
Generating Associative Ripples of Relevant Information from a

Variety of Data Streams by Throwing a Heuristic Stone

Xiaokang Zhou
Graduate School of Human Sciences,

Waseda University
2-579-15 Mikajima, Tokorozawa-shi,

Saitama, Japan

xkzhou@ruri.waseda.jp

Qun Jin
Graduate School of Human Sciences,

Waseda University
2-579-15 Mikajima, Tokorozawa-shi,

Saitama, Japan

jin@waseda.jp

Hong Chen

Graduate School of Human Sciences,

Waseda University
2-579-15 Mikajima, Tokorozawa-shi,

Saitama, Japan

chen@fuji.waseda.jp

Jianming Yong
School of Information Systems,

University of Southern Queensland,
Toowoomba, Queensland,

Australia

Jianming.Yong@usq.edu.au

ABSTRACT

Recently, the vast dialog in the microblog, such as twitter,

Facebook has become increasingly popular. As we post more

messages in microblogs, information is spreading more quickly

and widely. These widely spreaded and diversified contents could

be viewed as data streams, which have become an important part

of the Internet resources. However, these separated data streams

are littery and meaningless, so we need to collect and organize

them together to provide us with meaningful information. It is

hard to imagine that we could find useful information by simply

inputting a few keywords into a search engine in such a stream

environment. In this study, we try to find a way to seek the

information related to users’ personal and current interests and

needs among these data streams and provide users with other

more relevant information. We introduce a set of metaphors to

represent a variety of data streams in different levels, and define

two new metaphors: heuristic stone and associative ripple to assist

the seeking process and describe the results. Based on these, we

further propose two algorithms for the information seeking and

processing, and discuss a scenario of the information seeking

process that utilizes the proposed metaphors and algorithms.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – clustering, retrieval models, search process.

General Terms

Algorithms

Keywords

data stream, stream metaphor, microblog, data clustering,

information seeking

1. INTRODUCTION
The Web now is providing us with a variety of personal services.

It has become increasingly easier for us to post personal contents

in this widespread social network. That is, we are being around

with wikis, the vast dialog that is the blogosphere, social

bookmarking, online networking, etc. For example, with twitter

we can obtain fresh news more quickly by means of following,

forward information to other followers by retweeting (RT), and

discuss about a topic by adding a "#" (hash tag).

Obviously, when we add more friends in twitter or Facebook, the

amount of messages that we see in the screen will become bigger

than before. For most of the web sites feed contents with the

RDF/RSS/Atom standards, we can read news coming from

different web sites and blogs by RSS readers. News that

continuously comes from different web sites looks like a stream

which has become an important part of the Internet resources.

All these mentioned above make information spread more widely.

It is hard to imagine that finding useful information just means

inputting a few keywords into a search engine. Sites no longer

change in weeks or days, but hours, minutes or even seconds. For

instance, if more people are followed in twitter, more messages

show up on the timeline. It is impossible for a person to follow

such a big amount of information. Moreover, there are lots of

noise messages and duplicated messages among the data streams.

Therefore, seeking high-quality information for users from data

streams has become increasingly important.

Some services which analyze the popularity trends of a whole

community have been developed based on data streams in twitter.

However, in most of the time, what we really concern are the

trends that are related to an individual rather than the whole

community. So it is critical to seek information referring to users’

current and personal interests or needs.

In our previous study, we proposed and defined metaphors to

represent a variety of data streams in order to categorize the

stream data and organize the information schema. In this study,

we try to seek information related to users’ personal and current

needs in data streams. We define two new metaphors: Heuristic

Stone and Associative Ripple to assist the seeking process and

describe the results. We further propose two algorithms which are

used to catch “ripples” in the “river” to achieve the seeking

purpose.

The rest of this paper is organized as follows. We give a brief

overview on the related issues and works with data streams in

Section 2. In Section 3, we first introduce several metaphors for

data streams in order to organize the information schema. Then

we propose two new metaphors to describe the seeking process

and result. After that, two algorithms are proposed to serve for the

seeking purpose. In Section 4, a scenario of the seeking process is

described, and some seeking results are given based on it. We

conclude this study and give some promising perspectives on

future works in Section 5.

2. RELATED WORK
Research works [1-6] have been tried to make use of microblog-

generated stream data to create Social Semantic Microblogs, or

use Semantic Webs to link and reuse data across Web 2.0

communities. J.G. Breslin et al present the SIOC (Semantically

Interlinked Online Community) ontology which combines terms

from vocabularies that already exist with new terms that are to be

described on the relationships between concepts in the realm of

online community sites [1]. Uldis Bojars et al. use the Semantic

Web to link and reuse data across Web 2.0 communities [2].

Studies have also been tried to create a prototype for distributed

semantic microblogging [3]. Wolfgang Reinhardt et al. tried to

use microblog to enhance the knowledge of a given group or

community by micro-connecting a diverse online audience [4].

Martin Ebner et al. indicated microblogging should be seen as a

completely new form of communication that can support informal

learning beyond classrooms [5]. SMOB (Semantic-

MicrOBlogging) is a platform for open, semantic and distributed

microblogging combining Social Web principles and state-of-the-

art Semantic Web and Linked Data technologies [6].

Research works also been tried on Data Streams Mining [7], such

as clustering, classification, frequency counting and time series

analysis techniques. A host of algorithms have been proposed for

extracting knowledge from streaming information. Aggarwal et al.

[8] have proposed a framework for clustering data steams called

CluStream algorithm. The proposed technique divides the

clustering process into two components. Guha et al. [9, 10] have

studied analytically clustering data streams using K-median

technique. Ordonez [11] has proposed several improvements to k-

means algorithm to cluster binary data streams.

Stream reasoning, which was developed by E. Della Valle et al.

[12, 13] is a new multidisciplinary approach for semantically

processing high-frequency high-volume streams of information in

combination with rich background knowledge.

As discussed above, we propose and develop a new way to assist

information seeking based on the metaphors introduced in this

study, and by utilizing the streams clustering method as well, in

order to best fit users’ current interests and needs in such a stream

environment, which could be seen as catching the “ripples” in the

“river”.

3. GENERATING ASSOCIATIVE RIPPLES

OF RELEVANT INFORMATION:

METAPHORS AND ALGORITHMS
To seeking information for users, in this section, we first

introduce a set of metaphors to represent data streams in different

levels. We further define two new metaphors: heuristic stone and

associative ripple. We propose two algorithms to generate

associative ripples of relevant information from a variety of data

streams by throwing a heuristic stone (a specific keyword), and

show how to catch the information to serve a specific user using

these metaphors and algorithms.

3.1 Metaphors for Streams
To seek information for a specific user, we introduce the

metaphors for data streams as follows [14].

 Drop: Drop is a minimum unit of data streams, such as
a message posted to the microglog (e.g., Twitter) by a
user, or a status change in SNS (e.g., FaceBook).

 Stream: Stream is a collection of drops in timeline,
which contains the messages, activities and actions of a
user.

 River: River is a confluence of streams from different
users which are formed by following or subscribing
his/her followers/friends. It could be extended to
followers’ followers.

 Ocean: Ocean is a combination of all the streams.

As mentioned above, message posted from every users can be

seen as a drop, and the drops come from one user converge

together to form a stream. Then the streams of the user and his

friends form the river. Finally, all the streams come together to

form the ocean. All these metaphors are shown in Figure 1.

Figure 1. Metaphors for data streams

The following definitions are used to seek information that

satisfies users’ current needs. Differing with the definition of

ripple in [14] which is formed naturally in the river, the ripple

defined in this paper is formed artificially in an associative way,

user2

user1

Ocean Drop Stream

User’s

channel B

User’s

channel A

user1

user2

user3

user4

 rippl
e

canel
A

canel
C

user2

canal

user4

canal

user1

canal

user4

canal

user2

canal

canel
B

user2

user1

user4

Channel A

Channel B rippl
e

…

Rippl
e

Rippl
e

River

user4

which is called an associative ripple, and produced by throwing a

heuristic stone into the river.

Heuristic Stone: it represents one of a specific user’s current

interests which may be changed dynamically.

Associative Ripple: it is a meaningfully associated collection of

the drops related to some topics of a specific user’s interests,

which are formed by the heuristic stone in the river.

3.2 Collecting Heuristic Stones
Before seeking for the ripple, we should collect the heuristic stone

first.

As defined above, a heuristic stone represents a user’s current

interest. We discover a specific user’s interests from his/her

streams and the streams of users that he/she is following, using the

clustering method. And the method used to decide whether a data

should be clustered to a group is based on keyword matching

methods, such as the one introduced in [15]. We do not concern

the result of clustering but the cluster centers. That means the

elements in each cluster are not important in this study. We just

use the cluster centers to catch a user’s current interests.

Before introducing the algorithm for catching the user’s interests,

the sample space should be defined as a quadplex tuple (Zs, Gs, Q,

Cs):

Zs = {Z1, Z2, Z3, …, Zn}: a non-empty set of input data, which

consist of messages posted by the user and messages in his

favorites.

Gs = {G1, G2, G3, …, Gm}: a non-empty set of the final clusters. Gi

consists of a series of Zi.

s s nQ(Z , C) Z mG  : a matching function which is used to

decide whether Zi belongs to Gi or creates a new cluster Gr to

contain Zi.

Cs = {C1, C2, C3, …, Cm}: a non-empty set of the cluster centers.

The clustering algorithm is shown in Figure 2, and described as

follows.

For Zs = {Z1, Z2, Z3, …, Zn}

(1) Take any Zi of Zs, for instance Z1, create G1 = {Z1} and

the cluster center C1 of G1.

(2) Compare the remaining elements in Zs for example Z2

with C1 by function Q, if the comparing result is less

than a specific value; add Z2 into G1, so G1 = {Z1, Z2},

else if the comparing result is higher than the value;

create G2 = {Z2} and the cluster center C2 of G2.

(3) Repeat the process; use function Q to compare the

relevance between the remaining Zi in Zs and each Ci; if

satisfying the condition mentioned above, add it into Gi;

else create a new GR and CR until all the elements in Zs

is assigned into a Gi.

(4) Collect all the cluster center Ci, so that Cs = {C1, C2,

C3, …, Cm} is what we need.

To guarantee the quality of the clusters as well as the heuristic

stones, in this process, it is crucial to evaluate the keywords that

are extracted from each message posted by the user and messages

in his favorites as well. The well-known feature selection method

TF-IDF (Term Frequency - Inverse Documentation Frequency)

has been widely applied in information retrieval field. The main

idea of this method is that if a term appears in a document with a

high frequency, and it rarely occurs in other documents, then that

term has good discrimination among these categories.

input: the sample {Z1, Z2, Z3, …, Zn}

output: the set of cluster centers Γ: {C1, C2, C3, …, Cm}

Begin

Γ=Ф; //the initial center set is empty

SamSpace[]；//for storing the sample data

Gcluster[]; // for storing the clusters

Ccenter[]; // for storing the centers

Queue Q; //create a queue

InitS();//initiate SamSpace[]

Q.insert(Q, SamSpace[]) //initiate the queue

While(!Q.isEmpty()) //cluster

{

 index = findData(Q.peek());

if (Gcluster.isEmpty()) //initiation

{

Gcluster.addG(Gcluster[0], index);

Ccenter.createC(Ccenter[0], Gcluster[0])

}

if(!Gcluster.isEmpty())

{

int [] value ;

int j;

for(int i = 0; i < Gcluster.getsize(); i++)

//calculate the relevancy

{

value[i]=compareG(Ccenter[i], index));

}

for(int i=0, j = value[i]; i< value.getsize()-1; i++)

//get the most related group

{

if (j>value[i+1])

j = value[i+1];

}

if (j)

//if exist the matched group, add the data into this group

Gcluster.addG(Gcluster[j], index);

else//else, create a new group and the center

{

Gcluster.addG(Gcluster[Gcluster.getsize()], index);

Ccenter.createC(Ccenter[Ccenter.getsize()],
Gcluster[Gcluster.getsize()])

}

Γ=Γ∪{Ccenter};//collect the centers

}

Q.delete();

}

clean();//free the space

output Γ; //out put the results

End

Figure 2. Algorithm for collecting heuristic stones

The common formulas are given as follows:

i i iW = TF(t , d) * IDF(t) (1)

IDF(t) = log
()

D

DF t

 (2)

From the past experiments, TF-IDF method has achieved good

results in keywords discrimination when the document contains

more than 200 words. But as we know, every messages posted in

twitter should be less than 140 characters. So we should improve

the common TF-IDF formula to adapt to our calculation of the

keywords weight. We assume that all users have filled their

profiles, therefore, we use users’ information filled in their

profiles to create some categories. When we calculate the weights

of every term in users’ messages, we first employ the TF-IDF to

calculate a weight. Then if this term belongs to some categories

that we have created before, we will add an additional weight to it.

Finally, if the total weight of this term is more than a specific

value, it will become a keyword. Based on these, the improved

TF-IDF to extract the keywords is described as follows:

0

(,)*log *
()

n

i i i j

i j

M
W TF t m t C

MF t 

  (3)

where,

In this formula, Wi is the total weight of the word ti in message m,

TF(ti, m) is the number of times word ti occurs in message m. M

is the total number of messages. MF(ti) is the number of messages

in which the word ti occurs at least one time.

0

*
n

i j

j

t C


 is an

additional weight, that is, if ti belongs to a category which we

have created, it will get one additional weight. The more

categories it belongs to, the more additional weights it will get.

After all the weights of words in messages have been calculated,

we will select those words with higher quality to become the

keywords, using a specific threshold by which those words with

lower weight can be filtered. And this can also guarantee the

quality of the following clusters and the clusters’ centers.

VSM (Vector Space Model) is a widely employed model in

information retrieval field these days. The main idea is that:

assume that words are not related with each other, so that an

algebraic model for representing text documents (and any objects,

in general) as vectors of identifiers can be built to simplify the

complexity relationship between keywords of the text.

Based on these, we can build the VSM to calculate the similarities

between each message, which are then used in the clustering.

Therefore, in Zs, each Zi is described like this:

Zi = ((t1, w1), (t2, w2), …(tn, wn)) (4)

where ti means the keyword in this message, and wi is its weight.

And we use the cosine method to calculate the similarity. The

formula is described as the following:

, , , ,

1 1 1

(,) (*) / (*)
n n n

i j i t j t i t j t

t t t

sim M M M M M M
  

   
 (5)

In this formula, Mi is the message feature vector, Mi,t is the t

vector in message Mi.

After that, we cluster the messages posted by the user and

messages in his favorites based on these similarities and finally

get the cluster centers as the heuristic stones.

3.3 Generating Associative Ripples
Now we use the heuristic stone to generate the associative ripples,

just as we throw a stone into a river in which ripples then will

emerge. The process is similar to the clustering. Each heuristic

stone in the river could be seen as a cluster center. When we

throw it into the river, the drops which related to this center in the

river will converge to it. We use the distance from the drop to the

center to describe the relevance between them. And the drops

which have the same relevance to the center will form a circle.

When we throw the heuristic stone into a river, it may generate a

series of ripples, which depends on the timeline and the

granularity of the user’s interest. We divide the whole timeline

into several time slices in which a cluster center will be produced

by the heuristic stone and then a ripple will be generated. Figure 3

shows these ripples in every time slices.

In Figure 3, the “+” indicates the cluster center of each ripple, and

the “+” with several circles around it compose a ripple. Obviously,

there are 4 ripples in this figure, while each ripple belongs to a

time slice. For example, the ripple R1 belongs to slice1. All these

four ripples are generated by one heuristic stone, which compose

a ripple sequence. The drops in the circle mean they are clustered

to a ripple in some degrees, while others are not. And we should

notice that at the beginning, the drops from different users

distribute in the river following the timeline. However, after the

clustering, the time sequence is broken, so that they do not follow

the timeline any more in each ripple. We only show the relevancy

between the drops and the cluster center in these ripples. We can

further show the ripples in sequence, in which way they still

follow the timeline.

 Timeline

 Slice1 Slice2 Slice3 Slice4

User 1

User 2

User 3

User 4

User 5

User 6

U3

U2

U1

U5

 R4 R3
U5

U5

U4
U4

U2

U3

U1
U6U6

U6

U1

U2

U3U5

 R2
 R1

U6

U3

U2

U1

U4

U4

 Center Center Center Center

 Circle

 Circle

 Circle

 Circle

Figure 3. Associative ripples generated by a heuristic stone

The ripple consists of several circles, which divide the drops

converging to the center into different scales of the radius. This

means the closer to the center, the higher relevance to the user’s

interest. The whole ripple is also divided into several parts

depending on the amount of users, in which drops related to this

ripple from different users are distributing. A series of ripples

which are generated by one heuristic stone could be seen as a

group of topics around a user’s interest indicated by that heuristic

stone, which then follow the timeline to come into a sequence.

From Figure 3, we can see

 Different ripples may have different sizes. The size of the

ripple does not relate to the amount of the information in it.

This means a small ripple may contains more information

than a big one. For example, ripple R2 is bigger than R3, but

it contains less information. We do not use size but density

to assess the amount of information in each ripple even each

circle.

 Different ripples may contain different amount of circles.

And the sizes of circles from inside to outside do not follow

a unified measure. For example, the most inner circle of

ripple R3 and R4 do not have the same size. The circle closer

to the center only means it contains more relative

information. We use the distance, i.e. the radius of each

circle to assess the relevance of the information and the

center interest.

 We don’t cluster all the drops in the river, because not all of

them are related to a specific user’s interest. Those drops

which have not been clustered could be seen as noises in

this process. We can find in Figure 3 that the amount of the

drops that have been clustered in these ripples is less than

the whole amount in the river.

For each ripple, we recommend the information by rank to the

user. As we can record users who post the drops, we can even

recommend this specific user to follow the user who posts the

most or the user who posts the most relevant information.

For the whole sequence of ripples, we can not only send these

information clusters in a specific order to the user, for example by

timeline, but also can let the user know that in which time slice

people concern more about his/her interest in some degrees, for

instance, quantity or quality.

We can also use a sextuplet (Zs, Hs, rx, Rs, Gs, Q) to describe those

discussed above:

Zs = {Z1, Z2, Z3, …, Zn}: a non-empty set of input data, which

consist of messages posted by all the users in this community.

Hs = {h1, h2, h3, …, hm}: a non-empty set of the heuristic stones,

which are generated by the algorithm shown in Figure 2. Each hi

will generate a series of ripples.

rx = <Z1, Z2, Z3, …, Zt>: a non-empty sequence of messages

clustering to a center, which follows the relevance from the

closest to the furthest in sequence.

Rs = <r1, r2, r3, …, rx>: a non-empty sequence of ripples produced

by one heuristic stone, which follows the timeline in sequence.

Gs = {R1, R2, R3, …, Rm}: a non-empty set of Rs, which is the

final cluster results

i i n xQ(Z, H) Z r  : a matching function which is used to decide

whether Zi belongs to rx and the distance to the center of rx.

input: the sample {Z1, Z2, Z3, …, Zn}

output: the set of clusters Γ: {R1, R2, R3, …, Rm}

Begin

Γ=Ф; //the initial set of clusters is empty

SamSpace[]；//for storing the sample data

HS[] ; // for storing the set of heuristic stones

Ripple[]; // for storing the ripple in one time slice

Ripples[] [];

// for storing the ripples caused by one heuristic stone

Queue Q; //create a queue

SamTimeslice [] [] = InitS(SamSpace[], timeline);

//initiate SamSpace[] into several time slice by the timeline

Q.insert(Q, HS[]) //initiate the queue

While(!Q.isEmpty()) //cluster

{

index = findData(Q.peek());

for (int i = 0; i < SamTimeslice.getsize(); i++)

//generate ripples in each time slice

{

for (int j = 0; j < SamTimeslice[i].getsize(); j++)

//calculate the relevancy between the center and the data

{

value[j] = compareR(SamTimeslice[i] [j], index);

}

for(int s=0; s< value.getsize(); s++)

//cluster the satisfied data into the ripple and sort them by the
value

{

if (value[s])

Ripple.addbyV(value[s]);

}

Ripples.addbyT(Ripple[i]);

//collect the ripples caused by one heuristic stone

}

Γ=Γ∪{Ripples};//collect the ripples

Q.delete();

}

clean();//free the space

output Γ; //out put the results

End

Figure 4. Algorithm for generating associative ripples

The algorithm used to generate ripples is shown in Figure 4, and

described as follows.

(1) Divide sample space Zs into several group, each group

belongs to a time slice.

(2) For each hi, generate a cluster center in each time slice

to form a ripple.

(3) In a time slice, use the function Q to compare the Zi with

the cluster center, then use the comparing result to

decide whether Zi should be clustered to the center. If

the result value is higher than the degree, Zi will cluster

into the ripple and be given a relevancy value. Each

time slice will contain a rx.

(4) Collect all the rx generated by one hi into a sequence by

timeline to form the Rs.

(5) Collect all the Ri, so that the Gs = {R1, R2, R3, …, Rm} is

the final cluster result.

In this process, we use another improved TF-IDF method to

extract the keywords. That is, we use the keywords and the

weights calculated in the last clustering calculation which is used

to extract the heuristic stones to plot a dictionary liked table.

Therefore, in this keywords extraction, if the word can be found in

that table, it will get an additional weight, because this word may

be more related to the user. The following is the formula:

* (,)*log
()

i i i

i

M
W LW TF t m

MF t
 (6)

In this formula, LWi is the additional weight.

In the clustering process, we still use the cosine method to

calculate the similarity.

4. SCENARIO
Take a group of people who all use twitter to communicate with

each other for example. In this case, users follow each other to

form a small community. Messages posted by a user could be

seen as drops which join together into a stream. Streams from

these users then converge together into a river. Figure 5 shows the

drops from users distribute in the river before clustering. We use

different colors to show the drops come from different users. Take

a user in this community for instance. We take the messages

he/she sent last month and the messages he/she collected in

his/her favorites to build the data set in which we collect his/her

interests as heuristic stones in an associative way. After the

interest clustering, all the messages are divided into several

clusters. For example, two cluster centers “NBA” and “soccer” are

formed, as shown in Figure 6. This means we have caught two

heuristic stones--“NBA” and “soccer”.

Figure 5. Drops in a river before clustering

Then we throw these two “stones” into the river to spark the

clustering, which attracts the drops related to them to converge

together and finally generates the ripples. Figure 6 shows this

process. The “NBA” generates one ripple, and the “soccer”

generates several ripples. Each interest center of the ripple in

different time slices may have different names such as “UEFA

Champions League”, “World Cup”, “Transfer Market” and so on.

User 2

User 1

Stream 1

Stream 2

Stream 3

User 3

… … … …

“NBA”

“Soccer”

 Figure 6. An example of generating associative ripples

Figure 7 shows the result after the clustering. In this figure, R1 is

the ripple generated by “NBA”. R2, R3, R4 are a series of ripples

generated by “soccer”, which distribute in the river following the

timeline. The drops clustered to the cluster center in different

circles, represent the messages that are related to the

corresponding interest center in various degrees, while others are

not clustered.

Figure 7. Drops in a river after clustering

Based on these, we show these clustered information as well as

the relevancy between them and the interest center to the specific

user. Moreover, in this case, we can find in Ripple 1 that,

messages posted by User 1 compose the closest drops to the

center. Therefore, we recommend User 1 to this specific user for

this interest. We can find in Ripple 4 that, messages posted by

User 3 compose the biggest number of drops around the center.

We recommend User 4 to the user. We can also come to a result

from the ripples caused by “soccer” that users in this community

concern more about “soccer” during the ripple R2’s time slice

because R2 contains more information.

5. CONCLUSIONS
In this paper, we have proposed a method for users to seek

information related to his/her current interests in the stream

environment, such as in twitter.

R4

R2

R1

R3

Stream

3

Stream

2

Stream

1

User 3

User 2

User 1

… … … …

We have introduced a set of metaphors for data streams to

organize the information schema. We have further defined two

new metaphors: heuristic stone and associative ripple to assist

users’ information seeking that best fits users’ current needs and

interests. Based on these, we have proposed a seeking method

which uses heuristic stones to generate associative ripples of

relevant information and collect them from a variety of data

streams to provide users with meaningfully organized information.

We have also developed two algorithms for collecting heuristic

stones and generating associative ripples. Finally, we showed a

scenario to demonstrate how to catch the associative ripples and

get useful information from them.

As for future work, a prototype system with improved algorithms

will be implemented. In addition, we will consider other elements

which may also influence the relevancy, for example time,

because more recent message may be more relative than earlier

one in general. In this paper, we only considered the situation in

the “river” level. In our future work, we will investigate the

situation in the “ocean” level, since the information scale will

become much bigger than that in the“ river” level. We will

further consider more efficient approaches for information seeking

and avoid the problem such as combinatorial explosion.

6. ACKNOWLEDGMENTS
The work has been partly supported by 2010-2012 Waseda

University Advanced Research Center for Human Sciences

Project "Distributed Collaborative Knowledge Information

Sharing Systems for Growing Campus."

7. REFERENCES
[1] Breslin J.G., et. al. Towards semantically interlinked online

communities. In Proceedings of ESWC2005, Heraklion,

Greece, 500-514, 2005.

[2] Bojars, U, et. al. Using the Semantic Web for Linking and

Reusing Data Across Web 2.0 Communities. The Journal of

Web Semantics, 6, 1 (Feb. 2008), 21-28.

[3] Passant, A., et. al. Micro-blogging: A semantic web and

distributed approach. In Proceedings of ESWC/SFSW2008,

Tenerife, Spain, 2008.

[4] Reinhardt, W., et. al. How people are using Twitter during

conferences. In Proceedings of 5th EduMedia conference,

Salzburg，2009, 145–156.

[5] Ebner, M., et al. Microblogs in higher education—a chance

to facilitate informal and process-oriented learning?

Computers & Education, 55, 1 (2010), 92–100,.

[6] Passant A., et. al. An Overview of SMOB 2: Open, Semantic

and Distributed Micro-blogging. In Proceedings of

AAAI/ICWSM 2010.

[7] Mohamed Medhat Gaber, Arkady Zaslavsky and Shonali

Krishnaswamy. Mining data streams: a review. ACM

SIGMOD Record archive, 34, 2(Jun. 2005), 18 - 26.

[8] C. Aggarwal, J. Han, J. Wang, P. S. Yu, A Framework for

Clustering Evolving Data Streams. In Proceedings of 2003

Int. Conf. on Very Large Data Bases, Berlin, Germany, Sept.

2003, 81-92.

[9] S. Guha, N. Mishra, R. Motwani, and L.O'Callaghan.
Clustering data streams. In Proceedings of the Annual

Symposium on Foundations of Computer Science. IEEE,

California, Nov. 2000.

[10] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L.

O'Callaghan, Clustering Data Streams: Theory and Practice

TKDE special issue on clustering, 15, 3(MAY./JUN. 2003),

515-528.

[11] C. Ordonez. Clustering Binary Data Streams with K-means

In Proceedings of the 8th ACM SIGMOD workshop on

Research issues in data mining and knowledge discovery,
ACM, San Diego, California, 2003, 12-19.

[12] Della Valle, E., et al. A First Step towards Stream

Reasoning, In Proceedings of Future Internet Symp.

(FIS2008), Cardiff, May.2008, 72–81.

[13] Della Valle, E., et al. It’s a Streaming World! Reasoning

upon Rapidly Changing Information. IEEE Intelligent

Systems, 24, 6(Nov. /Dec. 2009), 83–89.

[14] Chen H., Zhou X.K., Man H.F., Wu Y., Ahmed A.U. and Jin

Q., A Framework of Organic Streams: Integrating

Dynamically Diversified Contents into Ubiquitous Personal

Study, In Proceedings of the Second International

Symposium on Multidisciplinary Emerging Networks and

Systems, Xi’an, Oct. 2010, to appear.

[15] A Kanaegami, K Koike, H Taki, H Ohgashi, Text Search

System for Locating on the Basis of Keyword Matching and

Keyword Relationship Matching, US Patent 5,297,039, 1994,

Google Patents

