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H I G H L I G H T S

Explainable hybrid system is developed
to forecast ultraviolet-B radiation at multi-
step horizons.
Explainable artificial intelligence (xAI)
explains physical interpretations of model
prediction outcomes.
Optuna and RFECV feature selection op-
timizes predictive performance of xAI
model.
xAI provides ultraviolet-B exposure in-
formation to help mitigate detrimental
UV exposure effects.
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A B S T R A C T

Acute exposure effects of short-wavelength solar ultraviolet-B (UV-B) radiation can trigger skin-based diseases
and eye health ailments in humans and animals, as well as disrupt photosynthetic or hormonal systems in
plants. Within the UV wavebands, high levels of UV-B exposure are particularly severe and the leading cause
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of skin cancers. Therefore, accurate and explainable short-term UV-B forecasts are essential for effectively
providing sun exposure information to the public and UV experts. To address this pressing issue, we developed
an explainable hybrid TabNet framework optimized with the Optuna algorithm. The model was trained using
predictors derived from satellite products and sky images for the experimental site in Toowoomba, Queensland,
Australia. For model training, 3,863 data points were utilized from July 1, 2002 to February 29, 2004. The
model development phase entailed dimensionality reduction using recursive feature elimination with cross-
validation (RFECV) and principal component analysis (PCA) methods. The proposed model outperformed
all competing counterparts, achieving comparatively high correlation coefficients of 0.908, 0.880, 0.868,
and 0.868 for hourly, 2-hourly, 3-hourly, and 4-hourly forecast horizons, respectively. Explainable artificial
intelligence (xAI) results, based on Local Interpretable Model-Agnostic Explanations (LIME) and Shapley
Additive Explanations (SHAP), indicate that the antecedent lagged memory of UV-B radiation and the solar
zenith angle contribute significantly to UV-B predictions. Ozone effects and cloud cover conditions are also
influential features in this respect. The superior capabilities of the newly designed hybrid explainable TabNet
model affirm its potential for UV-B monitoring and mitigating the harmful sun exposure risks for the public
and terrestrial life.
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1. Introduction

The ultraviolet (UV) region (200–400 nm) of the solar radiation
aveband is an important environmental factor that poses both a bene-

ficial and potentially harmful influence to plant, animal and human life.
In humans, sufficient UV exposure facilitates the production of vitamin
D to help maintain strong bones, muscles and autoimmune function
(Coussens et al., 2017). Conversely, excessive UV exposure can cause
un burn, damage to DNA structure and skin cancer. These cancers in-
lude melanoma and non-melanoma (keratinocyte) skin cancers (Webb

et al., 2016). Annually, around 7.7 million cases of non-melanoma
skin cancer and 310,000 cases of malignant melanoma are reported

orldwide (Sharaf et al., 2021; Cherrie and Cherrie, 2022). In addition,
a global skin-cancer-led mortality rate of 126,000 was reported in
2018, where the majority of cases were recorded by nations located in
temperate latitudes (Parker, 2021). Skin cancers of both types impose
 significant economic burden on healthcare systems (Gordon and
owell, 2015; Gordon et al., 2022), as well as challenges for the

families of individuals suffering from the disease. In the case of animals,
excessive sun exposure can trigger skin lesions, optical tumors, and at
times fatality (Olarte Saucedo et al., 2019). In plants, solar radiation
is a fundamental input to support photosynthetic reactions. However,
these processes can be affected by irreversible or temporary damage
when the plant cells are exposed to elevated UV radiation (Piri et al.,
2011).

The Surface level UV spectrum, divided between the long wave-
length UV-A (320−400 nm) and short wavelength UV-B (280–320 nm)
re responsible for the aforementioned harmful exposure effects.
mong the two components, the short wavelength UV-B radiation poses

higher exposure severity than the UV-A (De Gruijl, 2002; Sterenborg
and VanDerLeun, 1987). Though the UV-A waveband is a predominant
component of the solar UV spectrum, it is associated with premature
geing and wrinkling of the skin (Matsumura and Ananthaswamy,

2004). However, UV-B exposure and the acute effects of exposure
o UV-B including sun burn are closely associated with skin cancers
nd eye health ailments including cortical cataract and pterygium

(Sterenborg and VanDerLeun, 1987; Cullen, 2011). In comparison
with exposure to UV-A, UV-B exposure stimulates substantial stress
in plants and poses detrimental effects on the genetic system and
cell membranes (Csintalan et al., 2001). Further comparisons reveal
hat excessive exposure to UV-B damages the plant DNA, causing
hotosynthetic or hormone systems disorders (Hollósy, 2002). Overall,
he UV-B waveband within the solar UV spectrum alone entails several

harmful effects on the terrestrial environment, thus necessitating its
fficient monitoring and exploration.

The incoming UV radiation, particularly the UV-B component is
significantly modulated by some dominant environmental factors that
nclude cloud cover conditions, ozone concentration, aerosol effects,
ust scattering, precipitation and solar zenith angle (SZA) (Prasad
 t

2 
et al., 2023; Ahmed et al., 2022). Among these parameters, SZA is
redictable for each year, while the other variables can be forecast.

However, cloud cover effects are significantly stochastic and are known
to attenuate the ground transferring solar UV-B radiation. Due to its
complex intermittent nature, partial cloud cover conditions can scatter
he incoming UV waveband into harmful spikes that sometimes exceed

nominal cloud-free levels (Prasad et al., 2024). In such a scenario, ex-
posure to sudden escalated magnitudes of UV-B radiation can increase
he risk of damage (Feister et al., 2015). Efficient dissemination of

information regarding the severity level of the aforementioned UV-B-
exposure-related damaging effects is highly important. However, there
is no such threshold value that can be implemented to serve this
purpose, as these damaging effects are led by cumulative exposure to
UV-B radiation (Lavker et al., 1995). In this regard, short-term forecasts
of cloud-affected UV-B radiation, capable of capturing deleterious high
magnitudes of UV-B spikes can deliver more meaningful exposure risk
information. To address this need, our study developed a predictive
framework that forecasts short-term cloud-influenced UV-B radiation
at multi-step horizons.

Initially, measurements of UV-B radiation were mostly achieved
using ground-based monitoring systems, satellite instrumentation and
empirical models (Bilbao and Miguel, 2013; Singh et al., 2018). In this
respect, measurement instruments including scanning spectroradiome-
ters require careful attention to ensure correct installation, as well as
ongoing calibration and maintenance costs (Deo et al., 2017a). Re-
mote and mountainous terrains also bring about additional challenges.

oreover, empirical models may necessitate extensive bias corrections
esulting from the uncertainties induced by the impact of numerous
limatic factors such as clouds, aerosol and ozone effects on solar radi-
tion (Ahmed et al., 2022). Concurrently, conventional process-based

mechanistic models and empirical models challenged by shot-term
fluctuations and the non-linearity and of the data. Thus, the critical
limitations and constraints observed in the aforementioned predictive
methods have prompted the quest for more robust technologies that can
earn and adapt to short-term changes in the atmospheric parameters

that affect surface levels of UV.
Artificial intelligence (AI) powered frameworks such as machine

earning (ML) and deep learning (DL) technologies can aid this pur-
ose as AI predictive tools are readily accessible and can demonstrate
 high level of robustness and cost-effectiveness over the long-term
Sardashti and Nazari, 2023). Technological advancement has enabled

researchers to continually design many AI-inspired predictive systems
ith significant boosts in computational efficiency. However, to the
est of the authors’ knowledge, previous studies have not yet developed
ny ML or DL predictive models to predict short-term changes in the
olar UV-B. Embracing this notion, our further discussion on related
orks will be confined to designing robust AI-inspired frameworks to

orecast some critical wavebands of the ground-level solar radiation.
n this regard, relevance can be drawn from some previous studies
hat integrated robust ML and DL predictive systems to effectively
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forecast solar photosynthetic-active radiation (Deo et al., 2022), solar
UV-A radiation (Prasad et al., 2024), and the solar UV index (UVI)
(Prasad et al., 2022). These studies and a number of other related
esearch works, have provided valuable insights into understanding
he architectural design of some robust AI tools displaying enhanced
orecasting capabilities.

Consistent with several prior research works, the early deploy-
ent of AI-based predictive tools was accomplished using data-driven
L methods that are simple to implement and impose minimal com-

utational burden. These ML methods are capable of mapping the
non-linear data without explicit programming and do not require any
xtensive process-based cognition (Pal and Sharma, 2021; Qing and
iu, 2018). Artificial neural network (ANN) is one of the common
L algorithms that display better self-learning capability and high

predictive accuracy in the domain of forecasting solar radiation. For
instance, ANNs trained on diverse datasets have shown superior solar
adiation forecasting skills at different forecast horizons in a number
f countries that include Algeria and France (Notton et al., 2019),

Australia (Ghimire et al., 2019), Italy (Alsina et al., 2016), Nigeria
Ozoegwu, 2019), Turkey (Ozgoren et al., 2012) and India (Premalatha
t al., 2018). On the same platform, the tree-based models like random
orest (RF) (Villegas-Mier et al., 2022) and gradient boosting-based
odels like XGBoost (XGB) (Huang et al., 2021) have also demon-

strated elevated predictive performances at different forecast horizons
and locations. Separate studies have demonstrated the utility of support
vector regression (SVR) (Fan et al., 2020) and multivariate adaptive
egression splines (MARS) (Balalla et al., 2021) in forecasting solar irra-
iance. Despite notable progress, standalone ML algorithms have been

hampered by certain flaws. As an example, although SVR model effi-
ciently often achieves global optimum convergence, the computational
and memory demands hinder its scalability for large volumes of data
(Santamaría-Bonfil et al., 2016). In applications with large datasets,
tree-based models, known for their outlier sensitivity, can generate
an excessive number of nodes from one tree and result in overfitting
(Joseph et al., 2024a). During the training process, neural network-
ased models like ANN frequently become stuck in local minima and
ail to find the global minimum of the loss function (Abdolrasol et al.,

2021). However, the emergence of ANN facilitated a transition from
raditional mathematical methods and linear ML algorithms to a more
dvanced DL approach (Brahma et al., 2015), capable of capturing

complex underlying patterns in large datasets.
DL models have gained widespread acceptance for efficiently han-

ling time-series data across diverse applications. Owing to their en-
anced predictive capabilities, numerous climatic and atmospheric do-
ains have shown increased interest in using the hybridized version

f these DL predictive tools (Sharma et al., 2022). A recent study
mployed a hybrid DL method, combining a convolutional neural net-
ork (CNN) to extract features from significant antecedent inputs of
redictor variables and a long short-term memory (LSTM) network to
rocess this information and generate predictions of solar UVI (Ahmed
t al., 2022). In another study, the efficacy of feature selection (FS)
as been highlighted in Alresheedi and Al-Hagery (2020) to effectively
andle the challenges related to the curse of dimensionality. Some re-
ent studies have reported the superiority of a wrapper-based recursive

feature elimination with cross-validation (RFECV) approach to select
an optimal subset from the feature space (Awad and Fraihat, 2023). In
principle, RFECV embedded with a tree-based estimator is capable of
apturing the non-linearity within the predictor variables and improve
eneralization performance. Principal component analysis (PCA) is an-
ther eminent method proposed by Lan et al. (2019), which efficiently

reduces the dimensionality of the input feature space to minimize
omputational complexity. Yet, none of the previous studies have ex-
lored the PCA technique and RFECV FS approach in selecting pertinent
limatic variables to optimize the performance of solar UV-B radiation
orecasting. In addition to effective FS, leveraging a hyperparameter op-

imization approach further contributes towards achieving an optimal

3 
model. Embracing this notion, a prominent Optuna algorithm based on
ayesian optimization is often proposed by researchers as one of the
est approaches for exploring optimal hyperparameter configurations
Prasad et al., 2022). Thus, the aforementioned techniques are well-

suited for enhancing the accuracy of forecasts for the solar terrestrial
UV-B waveband.

In the present study, the authors extend on earlier work (Prasad
et al., 2023, 2022, 2024), that integrated satellite-derived parameters,
sky image-based cloud chromatic properties and the Solar Zenith Angle
(SZA) with hybridized DL models to forecast short-term hourly and
sub-hourly solar UVI and UV-A. Among one of these earlier studies,
we integrated a deep neural network (DNN) model with explainable
AI (xAI) tools such as Local Interpretable Model-Agnostic Explana-
tions (LIME) (Ribeiro et al., 2016) and SHapley Additive exPlanations
SHAP) (Lundberg et al., 2020) to efficiently explain the contributions

of these atmospheric parameters in forecasting solar UVI at local and
global levels, respectively. It is commonly accepted that the DL ar-
chitecture is a black-box system, with hidden internal operations that
are complex and not easily explainable (Ribeiro et al., 2016). Embed-
ding the xAI tools make the outcomes easy to interpret, transparent
and trustworthy for end-users. For the present study, we adopted DL
interpretable TabNet model built upon the transformer architecture
with multi-dimensional attention mechanism (Arik and Pfister, 2021)
to generate forecasts of solar UV-B and provide interpretations of the
predicted outcomes. TabNet has a deep tabular learning architecture
that integrates the benefits of DL and has been used in some other
forecasting domains (Ma et al., 2023; Borghini and Giannetti, 2021).

t present, a significant gap appears to exist in the literature as none
of the hybrid DL frameworks like TabNet have been coupled with the
AI tools to deliver accurate predictions and explanations of model

outcomes in the domain of forecasting short-term solar UV-B radiation
from readily attainable atmospheric parameters.

This study makes primary contributions to new knowledge in de-
signing an explainable hybrid TabNet model for the first time and
demonstrating its predictive and interpretive skills in forecasting the
short-term solar UV-B radiation for an experimental site based in
Toowoomba, Australia (27.60◦S, 151.93◦E). We present here a hy-
bridized version of the forecasting system constructed by a fusion of
powerful RFECV and PCA techniques for dimensionality reduction,
efficient Optuna algorithm for hyperparameter optimization and ele-
gant xAI -based LIME and SHAP tools for model explainability. The
comparisons of LIME and SHAP methods reveal that LIME approach is
more efficient in model execution, but it only delivers instance-based,
black-box model interpretations (Islam et al., 2022b). In contrast, the
SHAP approach more smartly generates the global explanations for the
entire decision of the black-box model, but it entails a higher level of
computational complexity (Joseph et al., 2022). Considering that LIME
and SHAP methods both have their separate merits and minor deficien-
cies in respect to the interpretability and explainability of AI models,
our study leverages both the tools for delivering efficient model-
agnostic explanations of the TabNet model. To depict the influence of
atmospheric conditions on ground-level UV-B radiation, we integrated
our hybrid model with satellite-derived meteorological variables (such
as aerosol, precipitation and ozone concentration), sky image-derived
cloud statistical properties, SZA and partial autocorrelation function
(PACF) of the UV-B data-series at the most significant lags.

To make our scientific contributions explicit, hereafter, we denote
the newly proposed explainable hybrid TabNet model as X-H-TabNet
(i.e. where X denotes the explainable, H denotes the hybrid and TabNet
denotes the TabNet model), which is the objective model in the UV-B
forecasting framework. The specific contributions and novelty of this
paper are summarized as follows:

• This research assesses the impact of potential satellite-derived
environmental variables, sky images, and SZA in the study design,
specifically for UV-B radiation in Queensland, a region known for
elevated solar UV exposure risks in Australia.
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• A suitable DL TabNet architecture for tabular data is proposed
and implemented for a solar UV-B radiation forecasting problem
at multiple-step horizons, utilizing a hybridized approach as an
optimization strategy.

• Compatible dimensionality reduction methods are applied in the
initial stage of model optimization. RFECV FS algorithm is used
to extract the informative attributes out of the satellite-derived
variables, while PCA is employed to transform the sky image-
based cloud statistical properties into principal components by
preserving their essential features.

• An Optuna optimizer is applied to further enhance the predictive
capability of the UV-B forecasting system through efficient tuning
of the model hyperparameters.

• The predictive performance of the proposed explainable hybrid
X-H-TabNet model is rigorously benchmarked against competing
ML and DL models.

• Powerful model-agnostic xAI tools are applied to interpret the
feature interactions of different atmospheric variables on short-
term UV-B forecasts. Specifically, the LIME tool generates local
explanations while SHAP provides global explanations of the
predicted outcomes.

• The accurate and explainable predictions generated by the UV-
B forecasting system can aid end-users to deliver more precise
exposure severity information and sun protection recommenda-
tions for people and other terrestrial life taking into account
the stochastic nature of the atmosphere over short, hourly to
sub-hourly time scales.

The state of Queensland is the primary geographical focus of this
study because of its high levels of solar UV-B radiation and the preva-
lence of fair skin types at risk of keratinocyte and melanoma skin
cancers. The outcome of the study is to develop an intelligent X-H-
TabNet model as a viable solar UV-B monitoring tool to help mitigate
subsequent risk of harmful exposure impacting the public.

The remainder of this paper is presented as follows: Section 2
discusses the theoretical background. Section 3 describes the different
approaches implemented in model design. Section 4 provides the results
and discussions for the performance evaluation and interpretations of
the UV-B forecasting system. Finally, Section 5 outlines the concluding
remarks of this study. The list of acronyms are provided in Table A.1.

2. Theoretical overview

In this section, we deliver a succinct background of the algo-
ithms applied in constructing the prescribed explainable hybrid Tab-

Net model. For completeness, we outline the theoretical details of
the DL TabNet architecture. Thereafter, we describe the LIME and
HAP techniques in delivering model-agnostic explanations for the

predicted outcomes at local and global levels, respectively. Apart from
he prescribed explainable hybrid TabNet model, we further developed

other competing benchmarked models by utilizing DL and ML as the
base models, which includes long short-term memory (LSTM) and gated
ecurrent unit (GRU), and extreme gradient boosting (XGB), support
ector regression (SVR), stochastic gradient descent (SGD), kernel ridge
egression (KRR) and decision tree (DT) as the base models. The
perational mechanisms and explanations of these counterpart models
onstructed using LSTM (Jayasinghe et al., 2022), GRU (Jia et al.,

2021), XGB (Chen et al., 2019), SVR (Luna et al., 2014), SGD (Tao et al.,
2023), KRR (Naik et al., 2018) and DT (Li et al., 2021) are elucidated
lsewhere, as these techniques are well-known.

2.1. Deep learning TabNet architecture

TabNet is a remarkable predictive model based on DNN, having
capabilities to learn from tabular data (Arik and Pfister, 2021). A
asic architecture of TabNet model is presented in Fig. 1. Initially, the
4 
input dataset is passed to the model with its specific batch size (B)
nd D-dimensional features 𝑓 ∈ R𝐵∗𝐷 to each decision step without
pplying global feature normalization. TabNet encodes data using a
equence of multi-step processes in N𝑠𝑡𝑒𝑝𝑠 decision steps, where the 𝑖th
tep utilizes the processed information from the (𝑖 − 1)th step to de-
ermine which features to use, and the resulting feature representation
s aggregated into the overall decision. Thereafter, the data is directed
o a batch normalization layer, followed by a feature transformer that
s configured into three layers, particularly a fully connected layer, a
atch normalization layer and a gated linear unit (GLU). For instance,
 transformer block concatenated into two shared layers and two
ecision step-dependent layers, with each layer composed with a fully
onnected, a batch normalization and a GLU (Dauphin et al., 2017)

supports robust and parameter-efficient learning. To secure stability,
ach block is followed by a

√

0.5 normalization, preventing major
fluctuations in variance (Gehring et al., 2017).

After the batch normalized features are processed in the feature
transformer block, the output information is passed through a split
layer into the attentive transformer at 𝑖th step. Basically, an attentive
transformer is configured into a four layer network, which include a
fully connected, a batch normalization, a prior scales and sparsemax.
The input information flow through the split layer passes to the fully
connected layer, followed by the batch normalization and prior scales
layers. In the prior scales layer, the magnitudes of respective feature
attributes is aggregated prior to the current decision step. The prior
scale term that denotes the magnitudes of a particular feature being
used previously (Arik and Pfister, 2021) is given as:

𝑃 [𝑖] =
𝑖

∏

𝑗=1
(𝛾 −𝑀[𝑗]) (1)

where 𝛾 is a relaxation parameter.
Using the outcomes of the previous step, the attentive transformer

determines the mask layer of the current step. In this regard, soft
selection of most salient features is achieved by applying a learnable

ask, 𝑀[𝑖] ∈ R𝐵∗𝐷, to avoid decision steps from learning irrelevant
eatures and enhance parameter efficiency in the model. The attentive
ransformer uses the processed features from the preceding step a[i - 1]
o obtain the masks (Martins and Astudillo, 2016), which is given as:

𝑀[𝑖] = 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥
(

𝑃 [𝑖 − 1] ∗ ℎ𝑖 (𝑎[𝑖 − 1])) (2)

where sparsemax represents the sparsemax layer applied for coefficient
normalization, P[i - 1] is the prior scales item and ℎ𝑖 (∙) is the trainable
function representing the fully connected and batch normalization
layers.

It is to be noted that coefficient normalization by the sparsemax
layer results in sparse FS (Martins and Astudillo, 2016), where:
𝐷
∑

𝑗=1
𝑀[𝑖]𝑏,𝑗 = 1 (3)

In this regard, the features having ∑𝐷
𝑗=1 𝑀[𝑖]𝑏,𝑗 = 0 are excluded to

upport better learning by the model. The aforementioned process of
masking by the attentive transformer is multiplicative, i.e., M[i]∗f.

An entropy-based sparsity regularization (𝐿𝑠𝑝𝑎𝑟𝑠𝑒) is considered to
better manage the sparsity of the selected features (Grandvalet and
Bengio, 2004), which is given as:

𝐿𝑠𝑝𝑎𝑟𝑠𝑒 =
𝑁𝑠𝑡𝑒𝑝𝑠
∑

𝑖=1

𝐵
∑

𝑏=1

𝐷
∑

𝑗=1

−𝑀𝑏,𝑗 [𝑖]𝑙 𝑜𝑔(𝑀𝑏,𝑗 + 𝜖)
𝑁𝑠𝑡𝑒𝑝𝑠 ∗ 𝐵

(4)

where 𝜖 is a small number for numerical stability.
Furthermore, a feature transformer is applied to process the filtered

eature attributes, followed by a split into two outputs, given as:

[𝑑[𝑖], 𝑎[𝑖]] = 𝑓𝑖(𝑀[𝑖] ∗ 𝑓 ) (5)

where, d[i]∈ R𝐵∗𝑁𝑑 is the decision step output and a[i]∈ R𝐵∗𝑁𝑎 is the
nformation for the subsequent step for the attentive transformer that
omes next.

Apart from robust predictive capability, the TabNet model also
offers interpretable applications using the output vector.
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Fig. 1. Schematic view of the standard TabNet architecture.
2.2. Optuna optimizer

In this study, we leveraged Optuna, a flexible and powerful tool
for hyperparameter optimization. Optuna streamlines the complex task
of fine tuning ML and DL frameworks, to optimize the predictive
performance. Featuring a define-by-run API, Optuna platform allows
for dynamic construction of the parameter search space, utilizing ef-
fective search and pruning techniques for optimal performance (Akiba
et al., 2019). For a given search space, Optuna exploits some efficient
samplers, including random, grid, Bayesian and genetic calculations to
search the best hyperparameter values (Garg and Pundir, 2021). In this
regard, Optuna represents each interaction as a study, enhancing the
process based on the objective function and trials. Here, a trial refers
to each individual evaluation or execution of this function.

The Optuna optimization process unfolds through a number stages
(Gao et al., 2021). In the first stage, Optuna determines the optimiza-
tion direction, range of values, maximum number of iterations and
parameter type. The second stage involves the optimization algorithm
to step into the loop. Within the loop, individuals from the population
are selected uniformly based on the function that defines the range of
parameter values. The hopeless individuals in the population are au-
tomatically terminated based on trimming conditions using a trimmer.
Thereafter, the objective function value for the unpruned individuals is
determined. The loop is repeatedly executed and exited after reaching
the maximum number of iterations. In the final stage, the optimal
solution and function value are extracted as the output.

When compared to other exhausted grid search and random grid
search methods, the Optuna algorithm is a next generation hyper-
parameter optimization tool that can robustly deliver an optimum
combination of hyperparameters with relatively lower computation
burden (Ekundayo, 2020).
5 
2.3. xAI-inspired local interpretable model-agnostic explanations (LIME)

LIME is a fascinating method for capturing local post-hoc explain-
ability of a black-box predictive model. The captivating aspect of LIME
lies in its accessibility and ease of use, as it exploits a surrogate in-
terpretable model to approximate the predictions of a black-box model
locally (Ribeiro et al., 2016). While LIME accommodates input datasets
in image, text, and tabular formats to facilitate local explanations
(Mulwa et al., 2024), our study applies LIME to tabular data format.

To generate an explanation for a given observation, LIME creates
replications of the feature data by repeatedly perturbing the input
observations. Having the perturbed data, it applies a black-box model
to generate predictions and benchmarks this data with respective ob-
served data point. LIME calculates the Euclidean distance between
these data points and uses it to reveal the feature variables that are
most effective in contributing towards black-box model’s predictions.

Overall, LIME generates a set of local explanations that emphasizes
on the contribution of each predictor variable to the prediction of a
given sample data in a black-box system (Vilone and Longo, 2021). The
predictive explanations can be accomplished by creating an explainer,
which necessitates LIME to minimize an objective function (Kuzlu et al.,
2020), given as:

𝜉(𝑥) = ar gmin
𝑔∈𝐺

(𝑓 , 𝑔 , 𝜋𝑥) +𝛺(𝑔), (6)

where (𝑓 , 𝑔 , 𝜋𝑥) measures the level of unfaithfulness in how the expla-
nation model 𝑔 approximates the predictions of the original black-box
model 𝑓 , 𝜋𝑥 is the proximity measure that defines size of the neighbor-
hood around instance 𝑥, 𝑓 represents the explained black-box model,
𝐺 denotes the set of interpretable models, and 𝛺(𝑔) measures the
explanation complexity for all 𝑔 ∈ 𝐺. LIME application entails two
goals, where the first is to minimize 𝛺(𝑔) and the second is to minimize
(𝑓 , 𝑔 , 𝜋 ). The first goal is to uphold model simplicity for acquiring
𝑥
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quality interpretations. The second major goal is to accomplish an
nterpretable approximation of the original model at local level. In
erms of computational efficiency, LIME is very fast in executing the
ocal explanations.

2.4. xAI-inspired Shapley additive explanations (SHAP)

The basis of SHAP originates from the concept of Shapley values in
game theory, aiming to equitably distribute each player’s contribution
to collectively achieve a particular outcome (Li, 2022). To serve a
similar purpose, SHAP algorithm has advanced into a versatile tool that
robustly explains the feature interactions of different predictor vari-
ables on decisions made by a black-box model in generating predictions
(Roth, 1988). For any black-box model, the SHAP value for a feature
ariable, 𝑋𝑗 (Li, 2022; Roth, 1988) is given as:

𝑆 ℎ𝑎𝑝𝑒𝑙 𝑦(𝑋𝑗 ) =
∑

𝑆 ⊆𝑁∖{𝑗}

𝑘! (𝑝 − 𝑘 − 1)!
𝑝!

(𝑓 (𝑆 ∪ {𝑗}) − 𝑓 (𝑆)) , (7)

where 𝑁∖{𝑗} denotes the set of all possible combinations of predictors
xcept 𝑋𝑗 , 𝑆 defines a feature set in 𝑁∖{𝑗}, 𝑝 represents the total

number of predictor variables, 𝑓 (𝑆 ∪ {𝑗}) defines the prediction of
a black-box model with both features in 𝑆 and feature 𝑋𝑗 and 𝑓 (𝑆)
defines the prediction of black-box model with features in 𝑆. The
𝑆 ℎ𝑎𝑝𝑒𝑙 𝑦(𝑋𝑗 ) defines the SHAP value of a predictor variable in terms
f the weighted average of the marginal contribution over all possible
odels with different combinations of predictor variables (Li, 2022).

Showcasing substantial capacity to offer comprehensive black-box
model explainability, our study couples the SHAP algorithm with the
hybrid TabNet framework to effectively capture the impact of mete-
orological variables on predicting solar UV-B radiation. The efficacy
of SHAP has been demonstrated by exploiting a number of skillful
explainers (Prasad et al., 2023; Joseph et al., 2024b; Ghimire et al.,
2024) and for the purpose of this study, we implement an elegant
ernel explainer to generate predictive interpretations of the hybridized
abNet model at global level.

3. Material and methods

This section outlines the methodologies employed in developing
nd evaluating the proposed explainable hybrid X-H-TabNet model
esigned for generating solar UV-B predictions at multi-step-ahead
orecast horizons (i.e., 1-h, 2-h, 3-h, and 4-h). First, the details on the
tudy site and dataset used are described. Secondly, the procedure of

extracting the sky image-based cloud statistical properties is detailed.
Next, the specific stages used to develop the multiple input, multi-step
output X-H-TabNet model are given. Then, the model evaluation crite-
ria used to compare the performance of the proposed and benchmark
models are presented. Lastly, details on the xAI tools used for model
interpretability are outlined.

3.1. Study site and dataset description

To develop and evaluate the X-H-TabNet model, experiments were
onducted using data sourced from the Toowoomba campus of the Uni-
ersity of Southern Queensland (UniSQ) covering the period between
uly 1, 2002, and February 29, 2004, resulting in 4826 data points.
he study site, positioned at a latitude of 27.60◦S and longitude of
51.93◦E, is situated in Queensland, often hailed as the ‘Sunshine State’
Salcedo-Sanz et al., 2018). With its subtropical climate characterized

by warm summers, this region experiences a high frequency of sunny
periods throughout the year, averaging around 8.2 h of sunshine per
ay (Ghimire et al., 2019). Additionally, Queensland’s proximity to the

equator means that the sun reaches a high elevation for a significant
portion of the year, resulting in elevated levels of both visible and
V radiation. Previous studies conducted in the region have also

Prasad et al., 2024) and
nvestigated short-term effects on the UV-A ( f

6 
UVI (Prasad et al., 2023), further highlighting the significance of solar
radiation in this area.

The considerable exposure to sunlight in this area, accompanied by
igh levels of UV-B radiation, presents notable public health concerns
Dexter et al., 2020). UV-B radiation, a component of the sun’s ultravi-

olet light spectrum known for its penetrating energy, can lead to skin
damage when exposed for extended periods without protection (Chang
t al., 2010). This exposure heightens the risk of various skin cancers,

including melanoma, basal cell carcinoma, and squamous cell carci-
noma, as evidenced by epidemiological studies (Venugopal et al., 2023;
Davis et al., 2021). Queensland, due to its substantial UV-B radiation
xposure, reports some of the highest skin cancer rates globally (Dexter

et al., 2020). Consequently, the state’s healthcare system prioritizes
addressing this burden, emphasizing the implementation of effective
public health strategies to mitigate associated risks.

To acquire the time-series solar UV-B dataset for the case study
site, a Model 501 Broadband UV-B Biometer (Solar Light Company, PA
USA) was utilized. This instrument is designed to measure erythemally-

eighted broadband UV-B solar radiation. Data output from this instru-
ent and others that make up the UniSQ atmospherics research site

have recently been made available for public access (mdVine, 2024).
he 501 Biometer sensor is located on a rooftop site at the University
f Southern Queensland, Toowoomba campus. The instrument dataset
onsisted of UV-B radiation weighted to the human action spectrum for
rythema (Commission Internationale de l’Eclairage, 1998). Data set

exposures were recorded in units of J cm−2 within 5 min intervals. For
our UV-B forecasting framework, these measurements were converted
to the average erythema effective solar UV irradiance in mW m−2 over
1-h intervals. This conversion and aggregation ensured that the data
aligned with our preferred unit and time intervals, facilitating a stan-
dardized evaluation of the weighted UV-B radiation levels over time.
Fig. 2 shows the hourly solar UV-B irradiance time-series acquired at
the Toowoomba research site. Additionally, the statistical information
of the UV-B time-series retrieved as the target variable is furnished in
Table 1.

The UV-B radiation measurements in this dataset exhibit interesting
statistical characteristics. With a skewness of 0.7, the distribution shows
 moderate rightward skew, indicating that there are more data points

on the lower end of the UV-B spectrum. This skewness is further com-
plemented by a kurtosis of −0.14, signifying a flatter peak and thinner
tails compared to a normal distribution. The mean UV-B radiation value
f 142.14 mW m−2 suggests that, on average, the radiation levels are
elatively high, approximating a UVI of 6 over the entire data series.

Furthermore, for model inputs, we integrated data from multi-
ple sources to enhance the accuracy of our predictive models. The
satellite-derived predictors used in this study were accessed from the
National Aeronautics and Space Administration (NASA) publicly ac-
cessible Goddard Online Interactive Visualization and Analysis Infras-
tructure (GIOVANNI) geoscience data repository available at https://
iovanni.gsfc.nasa.gov/giovanni/. From this comprehensive data repos-

itory, we chose to leverage the satellite-derived products obtained
from the Modern-Era Retrospective Analysis for Research and Appli-
ations (MERRA-2) (Berrick et al., 2008). The MERRA-2 data was

specifically utilized due to its extensive coverage and reliability in
providing accurate and high-quality information regarding atmospheric
parameters such as total column ozone (TCO), total aerosol extinction
AOT (TAE), total aerosol angstrom parameter (TAAP), total precipitable
water vapor (TPWV), and dust extinction AOT (DS) (Table 2). These
ndices were extracted at a spatial resolution of 0.5◦ × 0.625◦. Another
ationale for opting for MERRA-2 datasets was their matching temporal
esolution with the UV-B radiation data obtained from the Model 501

Broadband UV-B Biometer and the sky images captured by the Total Sky
Imager. Although MERRA-2 data has coarse spatial resolution, there
are methods of extracting finer specific information about smaller and
more localized regions by selecting minute gridded area enclosed by

our end points of a bounding box. The selected points forming this

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
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Fig. 2. Hourly solar UV-B radiation (mW m−2) time-series for the Toowoomba study site in Queensland where the proposed explainable hybrid TabNet model (i.e., X-H-TabNet)
was implemented.
Table 1
(a) Geographical description of the experimental site, (b) Descriptive statistics of erythema weighted ultraviolet B radiation
(UV-B; mW m−2). (Note: The hourly UV-B data are recorded from 01-07-2002 to 29-02-2004.)

(a) Study site, State Geographical location

Latitude (◦S) Longitude (◦E) Elevation (m)

Toowoomba, QLD 27.60 151.95 691

(b) Objective variable Mean St. Dev. Median Max. Min. Skewness Kurtosis

UV-B 142.14 91.50 123.34 457.98 0.67 0.70 −0.14
Table 2
Descriptions of the satellite-derived and ground-based predictor variables utilized in constructing the proposed explainable hybrid X-H-TabNet
model.

Name of attribute Acronym Source Units Model/Instrument Spatial
resolution

Total column ozone TCO MERRA-2 Dobsons M2T1NXSLV v5.12.4 0.5◦ × 0.625◦

Total aerosol extinction AOT TAE MERRA-2 – M2T1NXAER v5.12.4 0.5◦ × 0.625◦

Total aerosol angstrom parameter TAAP MERRA-2 – M2T1NXAER v5.12.4 0.5◦ × 0.625◦

Total precipitable water vapor TPWV MERRA-2 kg m−2 M2T1NXSLV v5.12.4 0.5◦ × 0.625◦

Dust scattering AOT DE MERRA-2 – M2T1NXADG v5.12.4 0.5◦ × 0.625◦

Solar zenith angle SZA Model ◦ Pro6UV –
bounding box have very slight differences in longitudes and latitudes.
For instance, our study selected a very small gridded region enclosed by
the points 151.9292◦E, 27.6055◦S, 151.9312◦E, and 27.6035◦S. Here,
the datasets of each predictor variable were area-averages of the small
selected region at finer spatial resolutions.

Additionally, the SZA attribute recorded by a deterministic Pro6UV
model (Deo et al., 2017a) was used as an input (Table 2). The SZA is
a valuable predictor of UV-B radiation as it measures the angle of the
sun relative to a specific location, which directly influences the inten-
sity of UV radiation reaching the Earth’s surface (Adam and Ahmed,
2016). A lower SZA angle, corresponding to the compliment of the
angular solar elevation, results in a more direct overhead position of the
sun, leading to higher UV-B radiation levels. We also employed cloud
statistical properties as feature attributes, which were extracted from
time-dependent whole sky images recorded at the Toowoomba campus
university research site (Sabburg and Long, 2004). All sky images were
captured at a spatial resolution of 480 × 320 pixels using a Total Sky
Imager - TSI440 (TSI) manufactured by Yankee Environmental Systems
Inc (in USA). These images were stored in the TSI repository and more
information regarding sky image segmentation is given in the following
sub-section.

3.2. Extraction of sky image-based cloud statistical properties

Cloud statistical properties have proven to be fundamental predic-
tors in forecasting solar UV-B radiation as they significantly influence
7 
the level of UV-B radiation that reaches the Earth’s surface (Ghoneim
et al., 2013; Furlan et al., 2012). Clouds can both attenuate and reflect
UV-B radiation, thereby affecting its intensity and variability. Hence,
cloud statistical properties were extracted and utilized as salient inputs
to improve the performance of the proposed X-H-TabNet architecture.

To ensure the retrieval of high-quality cloud data, all cloud statis-
tical properties were segmented from the sky images stored in the TSI
repository. The TSI repository has a collection of different file types,
which include colored sky images in JPEG format, text files containing
all relevant metadata related to the images (e.g., sun position, SZA,
and cloud fraction), and TSI segmented images in PNG format (Morris,
2005). The segmented images differentiate between different parts of
the sky, identifying areas that contain clouds and areas that do not (i.e.,
clear blue sky). This helped in analyzing cloud coverage and patterns
at the Toowoomba measurement site. These segmented images and the
cloud fraction information from the text files were used to validate the
sky images segmented in this study for the extraction of cloud statistics.
This was done by comparing the blue sky and cloud cover components
of the TSI segmented PNG image and the segmented image in this
present work.

To extract the chromatic properties of clouds, we utilized a highly
efficient, self-adaptive sky image segmentation algorithm, which has
been tested in our earlier work (Prasad et al., 2022, 2024). This auto-
mated algorithm was scripted using the Python programming language
(version 3.7.9). In the initialization stage, the algorithm screened all
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Fig. 3. Process of segmenting whole sky images from the TSI440 repository using the prescribed automated Python tool. The process entails masking of sky image, splitting it
into RGB channels, segmenting the image through thresholding and comparing the result with TSI segmented PNG image.
the 10-min sky images in JPEG format and its corresponding meta data
from the TSI repository. To ensure best data quality, robust Python
libraries, including ‘‘linecache’’, ‘‘glob’’, ‘‘os’’, and ‘‘cv2’’ were employed
to read, locate, and report any missing, incomplete, or corrupt im-
ages. For valid and uncorrupted sky images, the background, camera
housing, camera arm, and sunshield captured were masked using the
‘‘numpy’’ Python-based library. As depicted in Fig. 3, all masked sky
images were respectively split into red (R), green (G), and blue (B)
channels using the technique devised in Igoe et al. (2019).

Furthermore, the red to blue ratio (RBR) of the R and B channel
pixel values were computed and scaled between 0–255 (Igoe et al.,
2019). These scaled pixels were binarized and segmented into black
and white using a user-defined threshold (𝑇 ) calculated as follows:

𝑇 = 255
𝑅𝐵 𝑅𝑚𝑎𝑥

× 𝑇 𝐹 (8)

where 𝑅𝐵 𝑅𝑚𝑎𝑥 is the maximum threshold value and 𝑇 𝐹 is a threshold
factor with a value of 0.56 (Prasad et al., 2022; Igoe et al., 2019).

The cloud statistical properties of the sky image were extracted by
applying a mask to the binarized pixels representing both blue sky
and cloud cover onto the blue and red channel pixels. This method
ensured that only the relevant areas were considered for analysis. As de-
scribed in Table 3, a total of seventeen cloud statistical properties were
efficiently extracted for all real-time sky images using an automated
‘‘for loop’’, and their correlations with the UV-B irradiance measured
over the July 2002 to February 2004 measurement period were ex-
amined. An extensive retrieval of cloud properties helped provide a
comprehensive understanding of cloud patterns and characteristics.

Moreover, the segmentation of the sky image using our algorithm
closely matched the segmented PNG image derived automatically by
the TSI440 software. Our image segmentation algorithm, derived from
the work of Prasad et al. (2022), exhibited a minute ≈1.84% cloud
percentage difference between the segmented image and the TSI PNG
image. Additionally, it demonstrates a robust correlation of ≈0.991
between the calculated and original TSI440 cloud fraction data, making
the extracted attributes good predictors of UV-B.

3.3. Input data preprocessing

To obtain reliable UV-B forecasting results, a comprehensive dataset
was structured, incorporating satellite and ground-based variables (Tabl
e 2)

8 
as well as statistical properties derived from cloud images (Table 3).
These diverse data sources were meticulously prepared to serve as
inputs for the proposed and benchmark forecasting models. Firstly,
the input and target data were screened for missing data points and
extreme outliers across both the training and testing partitions. Miss-
ing data can lead to incomplete patterns, making it difficult for the
model to learn and generalize effectively (Lyngdoh et al., 2022). On
the other hand, outliers can skew the model’s understanding of the
data distribution, leading to inaccurate predictions and reduced model
performance (Li et al., 2015). In our study, we had very few instances
where the input datasets were missing. Nevertheless, the sporadic
missing data and outliers were imputed using the monthly median
imputation approach of corresponding variables (Ochieng’Odhiambo,
2020) to overcome the aforementioned issues. This ensured that the
predictive model could make reliable and trustworthy predictions based
on clean and representative data. Once the complete datasets were
obtained through median imputation and data replacement methods,
the stationarity of these datasets was evaluated using the augmented
Dickey–Fuller (ADF) Test (Dickey and Fuller, 1979). The ADF test is
a statistical test used to determine whether a time series is stationary,
meaning its statistical properties like mean and variance do not change
over time. The test results confirmed that all the input datasets were
stationary and suitable for modeling.

Furthermore, the cross-correlation coefficient (𝑟𝑐 𝑟𝑜𝑠𝑠) was evaluated
for all predictor variables listed in Tables 2 and 3 to identify the
most significant time-lagged relationships for modeling UV-B. This
process obtained 𝑟𝑐 𝑟𝑜𝑠𝑠 values to determine how well these variables
correlated with the UV-B target attribute at different time lags. A 95%
confidence band was used as a reference, where the lagged components
of any variable within this boundary were considered insignificant.
By assessing these correlations, we could identify the time delays at
which each variable had the strongest relationship with UV-B levels.
After evaluating 𝑟𝑐 𝑟𝑜𝑠𝑠 for each feature with UV-B, the most significant
historically preceding values of the predictor variables were selected as
inputs to construct the proposed multi-step-ahead hourly UV-B forecast-
ing system. Additionally, for more robust outcomes, a PACF statistical
assessment was conducted to obtain another set of predictor variables.
PACF was employed to identify the optimal lags of antecedent UV-
B levels, with the first six lags determined to be highly correlated
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Table 3
Descriptions of the satellite-derived and ground-based predictor variables utilized in constructing the proposed explainable hybrid X-H-TabNet model.

Cloud statistical properties Acronym Description r𝑐 𝑟𝑜𝑠𝑠 with
UV-B

Ratio of captured sky in red and blue channels RSRB Ratio of average pixel values in red and blue channels captured with blue sky 0.312
Difference of captured sky in red and blue channels DSRB Difference of average pixel values in red and blue channels captured with blue

sky
−0.205

Average of captured cloud in red channel ACR Average of pixel values in red channel captured with cloud cover −0.201
Average of captured cloud in blue channel ACB Average of pixel values in blue channel captured with cloud cover −0.195
Standard deviation of captured cloud in blue channel SCB Standard deviation of pixel values in blue channel captured with cloud cover 0.189
Opaque cloud OC Proportion of thick cloud cover in the blue sky −0.118
Difference of captured cloud in red and blue channels DCRB Difference of average pixel values in red and blue channels captured with cloud

cover
−0.107

Average of captured sky in blue channel ASB Average of pixel values in blue channel captured with blue sky −0.101
Cloud fraction CF Fraction of the number of cloud captured pixels and total number of unmasked

pixels
−0.092

Standard deviation of captured sky in blue channel SSB Standard deviation of pixel values in blue channel captured with blue sky −0.060
Standard deviation of captured sky in red channel SSR Standard deviation of pixel values in red channel captured with blue sky −0.048
Normalized ratio of captured cloud in red and blue channels RCNRB Normalized ratio of average pixel values in red and blue channels captured with

cloud cover
−0.042

Standard deviation of captured cloud in red channel SCR Standard deviation of pixel values in red channel captured with cloud cover 0.035
Normalized ratio of captured sky in red and blue channels RSNRB Normalized ratio of average pixel values in red and blue channels captured with

blue sky
0.034

Red and blue channel-based cloud ratio RCRB Red and blue channel-based mean pixel value ratio that represents cloud cover −0.031
Thin cloud TC Proportion of thin cloud cover in the sky −0.023
Average of captured sky in red channel ASR Average of pixel values in red channel captured with blue sky 0.014
,
t
v
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i

r
v
d
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p

t

predictors of UV-B. These lags are denoted as UVB(t-1), UVB(t-2),
VB(t-3), UVB(t-4), UVB(t-5) and UVB(t-6), where t represents the time
omponent. By incorporating these specific lags, the forecasting model

can effectively utilize historical UV-B irradiance data to enhance its
predictive accuracy for future UV-B levels.

3.4. Feature selection

A recursive feature elimination with cross-validation (RFECV)
method was employed to identify the most significant satellite-derived
and ground-based predictor variables among the six furnished in Table 2
nsuring that only the most impactful predictors were included in
he model. Additionally, Principal Component Analysis (PCA) was

applied to the 17 cloud statistical properties (Table 3), reducing their
dimensionality while retaining the most informative components. The
combination of RFECV and PCA allowed for an efficient and effective
selection of features, enhancing the model’s predictive performance by
focusing on the most relevant data.

3.4.1. Recursive Feature Elimination with Cross-Validation (RFECV)
RFECV is an effective wrapper-based FS technique, particularly

useful when aiming to enhance model simplicity and performance.
Practically, this FS framework employs a ML algorithm to select the
optimal feature subsets from the entire feature space FS (Freytes et al.,
2023). To enhance robustness, RFECV integrates recursive feature elim-
nation with cross-validation to determine the optimal set of features
hat maximize the performance of the predictive model (Awad and
raihat, 2023). RFECV dynamically determines the optimal number of
eatures by iteratively removing them and selecting the best subset
ased on model performance, without needing a predefined number of
eatures (Shi et al., 2024). Some previous studies have applied RFECV,
aving the base ML algorithm as DT and RF to classify Alzheimer’s
isease (Freytes et al., 2023) and to detect intrusions (Merlin and Ravi,

2023). For the purpose of this study, we applied RFECV by incorporat-
ing RF model as the base ML algorithm with 5-fold cross-validation.
Through integration of RFECV, the complex non-linear interactions
between UV-B radiation and predictors are more accurately captured.
The RFECV algorithm assigns importance scores to features using an
iterative process and selects the optimal number of features, as high-
ighted in Fig. 4 for 1-hourly, 2-hourly, 3-hourly, and 4-hourly forecast
orizons. For all forecast horizons, it is observed that RFECV for

number of features corresponding to 1 = SZA, 2 = SZA + TAAP, 3 =
SZA + TAAP + TAE, 4 = SZA + TAAP + TAE + DE, 5 = SZA + TAAP +
9 
TAE + DE + TCO, and 6 = SZA + TAAP + TAE + DE + TCO + TPWV.
To determine the number of most informative features, the red dashed
vertical line marking the threshold for optimal feature selection serves
as a reference. In accordance with this vertical line, RFECV execution
iteratively selected all the six predictor variables as pertinent inputs
towards model development for each forecast horizon.

3.4.2. Principal Component Analysis (PCA)
PCA (Malhi and Gao, 2004) is an effective dimensionality reduction

echnique, which aims to transform a dataset with multiple correlated
ariables into a smaller set of uncorrelated variables called principal

components. These principal components capture the maximum vari-
ance in the data while minimizing information loss. In this study, we
analyze 17 cloud statistical property attributes derived from segmented
cloud images using the PCA multivariate analysis technique. Let us
suppose that 𝐗 is the predictor variable matrix of dimension 𝑚 × 𝑛,
where 𝑚 indicates the total number of cloud statistical attributes (i.e.,
7) and n is the total number of data points in the dataset. Based on
his, the individual predictors 𝑓1−17 from the matrix 𝐗 were vectorized
nto 𝑣𝑗 = R𝑚𝑛×1 where 𝑗 = 1, 2,… , 17. Then, the individual feature

vectors 𝑣𝑗 were stacked to form the matrix �̂� ∈ R𝑚𝑛×17 as follows:

�̂� =
[

𝑣1, 𝑣2, 𝑣3,… , 𝑣17
]

(9)

The PCA was performed on the normalized matrix of �̂� using the
corresponding feature vector means 𝑣𝑗 and standard deviations 𝜎𝑣𝑗 . The
normalized matrix �̈� was computed as:

�̈� =

[

𝑣1 − 𝑣1
𝜎𝑣1

,
𝑣2 − 𝑣2
𝜎𝑣2

,
𝑣3 − 𝑣3
𝜎𝑣3

,… ,
𝑣17 − ̄𝑣17

𝜎𝑣17

]

(10)

The Eigenvalues and Eigenvectors were computed from the normal-
ized covariance matrix calculated using Eq. (10). These Eigenvalues
epresent the variance explained by each Eigenvector, with the Eigen-
ectors themselves forming the principal components (PCs) of the
ataset. From this analysis, 6 PCs (denoted as PCA1, PCA2, PCA3,
CA4, PCA5 and PCA6) were carefully selected based on their cor-
esponding Eigenvalues. This selection process ensures that these 6
omponents collectively capture a substantial amount of variability
resent in the cloud statistical properties data.

The variance explained rates for the 6 PCs in conducting PCA on
he training and testing data series of cloud statistical properties are

summarized in Table 4. These explained rates indicate the percentage
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Fig. 4. Selection of pertinent features from a pool of six satellite-derived and ground-based predictor variables using recursive feature elimination with cross-validation (RFECV)
method; where the red dashed vertical line marking indicates the threshold for the optimal number of features selected in the design phase of the explainable hybrid TabNet
framework.
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Table 4
Variance explained rates for the six principal components in conducting the principal component analysis (PCA) for the
training and testing data series of the cloud statistical properties.

Dataset Variance explained rate (%)

Hourly horizon 2 hourly horizon 3 hourly horizon 4 hourly horizon

Training 99.32 99.32 99.32 99.32
Testing 99.62 99.62 99.62 99.62
t

F
w
m

c

f

w
a
T
a

𝑖

t
r
r

of variance in the data that is explained by each PC across different time
horizons. The consistently high rates (ranging from around 99.32% to
99.62%) for both training and testing datasets demonstrate that the
selected PCs effectively capture the variability present in the cloud
statistical properties data. This high level of variance explained suggests
that the PCA process successfully summarizes the essential information
in the dataset while reducing its dimensionality, contributing to more
efficient and accurate modeling and analysis.

3.5. Proposed UV-B multi-step-ahead forecast model development

After the data cleaning and FS stages, the explainable hybrid TabNet
model was developed for multi-step-ahead UV-B forecasting. The model
pipeline, graphically presented in Fig. 5 was built using the Python
programming language on the Google Colaboratory platform, lever-
ging a graphical processing unit (GPU) for enhanced performance.
his virtual environment offers a suite of powerful packages, such as

Scikit-learn (Pedregosa et al., 2011), Keras (Ketkar and Ketkar, 2017),
and TensorFlow (Abadi et al., 2016), renowned for their capabilities in
xecuting state-of-the-art ML and DL algorithms.

Before inputting the target and predictor data into the model, the
datasets underwent normalization to ensure that each variable had a
onsistent scale within the range of [0–1]. This normalization pro-
edure, known as min–max normalization (Islam et al., 2022a) was
erformed using the following computation to obtain the normalized
nput data 𝑋𝑁 𝑂 𝑅𝑀 :

𝑋𝑁 𝑂 𝑅𝑀 =
𝑋𝐴𝐶 𝑇 −𝑋𝑀 𝐼 𝑁
𝑋𝑀 𝐴𝑋 −𝑋𝑀 𝐼 𝑁

(11)

where 𝑋𝐴𝐶 𝑇 is the actual input data, and 𝑋𝑀 𝐼 𝑁 and 𝑋𝑀 𝐴𝑋 include the
minimum and maximum values of the input data, respectively.

To successfully develop a robust UV-B simulating model using AI
framework, the entire datasets were first partitioned into training, val-
idation and testing. In the absence of a standard approach for dividing
data into training and testing sets, this study employed 80% of the
datasets for training, and 20% for testing. By applying this splitting
ratio to a total of 4826 data points, 3863 points were allocated to the
training set, and 963 to the testing set. It is to be noted that a data
split ratio similar to that of our study was also employed by Wong
et al. (2021) for predicting ground level 𝑃 𝑀2.5. In the present study, we
ensured that the training datasets (i.e., 80%) included only observations
that precede those in the testing datasets (i.e., 20%). Additionally, the
data segregation strategy adopted in this study aligns with existing
literature, which emphasizes the importance of partitioning the entire
dataset into training and testing subsets before building the model
to prevent the leakage of training data into future testing data, thus
avoiding testing bias (Deo et al., 2017b). On the same note, our study
employed time series cross-validation to enhance the robustness of the
model evaluation. We applied 10-fold cross-validation technique by
selecting 10% of the training portion for validation (Wong et al., 2021).
In the 10-fold cross-validation approach, 90% of the randomly selected
data was used for model training, and 10% was designated for testing.
This cycle was repeated ten times, allowing each fold to be tested
exactly once. By employing 10-fold cross-validation, the performance
of the proposed hybrid Tabnet model became more reliable, as it was
tested on different train–test splits during the validation phase.

Essentially, the study integrated the 10-fold cross-validation ap-
roach with a hyperparameter optimization algorithm to derive fine-

tuned hyperparameters for the optimal predictive model. For this pur-
ose, a powerful Optuna optimizer was fused with the objective hybrid
 a

11 
TabNet model, as well as other benchmarked models. Optuna is an
advanced optimization framework designed to automate the search for
optimal hyperparameters (Srinivas and Katarya, 2022). This method
facilitated a comprehensive evaluation of TabNet’s performance against
he comparative counterparts. It helped in identifying the best hy-

perparameter settings by minimizing overfitting and improving gen-
eralizability. The optimal hyperparameters for the proposed TabNet
models, tailored for each of the four forecast horizons, are detailed in
Table 5. The proposed hybrid TabNet model enhanced through robust
S methods and efficient hyperparameter tuning (i.e., X-H-TabNet)
as evaluated and benchmarked against 7 state-of-the-art hybridized
odels. For ease of distinction, the descriptions and acronyms of these

models are provided in Table 6.

3.6. Model evaluation criteria

The use of diverse performance measures is essential for effectively
omparing predictive models (Joseph et al., 2023). While a single

metric may provide valuable information, it often fails to capture the
ull complexity and nuances of a model’s performance. By utilizing

multiple metrics, we can gain diverse perspectives that collectively
offer a more comprehensive assessment. This multifaceted approach not
only enhances our understanding of a model’s strengths and weaknesses
but also guides decision-making processes more effectively in terms of
model selection, optimization, and deployment strategies (Joseph et al.,
2024b). Hence, four powerful statistical metrics, namely Pearson’s
Correlation Coefficient (r), Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Legate-McCabe Efficiency Index (LME)

ere used for rigorous assessment of the proposed X-H-TabNet model
gainst the benchmark models in forecasting multi-step-ahead UV-B.
he use of these measures is strongly recommended in solar radiation
nd UV-based forecasting studies (Qin et al., 2020; Ghimire et al., 2022;

Ahmed et al., 2022; Deo et al., 2018). The mathematical expressions of
these statistical metrics are given as follows:

Mathematically, these metrics can be represented as:

𝑟 =
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𝑖 − UV-B

𝑂) (
UV-B𝐹

𝑖 − UV-B
𝐹)

√

∑𝑁
𝑖=1

(

UV-B𝑂
𝑖 − UV-B

𝑂)2
√

∑𝑁
𝑖=1

(

UV-B𝐹
𝑖 − UV-B

𝐹)2
, (12)

𝑀 𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

UV-B𝑂
𝑖 − UV-B𝐹

𝑖
|

|

|

, (13)

𝑅𝑀 𝑆 𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(UV-B𝑂

𝑖 − UV-B𝐹
𝑖 )2, (14)

and

𝐿𝑀 𝐸 = 1 −
∑𝑁

𝑖=1
|

|

|

UV-B𝑂
𝑖 − UV-B𝐹

𝑖
|

|

|

∑𝑁
𝑖=1

|

|

|

|

UV-B𝑂
𝑖 − UV-B

𝑂|
|

|

|

, (15)

where 𝑁 is the total number of paired UV Index and predictor data
points, UV-B𝑂

𝑖 and UV-B𝐹
𝑖 are observed and forecasted UV-B for the

𝑡ℎ observation, UV-B
𝑂

and UV-B
𝐹

are average observed and average
forecasted UV-B. The values of r range between −1 to +1, where the
wo extremes are ideal values. The error values of MAE and RMSE
ange from 0 to ∞, where 0 and ∞ imply a perfect fit and worst fit,
espectively. The LME can robustly address the predictive limitations
nd it ranges between 0 to 1, where 1 is an ideal value.
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Fig. 5. Flowchart detailing the proposed multiple input, multi-step output model for solar UV-B forecasts based on explainable hybrid X-H-TabNet model.
3.7. Model explainability

It is important to note that while model performance is of utmost
importance, interpretability plays a significant role as well. Understand-
ing how and why a model makes predictions is essential for gain-
ing insights, ensuring transparency, and building trust in the model’s
capabilities (Joseph et al., 2022). Hence, xAI -based model-agnostic
explainers (i.e., LIME and SHAP) were used to provide insights into
the predictions generated by the proposed X-H-TabNet architecture
designed for UV-B forecasting.

First, LIME was employed to achieve local explainability of the
predictive outcomes. This involved visualizing the influence of all
features on the 50th and 100th instances of the test data for each
of the four forecast horizons through bar plots. Following this, the
SHAP explainer was utilized for global explainability, showcasing the
impact of individual features on the overall model performance using
beeswarm and feature dependence plots.

4. Results and discussion

This study introduces the hybrid TabNet model (X-H-TabNet) along-
side other hybrid deep learning and machine learning models to fore-
cast multi-step UV-B solar radiation. The performance of the proposed
12 
hybrid TabNet model is rigorously evaluated against alternative hy-
brid deep learning and machine learning models using key statistical
metrics, including the correlation coefficient (𝑟), root mean square
error (𝑅𝑀 𝑆 𝐸), and mean absolute error (𝑀 𝐴𝐸), applied to the testing
dataset. The X-H-TabNet model demonstrated superior performance
in predicting UV-B values for an hourly horizon, achieving a high
correlation coefficient (𝑟 ≈ 0.908) and relatively low values for both
root mean square error (𝑅𝑀 𝑆 𝐸 ≈ 25.944) and mean absolute error
(𝑀 𝐴𝐸 ≈ 18.04) (Refer Table 7). For two-hourly, three-hourly, and four-
hourly horizons, the model also maintained strong predictive accuracy,
with respective 𝑟, 𝑅𝑀 𝑆 𝐸, and 𝑀 𝐴𝐸 values of ≈ 0.88,≈ 28.203,≈
17.169; ≈ 0.868,≈ 31.302,≈ 20.233; and ≈ 0.868,≈ 29.533,≈ 19.424.
Among the benchmark models, the hybrid machine learning model XGB
(H-XGB) outperformed hybrid deep learning models (H-LSTM and H-
GRU) in terms of accuracy. For instance, in the hourly horizon, the
H-XGB model achieved an 𝑟 value of ≈ 0.892, 𝑅𝑀 𝑆 𝐸 of ≈ 27.085,
and 𝑀 𝐴𝐸 of ≈ 18.659, compared to H-LSTM (𝑟 ≈ 0.881, 𝑅𝑀 𝑆 𝐸 ≈
29.713, 𝑀 𝐴𝐸 ≈ 22.262) and H-GRU (𝑟 ≈ 0.885, 𝑅𝑀 𝑆 𝐸 ≈ 29.849,
𝑀 𝐴𝐸 ≈ 22.337). The outstanding performance of the X-H-TabNet
model across all forecast horizons underscores its potential as a robust
forecasting approach for UV-B predictions, surpassing other benchmark
models, including hybrid deep learning models (H-GRU and H-LSTM)
and hybrid machine learning models (H-XGB, H-SVR, H-SGD, H-KRR,
and H-DT).
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Table 5
Optimal architecture of the explainable hybrid X-H-TabNet model and the hybrid benchmarked models developed for multiple time-scale UV-B forecasts.

Designed Model Hyperparameter Fine tuned hyperparameters with optuna

models hyperparameters search space Hourly 2 hourly 3 hourly 4 hourly
horizon horizon horizon horizon

X-H-TabNet

mask_type [entmax, sparsemax] sparsemax sparsemax sparsemax sparsemax
n_d, n_a [56, 60, 64], [56, 60, 64] 56, 64 56, 60 56, 60 56, 60
n_steps, n_shared [1, 2, 3], [1, 2, 3] 3, 2 3, 2 3, 2 3, 2
gamma, virtual_batch_size [1.0, 1.2, 1.4], [10, 20] 1.0, 10 1.0, 10 1.0, 10 1.0, 10
lambda_sparse [1 × 10−6 to 1 × 10−3] 5.3 × 10−4 7.3 × 10−4 7.1 × 10−4 4.5 × 10−4
batch_size [40 to 200, step = 20] 80 80 80 80
epochs [40 to 200, step = 20] 260, 300 290, 280 200, 200 200, 200
patience [3 to 10, step = 1] 6 6 6 6
learning_rate, step_size [2 × 10−2], [10] 2 × 10−2, 10

H-LSTM

units 1 [40 to 150, step = 5] 55 50 55 55
units 2 [10 to 60, step = 5] 50 50 50 45
units 3 [5 to 45, step = 5] 45 45 45 45
batch_size [60 to 120, step = 10] 70 70 75 75
epochs [100, 150, 200, 250] 250 250 250 250
optimizer, learning_rate [Adam], [0.001] Adam, 0.001
dropout, patience, activation [0.1], [20], [ReLU] 0.1, 20, ReLU
beta_1, beta_2, epsilon [0.9], [0.999], [1 × 10−10] 0.9, 0.999, 1 × 10−10

H-GRU

units 1 [40 to 150, step = 5] 55 50 55 50
units 2 [10 to 60, step = 5] 50 45 50 40
units 3 [5 to 45, step = 5] 50 40 45 40
batch_size [60 to 120, step = 10] 75 75 70 70
epochs [100, 150, 200, 250] 250 250 250 250
optimizer, learning_rate [Adam], [0.001] Adam, 0.001
dropout, patience, activation [0.1], [20], [ReLU] 0.1, 20, ReLU
beta_1, beta_2, epsilon [0.9], [0.999], [1 × 10−10] 0.9, 0.999, 1 × 10−10

H-XGB

n_estimators [100, 150, 200] 100 100 150 100
max_depth [5, 10] 5 5 5 5
eta [0.1, 0.2, 0.3, 0.4, 0.5] 0.1 0.1 0.1 0.3
gamma [0.2, 0.4] 0.2 0.4 0.4 0.4
min_child_weight [1, 3, 5] 5 5 3 1

H-SVR

kernal [poly, rbf, sigmoid] rbf rbf rbf rbf
gamma [scale, auto] scale scale scale scale
epsilon [0.1, 5.0, step = 0.1] 1.0 1.7 0.6 0.9
degree [2, 3, 4, 5, 6] 6 6 5 6

H-SGD

eta0 [0.01, 0.02, 0.03] 0.03 0.03 0.02 0.03
power_t [0.25, 0.35] 0.25 0.25 0.25 0.25
max_iter [500, 1000, 1500] 1000 1500 1500 1000
tol [0.001, 0.002, 0.003] 0.002 0.001 0.001 0.001

H-KRR

alpha [1, 2, 3] 3 1 1 3
kernel [linear, polynomial] linear linear polynomial linear
degree [2, 3, 4] 3 2 3 3
coef0 [1, 2, 3] 1 1 3 1

H-DT

min_samples_split [2, 4, 6, 8] 6 4 6 6
max_depth [5, 10, 15] 5 10 10 10
min_samples_leaf [2, 6, 10] 10 2 10 6
max_features [log2, auto, sqrt] auto auto log2 sqrt
m

Table 6
Descriptions and respective designations of the multiple input multi-step output
ybridized deep learning and machine learning models constructed to generate short-
erm UV-B forecasts.
Description of model Designation

Prescribed xAI model: Explainable hybrid TabNet X-H-TabNet

Counterpart models:

Hybrid LSTM H-LSTM
Hybrid GRU H-GRU
Hybrid XGB H-XGB
Hybrid SVR H-SVR
Hybrid SGD H-SGD
Hybrid KRR H-KRR
Hybrid DT H-DT

Fig. 6 illustrates the Legates and McCabe’s index (𝐿𝑀 𝐸) for the
forecasted and actual UV-B values generated by the X-H-TabNet model,
ompared to the H-LSTM, H-GRU, H-XGB, H-SVR, H-SGD, H-KRR, and
-DT models. This index is particularly valuable as it considers the

absolute differences between forecasted and actual data, as well as
13 
the variability inherent in the actual data, offering a more compre-
hensive evaluation of model performance. The robustness of 𝐿𝑀 𝐸
to outliers and its ability to handle diverse data distributions further
enhance its utility in model assessment. The results depicted in Fig. 6
demonstrate that the X-H-TabNet model consistently outperforms all
the other comparative hybrid deep learning and machine learning

odels across all forecast horizons. This superior performance is ev-
ident when considering higher-order metrics like 𝐿𝑀 𝐸, in addition
to traditional metrics such as 𝑟, 𝑅𝑀 𝑆 𝐸, and 𝑀 𝐴𝐸. The X-H-TabNet
model’s advanced predictive capabilities enable it to provide highly
accurate forecasts of UV-B radiation, making it a promising candidate
for implementation in UV-B prediction tasks. The consistent excellence
of the X-H-TabNet model, as shown by the 𝐿𝑀 𝐸, underscores its
effectiveness and reliability in capturing the intricate patterns and
dependencies present in UV-B data.

Furthermore, Fig. 7 presents a scatterplot for the hourly forecast
horizon, illustrating the correlative relationship between the forecasted
and observed UV-B values through a linear equation, 𝑦 = 𝑚𝑥 + 𝑐,
accompanied by the coefficient of determination, 𝑅2. In this context,
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Table 7
Testing phase performance of the proposed X-H-TabNet model alongside the benchmarked counterparts to forecast multi-step ahead UV-B radiation. The statistical metrics of r,
MAE, and RMSE represent correlation coefficient, mean absolute error, and root mean square error.

Predictive Hourly horizon 2 hourly horizon 3 hourly horizon 4 hourly horizon

model r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

X-H-TabNet 0.908 25.944 18.040 0.880 28.203 17.169 0.868 31.302 20.223 0.868 29.531 19.424
H-LSTM 0.881 29.713 22.262 0.864 29.960 20.146 0.862 31.259 22.358 0.858 32.755 23.348
H-GRU 0.885 29.849 22.337 0.860 30.999 21.004 0.866 30.608 21.143 0.860 30.380 19.792
H-XGB 0.892 27.085 18.659 0.875 29.133 18.755 0.867 30.444 20.081 0.845 32.978 22.537
H-SVR 0.875 31.013 21.981 0.861 30.730 20.440 0.855 30.877 19.749 0.852 31.126 20.263
H-SGD 0.871 29.610 20.821 0.858 30.636 20.275 0.853 31.014 20.023 0.852 31.275 20.087
H-KRR 0.876 28.814 20.391 0.862 30.290 20.222 0.854 30.867 20.217 0.853 31.260 20.140
H-DT 0.847 32.543 21.537 0.837 32.823 21.752 0.782 39.663 26.840 0.803 35.739 25.537
Fig. 6. Line graphs of Legate-McCabe Efficiency Index (LME), for the proposed X-H-TabNet model against its comparative counterparts during the testing phase at multiple time
scales.
the slope 𝑚 represents the gradient for a 1:1 correlation, 𝑅2 measures
the covariance, and the intercept 𝑐 indicates the 𝑦-axis intercept, which
should be negligible for an ideal forecasting model. The X-H-TabNet
model demonstrates superior performance compared to the other mod-
els. Specifically, the X-H-TabNet model achieved 𝑚 = 0.731, 𝑐 = 31.252,
and 𝑅2 = 0.824, surpassing the performance of the H-LSTM model (𝑚 =
0.708, 𝑐 = 18.765, 𝑅2 = 0.783), the H-GRU model (𝑚 = 0.708, 𝑐 = 18.765,
𝑅2 = 0.730), and the H-XGB model (𝑚 = 0.827, 𝑐 = 21.162, 𝑅2 = 0.796).
These findings clearly indicate that the X-H-TabNet model exhibits a
better capability to accurately simulate UV-B radiation, as evidenced by
the higher 𝑅2 values. The superior gradient and intercept values further
affirm the model’s robustness and precision in capturing the underlying
patterns and dependencies in the UV-B data. Consequently, the X-H-
TabNet model stands out as a highly effective tool for UV-B prediction,
demonstrating advanced predictive capabilities and reliable accuracy
in various forecasting horizons.

Fig. 8 illustrates the frequency distribution of absolute forecasting
errors for the X-H-TabNet model compared to the H-LSTM, H-GRU,
H-XGB, H-SVR, H-SGD, H-KRR, and H-DT models during the testing
phase. Additionally, the figure presents the percentage of each hour
in the testing period with an error level within the range of ±10. The
X-H-TabNet model demonstrated the highest frequency of forecasting
errors within the smallest error range (±10), achieving 70%. This
performance is significantly superior to the error frequencies of 63%,
63%, 66%, 66%, 64%, 66%, and 60% achieved by the H-LSTM, H-
GRU, H-XGB, H-SVR, H-SGD, H-KRR, and H-DT models, respectively.
This notable result indicates that the X-H-TabNet model consistently
produced lower forecasting errors in comparison to the other models.
The higher percentage of errors within the ±10 range underscores
the model’s enhanced accuracy and reliability in forecasting UV-B
14 
radiation. Thus, the X-H-TabNet model’s overall performance in the
testing phase is markedly better, as evidenced by the lower absolute
forecasting errors.

To analyze local explanations for predictions made by a hybrid
explainable model, this study employed the LIME framework. The
number of LIME-explainable instances were equivalent to the number
of UV-B data points for each forecast horizon (i.e., hourly, 2 hourly,
3 hourly and 4 hourly) in the testing datasets. Fig. 9 visually presents
the LIME-generated analyses for instance-based predictions, specifically
highlighting instances 50 and 100. The bar graphs illustrate the con-
tributions of individual features to the forecasting of these instances
across four forecast horizon. Features are depicted on the 𝑦− 𝑎𝑥𝑖𝑠 with
their corresponding values, while the 𝑥 − 𝑎𝑥𝑖𝑠 indicates the relative
strengths of these features in numerical terms. Features that positively
influenced the UV-B forecast are marked in green, whereas those with
a UV-B negative impact are highlighted in red. Fig. 9(a) illustrates
the contributions of various features to the X-H-TabNet predictions
for Instance 50 (left) and Instance 100 (right) for an hourly forecast
horizon. In both instances, UVB(t-6) ≤ 76.16 has the most significant
negative impact, indicating its consistent influence. Other features such
as UVB(t-1) ≤ 76.16 and UVB(t-5) ≤ 76.16 also show substantial nega-
tive contributions across both instances. For positive influences, 76.16
< UVB(t-1) ≤ 135.84 for Instance 50 and 76.16 < UVB(t-3) ≤ 135.84
for Instance 100 are top contributors, although specific thresholds differ
slightly. Features like TCO ≤ 263.60 and 42.26 < SZA ≤ 52.23 for
Instance 50, and 76.16 < UVB(t-4) ≤ 135.84 and −25.60 < PCA1
≤ −21.77 for Instance 100, show positive contributions with varying
magnitudes. Features like PCA3 > 33.79 and PCA4 ≤ −11.97 nega-
tively impact both instances, with varying influence. Unique features
include DE > 0.01 positively influencing Instance 50 and TAAP >
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Fig. 7. Scatterplots of the observed and forecasted UV-B data for the optimal X-H-TabNet framework against the benchmarked models in the testing phase for 1 h forecast horizon.
The coefficient of determination (R2) and equations of linear regression are displayed in each panel.
Fig. 8. Histogram displaying the aggregated percentage frequency of absolute forecasted errors (|FE|) for the superior performing X-H-TabNet model against the competing
counterparts in predicting UV-B radiation during the testing phase.
0.72 negatively impacting Instance 100. Similarly, for the two-hourly
forecast horizon shown in Fig. 9(b), UVB(t-6) ≤ 76.16 consistently has
the most significant negative impact. Other features like UVB(t-5) ≤
76.16 and TPWV ≤ 15.20 also show substantial negative contributions.
For positive influences, 42.26 < SZA ≤ 52.23 for Instance 50 and SZA
> 52.23 for Instance 100 are top contributors. Features like 76.16 <
UVB(t-1) ≤ 135.84 for Instance 50 and 76.16 < UVB(t-2) ≤ 135.84
for Instance 100 show positive contributions with varying magnitudes.
Features like PCA4 ≤ −12.22 and PCA2 ≤ −28.81 negatively impact
both instances with varying influence. Unique features include DE >
0.01 positively influencing Instance 50 and TAAP > 0.72 negatively
impacting Instance 100.

Additionally, in Fig. 9(c), for the three-hour forecast horizon, UVB(t-
4) ≤ 76.16 has the most significant negative impact on Instance 50,
while SZA ≤ 52.23 has the most significant positive impact on Instance
100. Other negatively influential features include 42.26 < SZA ≤ 52.23
and UVB(t-6) ≤ 76.16 for Instance 50, and UVB(t-1) ≤ 76.16 and
UVB(t-6) ≤ 76.16 for Instance 100. Positive influences for Instance 50
include 76.16 < UVB(t-1) ≤ 135.84 and DE > 0.01, while for Instance
100, 76.16 < UVB(t-4) ≤ 135.84 and TPWV ≤ 15.19 are significant.
Common features with varying impacts include PCA2 ≤ −28.76 and
PCA4 ≤ −12.12. Lastly, in Fig. 9(d), for the four-hour forecast horizon,
UVB(t-3) ≤ 76.16 has the most significant negative impact on Instance
50, while 76.16 < UVB(t-3) ≤ 135.84 is the most significant negative
feature for Instance 100. Other negatively influential features include
UVB(t-4) ≤ 76.16 and UVB(t-5) ≤ 76.16 for Instance 50, and 76.16
15 
< UVB(t-4) ≤ 135.84 and UVB(t-5) ≤ 76.16 for Instance 100. Positive
influences for Instance 50 include 42.26 < SZA ≤ 52.23 and PCA2 ≤
−28.96, while for Instance 100, UVB(t-6) ≤ 76.16 and TPWV ≤ 15.19
are significant. Common features with varying impacts include SZA ≤
52.23 and PCA2 ≤ −28.96. Overall, all local explanation charts (Fig. 9)
reveal a mix of common and unique feature impacts, demonstrating the
X-H-TabNet model sensitivity to different factors across 50th and 100th
instances. The consistent features across instances indicate their robust
influence, while the varying features highlight the model’s adaptability
to different data scenarios.

Additionally, to derive global explanations for the predictions gen-
erated by the X-H-TabNet model, this study utilized a conventional
SHAP model-agnostic framework. The SHAP summary beeswarm plots
for four forecasting horizons illustrate significant patterns in feature
importance and their effects on model predictions (see Fig. 10). Across
all horizons, certain features like the lagged component of UV-B (e.g.,
UVB(t-6)), SZA, and PCA components consistently emerge as significant
contributors. For instance, UVB(t-6) is prominently influential across
all plots, although its impact magnitude decreases as the forecasting
horizon extends, indicating a stronger influence in the short term.
There are noticeable shifts in the ranking and influence of features over
different horizons. For example, SZA has a substantial impact in the 2-h
forecast (Fig. 10b) but its influence reduces in the 1-h (Fig. 10a) and
3-h (Fig. 10c) horizons, and it appears even less significant in the 4-h
forecast (Fig. 10d). Similarly, the feature DE is impactful in the 2-h
(Fig. 10b) and 3-h (Fig. 10c) forecasts but less so in the 1-h (Fig. 10a)



S.S. Prasad et al.

Fig. 9. LIME explanation bar plots at (i) instance 50 and (ii) instance 100 for the forecast horizon (a) 1 h, (b) 2 h, (c) 3 h and (d) 4 h, where the red bars indicate that the
predictor variables have a negative influence on the model (minimize the model score) and the green bars indicate that the predictor variables have a positive influence on the
model (maximize the model score).
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Fig. 10. SHAP summary beeswarm plots for the forecast horizons (a) 1 h, (b) 2 h, (c) 3 h and (d) 4 h.
and 4-h (Fig. 10d) forecasts, demonstrating temporal variability in its
relevance. The density and distribution of SHAP values, depicted by
the beeswarm plots, indicate the spread and variance of each feature’s
impact. For instance, UVB(t-6) has a wider spread in the 1-h forecast
(Fig. 10a), suggesting more variability in its influence compared to
a more concentrated spread in the 4-h forecast (Fig. 10d). This vari-
ability is further highlighted by the color gradient (cyan to magenta),
which represents feature values from low to high, showing how high
or low values of a feature influence the prediction. High values of
UVB(t-6), for example, generally have a positive impact, whereas low
values may have a negative impact. Overall, these SHAP summary plots
demonstrate the dynamic nature of feature importance across different
forecasting horizons. While some features like the lagged component
of UV-B maintain consistent importance, their impact diminishes over
longer horizons. The varying levels of influence for features like SZA
17 
and DE underscore the temporal dependency of their importance, pro-
viding a nuanced understanding of how different features contribute to
model predictions over time.

The SHAP dependence plots presented in Fig. 11 elucidate the
marginal effects of two attributes on the predicted outcomes of the
hybrid explainable X-H-TabNet model. In this study, these plots are
utilized to investigate the interactions between the most influential
predictor variables during the testing phase. Specifically, for the 1-h
forecast horizon, the interactions between UVB(t-6) and UVB(t-1) are
explored. For the 2-h horizon, UVB(t-5) and UVB(t-6) are examined,
and similarly, for the 3-h horizon, the same pair of predictors (UVB(t-5)
and UVB(t-6)) are analyzed. Finally, for the 4-h horizon, the interac-
tions between UVB(t-4) and UVB(t-3) are considered. These analyses
provide insight into how these critical predictors influence the model’s
prediction outcomes across different forecasting horizons.
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Fig. 11. SHAP dependence plots showing interactions between various lags of PACF, which are the most significant predictors in the UV-B forecasting system for the forecast
horizons (a) 1 h, (b) 2 h, (c) 3 h and (d) 4 h.
For the hourly forecast horizon, depicted in Fig. 11(a), the inter-
action between UVB(t-1) and UVB(t-6) is examined. The SHAP values
for UVB(t-1) show a positive correlation with its values, indicating
that higher values of UVB(t-1) correspond to higher impacts on the
model output. The predicted values of UV-B are more likely to be
favored when UVB(t-1) is less than or equal to 100 and UVB(t-6) values
are high. In the two-hourly forecast horizon, shown in Fig. 11(b), the
interaction between UVB(t-5) and UVB(t-6) is highlighted. The SHAP
values for UVB(t-5) also display a positive correlation, although with a
broader spread compared to the 1-h forecast. This suggests that UVB(t-
5) remains an important predictor, but its influence is slightly more
variable. Additionally, the predicted values of UV-B are more likely to
be favored when UVB(t-5) is less than or equal to 225 and UVB(t-6)
values are high.

For the three-hourly forecast horizon, illustrated in Fig. 11(c), the
plot focuses on the interaction between UVB(t-5) and UVB(t-6), similar
to the 2-h forecast. The SHAP values for UVB(t-5) display a more
complex relationship, with some variability and a generally positive
trend. This indicates a consistent but slightly less stable impact of
UVB(t-5) over this horizon. Furthermore, the predicted values of UV-
B are more likely to be favored when UVB(t-5) is less than or equal to
160 and UVB(t-6) values are high. In the four-hourly forecast horizon,
depicted in Fig. 11(d), the plot shows the interaction between UVB(t-
4) and UVB(t-3). The SHAP values for UVB(t-4) demonstrate a positive
correlation, similar to the previous horizons. However, the relationship
is more linear and less dispersed, suggesting a stable and significant
influence of UVB(t-4) for longer forecasting periods. Moreover, the
predicted values of UV-B are more likely to be favored when UVB(t-4)
is less than or equal to 170 and UVB(t-3) values are high.

The SHAP dependence plots provide critical insights into the sig-
nificance and interaction of specific solar UV-B radiation lags across
varying forecast horizons. For shorter forecast periods, such as the
18 
one-hour and two-hour horizons, the predictors UVB(t-1) and UVB(t-
5) exhibit strong positive correlations with their SHAP values. This
suggests a substantial impact on the model output, albeit with some
variability. These predictors are pivotal in driving the forecast accuracy
for these shorter horizons. As the forecasting horizon extends to three
and four hours, the predictors UVB(t-5) and UVB(t-4) continue to
demonstrate their importance. Specifically, in the three-hour forecast,
UVB(t-5) maintains its significant influence, though with a slightly
more complex relationship. For the four-hour forecast horizon, UVB(t-
4) emerges as a key predictor, showing a stable and linear relationship
with its SHAP values. This linearity indicates a more consistent and
reliable impact on the model output over longer periods. These ob-
servations underscore the dynamic and temporal nature of the UV-B
forecasting system. The varying degrees of impact of specific UV-B
lags across different time horizons highlight the model’s sensitivity to
temporal dependencies. Understanding these interactions is crucial for
enhancing the predictive performance and reliability of UV-B forecasts.
Such insights can guide the refinement of forecasting models, ensuring
they are tailored to capture the nuanced influences of lagged features
of UV-B.

Aerosols are also known to be the potential influential features that
impact solar UV radiation (Campanelli et al., 2019), particularly the
UV-B component for this study. The aerosol effects include the influ-
ence of suspended particulate matter (such as 𝑃 𝑀2.5) and other dust
particles in the atmosphere. This study investigated the contributions
of aerosol interactions towards UV-B predictions using the predictor
variables of TAE, TAAP and DE. In accordance with Fig. 9(a)–(d), the
LIME plots at Instance 50 of 1-h forecast horizon show that TAE ≤
0.06, and TAAP > 1.07 contribute negatively towards UV-B predictions,
while DE ≥ 0.06 contributes positively. At instance 100, TAAP > 0.72
shows negative contributions, while TAE ≤ 0.06 and DE ≥ 0.01 provides
positive influence. In a similar manner, these atmospheric variables
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(representing aerosol and dust particles) also show significant positive
and negative contributions towards UV-B predictions at 2-h, 3-h and
4-h forecast horizons. In the case of SHAP plots illustrated in Fig. 10(a)–
(d), aerosols and dust particles, again depicted by the variables of TAE,

AAP and DE also provide some significant contributions towards UV-
predictions at all the forecast horizons. Overall, the analysis of the

contributions of aerosols (particulate matter and dust) using LIME and
HAP plots indicate their moderate to low contributions towards UV-B
redictions. In such situations, pollution levels may align more closely
ith light to moderate pollution episodes. However, further studies can

be conducted to reconfirm the classifications of aerosol contributions
into different pollution levels.

Toowoomba is located in a regional location 110 km west of the
acific Ocean and state capital of Brisbane. The Toowoomba measure-
ent site experiences a clean atmosphere with minimal contribution

rom anthropogenic pollutants. Mineral dust and smoke particulate
matter contribute to the absorption of solar UV-B radiation measured
by the 501-Biometer. The contribution of local aerosol was evaluated
for the year 2003, using cloud-free solar noon UV-A spectra measured
by the University of Southern Queensland’s DTM300 spectroradiome-
ter (Bentham Instruments, Reading, UK). This instrument records the
solar spectral UV at 0.5 nm increments between 280 to 400 nm at
0 min intervals daily (Parisi and Downs, 2004). A total of 12 cloud-
ree noon UV-A spectra recorded between 315 and 400 nm were
vailable for comparison to the tropospheric ultraviolet and visible
TUV) Radiative Transfer code described by Madronich and Flocke

(1998) and available online at https://www.acom.ucar.edu/Models/
TUV/Interactive_TUV/. Comparison of the measured to modeled UV-A
a measurement independent ozone concentration) taken at solar noon
nder cloud free conditions was made according to the recent method
escribed by McKenzie et al. (2022) to derive the average extinction
f UV-A radiation at the measurement site due to local aerosols. For
003, the measured to modeled UV-A ratio averaged 0.96 ± 0.025 (1
.d.), indicating the Toowoomba site has a relatively clean atmosphere,

a little poorer that Lauder (New Zealand) at 0.98 but better than
other notable UV radiation measurement sites including Alice Springs,
Australia at 0.91 and Boulder, Colorado USA at 0.90 (McKenzie et al.
2022). Given extinction of the solar UV-A in Toowoomba averaged
4% for the year 2003 due to local aerosols, measurement variations
of the erythemal UV reported here are most likely to be affected by
cloud and total column ozone. UV-A radiation has been utilized in
this regard to assess the contribution of aerosol as the UV-A spectrum
is not influenced by ozone concentration. This provides insight into
the anticipated attenuation of UV-B irradiance due to the presence of
aerosol in the current study. For instance, if the UV-A is attenuated by
4% on average, it is safe to assume that UV-B is also attenuated by 4%,
as particulate matter and aerosols scatter and absorb light evenly across
all wavelengths.

Our research has implemented xAI tools in response to the height-
ned demand for explaining black-box model predictions and achieving

trustworthy AI. Earlier studies mostly indicated that AI predictive
tools were of high precision, but they lacked the ability to explain
lack-box model outcomes (Holzinger, 2021; Holzinger et al., 2022).

Small perturbations in the input data can significantly influence the
output, undermining robustness and leading to completely different
results. Largely, the issue arises from poor data quality due to a lack
of expected independent and identically distributed (i.i.d.) datasets
Holzinger, 2021). Additionally, it is essential to address ethical and
egal aspects to ensure all AI-derived solutions meet ethical and legal

norms (Holzinger et al., 2022). The explainability and robust execution
of AI models foster confidence and high-performance reliability, em-
powering human experts to maintain control over the AI-pipeline with
assurance. Our study acknowledges the aforementioned mandatory
needs in the UV-B forecasting system and implemented trustworthy AI
X
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by integrating brilliant model-agnostic xAI tools with the hybridized
TabNet model.

Given the improved performance and capacity to deliver explain-
able results, we further demonstrate the practical application of the
multiple input multi-step output UV-B forecasting framework in Fig. 12.
The newly developed decision support tool operates in online and
offline settings to provide multi-step UV-B exposure risk information
to the expert end-users in implementing sun-protection. For effective
elivery of UV-B forecasts, the online pre-trained X-H-TabNet is largely
ependent on the offline updated X-H-TabNet system. In light of this,
he prescribed model is first trained and optimized via the offline
latform, integrating updates of newly labeled datasets accessed from
xisting databases such as UniSQ’s atmoSEQ (mdVine, 2024).

Periodically, the updated model from the offline setup can replace
the pre-trained online model to ensure more accurate and trustworthy
forecasting performance. Through the user-interface, the online plat-
form can offer more accurate forecasts of UV-B at multi-step horizons
in terms of model performance aptitudes of r, MAE, RMSE and LME.
Additionally, the user interface can offer explanations that are model-
agnostic, designed to enhance the reliability and trustworthiness of
predictions across local and global levels. Overall, analyzing the out-
puts from the user interphase can aid the experts and end users (ideally,
specialists in solar UV radiation, forecasters or users with an interest in
knowing the UV-B ahead of time) to deliver more accurate sun-exposure
recommendations for the protection of people and terrestrial life at risk
of harmful exposure to UV-B radiation.

Currently, solar UVI information is provided to the public through
daily forecasts or warnings. Such forecasts often provide the erythema
UV-B irradiance as the daily maximum UVI expected under a cloud-free
sky (where the UVI may be calculated as the erythema UV-B divided by
25 mW m−2). Practical advice published by the WHO in 2002 (World
Health Organization, 2002) recommends sun protection strategies be
implemented when the UVI reaches 3 or more (75 mW m−2). For
Southern Queensland, our dataset, recorded between July 2002 and
February 2004 shows there are significant seasonal but also short-term
influences on the potentially harmful UV-B.

In our case, the UV-B readily exceeded 300 mW m−2 (UVI 12). This
epresents an extreme solar UV irradiance and as shown here, was the
easured UV-B irradiance that can occur under cloud-affected skies 2.

Our method, utilizing the proposed X-H-TabNet system has been shown
to make accurate predictions of the UV-B from datasets collected under
real-time stochastic conditions for a range of hourly horizons. Under
cloud-affected skies, rapid fluctuations in the surface UV-B can occur
nd persist for minutes, hours and extended periods of time during
he day. Overcast sky conditions will often reduce the forecast UV-B
or extended periods (Aun et al., 2011). On occasion broken cumulus
loud cover can even elevate the UV-B above predicted cloud-free levels

(Sabburg and Calbó, 2009). To be able to predict UV-B in advance over
hourly or extended hourly horizons has clear benefit to the research
community.

5. Conclusions and future work

The paper reports the key merits and performance effectiveness of
he explainable hybrid X-H-TabNet model for short-term solar UV-B
redictions across multiple forecast horizons. The proposed model was
alidated using satellite and ground data from Queensland, Australia,
here UV-B exposure is notably high and poses risks to people, animals,
nd plants.

In the quest for boosting the performance of the newly proposed
odel and reducing the computational costs, effective dimensionality

eduction was performed using RFECV algorithm and principal com-
onent analysis. Further performance enhancement was achieved by
ine tuning the TabNet architecture using Optuna algorithm. Rigorous
enchmarking of the objective hybrid TabNet model, designated as
-H-TabNet, with other competing counterparts of H-LSTM, H-GRU,

https://www.acom.ucar.edu/Models/TUV/Interactive_TUV/
https://www.acom.ucar.edu/Models/TUV/Interactive_TUV/
https://www.acom.ucar.edu/Models/TUV/Interactive_TUV/


S.S. Prasad et al. Atmospheric Environment 343 (2025) 120951 
Fig. 12. Schematic diagram detailing the real-life application of the online and offline explainable hybrid X-H-TabNet system in generating short-term forecasts of UV-B radiation
at multiple time scales.
H-XGB, H-SVR, H-SGD, H-KRR and H-DT with several statistical score
metrics and diagnostic plots elucidate superior predictive performance
by the proposed objective model.

The evaluation outcomes of UV-B forecasts reveal that the newly
proposed model achieved comparatively high correlation coefficients
(r) of 0.908 at hourly horizon, 0.880 at 2-hourly horizon, 0.868 at 3-
hourly horizon, and 0.868 at 4-hourly horizon. Assessment with Legates
and McCabe’s index (LME) further confirm the performance superiority
of the objective model. In terms of the error values, the objective
model captured the lowest Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) for almost all the four forecast horizons. Exploita-
tion of the xAI tools of LIME and SHAP with the proposed TabNet
model highlight the significant contributions of the entire feature sets
in generating predictions of UV-B radiation. In accordance with the
combined local and global model-agnostic outcomes of LIME and SHAP
tools, the antecedent lagged memory of UV-B and the solar zenith
angle were observed to contribute significantly towards the model
predictions. The feature attributes associated with ozone and cloud
cover effects were also impactful in predicting UV-B radiation.

By offering reliable and interpretable short-term UV-B forecasts,
the newly designed model can support the health sector in making
informed decisions and providing the public with more accurate in-
formation on UV-B exposure risks, potentially reducing the incidence
of skin diseases such as malignant keratinocyte cancers. Furthermore,
the predictive model can provide more accurate UV-B forecasts for
remote locations where plant and animal life thrive, thereby supporting
researchers and decision-makers in exploring the impacts of UV-B
on ecosystems. By leveraging satellite-derived datasets during model
training, which integrated factors such as cloud cover, aerosols, and
ozone, we affirm the real-world applicability of our UV-B forecasting
model under intermittent cloud conditions in other temperate countries
as well.

The focus of this work on short-term solar UV-B forecasting, rather
than long-term trend analysis, suggests that future research might
consider retraining the prescribed X-H-TabNet model with long-term
data. These datasets could encompass solar radiation, air temperature,
20 
and other atmospheric variables (e.g., visibility) to evaluate the model’s
forecasting abilities over longer horizons like months or seasons, if
such long-term predictions are deemed significant. Moreover, the un-
certainty in sky images data and satellite products can also affect
the prediction of UV-B radiation. However, the current research in-
vestigations were not focused on quantifying such uncertainties. We
acknowledge this research limitation as an area that needs to be
explored more comprehensively in the near future.

Cloud modification factors (CMF) based upon the sky conditions
and the cloud type remain an area of active research. Our newly
proposed X-H-TabNet model trained using known cloud cover type and
conditions could be utilized to classify the probability of enhancements
or reductions in the solar UV-B. Given forecasts provided to the public
do not take cloud cover effects into account, the potential for improved
characterization of the UVI is potentially significant, especially given
that certain broken cloud cover conditions can enhance the UV-B by
more than 20% of the expected cloud-free UV-B (Sabburg and Calbó,
2009). How long such events last, their frequency and likelihood of
occurrence can all be evaluated using X-H-TabNet.

In this research we train X-H-TabNet on a single UV-B dataset that
extended over 18 months between July 2002 and February 2004. Simi-
lar methods employed to trained UV-Bmodels for high risk summertime
conditions at sites located in different parts of Queensland or wider
Australia may yield information that could be utilized for local pre-
dictions in densely populated centers, including Sydney and Brisbane
(locations of known high melanoma skin cancer incidence Cramb et al.,
2020). Variability in the UV-B due to changes in the climate might
also be examined using a larger dataset including atmoSEQ (mdVine,
2024) or other publicly accessible UV datasets such as the real-time
Australian Radiation and Nuclear Safety Authority (ARPANSA) UV-B
network (Australian Radiation and Nuclear Safety Authority, 2024).
In addition, ERA-5 datasets that provide high-resolution information
on meteorological variables can also be explored in future studies to
enhance the forecasting capabilities of UV-B predictive models.
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Table A.1
List of acronyms.

Acronym Definition

ADF Augmented Dickey–Fuller
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
CEEMDAN Complete Ensemble Empirical Mode Decomposition with

Adaptive Noise
C-LSTM Convolution Neural Network And Long Short-Term Memory
CNN Convolution Neural Network
DL Deep Learning
DNN Deep Neural Network
DT Decision Tree
ELM Extreme Learning Machine
FS Feature Selection
GIOVANNI Goddard Online Interactive Visualization and Analysis

Infrastructure
GLU Gated Linear Unit
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
KRR Kernel Ridge Regression
LIME Local Interpretable Model-Agnostic Explanations
LME Legate-Mccabe’s Efficiency Index
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MARS Multivariate Adaptive Regression Splines
MERRA-2 Modern-Era Retrospective Analysis for Research and Applications
ML Machine Learning
MLP Multilayer Perceptrons
NASA National Aeronautics and Space Administration
PACF Partial Autocorrelation Function
PCA Principal Component Analysis
PCs Principal Components
PSO Particle Swarm Optimization
r Pearson’s Correlation Coefficient
RBR Red-Blue Ratio
RFECV Recursive Feature Elimination with Cross-Validation
ReLU Rectified Linear Unit
RF Random Forest
RMSE Root Mean Squared Error
SGD Stochastic Gradient Descent
SHAP SHapley Additive exPlanations
SVR Support Vector Regression
SZA Solar Zenith Angle
TSI Total Sky Imager
UV Ultraviolet
UV-A Ultraviolet Radiation in Category A
UV-B Ultraviolet Radiation in Category B
UVI Ultraviolet Index
xAI Explainable Artificial Intelligence
XGB Extreme Gradient Boosting

CRediT authorship contribution statement

Salvin S. Prasad: Writing – original draft, Visualization, Valida-
ion, Software, Methodology, Investigation, Funding acquisition, For-
al analysis, Data curation, Conceptualization. Lionel P. Joseph:
riting – original draft, Resources, Methodology, Investigation. Sujan
himire: Writing – review & editing, Visualization, Software. Ravi-
esh C. Deo: Writing – review & editing, Validation, Supervision,
esources, Project administration. Nathan J. Downs: Writing – review
 editing, Writing – original draft, Visualization, Validation, Supervi-

ion, Software. Rajendra Acharya: Writing – review & editing. Zaher
. Yaseen: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
21 
Acknowledgments

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors. The sky images
nd solar UV radiation data were acquired through the Toowoomba-
ased experimental research facility at the University of Southern
ueensland in Australia.

Appendix. List of acronyms

See Table A.1.

Data availability

The authors do not have permission to share data.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al., 2016. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Abdolrasol, M.G., Hussain, S.S., Ustun, T.S., Sarker, M.R., Hannan, M.A., Mo-
hamed, R., Ali, J.A., Mekhilef, S., Milad, A., 2021. Artificial neural networks based
optimization techniques: A review. Electronics 10 (21), 2689.

Adam, M.E.-N., Ahmed, E.A., 2016. Comparative analysis of cloud effects on ultraviolet-
b and broadband solar radiation: Dependence on cloud amount and solar zenith
angle. Atmos. Res. 168, 149–157.

Ahmed, A.M., Ahmed, M.H., Saha, S.K., Ahmed, O., Sutradhar, A., 2022. Optimization
algorithms as training approach with hybrid deep learning methods to develop
an ultraviolet index forecasting model. Stoch. Environ. Res. Risk Assess. 36 (10),
3011–3039.

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., 2019. Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. pp. 2623–2631.

Alresheedi, A.A., Al-Hagery, M.A., 2020. Forecasting the global horizontal irradiance
based on boruta algorithm and artificial neural networks using a lower cost. Int.
J. Adv. Comput. Sci. Appl. 11 (9).

Alsina, E.F., Bortolini, M., Gamberi, M., Regattieri, A., 2016. Artificial neural network
optimisation for monthly average daily global solar radiation prediction. Energy
Convers. Manage. 120, 320–329.

Arik, S.Ö., Pfister, T., 2021. Tabnet: Attentive interpretable tabular learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp.
6679–6687.

Aun, M., Kalju, E., Ansko, I., Veismann, U., Lätt, S., 2011. Modification of spectral
ultraviolet doses by different types of overcast cloudiness and atmospheric aerosol.
Photochem. Photobiol. 87, 461–469.

Australian Radiation and Nuclear Safety Authority, 2024. Ultraviolet radiation
index. https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-
monitoring/ultraviolet-radiation-index. [Online]; (Accessed 23 July 2024).

Awad, M., Fraihat, S., 2023. Recursive feature elimination with cross-validation with
decision tree: Feature selection method for machine learning-based intrusion
detection systems. J. Sens. Actuator Netw. 12 (5), 67.

Balalla, D.T., Nguyen-Huy, T., Deo, R., 2021. MARS model for prediction of short-and
long-term global solar radiation. In: Predictive Modelling for Energy Management
and Power Systems Engineering. Elsevier, pp. 391–436.

Berrick, S.W., Shen, S., Ostrenga, D., 2008. Modern era retrospective restrospective-
analysis for research and applications (MERRA) data and services at the GES DISC.
In: American Geophysical Union Meeting.

Bilbao, J., Miguel, A., 2013. Contribution to the study of UV-B solar radiation in Central
Spain. Renew. Energy 53, 79–85.

Borghini, E., Giannetti, C., 2021. Short term load forecasting using TabNet: A com-
parative study with traditional state-of-the-art regression models. Eng. Proc. 5 (1),
6.

Brahma, P.P., Wu, D., She, Y., 2015. Why deep learning works: A manifold
disentanglement perspective. IEEE Trans Neural Netw. Learn. Syst. 27 (10),
1997–2008.

Campanelli, M., Siani, A.M., di Sarra, A., Iannarelli, A.M., Sanò, P., Diémoz, H., Casas-
anta, G., Cacciani, M., Tofful, L., Dietrich, S., 2019. Aerosol optical characteristics
in the urban area of Rome, Italy, and their impact on the UV index. Atmospheric
Meas. Tech. Discuss. 2019, 1–23.

Chang, N.-B., Feng, R., Gao, Z., Gao, W., 2010. Skin cancer incidence is highly
associated with ultraviolet-B radiation history. Int. J. Hyg. Environ. Health 213
(5), 359–368.

Chen, Z.-Y., Zhang, T.-H., Zhang, R., Zhu, Z.-M., Yang, J., Chen, P.-Y., Ou, C.-Q.,
Guo, Y., 2019. Extreme gradient boosting model to estimate PM2. 5 concentrations
with missing-filled satellite data in China. Atmos. Environ. 202, 180–189.

http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb2
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb2
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb2
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb2
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb2
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb3
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb3
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb3
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb3
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb3
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb4
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb4
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb4
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb4
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb4
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb4
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb4
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb5
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb5
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb5
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb5
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb5
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb6
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb6
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb6
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb6
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb6
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb7
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb7
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb7
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb7
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb7
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb8
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb8
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb8
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb8
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb8
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb9
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb9
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb9
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb9
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb9
https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/ultraviolet-radiation-index
https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/ultraviolet-radiation-index
https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/ultraviolet-radiation-index
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb11
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb11
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb11
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb11
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb11
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb12
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb12
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb12
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb12
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb12
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb13
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb13
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb13
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb13
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb13
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb14
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb14
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb14
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb15
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb15
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb15
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb15
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb15
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb16
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb16
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb16
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb16
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb16
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb17
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb17
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb17
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb17
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb17
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb17
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb17
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb18
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb18
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb18
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb18
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb18
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb19
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb19
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb19
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb19
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb19


S.S. Prasad et al. Atmospheric Environment 343 (2025) 120951 
Cherrie, J.W., Cherrie, M.P., 2022. Workplace exposure to UV radiation and strategies
to minimize cancer risk. Br. Med. Bull. 144 (1), 45–56.

Commission Internationale de l’Eclairage, 1998. Erythema Reference Action Spectrum
and Standard Erythema Dose. CIE S 007/E:1998 , ISO 17166:1999.

Coussens, A.K., et al., 2017. The role of UV radiation and vitamin D in the seasonality
and outcomes of infectious disease. Photochem. Photobiol. Sci. 16 (3), 314–338.

Cramb, S.M., Duncan, E.W., F, A.J., P, S.H., L, M.K., D, B.P., 2020. Geographical
patterns in melanoma incidence across Australia: can thickness differentials reveal
the key drivers? Ann. Cancer Epidemiology 4 (11), http://dx.doi.org/10.21037/
ace--20--13.

Csintalan, Z., Tuba, Z., Takács, Z., Laitat, E., 2001. Responses of nine bryophyte
and one lichen species from different microhabitats to elevated UV-B radiation.
Photosynthetica 39 (2), 317–320.

Cullen, A.P., 2011. Ozone depletion and solar ultraviolet radiation: Ocular effects, a
United Nations Environment Programme perspective. Eye Contact Lens: Sci. Cln.
Pract. 37 (4), 185–190.

Dauphin, Y.N., Fan, A., Auli, M., Grangier, D., 2017. Language modeling with gated
convolutional networks. In: International Conference on Machine Learning. PMLR,
pp. 933–941.

Davis, D.S., Robinson, C., Callender, V.D., 2021. Skin cancer in women of color:
Epidemiology, pathogenesis and clinical manifestations. Int. J. Women’s Dermatol.
7 (2), 127–134.

De Gruijl, F.R., 2002. Photocarcinogenesis: UVA vs. UVB radiation. Skin Pharmacol.
Appl. Skin Physiol. 15 (5), 316–320.

Deo, R.C., Downs, N., Parisi, A.V., Adamowski, J.F., Quilty, J.M., 2017a. Very short-
term reactive forecasting of the solar ultraviolet index using an extreme learning
machine integrated with the solar zenith angle. Environ. Res. 155, 141–166.

Deo, R.C., Ghimire, S., Downs, N.J., Raj, N., 2018. Optimization of windspeed prediction
using an artificial neural network compared with a genetic programming model.
In: Handbook of Research on Predictive Modeling and Optimization Methods in
Science and Engineering. IGI Global, pp. 328–359.

Deo, R.C., Grant, R.H., Webb, A., Ghimire, S., Igoe, D.P., Downs, N.J., Al-Musaylh, M.S.,
Parisi, A.V., Soar, J., 2022. Forecasting solar photosynthetic photon flux density
under cloud cover effects: novel predictive model using convolutional neural
network integrated with long short-term memory network. Stoch. Environ. Res.
Risk Assess. 36 (10), 3183–3220.

Deo, R.C., Tiwari, M.K., Adamowski, J.F., Quilty, J.M., 2017b. Forecasting effective
drought index using a wavelet extreme learning machine (W-ELM) model. Stoch.
Environ. Res. Risk Assess. 31, 1211–1240.

Dexter, B., King, R., Parisi, A., Harrison, S., Konovalov, D., Downs, N., 2020. Ker-
atinocyte skin cancer risks for working school teachers: Scenarios and implications
of the timing of scheduled duty periods in queensland, Australia. J. Photochem.
Photobiol. B 213, 112046.

Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimators for autoregressive time
series with a unit root. J. Amer. Statist. Assoc. 74 (366a), 427–431.

Ekundayo, I., 2020. Optuna Optimization-Based CNN-LSTM Networks for Predicting
Energy Consumption (Ph.D. thesis MS thesis). MS thesis, School Comput., Nat.
College Ireland, Dublin, Ireland.

Fan, J., Wu, L., Ma, X., Zhou, H., Zhang, F., 2020. Hybrid support vector machines with
heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted
regions. Renew. Energy 145, 2034–2045.

Feister, U., Cabrol, N., Häder, D., 2015. UV irradiance enhancements by scattering of
solar radiation from clouds. Atmosphere 6 (8), 1211–1228.

Freytes, C.Y., Mayrand, R.P., Sawada, L.O., Liang, T.Y., Cid, R.E.C., Burke, S., Loewen-
stein, D., Duara, R., Adjouadi, M., 2023. Recursive feature elimination with cross
validation for Alzheimer’s disease classification using cognitive exam scores. In:
2023 Intelligent Methods, Systems, and Applications. IMSA, IEEE, pp. 327–332.

Furlan, C., De Oliveira, A.P., Soares, J., Codato, G., Escobedo, J.F., 2012. The role
of clouds in improving the regression model for hourly values of diffuse solar
radiation. Appl. Energy 92, 240–254.

Gao, S., Xu, J., Dan, W., Li, Q., Huang, Y., 2021. Research on optimal control of
fractional order PI 𝜆 d 𝜇 parameters of SCR denitrification system. In: 2021 3rd
International Conference on Industrial Artificial Intelligence. IAI, IEEE, pp. 1–6.

Garg, S., Pundir, P., 2021. Mofit: A framework to reduce obesity using machine learning
and IoT. In: 2021 44th International Convention on Information, Communication
and Electronic Technology. MIPRO, IEEE, pp. 1733–1740.

Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N., 2017. Convolutional
sequence to sequence learning. In: International Conference on Machine Learning.
PMLR, pp. 1243–1252.

Ghimire, S., Deo, R.C., Casillas-Pérez, D., Salcedo-Sanz, S., 2022. Boosting solar
radiation predictions with global climate models, observational predictors and
hybrid deep-machine learning algorithms. Appl. Energy 316, 119063.

Ghimire, S., Deo, R.C., Casillas-Pérez, D., Salcedo-Sanz, S., Pourmousavi, S.A.,
Acharya, U.R., 2024. Probabilistic-based electricity demand forecasting with hybrid
convolutional neural network-extreme learning machine model. Eng. Appl. Artif.
Intell. 132, 107918.

Ghimire, S., Deo, R.C., Downs, N.J., Raj, N., 2019. Global solar radiation prediction by
ANN integrated with European Centre for medium range weather forecast fields in
solar rich cities of Queensland Australia. J. Clean. Prod. 216, 288–310.
22 
Ghoneim, A.A., Kadad, I.M., Altouq, M.S., 2013. Statistical analysis of solar UVB and
global radiation in Kuwait. Energy 60, 23–34.

Gordon, L.G., Leung, W., Johns, R., McNoe, B., Lindsay, D., Merollini, K.M., El-
liott, T.M., Neale, R.E., Olsen, C.M., Pandeya, N., et al., 2022. Estimated healthcare
costs of melanoma and keratinocyte skin cancers in Australia and Aotearoa New
Zealand in 2021. Int. J. Environ. Res. Public Health 19 (6), 3178.

Gordon, L.G., Rowell, D., 2015. Health system costs of skin cancer and cost-effectiveness
of skin cancer prevention and screening: a systematic review. Eur. J. Cancer Prev.
24 (2), 141–149.

Grandvalet, Y., Bengio, Y., 2004. Semi-supervised learning by entropy minimization.
Adv. Neural Inf. Process. Syst. 17.

Hollósy, F., 2002. Effects of ultraviolet radiation on plant cells. Micron 33 (2), 179–197.
Holzinger, A., 2021. The next frontier: AI we can really trust. In: Joint European

Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
pp. 427–440.

Holzinger, A., Dehmer, M., Emmert-Streib, F., Cucchiara, R., Augenstein, I., Del Ser, J.,
Samek, W., Jurisica, I., Díaz-Rodríguez, N., 2022. Information fusion as an
integrative cross-cutting enabler to achieve robust, explainable, and trustworthy
medical artificial intelligence. Inf. Fusion 79, 263–278.

Huang, L., Kang, J., Wan, M., Fang, L., Zhang, C., Zeng, Z., 2021. Solar radiation
prediction using different machine learning algorithms and implications for extreme
climate events. Front. Earth Sci. 9, 596860.

Igoe, D.P., Parisi, A.V., Downs, N.J., 2019. Cloud segmentation property extraction from
total sky image repositories using Python. Instrum. Sci. Technol. 47 (5), 522–534.

Islam, M.J., Ahmad, S., Haque, F., Reaz, M.B.I., Bhuiyan, M.A.S., Islam, M.R.,
2022a. Application of min-max normalization on subject-invariant EMG pattern
recognition. IEEE Trans. Instrum. Meas. 71, 1–12.

Islam, M.S., Awal, M.A., Laboni, J.N., Pinki, F.T., Karmokar, S., Mumenin, K.M., Al-
Ahmadi, S., Rahman, M.A., Hossain, M.S., Mirjalili, S., 2022b. Hgsorf: Henry gas
solubility optimization-based random forest for C-section prediction and XAI-based
cause analysis. Comput. Biol. Med. 147, 105671.

Jayasinghe, W.L.P., Deo, R.C., Ghahramani, A., Ghimire, S., Raj, N., 2022. Development
and evaluation of hybrid deep learning long short-term memory network model for
pan evaporation estimation trained with satellite and ground-based data. J. Hydrol.
607, 127534.

Jia, P., Cao, N., Yang, S., 2021. Real-time hourly ozone prediction system for Yangtze
River Delta area using attention based on a sequence to sequence model. Atmos.
Environ. 244, 117917.

Joseph, L.P., Deo, R.C., Casillas-Perez, D., Prasad, R., Raj, N., Salcedo-Sanz, S., 2024a.
Multi-step-ahead wind speed forecast system: Hybrid multivariate decomposition
and feature selection-based gated additive tree ensemble model. IEEE Access.

Joseph, L.P., Deo, R.C., Casillas-Pérez, D., Prasad, R., Raj, N., Salcedo-Sanz, S., 2024b.
Short-term wind speed forecasting using an optimized three-phase convolutional
neural network fused with bidirectional long short-term memory network model.
Appl. Energy 359, 122624.

Joseph, L.P., Deo, R.C., Prasad, R., Salcedo-Sanz, S., Raj, N., Soar, J., 2023. Near real-
time wind speed forecast model with bidirectional LSTM networks. Renew. Energy
204, 39–58.

Joseph, L.P., Joseph, E.A., Prasad, R., 2022. Explainable diabetes classification using
hybrid Bayesian-optimized TabNet architecture. Comput. Biol. Med. 151, 106178.

Ketkar, N., Ketkar, N., 2017. Introduction to keras. In: Deep Learning with Python: a
Hands-On Introduction. Springer, pp. 97–111.

Kuzlu, M., Cali, U., Sharma, V., Güler, Ö., 2020. Gaining insight into solar photovoltaic
power generation forecasting utilizing explainable artificial intelligence tools. Ieee
Access 8, 187814–187823.

Lan, H., Zhang, C., Hong, Y.-Y., He, Y., Wen, S., 2019. Day-ahead spatiotemporal solar
irradiation forecasting using frequency-based hybrid principal component analysis
and neural network. Appl. Energy 247, 389–402.

Lavker, R.M., Gerberick, G.F., Veres, D., Irwin, C.J., Kaidbey, K.H., 1995. Cumulative
effects from repeated exposures to suberythemal doses of UVB and UVA in human
skin. J. Am. Acad. Dermatol. 32 (1), 53–62.

Li, Z., 2022. Extracting spatial effects from machine learning model using local
interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban
Syst. 96, 101845.

Li, R., Guo, J., Geng, G., Xiao, Q., Zhang, Q., 2021. Satellite-derived long-term estimates
of full-coverage PM1 concentrations across China based on a stacking decision tree
model. Atmos. Environ. 255, 118448.

Li, W., Mo, W., Zhang, X., Squiers, J.J., Lu, Y., Sellke, E.W., Fan, W., DiMaio, J.M.,
Thatcher, J.E., 2015. Outlier detection and removal improves accuracy of machine
learning approach to multispectral burn diagnostic imaging. J. Biomed. Opt. 20
(12), 121305–121305.

Luna, A., Paredes, M., De Oliveira, G., Corrêa, S., 2014. Prediction of ozone concen-
tration in tropospheric levels using artificial neural networks and support vector
machine at Rio de Janeiro, Brazil. Atmos. Environ. 98, 98–104.

Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R.,
Himmelfarb, J., Bansal, N., Lee, S.-I., 2020. From local explanations to global
understanding with explainable AI for trees. Nat. Mach. Intell. 2 (1), 56–67.

Lyngdoh, G.A., Zaki, M., Krishnan, N.A., Das, S., 2022. Prediction of concrete strengths
enabled by missing data imputation and interpretable machine learning. Cem.
Concr. Compos. 128, 104414.

http://refhub.elsevier.com/S1352-2310(24)00626-5/sb20
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb20
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb20
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb21
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb21
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb21
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb22
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb22
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb22
http://dx.doi.org/10.21037/ace--20--13
http://dx.doi.org/10.21037/ace--20--13
http://dx.doi.org/10.21037/ace--20--13
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb24
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb24
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb24
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb24
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb24
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb25
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb25
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb25
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb25
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb25
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb26
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb26
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb26
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb26
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb26
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb27
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb27
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb27
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb27
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb27
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb28
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb28
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb28
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb29
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb29
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb29
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb29
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb29
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb30
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb30
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb30
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb30
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb30
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb30
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb30
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb31
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb32
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb32
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb32
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb32
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb32
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb33
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb33
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb33
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb33
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb33
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb33
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb33
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb34
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb34
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb34
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb35
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb35
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb35
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb35
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb35
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb36
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb36
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb36
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb36
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb36
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb37
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb37
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb37
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb38
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb38
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb38
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb38
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb38
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb38
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb38
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb39
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb39
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb39
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb39
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb39
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb40
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb40
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb40
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb40
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb40
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb41
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb41
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb41
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb41
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb41
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb42
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb42
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb42
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb42
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb42
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb43
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb43
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb43
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb43
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb43
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb44
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb44
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb44
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb44
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb44
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb44
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb44
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb45
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb45
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb45
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb45
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb45
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb46
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb46
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb46
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb47
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb47
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb47
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb47
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb47
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb47
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb47
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb48
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb48
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb48
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb48
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb48
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb49
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb49
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb49
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb50
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb51
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb51
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb51
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb51
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb51
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb52
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb52
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb52
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb52
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb52
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb52
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb52
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb53
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb53
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb53
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb53
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb53
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb54
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb54
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb54
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb55
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb55
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb55
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb55
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb55
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb56
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb56
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb56
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb56
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb56
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb56
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb56
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb57
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb57
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb57
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb57
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb57
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb57
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb57
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb58
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb58
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb58
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb58
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb58
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb59
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb59
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb59
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb59
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb59
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb60
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb60
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb60
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb60
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb60
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb60
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb60
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb61
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb61
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb61
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb61
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb61
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb62
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb62
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb62
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb63
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb63
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb63
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb64
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb64
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb64
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb64
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb64
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb65
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb65
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb65
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb65
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb65
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb66
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb66
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb66
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb66
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb66
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb67
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb67
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb67
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb67
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb67
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb68
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb68
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb68
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb68
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb68
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb69
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb69
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb69
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb69
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb69
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb69
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb69
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb70
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb70
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb70
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb70
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb70
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb71
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb71
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb71
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb71
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb71
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb72
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb72
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb72
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb72
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb72


S.S. Prasad et al. Atmospheric Environment 343 (2025) 120951 
Ma, D., Xie, R., Pan, G., Zuo, Z., Chu, L., Ouyang, J., 2023. Photovoltaic power output
prediction based on TabNet for regional distributed photovoltaic stations group.
Energies 16 (15), 5649.

Madronich, S., Flocke, S., 1998. The role of solar radiation in atmospheric chemistry.
In: Boule, P. (Ed.), Handbook of Environmental Chemistry. Springer-Verlag, pp.
1–26.

Malhi, A., Gao, R.X., 2004. PCA-based feature selection scheme for machine defect
classification. IEEE Trans. Instrum. Meas. 53 (6), 1517–1525.

Martins, A., Astudillo, R., 2016. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In: International Conference on Machine Learning.
PMLR, pp. 1614–1623.

Matsumura, Y., Ananthaswamy, H.N., 2004. Toxic effects of ultraviolet radiation on
the skin. Toxicol. Appl. Pharmacol. 195 (3), 298–308.

McKenzie, R., Liley, B., Kotkamp, M., Geddes, A., Querel, R., Stierle, S., Lantz, K.,
Rhodes, S., Madronich, S., 2022. Relationahip between ozone and biologically
relevant UV at 4 NDACC sites. Photochem. Photobiol. Sci. 21, 2095–2114.

mdVine, 2024. UniSQ atmoSEQ sensors. https://mdvine.atmoseq.cloud.edu.au/
sensordata/. [Online]; (Accessed 18 July 2024].

Merlin, R.T., Ravi, R., 2023. RFECV and boruta: Advancing intrusion detection in iot
and smart city networks. J. Namib. Stud.: Hist. Politics Cult. 38, 2015–2034.

Morris, V., 2005. Total sky imager (TSI) handbook. In: Atmospheric Radiation
Measurement Rep. ARM TR-017.

Mulwa, M.M., Mwangi, R.W., Mindila, A., 2024. Gmm-LIME explainable machine
learning model for interpreting sensor-based human gait. Eng. Rep. e12864.

Naik, J., Satapathy, P., Dash, P., 2018. Short-term wind speed and wind power
prediction using hybrid empirical mode decomposition and kernel ridge regression.
Appl. Soft Comput. 70, 1167–1188.

Notton, G., Voyant, C., Fouilloy, A., Duchaud, J.L., Nivet, M.L., 2019. Some applications
of ANN to solar radiation estimation and forecasting for energy applications. Appl.
Sci. 9 (1), 209.

Ochieng’Odhiambo, F., 2020. Comparative study of various methods of handling
missing data. Math. Model. Appl. 5 (2), 87.

Olarte Saucedo, M., Sánchez Rodríguez, S.H., Arechiga Flores, C.F., Bañuelos Valen-
zuela, R., López Luna, M.A., 2019. Effects of ultraviolet radiation (UV) in domestic
animals. Review. Revista Mexicana De Ciencias Pecuarias 10 (2), 416–432.

Ozgoren, M., Bilgili, M., Sahin, B., 2012. Estimation of global solar radiation using
ANN over Turkey. Expert Syst. Appl. 39 (5), 5043–5051.

Ozoegwu, C.G., 2019. Artificial neural network forecast of monthly mean daily global
solar radiation of selected locations based on time series and month number. J.
Clean. Prod. 216, 1–13.

Pal, S., Sharma, P., 2021. A review of machine learning applications in land surface
modeling. Earth 2 (1), 174–190.

Parisi, A.V., Downs, N., 2004. Cloud cover and horizontal plane eye damaging solar
UV exposures. Int. J. Biometeorol. 49, 130–136.

Parker, E.R., 2021. The influence of climate change on skin cancer incidence–a review
of the evidence. Int. J. Women’s Dermatol. 7 (1), 17–27.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Piri, E., Babaeian, M., Tavassoli, A., Esmaeilian, Y., et al., 2011. Effects of UV irradiation
on plants. Afr. J. Microbiol. Res. 5 (14), 1710–1716.

Prasad, S.S., Deo, R.C., Downs, N.J., Casillas-Pérez, D., Salcedo-Sanz, S., Parisi, A.V.,
2024. Very short-term solar ultraviolet-A radiation forecasting system with cloud
cover images and a Bayesian optimized interpretable artificial intelligence model.
Expert Syst. Appl. 236, 121273.

Prasad, S.S., Deo, R.C., Downs, N., Igoe, D., Parisi, A.V., Soar, J., 2022. Cloud affected
solar UV prediction with three-phase wavelet hybrid convolutional long short-term
memory network multi-step forecast system. IEEE Access 10, 24704–24720.

Prasad, S.S., Deo, R.C., Salcedo-Sanz, S., Downs, N.J., Casillas-Pérez, D., Parisi, A.V.,
2023. Enhanced joint hybrid deep neural network explainable artificial intelligence
model for 1-hr ahead solar ultraviolet index prediction. Comput. Methods Programs
Biomed. 241, 107737.

Premalatha, M., Naveen, C., et al., 2018. Analysis of different combinations of
meteorological parameters in predicting the horizontal global solar radiation with
ANN approach: A case study. Renew. Sustain. Energy Rev. 91, 248–258.
23 
Qin, W., Wang, L., Wei, J., Hu, B., Liang, X., 2020. A novel efficient broadband model
to derive daily surface solar Ultraviolet radiation (0.280–0.400 𝜇m). Sci. Total
Environ. 735, 139513.

Qing, X., Niu, Y., 2018. Hourly day-ahead solar irradiance prediction using weather
forecasts by LSTM. Energy 148, 461–468.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. ‘‘Why should i trust you?’’ explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 1135–1144.

Roth, A.E., 1988. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge
University Press.

Sabburg, J., Calbó, J., 2009. Five years of cloud enhanced surface UV radiation
measurements at two sites (in the Northern and Southern) hemispheres. Atmos.
Res. 93 (4), 902–912.

Sabburg, J., Long, C.N., 2004. Improved sky imaging for studies of enhanced UV
irradiance. Atmos. Chem. Phys. 4, 2543–2552.

Salcedo-Sanz, S., Deo, R.C., Cornejo-Bueno, L., Camacho-Gómez, C., Ghimire, S., 2018.
An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of
daily global solar radiation in the Sunshine State of Australia. Appl. Energy 209,
79–94.

Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C., 2016. Wind speed forecast-
ing for wind farms: A method based on support vector regression. Renew. Energy
85, 790–809.

Sardashti, A., Nazari, J., 2023. A learning-based approach to fault detection and
fault-tolerant control of permanent magnet DC motors. J. Eng. Appl. Sci. 70 (1),
109.

Sharaf, Z., Behzadifar, M., Behzadifar, M., Fitzmaurice, C., Abate, D., 2021. Global,
regional, and National Cancer Incidence, mortality, years of life lost, years lived
with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to
2017. Glob. Burd. Cancer.

Sharma, E., Deo, R.C., Soar, J., Prasad, R., Parisi, A.V., Raj, N., 2022. Novel hybrid deep
learning model for satellite based PM10 forecasting in the most polluted Australian
hotspots. Atmos. Environ. 279, 119111.

Shi, K., Shi, R., Fu, T., Lu, Z., Zhang, J., 2024. A novel identification approach using
RFECV–optuna–XGBoost for assessing surrounding rock grade of tunnel boring
machine based on tunneling parameters. Appl. Sci. 14 (6), 2347.

Singh, S., Lodhi, N.K., Mishra, A.K., Jose, S., Kumar, S.N., Kotnala, R., 2018.
Assessment of satellite-retrieved surface UVA and UVB radiation by comparison
with ground-measurements and trends over Mega-city Delhi. Atmos. Environ. 188,
60–70.

Srinivas, P., Katarya, R., 2022. Hyoptxg: OPTUNA hyper-parameter optimization
framework for predicting cardiovascular disease using xgboost. Biomed. Signal
Process. Control 73, 103456.

Sterenborg, H., VanDerLeun, J., 1987. Action spectra for tumorigenesis by ultraviolet
radiation. In: Human Exposure To Ultraviolet Radiation.

Tao, H., Jawad, A.H., Shather, A., Al-Khafaji, Z., Rashid, T.A., Ali, M., Al-Ansari, N.,
Marhoon, H.A., Shahid, S., Yaseen, Z.M., 2023. Machine learning algorithms for
high-resolution prediction of spatiotemporal distribution of air pollution from
meteorological and soil parameters. Environ. Int. 175, 107931.

Venugopal, K., Youlden, D., Te Marvelde, L., Meng, R., Aitken, J., Evans, S., Kostadi-
nov, I., Nolan, R., Thomas, H., D’Onise, K., 2023. Twenty years of melanoma
in Victoria, Queensland, and South Australia (1997–2016). Cancer Epidemiol. 83,
102321.

Villegas-Mier, C.G., Rodriguez-Resendiz, J., Álvarez-Alvarado, J.M., Jiménez-
Hernández, H., Odry, Á., 2022. Optimized random forest for solar radiation
prediction using sunshine hours. Micromachines 13 (9), 1406.

Vilone, G., Longo, L., 2021. Notions of explainability and evaluation approaches for
explainable artificial intelligence. Inf. Fusion 76, 89–106.

Webb, A., Aseem, S., Kift, R., Rhodes, L., Farrar, M., 2016. Target the message: A
qualitative study exploring knowledge and cultural attitudes to sunlight and vitamin
D in Greater Manchester, UK. Br. J. Dermatol. 175 (6), 1401–1403.

Wong, P.-Y., Lee, H.-Y., Chen, Y.-C., Zeng, Y.-T., Chern, Y.-R., Chen, N.-T., Lung, S.-
C.C., Su, H.-J., Wu, C.-D., 2021. Using a land use regression model with machine
learning to estimate ground level PM2. 5. Environ. Pollut. 277, 116846.

World Health Organization, 2002. Global Solar UV Index: A Practical Guide. WHO,
Geneva, Switzerland.

http://refhub.elsevier.com/S1352-2310(24)00626-5/sb73
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb73
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb73
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb73
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb73
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb74
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb74
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb74
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb74
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb74
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb75
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb75
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb75
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb76
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb76
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb76
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb76
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb76
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb77
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb77
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb77
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb78
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb78
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb78
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb78
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb78
https://mdvine.atmoseq.cloud.edu.au/sensordata/
https://mdvine.atmoseq.cloud.edu.au/sensordata/
https://mdvine.atmoseq.cloud.edu.au/sensordata/
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb80
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb80
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb80
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb81
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb81
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb81
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb82
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb82
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb82
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb83
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb83
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb83
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb83
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb83
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb84
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb84
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb84
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb84
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb84
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb85
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb85
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb85
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb86
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb86
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb86
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb86
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb86
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb87
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb87
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb87
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb88
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb88
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb88
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb88
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb88
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb89
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb89
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb89
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb90
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb90
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb90
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb91
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb91
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb91
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb92
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb92
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb92
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb92
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb92
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb93
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb93
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb93
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb94
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb94
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb94
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb94
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb94
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb94
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb94
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb95
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb95
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb95
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb95
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb95
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb96
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb96
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb96
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb96
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb96
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb96
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb96
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb97
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb97
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb97
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb97
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb97
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb98
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb98
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb98
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb98
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb98
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb99
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb99
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb99
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb100
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb100
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb100
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb100
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb100
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb101
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb101
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb101
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb102
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb102
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb102
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb102
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb102
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb103
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb103
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb103
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb104
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb104
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb104
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb104
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb104
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb104
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb104
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb105
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb105
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb105
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb105
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb105
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb106
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb106
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb106
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb106
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb106
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb107
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb107
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb107
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb107
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb107
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb107
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb107
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb108
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb108
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb108
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb108
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb108
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb109
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb109
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb109
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb109
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb109
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb110
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb110
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb110
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb110
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb110
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb110
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb110
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb111
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb111
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb111
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb111
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb111
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb112
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb112
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb112
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb113
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb113
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb113
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb113
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb113
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb113
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb113
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb114
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb114
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb114
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb114
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb114
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb114
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb114
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb115
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb115
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb115
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb115
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb115
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb116
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb116
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb116
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb117
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb117
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb117
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb117
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb117
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb118
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb118
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb118
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb118
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb118
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb119
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb119
http://refhub.elsevier.com/S1352-2310(24)00626-5/sb119

	Explainable hybrid deep learning framework for enhancing multi-step solar ultraviolet-B radiation predictions
	Introduction
	Theoretical overview
	Deep learning TabNet architecture
	Optuna optimizer
	xAI-inspired local interpretable model-agnostic explanations (LIME)
	xAI-inspired Shapley additive explanations (SHAP)

	Material and methods
	Study site and dataset description
	Extraction of sky image-based cloud statistical properties
	Input data preprocessing
	Feature selection
	Recursive Feature Elimination with Cross-Validation (RFECV)
	Principal Component Analysis (PCA)

	Proposed UV-B multi-step-ahead forecast model development
	Model evaluation criteria
	Model explainability

	Results and discussion
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	List of Acronyms
	Appendix. List of Acronyms
	Data availability
	Appendix . Data availability
	References


