 43.80 (24.74) 18.35 (16.8) 15.8 (15.5) 

P(t) 0.08* 0.22* 0.01 0.01 

a 0.2 0.2 0.28 0.1 

b 48.6 40 15.46 15.9 

R2 0.04 0.04 0.16 0.1 

RMSEa 27.1 24.4 15.4 15.1 

RMSEn 54 57.2 50.29 82.7 

EF -0.69 -0.49 -0.04 -0.16 

N, number of measured/simulated data pairs; Xm, mean of measured values; Xs, mean of 
simulated values; (SD), standard deviation of whole population; P(t), significance of paired 
t-test; in a column P(t), * means simulated and measured values are not significantly 
different at 95% confidence level; α, slope of linear correlation coefficient between 

measured and simulated values; β, intercept of linear relation between measured and 
simulated values; R2, determination coefficient between measured and simulated values; 
RMSEa, absolute root mean square error; RMSEn, normalised root mean square error; EF, 
efficiency of forecasting.  
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Table 7.14 Statistical analysis of model simulation for daily water depth at CS 
irrigation treatment when percolation rates was reset to 17.1 mm d-1 for wet-season of 
2008/2009 and dry-season of 2009 for validation data sets.  

Indicators 
Rice seasons 

2008/2009 2009 

N 90 90 

Xm (SD) 50.18 (27.6) 42.76 (27.33) 

Xs (SD) 50.42 (28.1) 40.93 (30.74) 

P(t) 0.94 0.69 

a 0.88 0.69 

b 6.49 11.5 

R2 0.74 0.37 

RMSEa 14.3 24.5 

RMSEn 28.5 57.2 

EF 0.72 0.11 

N, number of measured/simulated data pairs; Xm, mean of measured values; Xs, 
mean of simulated values; (SD), standard deviation of whole population; P(t), 
significance of paired t-test; in a column P(t), * means simulated and measured 
values are not significantly different at 95% confidence level; α, slope of linear 

correlation coefficient between measured and simulated values; β, intercept of linear 
relation between measured and simulated values; R2, determination coefficient 
between measured and simulated values; RMSEa, absolute root mean square error; 
RMSEn, normalised root mean square error; EF, efficiency of forecasting.  
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Table 7.15 Measured and simulated irrigation input during rice growth periods in 2008/2009 and 2009 seasons for validation data set.  

 
Irrigation input 

(mm) 

CS ASNS 

Seasons Measured Simulated Difference Measured Simulated Difference 

 (M) (S) (M-S) (%) (M) (S) (M-S) (%) 

 Irrigation 1234.0 1245.3 -11.3 -0.9 689 700 -10.6 -1.5 

2008/2009 Rainfall 964.7 964.7 0.0 0.0 849 849 0.0 0.0 

 Total irrigation input 2198.7 2210.0 -11.3 -0.5 1538.0 1548.6 -10.6 -0.7 

 Irrigation 1864 1781 82.7 4.4 1198 1100 98.2 8.2 

2009 Rainfall 409 409 0.0 0.0 392 392 0.0 0.0 

 Total irrigation input 2272.4 2189.8 82.7 3.6 1590.5 1492.3 98.2 6.2 
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7.3.2.2 Organic carbon dynamics of soil  

Table 7.16 shows the goodness-of-fit parameters of OC at different soil 

layers during crop growth periods of rice-rice-legume crops sequence in 2008-2009. 

The performance of the model in simulating the dynamics of soil OC at various soil 

depths during crop growth periods were similar to the calibration data sets. The 

measured values of OC was more scattered than simulated values as indicated by 

lower R2 values, indicating dynamics change organic carbon in the field although 

measured OC values decreased as soil depth increased and simulated values 

followed the trend. The student’s t-test values were greater than 0.05 in layer 2 and 4, 

indicating that the simulated values are not statistically different with measured 

values, while t-test values fir layer 1 and 3 were ≤ 0.05. Except for layer 1, each soil 

layer has a single simulated value of OC as shown by SD = 0 which indicated the 

resistance of OC to decomposition in the model. The α values were small in all soil 

layers, which indicated the general underestimation of simulated values although the 

β values were close to zero. Moreover, the correlations between observed and 

simulated values were weak in all soil layers as indicated by very low coefficient of 

determinations (R2). The EF values in soil layers 2 and 4 were positive although it 

was small while in layers 1 and 3 were negative. This suggests that the performance 

of the model in simulating the dynamics of soil OC during crop growth periods of 

rice-rice-legume crops sequence in 2007-2008 was poor in all soil layers. 
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Table 7.16 Statistical analysis of model simulation for organic carbon (OC) in rice-rice-legume crops sequence of 2008-2009 at various soil layers 
for validation data sets.  

parameters N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

Layer 1 48 1.3 (0.13) 1.38 (0.09) 0.02 0.04 1.33 0.38 0.007 0.4 -0.25 

Layer 2 48 0.21 (0.08) 0.38 (0.0) 0.39* 0.05 0.39 0.04 0.002 0.55 0.027 

Layer 3 48 0.21 (0.03) 0.23 (0.0) 0.05 0.004 0.23 0.06 0.005 0.22 -0.028 

Layer 4 48 0.18 (0.05) 0.19 (0.0) 0.1* 0.006 0.19 0.08 0.003 0.17 0.09 

N, number of measured/simulated data pairs; Xm, mean of measured values; Xs, mean of simulated values; (SD), standard deviation of whole population; 
P(t), significance of unpaired t-test; in a column P(t), * means simulated and measured values are not significantly different at 95% confidence level; α, 

slope of linear correlation coefficient between measured and simulated values; β, intercept of linear relation between measured and simulated values; R2, 
determination coefficient between measured and simulated values; RMSEa, absolute root mean square error; RMSEn, normalised root mean square error; 
EF, efficiency of forecasting.  
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7.3.2.3 Nitrate-N and ammonium-N dynamics of soil  

The performance of the model in simulating nitrate-N (NO3-N) and 

ammonium-N (NH4-N) dynamics in soil during rice and legume crops growth 

periods at various irrigation and N fertiliser treatments for validation data sets are 

presented in Table 7.17. In general, the performance of the model in simulating NO3-

N and NH4-N dynamics in soil was similar to the calibration data sets. The model 

was generally poor in simulating the dynamics of NO3-N and NH4-N concentrations 

in soil during the rice and legume crops growth periods. The values of t-test for NO3-

N and NH4-N in both irrigation and N fertiliser treatments were highly significant. 

Furthermore, EF values in all treatments were negative and R2 values were low. 

These indicators suggest that the model had discrepancy to simulate the dynamics of 

NO3-N and NH4-N concentration in soil in rice-rice-legume crops rotation. 

7.3.2.4 Biomass, yield and leaf area index of rice and legume crops  

Table 7.18 shows goodness-of-fit parameters of the model to simulate biomass, 

yield and leaf area index of rice and legume crops in rice-rice-legume crop rotation 

in 2008-2009 for validation data set. In CS and ASNS irrigation treatments for rice 

biomass, P(t) values (0.79 and 0.81 for CS and ASNS respectively) indicated that 

simulated was not significantly different from measured biomass. Furthermore, the 

values of α, R2 and EF were close to one and RMSEa values were lower than SD of 

measured values, although β values in CS (-160 kg ha-1) and ASNS (235 kg ha-1) 

treatments were negative and positive respectively, indicating underestimation and 

overestimation of simulated values respectively. The performance of the model to 

simulate rice biomass in validation was similar to calibration. These goodness-of-fit 

parameters suggest that the model adequately reproduced similar biomass to 

measured values in both calibration and validation data sets. Similar to rice biomass, 

the model also reproduced peanut and soybean biomass quite good with p(t) values 

did not significantly different between simulated and measured legume biomass. 

However, t-test value for soybean was higher in calibration than in validation 

processes, which indicated better performance of the model in calibration data sets. 
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Table 7.17 Statistical analysis of model simulation for nitrate-N and ammonium-N concentration in soil at various irrigation treatments and N 
fertiliser rates in rice-rice-legume crops sequence of 2008-2009 for validation data sets.  

Variable Treatment N Xm (SD) Xs (SD) P(t) α β R2 RMSEa RMSEn EF 

NH4-N 

CS 132 4.21 (4.39) 1.35 (2.4) <0.001 0.83 -2.14 0.46 3.2 75.9 -0.48 

ASNS 132 4.06 (4.37) 0.71 (2.42) <0.001 0.46 -1.17 0.43 1.8 44.4 -0.58 

F0 88 2.57 (1.66) 0.19 (0.18) <0.001 0.005 0.004 0.18 0.23 8.88 -3.73 

F1 88 3.86 (3.21) 0.74 (1.43) <0.001 0.47 -0.06 0.29 1.78 46.2 -1.45 

F2 88 5.98 (6.11) 2.17 (3.88) <0.001 0.77 -2.45 0.44 4.16 69.6 -0.47 

NO3-N 

CS 132 5.32 (4.8) 0.35 (0.9) <0.001 0.07 -0.02 0.14 0.85 15.89 -0.96 

ASNS 132 5.40 (4.8) 0.82 (1.3) <0.001 0.16 -0.002 0.3 1.12 20.76 -0.69 

F0 88 3.69 (3.3) 0.43 (0.7) <0.001 0.09 0.1 0.19 0.62 16.88 -0.86 

F1 88 5.32 (4.6) 0.50 (0.9) <0.001 0.09 0.04 0.22 0.77 14.38 -0.99 

F2 88 7.07 (5.7) 0.82 (1.7) <0.001 0.13 -0.12 0.21 1.5 21.26 -1.04 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), standard 
deviation of whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are not significantly different at 
95% confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept of linear relation between measured 
and simulated values; R2, determination coefficient between measured and simulated values; RMSEa, absolute root mean square error; RMSEn, normalised 
root mean square error; EF, efficiency of forecasting. 
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Table 7.18 Statistical analysis of model simulation for biomass, yield and leaf area index (LAI) at various irrigation treatments of rice-rice-legume 
crops sequence in 2008-2009 for validation data sets.  

Parameter Variable N Xm (SD) Xs (SD) P(t) αααα    ββββ    R2 RMSEa RMSEn EF 

Rice-CS Biomass 24 5251 (4087) 4926 (4208) 0.79* 0.97 -160 0.86 1534 19.2 0.86 

Rice-ASNS Biomass 24 5100 (3973) 5394 (4363) 0.81* 1.01 235 0.85 1736 34.0 0.81 

peanut Biomass 24 3988 (2647 ) 3840 (42341) 0.84* 0.86 407 0.95 548 13.7 0.93 

Soybean  Biomass 24 3133 (2193) 3971 (2464) 0.26* 1.14 410 0.94 612 19.6 0.74 

Rice yield 12 5101 (1337) 5122 (1674) 0.97* 1.18 -917 0.90 570 11 0.80 

Rice-CS LAI 24 2.62 (1.80) 2.82 (1.64) 0.69* 0.74 0.88 0.66 1 37.2 0.60 

Rice-ASNS LAI 24 2.47 (1.68) 3.36 (1.89) 0.10* 0.94 1.04 0.69 1.1 43.3 0.30 

legume LAI 18 2.23 (1.07) 2.69 (1.1) 0.44* 0.63 1.28 0.93 0.5 20.2 0.70 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; Xs, mean of simulated values in each season; (SD), standard 
deviation of whole population; P(t), significance of paired t-test; in a column P(t), * means simulated and measured values are not significantly different at 
95% confidence level; α, slope of linear correlation coefficient between measured and simulated values; β, intercept of linear relation between measured 
and simulated values; R2, determination coefficient between measured and simulated values; RMSEa, absolute root mean square error; RMSEn, normalised 
root mean square error; EF, efficiency of forecasting. 
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The performance of the model to simulate rice yield was also similar to 

biomass. The values of p(t), α, R2 and EF were close to one and RMSE value was 

lower than SD measured values. The simulated rice yields were about 897 kg ha-1 

and 917 kg ha-1 lower than measured yields in calibration and validation processes, 

respectively. For peanut and soybean, the simulated yields were a close fit with 

measured values (Table 7.19). In peanut, simulated yields were slightly 

underestimated by 2.78% at zero N fertiliser as indicated by a positive value of the 

difference between measured and simulated values. However, overestimation of 

simulated values increased as N fertiliser rates increased (as indicated by a negative 

values of the different between measured and simulated values) although these 

increases were small with less than 10%. In soybean, the model overestimated yield 

in all N fertiliser rates ranging from 23% to 29%. 

The model simulated leaf area index (LAI) of rice and legume crops quite well 

in the validation data sets. The values of p(t) indicated that measured values was not 

significantly different with simulated LAI for both rice and legume crops. Moreover, 

the values of a R2 and EF were high and RMSE values were lower than SD measured 

values. However, the performances of the model in the calibration data sets were 

better than in the validation data sets, as indicated by the values of p(t), α, R2 and EF 

being higher in the calibration than in the validation.  

7.3.2.5 N-uptake of rice and legume crops  

Table 7.20 shows goodness-of-fit parameters of N-uptake at various irrigation 

treatments of rice and legume crops in the rice-rice-legume crop sequence in the 

2008-2009 for validation data sets. Simulated N-uptake of rice and legume crops 

matched well with measured values. The values of student’s t-test indicated the 

simulated N-uptake of rice and legume crops were not significantly different with 

measured values. Furthermore, the values of α, R2 and EF were close to one and 

RMSE values were lower than SD measured values. The performance of the model 

to simulate N-uptake in the validation was similar to the calibration data sets, 

although p(t) values for rice at ASNS treatment was smaller in the validation data set. 

All goodness-of-fit parameters of N-uptake indicate a close agreement between 

simulated and measured values.  

 



Chapter 7 
 

Table 7.19 Measured and simulated yield of peanut and soybean at various N fertiliser 
rates in dry-season of 2009 for validation. The values in bracket indicate standard 
deviation (n = 3). 

Crops 
N rates 

(Kg ha-1) 
Measured 

(M) 
Simulated 

(S) 
M-S 

Difference 
(%) 

 
0 2120 (225) 2062 59 2.78 

Peanut 12 2109 (181) 2132 -23 -1.07 

 24 1969 (286) 2145 -175 -8.90 

 0 2039 (54) 1520 519 25.46 

Soybean  12 2150 (50) 1519 631 29.35 

 24 1961 (171) 1507 454 23.14 

Table 7.20 Statistical analysis of model simulation for N-uptake of rice at various 
irrigation treatments and legume crops in rice-rice-legume crops sequence of 2008-
2009 for validation data sets.  

Indicators 
Rice 

Peanut Soybean 
CS ASNS 

N 24 24 9 9 

Xm (SD) 66.9(44.9) 63.9 (52.5) 9.1 (5.7) 10.3 (7.4) 

Xs (SD) 75.8 (56.5) 84.4 (56.5) 10.5 (8.1) 13.4 (7.6) 

P(t) 0.25* 0.06* 0.56* 0.39* 

a 1.16 1.27 1.38 0.91 

b 6.98 12.8 -2.04 4.01 

R2 0.96 0.91 0.99 0.83 

RMSEa 11.2 17.7 0.7 3.6 

RMSEn 18.9 31.4 8.1 35.1 

EF 0.8 0.3 0.8 0.6 

N, number of measured/simulated data pairs; Xm, mean of measured values in each season; 
Xs, mean of simulated values in each season; (SD), standard deviation of whole population; 
P(t), significance of paired t-test; in a column p(t), * means simulated and measured values 
are not significantly different at 95% confidence level; α, slope of linear correlation 

coefficient between measured and simulated values; β, intercept of linear relation between 
measured and simulated values; R2, determination coefficient between measured and 
simulated values; RMSEa, absolute root mean square error; RMSEn, normalised root mean 
square error; EF, efficiency of forecasting. 
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7.4 Discussion  

The APSIM-Oryza allows continuous simulation of soil conditions, following 

initialization at the start of a simulation session, including rice–rice-legume crop 

sequences, user-specified in terms of crop management such as sowing and 

transplanting dates, crop density, and N management, i.e. dates, rates, types and 

application methods of nitrogenous fertilisers. Furthermore, the APSIM-Oryza 

allows simulation of organic carbon and nitrogen (NO3 and NH4) dynamics in the 

anaerobic soil conditions during the submerged rice season and in the aerobic soil 

conditions during the dry season of legume crops (Gaydon et al., 2009).  

In the CS irrigation treatment, the APSIM-Oryza performs well in simulating 

the dynamics of floodwater during the rice growth period in the calibration set, as 

assessed through graphical comparison and goodness-of-fit parameters. However, as 

crop sequences progress with time, the performance of the model was poor to 

simulate floodwater dynamics in the CS irrigation treatment in the validation set. 

This is probably due to increase in soil percolation rate as the result of the 

disturbance of the subsoil hardpan at sampling time of the soil in each plot. Although 

the holes were filled with clay mud after soil sampling, frequent soil sampling on 

small plots would destroy hardpan systems leading to increased percolation rates. 

Furthermore, water input from irrigation increased in each season being higher in the 

dry season than in the wet season (see Chapter 4, section 4.2). In this case, 

percolation rate of the second layer of soil (20-40 cm depth) in the model was 

changed to match the measured values. When percolation rate in the model was reset 

to the higher values of 17.1 mm day-1 for the validation data set in the wet-season of 

2008/2009 and dry-season of 2009, the model performance was quite satisfactorily 

(Fig. 7.19).  

In contrast, the APSIM-Oryza was poor in simulating the dynamics of 

floodwater during the rice growth periods in the ASNS irrigation treatment. During 

the nonsubmergence period, water depth was below the soil surface at about 10 cm 

before re-irrigation was applied. The APSIM-Oryza was less satisfactory to 

reproduce the dynamic of daily floodwater in this case. This is because the APSIM 

was not intended to simulate the dynamic of daily ponding depth under water 

limitation whereas a new APSIM-Pond module recently developed and 

communication with other modules (SoilN and SoilWat) in the systems have 
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changed. The main task of this study was to evaluate the performance of the APSIM 

in simulating crops, water and soil variables under a normal condition. This remains 

a future challenge of the model to precisely simulate water dynamics of irrigated rice 

under water limitation. However, simulated total water input in the ASNS irrigation 

treatment during rice growth period was close to the measured values (Table 7.5 and 

7.11). This indicates a good performance of the model to simulate total water input 

in the lowland rice-based cropping systems under water limitation, although 

simulated the daily water depth was in less agreement with measured values. The 

model generally could be used to simulate lowland rice-based cropping systems 

under limited and non-limited water irrigation scenarios in terms of total water input. 

The capability of the APSIM to simulate rice-based farming systems under water 

limitation is very important as water is becoming scarce and adapting farming 

systems to reduced availability of irrigation water is an emerging research issue in 

irrigated districts throughout the globe.  

The dynamics of floodwater resulting from the model was comparable with the 

ORYZA2000 model reported by Belder et al. (2007) and Feng et al. (2007). They 

found that the R2 was lower, the value of α was greater than 1 and β deviated from 0 

for simulated and measured field water depth. Although the ORYZA2000 model was 

less accurate in simulating water depth dynamics during the rice growth periods, 

Belder et al. (2007) used the simulated results to calculate water balance under 

experimental conditions, and to extrapolate to the different seasons and soil types. 

They argued that the time step of integration in the ORYZA2000 is one day, and it is 

unknown whether rainfall events occurred during the night (i.e., after integration of 

state variables in the model occurred) or during the day (i.e., before integration took 

place). The integration of the state variables always takes place at the end of the day, 

and the model always assumes rainfall to have taken place during the day. Similarly, 

irrigations were sometimes applied before the measurement of ponded water depth 

or soil water tension, and sometime after. If irrigation is applied in the morning, a 

considerable amount of the water would already have been lost through 

evapotranspiration and percolation by the end of the day, and less water would have 

been lost if irrigation applied in the afternoon. In APSIM, the time step of integration 

is also one day and these explanations are applied in the model (Keating et al. 2003). 
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Soil inorganic N (NO3-N and NH4-N) varied considerably following the crop 

growth seasons and reached peaks when N fertiliser is applied. The APSIM-Oryza 

was generally poor in simulating the dynamics of NO3-N and NH4-N concentration 

in soil during rice and legume crops growth periods under CS and ASNS irrigation 

management and N fertiliser rates. Nitrogen fertiliser was applied at 8, 30 and 54 

days after transplanting (DAT) and soil was sampled before N fertiliser applied. 

Simulated NH4-N reached a peak at 20-24, 31-33 and 57-59 DAT. This indicates that 

the rate of urea hydrolysis at the first N fertiliser application was very low while at 

second and third applications were too fast. Simulated NH4-N and NO3-N of soil 

declined rapidly after top dressing compared with higher measured values. Measured 

NH4-N and NO3-N concentrations of soil at 140 kg N ha-1 during rice growth periods 

were around 18 and 5 kg ha-1 respectively and around 8 and 20 kg ha-1 respectively 

during legume crops growth periods. However, simulated NH4-N and NO3-N were 

close to zero for most of the time. Low values of simulated soil NO3-N concentration 

suggested that the model is probably underestimating nitrification rate and/or 

overestimating denitrification.  

Measured NO3-N concentration in soil increased at deeper soil layers, 

indicating that NO3-N leaching  occurred downward which probably relates to the 

coarse-texture of soil used in this study, whereas simulated values were almost zero 

at deeper soil layers. In an ideal irrigated rice fields with fine-textured soil, leaching 

losses of N are low because of restricted percolation (Buresh et al., 1989; George et 

al., 1992). However, in coarse-textured soils with high permeability, the loss of N 

through leaching can be substantial because of high percolation and drainage of 

water in these soils in which NO3-N is leached downward (Shrestha and Ladha 

2002). High NO3-N concentration in soil is expected in the dry season during the 

legume crops growth in a rice-rice-legume crops sequence because the drying of the 

soil at the end of the rice crop is suitable for nitrification. However, accumulated 

NO3-N during the dry season is prone to loss by leaching during rice flooding in the 

wet season (Buresh et al. 1989; George et al. 1992; De data, 1995). 

The different response of net mineralisation to N fertiliser between rice and 

legume crops probably is  the result of differences in soil inorganic N content in the 

zero fertiliser treatment. During irrigated rice growth period, soil inorganic N content 

is low at zero N fertiliser application due to low mineralisation under flooded 

conditions (Fig. 7.4 – 7.11) (Shibu et al., 2006; Jing et al., 2010). During the dry 
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season of the legume crops growth periods, soil inorganic N content increased to a 

relatively high level before N fertiliser application to the legume, which then rapidly 

declined, resulting in a slightly positive response of net N mineralisation. APSIM 

has reproduced this pattern although the simulated values were lower than measured 

values. 

In fine textured soils of most rice-growing environments, soil oxygen is rapidly 

depleted when the soils are flooded and soil NO3-N is prone to loss by denitrification 

as well as leaching. Soil NO3-N is normally negligible at the end of irrigated rice 

season (De data, 1995; Buresh et al, 1989). This is a basic assumption of APSIM that, 

when there is a pond on the surface, the soil oxygen levels are very quickly reduced 

(oxygen depleted) and all soil NO3 are denitrified and lost. However, this assumption 

may not be generally correct for a coarse-textured soil with high percolation rates 

where there was NH4-N and NO3-N concentration in soil under anaerobic conditions 

(as was case in this study) although their values were small (Fig. 7.10 and 7.11). 

Other studies also found similar results (Pathak et al., 2004; Pande and Becker, 

2003; Aulakh et al., 2000). Pathak et al. (2004) reported that measured NO3-N 

concentration of a loam soil in Delhi India was always around 10 kg ha-1 during the 

rice growth period receiving 120 kg N ha-1. 

The relative complexity of modelling N dynamics in the alternation of 

anaerobic and aerobic conditions in the rice-rice-legume crops sequence is well 

known and the weaknesses of the simulation have been reported for other models as 

well, such as CERES-Rice (Pathak et al., 2004; Timsina and Humphreys, 2006). 

Pathak et al. (2004) evaluated the CERES-Rice model (ver. 4.0), where this source 

code of APSIM-Pond was mainly derived (Gaydon et al., 2009), for soil mineral N 

and loss processes from rice-wheat cropping systems in Delhi and Punjab. They 

found that simulation of soil mineral N in the surface layer (0-15 cm) was generally 

poor. Based on this study and others, the behaviour of the nitrification and 

denitrification in the model under anaerobic and aerobic conditions of coarse-texture 

soil need further evaluation.  

The model performed quite good in simulating the dynamic of soil organic 

carbon during the rice and legume crops growth period. Measured OC decreased in 

deeper soil layers and simulated values followed this pattern, although the measured 

OC was more scattered than simulated values. This indicated that mineralisation of 

OC in the model was slower than in the field. When soil is flooded, oxygen is almost 
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depleted due to much slower oxygen diffusion in water, creating an anaerobic 

condition (Brune et al., 2000) and decomposition of organic substrates takes place in 

the absence of oxygen. Decomposition of organic substrates under anaerobic 

conditions is slower than under aerobic conditions (Dobernmann and Witt, 2000; 

Sahrawat, 2004; Bird et al., 2003) with the rates of organic substrates decomposition 

in the first-order reaction are about 2 to 3 times lower than that under aerobic 

condition (DeBusk and Reddy, 1998; Jing et al., 2010). This condition is applied to 

APSIM-SoilN module (Gaydon et al., 2009).  

The APSIM-Oryza generally predicted rice and legume crops variables 

satisfactorily for the rice-rice-legume crops sequence in both calibration and 

validation data sets. Gaydon et al. (2009) and Zhang et al. (2007) also observed 

similar results of the capability of the model to simulate rice crop variables. 

Simulated biomass followed the pattern of measured values during rice and legume 

crops growth periods with better performance of the model in the CS than that in the 

ASNS irrigation treatments. The model performed well in simulating rice biomass 

and N-uptake, although simulated values were slightly higher in the dry-season as N 

fertiliser rates increased. This was probably due to inadequate simulation of nitrogen 

immobilisation during residue decomposition following the first rice crop (Suriadi et 

al., 2009). This is also related to higher simulated LAI and N-uptake as N fertiliser 

rates increased. 

The robustness of the APSIM performance under water (such as CS and 

ASNS) and N management in rice-based farming systems is of particular importance. 

Rice is one of the biggest users of the world’s developed freshwater resources 

(Tuong and Bouman, 2003; Bouman and Tuong, 2001; Tuong et al., 2005). 

Improving the water use efficiency will be one of the major challenges in irrigated 

rice-based production (Keerthisinghe, 2006). In this study, APSIM-Oryza was only 

evaluated with respect to crop variables (biomass, yield, LAI and N-uptake), soil 

variable (organic carbon, nitrate-N and ammonium-N) and water (ponded depth) in 

rice-rice-legume crops sequence in tropical climate. The transportation and 

transformation of N in the systems such as nitrification, denitrifation and fixation 

under anaerobic and aerobic conditions need further evaluation, which is hampered 

by the availability of suitable data set to test the model. Such detailed experimental 

data sets are required including information on above-ground and below-ground 
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processes to enable a more comprehensive evaluation of APSIM-Oryza in rice-based 

farming systems.  

If the APSIM-Oryza is well tested and validated, it could be used with 

confidence to explore management options to increase resource use efficiency, such 

as water-saving irrigation (Belder et al., 2007; Feng et al., 2007) and efficient N 

management (Jing et al., 2007). Suriadi et al. (2009) reported that the ASNS 

irrigation treatment on coarse soil could result in water saving of 36-44% compared 

with the CS irrigation treatment without significantly reducing yield and components 

of yield, and biomass. Belder et al. (2004) found similar results in a high clay 

content of soil (silty clay) with percolation rates of 1-4.5 mm per day in a shallow 

ground water table. APSIM-Oryza could be applied to explore the consequences of 

different water management on productivity, and used to contribute a better 

understanding of underlying biophysical processes as well as to identify potential 

trade-offs between productivity and environmental goals. Although substantial 

improvements have been made to the APSIM-SoilN module, further work is 

required before it could be used to simulate N-dynamics satisfactorily. 

7.5 Concluding remarks  

APSIM-Oryza allows continuous simulation of crops, water and soil variables 

in rice-based farming systems with sufficient accuracy to capture the major effects of 

N and irrigation management on lowland rice and legume crops in rice-rice-legume 

crops sequence in the tropical climate. The study showed that generally simulated 

crop variables (biomass, yield, LAI and N-uptake) under both CS and ASNS 

irrigation treatments and various N fertiliser application rates matched with 

measured values. The dynamics of daily floodwater were simulated quite good by 

the model in the CS treatment and total water input matched with measured values. 

However, inorganic N dynamics and daily floodwater dynamics in the ASNS 

irrigation treatment needs further improvement for better prediction of growth and 

development and N- and water-related processes, particularly in coarse-textured soils 

with a high percolation rate.  

APSIM-Oryza has considerable potential for the ex-ante evaluation of soil, 

water and crops management practices in rice-based farming systems. Adequate and 

good quality experimental data sets would be required for further improvement of 

key model processes. 
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CHAPTER VIII 

General discussion and conclusions 

To meet the food demands of growing populations, rice production needs to be 

increased or maintained in the next few decades. However, there is an increasing 

threat to the productive capacity of rice environment with water scarcity, drought, 

salinity, flooding and climate change. Because of these stresses rice production 

needs to be water efficient by being able to grow more rice with less water.  

Various water-saving technologies such as alternate submerged and non-

submerged, saturated soil culture, raised-bed culture and aerobic rice can all reduce 

water input with variable reduction in yield depending on the environment where the 

technologies are being used such as soil properties including texture, ground water 

depth and climate. Most water-saving technologies for irrigated rice have been 

developed for fine-textured soils which have low percolation and seepage rates with 

little attention to coarse-textured soils. Irrigated rice fields on fine-textured soils also 

have low leaching losses of N (in NO3-N form) that highly contrast with coarse-

textured soils due to the difference in permeability. 

These factors have led to examining the hypothesis in this work (Chapter I) 

that the water use productivity of rice can be improved without significant decrease 

in yield through improved water management. The overall aim is to improve crop 

growth simulation capability that captures the essence of temporal variation in depth 

of ponding and the concentration of available forms of N in rice and other crops 

within the sequence to allow testing of various water and nitrogen management 

strategies.  

A series of field experiments were conducted using the rice-rice-peanut and 

rice-rice-soybean crop sequences for a period of 2 years (2007--2009) to meet the 

objectives described above and as detailed in Chapter I. All methods and results of 

these field experiments were described in full detail in the previous chapters. This 

chapter provides a summary of the main findings of this study to indicate overall 

outcomes (conclusions) and the direction for future research in this area. 
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8.1  Productivity of rice and legumes 

The results of this experiment showed that biomass, yield and various 

components of yields were not significantly different between ASNS and CS 

treatments over four rice seasons. There was also a saving of 36-44% of irrigation 

water with ASNS over CS (Chapter IV). This led to an overall increase of 52% in 

water productivity for ASNS over CS. As shown in Fig. 8.1, yield of rice remained 

relatively constant over a considerable range of total water used. 

 

 

Figure 8.1 Variation in yield of rice over four seasons with total water used from 
rainfall and irrigation for various irrigation and fertilizer treatments. 

The results of this experiment were comparable with the studies on fine 

textured soils with shallow ground water tables (Cabangon et al., 2004; Belder et al., 

2004, Qi jing et al., 2007). The absence of any significant interaction in the effects of 

irrigation treatments with N-treatments suggest that these results may be considered 

as typical for well-drained fields with deep ground water tables in irrigated lowlands 

of eastern.  

During the dry season after the harvest of the second rice crop, two types of 

legumes (soybean and peanut - commonly used as cash crop in this region) were 

planted to evaluate their performance in relation to the dynamics of N in soil as 

influenced by N-fertiliser application and any residual N remaining in soil from the 
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previous crop (Chapter VI). Although nitrogen fertiliser application increased NH4-N 

and NO3-N concentrations in soil during legume growth, there was no significant 

effect of N fertiliser on growth, N-uptake and yield. Various studies have indicated 

inhibition to nodule formation in legumes with application of N fertiliser (Daimon et 

al. 1999; Taylor et al., 2005; Ray et al., 2006)  including soybean (Starling et al., 

1998) and peanut (Basu et al., 2008). The results of this study suggests that applying 

N fertiliser to peanut and soybean in rice-rice-legume crop sequence is unlikely to 

increase biomass and yield substantially. Thus, farmers in this region should not 

consider applying N fertiliser to peanut and soybean crops. 

8.2  Nitrogen and carbon dynamics in rice-based cropping systems  

In lowland rice-based cropping systems, there is an emphasis to maintain or 

improve rice yield with increased application of N-fertiliser. There are also concerns 

that in coarse textured soils, persistence of aerobic condition during rice crop, may 

reduce concentration of NH4-N and increase the concentration of NO3-N that may 

contribute to leaching losses and reduce N-uptake by the crop as rice crop prefers 

NH4-N. From a modelling perspective, capturing the dynamics of various forms of N 

within ponded water and soil is a major challenge. Data on simulated NH4-N over 

two rice seasons used for model validation are shown in Fig. 8.2 as an example of 

current limitation of the model to capture these dynamic aspects. 

Measurements of NH4-N and NO3-N in Chapter V showed low concentration 

of NH4- and NO3-N with no added fertilizer-N (F0 treatment) which increased 

significantly with increased application of N fertiliser within 0-20 cm depth, but to a 

smaller extent at >20 cm depth. There were short periods of non-submergence in 

ASNS irrigation treatment that might have contributed to nitrification (Aulakh and 

Bijay-Singh, 1997) with higher levels of NO3-N in ASNS than CS (during panicle 

initiation and flowering stages in some of the rice seasons). However, there was 

sufficient NH4-N present in soil that did not adversely affect N-uptake by rice 

significantly. It appears that model deficiency in capturing the dynamic aspects of N-

availability in soil and water during crop growth did not lead to poor performance of 

the model in predicting N-uptake of rice (Fig. 8.3).  
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Figure 8.2 A comparison of simulated and measured concentration of NH4-N within the 
top 20 cm of soil during the validation period of two rice seasons in 2008-09. 

 

 

Figure 8.3 A comparison of simulated and measured N-uptake by rice for CS and 
ASNS treatments during the validation period of two rice seasons in 2008-2009. 
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During the growth of legumes, reasonable levels of NH4- and NO3-N were 

detected for the control plots that did not receive any fertiliser-N (F0 treatment). This 

may have occurred due to the mineralisation of organic matter as rice straw from the 

second rice crop was returned to the field for the legume season. For plots which 

received N-fertiliser, the concentration of NH4-N and NO3-N in soil increased with 

increased quantity of N fertiliser. On some occasions, high concentration of NO3-N 

was found in deeper soil layers which would be prone to leaching losses during rain 

or irrigation. Although there was hardpan layer within 20-30 cm depth which may 

have contributed to reducing percolation rates, the soil at this experimental site was 

light texture i.e. sandy loam. Therefore, it is important to optimise N and irrigation 

management in cropping systems to reduce cost of fertilisers but also to avoid 

environmental pollution., . 

8.3  Modelling rice-based cropping systems with APSIM-Oryza  

Crop production and management strategies can change over time in a given 

region as they respond to decline in resources with or without climate change. 

Various adaptation strategies can be developed by using well-tested farming systems 

models as these can capture the complex interactions between water, nutrients, crop 

growth, climate variability and management practices. As mentioned previously, the 

alternation between anaerobic and aerobic conditions in rice and associated impacts 

on the decomposition of soil organic matter, nitrification and denitrification 

processes poses some challenge. Although APSIM is capable of modelling cropping 

systems, it was unequipped to describe the soil water, carbon and nitrogen dynamics 

for crops within a rotation that involved ponded rice and other non-ponded crops. 

Relevant chemical and biological processes that occur in long-term ponded fields 

were also not considered in APSIM. Gaydon et al. (2009) developed new elements in 

APSIM to capture these. In this study, the performance of the modified version of 

APSIM as APSIM-Oryza was used to simulate irrigated rice-rice-legume crop 

sequences under various nitrogen and irrigation treatments. Full details were 

considered in Chapter VII.  

The overall performance of APSIM-Oryza indicated that the model was able 

to predict grain yield of rice over two seasons for both CS and ASNS water regimes 

and three rates of N-fertilizer application (Fig. 8.4). Results indicated that the model 
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performed well in simulating the dynamics of daily floodwater during rice growth 

period for the CS irrigation treatment. However, APSIM-Oryza was unable to 

simulate the floodwater dynamics under ASNS on a daily basis, especially the 

occurrence of water level below the soil surface. Despite these, the simulated total 

water input (irrigation + rainfall) during the growing season was comparable with 

the measured values (Chapter VII). 

 

 

Figure 8.4 Simulated grain yield versus measured grain yield of rice over two seasons 
in 2008-09 used for model validation. Open and filled symbols denote data from CS 
and ASNS treatments, respectively. The solid line indicates the fitted regression line for 
the presented data and the dashed line represents the 1:1 line. 

A new APSIM-Pond module is currently under development to simulate the 

dynamics of irrigated rice under ASNS water treatment or water limited conditions. 

This is an important development as maintenance of continuous submerged 

conditions in rice is difficult unless rainfall is well distributed over the growing 

season. As water is becoming scarce, it is important to develop farming systems that 

can adapt to reduced availability of water. 

The APSIM-Oryza generally reproduced measured crop variables for rice and 

legumes. Simulated biomass, yield and LAI of rice and legumes were generally 

similar to measured values. Furthermore, the model was able to simulate N-uptake 
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generally and match with measured values, although generally under-simulated of 

NH4-N and NO3-N concentration in soil.  

The APSIM-Oryza was evaluated for soil variable with NH4-N, NO3-N and 

organic carbon (OC) under various N fertiliser and water treatments. The results 

showed that the model performed quite good in simulating the dynamic of soil 

organic carbon during rice and legume crops growth period. However, the model 

was generally poor in simulating NH4-N and NO3-N concentration of the soil during 

rice and legume crops growth periods under CS and ASNS water management and 

various N fertiliser application rates. Simulated NH4-N and NO3-N concentration in 

soil declined rapidly after a top dressing application of urea compared with higher 

measured values. Low values of simulated soil NO3-N concentration suggested that 

the model is probably underestimating nitrification rate and/or overestimating 

denitrification. Furthermore, measured NO3-N concentration in soil increased as soil 

depth increased which indicated that NO3-N of soil has leached downward in this 

type of soil whereas simulated values were almost zero at deeper soil layers. This is 

probably because the APSIM was developed under a fine-textured soil on the 

assumption that soil oxygen is rapidly depleted under flooded conditions and all soil 

NO3 denitrifies and disappears. However, this assumption may not be true for the 

coarse-textured soil with high percolation rates studied here where there was NH4-N 

and NO3-N concentrations in soil under anaerobic conditions although their absolute 

values were small (Fig. 8.1 and 8.2).  

8.4  Conclusions 

On the basis of the results presented in this work and implications discussed in 

this and other chapters, the following conclusions are reached. 

• The absence of any significant reduction in yield, biomass and N-uptake in rice 

due to the direct effects of irrigation treatments and lack of significant interactive 

effects with N-treatments suggest that alternative submerged and non-submerged 

(ASNS) irrigation practices in lowland rice can save a considerable amount of 

water without affecting yield adversely. These results can be considered as 

typical for well-drained soils with deep ground water tables within the irrigated 

lowland rice producing region of eastern Indonesia. 
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• Due to the lack of any significant effects of N fertiliser rates on seed yield, 

harvest index, N-uptake and N-harvest index of both peanut and soybean, N-

fertilizer should not be applied to legumes when it follows rice in this region. 

Thus, farmers can grow peanut and soybean in this region of study site without 

applying any N fertiliser. 

• Frequent measurement of various available forms of N (NH4-N and NO3-N) 

during the growth of rice is required to develop an understanding of the net 

effects of various N-transformation processes in soil in anaerobic condition 

(under CS water regime) and aerobic condition (under ASNS water regime), 

plant uptake and losses from the root zone. During the growth of legumes, N-

fixation with the formation of root nodules adds further complexity to these 

processes. A better understanding of these processes is required to improve water 

and nitrogen management strategies in rice-based farming systems to achieve 

sustainable yield while maintaining high nitrogen and water use efficiencies. 

• The farming system model of APSIM-Oryza was successfully calibrated and 

validated for the experimental site. The model was able to capture the major 

effects of water and N-management strategies on crop functions that included 

growth and biomass, N-uptake and yield, but underestimated the dynamic aspects 

of NH4-N and NO3-N in soil, especially during alternation of anaerobic and 

aerobic conditions for lowland rice. Notwithstanding these minor limitations, 

APSIM-Oryza can be used to test and develop sustainable lowland rice-based 

farming systems to promote environmentally-friendly agricultural practices.  
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APPENDIX 1. Logic commands for rice-rice legume crop sequences for 
APSIM-Oryza 

Logic commands for rice-rice-legume crops sequence simulation in the general 

manager of APSIM are described below: 

Rice crop 

! SET MAX_POND =100 RIGHT AT START 
'SOIL WATER' SET MAX_POND = 100  
 
! ************** SOW RICE CROP LOGIC ************** **************** 
! SOW FIRST RICE CROP IN NURSERY ON 6 NOV 2007, TRANSPLANT ON 
23 NOV 2007 
IF DAY = 311 AND YEAR = 2007 THEN 
            RICE SOW CULTIVAR = CIGEULIS, ESTABLISHMENT = 
TRANSPLANT, SBDUR = 17, NPLH = 1,  NH = 25   , NPLSB = 2000 
       ENDIF 
 
! SOW SECOND RICE CROP IN NURSERY ON 14 MAR 2008, TRANSPLANT 
ON 2 APRIL 2008 
IF DAY = 73 AND YEAR = 2008 THEN 
           CROP = 2 
            RICE SOW CULTIVAR = CIGEULIS, ESTABLISHMENT = 
TRANSPLANT, SBDUR = 19, NPLH = 1,  NH = 25   , NPLSB = 2000 
       ENDIF 
 
! SOW THIRD RICE CROP IN NURSERY ON 15 NOV 2008, TRANSPLANT ON 
2 DEC 2008 
IF DAY = 320 AND YEAR = 2008 THEN 
           CROP = 3 
            RICE SOW CULTIVAR = CIGEULIS, ESTABLISHMENT = 
TRANSPLANT, SBDUR = 17, NPLH = 1,  NH = 25   , NPLSB = 2000 
       ENDIF 
 
! SOW FOURTH RICE CROP IN NURSERY ON 13 MAR 2009, TRANSPLANT 
ON 1 APR 2009 
IF DAY = 72 AND YEAR = 2009 THEN 
           CROP = 4 
            RICE SOW CULTIVAR = CIGEULIS, ESTABLISHMENT = 
TRANSPLANT, SBDUR = 19, NPLH = 1,  NH = 25   , NPLSB = 2000 
       ENDIF 
 

IF RICE.PLANT_STATUS = 'DEAD' THEN  
        RICE END_CROP 
       'SURFACE ORGANIC MATTER' TILLAGE TYPE = BURN_90 
        TOT_IRRIG = 0 
        IRRIG_AMOUNT = 0 
       PONDED_DEPTH = 0 
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        IRRIGATION END 
 ENDIF 
 

Peanut crops 

! ****NOW GROW A PEANUT CROP IN THIRD SEASON IN 2008 ********* 
 
IF DAY = 201 AND YEAR = 2008 THEN 
   PEANUT SOW CULTIVAR = GARUDA, PLANTS = 15 (/M2), 
SOWING_DEPTH = 40 (MM) 
ENDIF 
 
IF DAY = 230 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 240 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 250 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 260 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF PEANUT.STAGENAME = 'HARVEST_RIPE' OR PEANUT.PLANT_STATUS 
= 'DEAD' THEN 
   PEANUT HARVEST 
   PEANUT END_CROP    
ENDIF!  
*************************************************** ********** 
 
! *********NOW GROW A PEANUT CROP IN 3RD SEASON 2009 ********* 
 
 
IF DAY = 200 AND YEAR = 2009 THEN 
   PEANUT SOW CULTIVAR = GARUDA, PLANTS = 15 (/M2), 
SOWING_DEPTH = 40 (MM) 
ENDIF 
 
IF DAY = 220 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 230 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
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IF DAY = 240 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 273 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF PEANUT.STAGENAME = 'HARVEST_RIPE' OR PEANUT.PLANT_STATUS 
= 'DEAD' THEN 
   PEANUT HARVEST 
   PEANUT END_CROP    
ENDIF!  
*************************************************** ********** 
 
Soybean crop. 
 
! ***** NOW GROW A SOYBEAN CROP IN THIRD SEASON IN 2008****** 
 
IF DAY = 199 AND YEAR = 2008 THEN 
   SOYBEAN SOW CULTIVAR = WILIS, PLANTS = 15 (/M2), 
SOWING_DEPTH = 40 (MM) 
ENDIF 
 
IF DAY = 230 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 240 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 250 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 260 AND YEAR = 2008 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
  
IF SOYBEAN.STAGENAME = 'HARVEST_RIPE' OR 
SOYBEAN.PLANT_STATUS = 'DEAD' THEN 
   SOYBEAN HARVEST 
   SOYBEAN END_CROP    
ENDIF 
 
! ****** NOW GROW A SOYBEAN CROP IN THIRD SEASON IN 2009****** 
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IF DAY = 198 AND YEAR = 2009 THEN 
   SOYBEAN SOW CULTIVAR = WILIS, PLANTS = 15 (/M2), 
SOWING_DEPTH = 40 (MM) 
ENDIF 
 
IF DAY = 220 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 230 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 240 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
IF DAY = 273 AND YEAR = 2009 THEN 
   IRRIGATION APPLY AMOUNT = 30, NO3 = 3, NH4 = 0 
ENDIF 
 
  
IF DAY = 294 AND YEAR = 2009 THEN 
   SOYBEAN HARVEST 
   SOYBEAN END_CROP    
ENDIF 
 
Logic command for irrigation treatments as follow: 
 
For CS treatment: 
 
IF RICE.PLANT_STATUS = 'ALIVE' AND PONDED_DEPTH <= 15 AND 
RICE.DVS <= 1.75 AND RICE.DVS > 0.185 THEN  
      IRRIG_AMOUNT = 100 - PONDED_DEPTH 
   IF CROP = 1 THEN 
        IRRIGATION APPLY AMOUNT = IRRIG_AMOUNT, NO3 = 2, NH4 = 0 
        IF RICE.DVS >  0.2   THEN 
             TOT_IRRIG = TOT_IRRIG + IRRIG_AMOUNT 
        ENDIF 
   ELSE 
        IRRIGATION APPLY AMOUNT = IRRIG_AMOUNT, NO3 = 2, NH4 = 0 
        IF RICE.DVS >  0.2   THEN 
             TOT_IRRIG = TOT_IRRIG + IRRIG_AMOUNT 
        ENDIF 
    ENDIF 
ENDIF 
 
For ASNS treatment:  
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IF RICE.PLANT_STATUS = 'ALIVE' AND WATER_TABLE >=100 AND 
RICE.DVS > 0.185 THEN  
      IRRIG_AMOUNT = 50 
      IRRIGATION APPLY AMOUNT = IRRIG_AMOUNT 
       IF RICE.DVS >  0.2   THEN 
             TOT_IRRIG = TOT_IRRIG + IRRIG_AMOUNT 
       ENDIF 
ENDIF 
 
Logic command for fertiliser treatment as follow: 
 
! ************** RICE CROP 1 ********************** ****************** 
!  FERTILISE 7 DAYS AFTER TRANSPLANTING  
 IF DAY = 334 AND YEAR = 2007 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT1, TYPE = UREA_N 
    ENDIF 
 
!  FERTILISE 29 DAYS AFTER TRANSPLANTING (TILLERING) 
   IF DAY = 356 AND YEAR = 2007 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT2, TYPE = UREA_N 
    ENDIF 
     
IF DAY = 15 AND YEAR = 2008 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT3, TYPE = UREA_N 
 ENDIF 
 
 
! ************** RICE CROP 2 ********************** ****** 
     
IF DAY = 101 AND YEAR = 2008 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT1, TYPE = UREA_N 
  ENDIF 
 
  IF DAY = 123 AND YEAR = 2008 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT2, TYPE = UREA_N 
    ENDIF 
 
 IF DAY = 146 AND YEAR = 2008  THEN 
          FERTILISER APPLY AMOUNT = AMOUNT3, TYPE = UREA_N 
   ENDIF 
 
! ************** RICE CROP 3 ********************** ****************** 
 
IF DAY = 344 AND YEAR = 2008 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT1, TYPE = UREA_N 
  ENDIF 
 
  IF DAY = 3 AND YEAR = 2009 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT2, TYPE = UREA_N 
    ENDIF 
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 IF DAY = 22 AND YEAR = 2009  THEN 
          FERTILISER APPLY AMOUNT = AMOUNT3, TYPE = UREA_N 
   ENDIF 
    
! ************** RICE CROP 4 ********************** ************** 
 
IF DAY = 99 AND YEAR = 2009 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT1, TYPE = UREA_N 
  ENDIF 
 
  IF DAY = 121 AND YEAR = 2009 THEN 
          FERTILISER APPLY AMOUNT = AMOUNT2, TYPE = UREA_N 
    ENDIF 
 
 IF DAY = 144 AND YEAR = 2009  THEN 
          FERTILISER APPLY AMOUNT = AMOUNT3, TYPE = UREA_N 
   ENDIF 
 
! ***************** PEANUT IN 2008***************** ********* 
 
!  FERTILISE 15 DAYS AFTER SOWING  
  IF DAY = 215 AND YEAR = 2008 THEN 
          FERTILISER APPLY AMOUNT = PNUT_AMOUNT1, TYPE = UREA_N 
    ENDIF 
 
!************************************************** ***************** 
 
! ***************** PEANUT IN 2009***************** ********** 
 
!  FERTILISE 15 DAYS AFTER SOWING  
  IF DAY = 215 AND YEAR = 2009 THEN 
          FERTILISER APPLY AMOUNT = PNUT_AMOUNT1, TYPE = UREA_N 
    ENDIF 
 
! ***************** SOYBEAN IN 2008 *************** ********** 
 
!  FERTILISE 15 DAYS AFTER SOWING  
  IF DAY = 215 AND YEAR = 2008 THEN 
          FERTILISER APPLY AMOUNT = SOY_AMOUNT1, TYPE = UREA_N 
    ENDIF 
 
!  FERTILISE 40 DAYS AFTER SOWING  
 IF DAY = 235 AND YEAR = 2008  THEN 
          FERTILISER APPLY AMOUNT =  SOY_AMOUNT2, TYPE = UREA_N 
   ENDIF 
 
! ***************** SOYBEAN IN 2009 *************** ********** 
 
!  FERTILISE 15 DAYS AFTER SOWING  
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  IF DAY = 214 AND YEAR = 2009 THEN 
          FERTILISER APPLY AMOUNT = SOY_AMOUNT1, TYPE = UREA_N 
    ENDIF 
 
!  FERTILISE 40 DAYS AFTER SOWING  
 IF DAY = 235 AND YEAR = 2009  THEN 
          FERTILISER APPLY AMOUNT =  SOY_AMOUNT2, TYPE = UREA_N 
   ENDIF 

!************************************************** *****************  


