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ABSTRACT 

Recently, the vast dialog in the microblog, such as twitter, 

Facebook has become increasingly popular. As we post more 

messages in microblogs, information is spreading more quickly 

and widely. These widely spreaded and diversified contents could 

be viewed as data streams, which have become an important part 

of the Internet resources. However, these separated data streams 

are littery and meaningless, so we need to collect and organize 

them together to provide us with meaningful information. It is 

hard to imagine that we could find useful information by simply 

inputting a few keywords into a search engine in such a stream 

environment. In this study, we try to find a way to seek the 

information related to users’ personal and current interests and 

needs among these data streams and provide users with other 

more relevant information. We introduce a set of metaphors to 

represent a variety of data streams in different levels, and define 

two new metaphors: heuristic stone and associative ripple to assist 

the seeking process and describe the results. Based on these, we 

further propose two algorithms for the information seeking and 

processing, and discuss a scenario of the information seeking 

process that utilizes the proposed metaphors and algorithms. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – clustering, retrieval models, search process. 

General Terms 

Algorithms 

Keywords 

data stream, stream metaphor, microblog, data clustering, 

information seeking 

1. INTRODUCTION 
The Web now is providing us with a variety of personal services. 

It has become increasingly easier for us to post personal contents 

in this widespread social network. That is, we are being around 

with wikis, the vast dialog that is the blogosphere, social 

bookmarking, online networking, etc. For example, with twitter 

we can obtain fresh news more quickly by means of following, 

forward information to other followers by retweeting (RT), and 

discuss about a topic by adding a "#" (hash tag).  

Obviously, when we add more friends in twitter or Facebook, the 

amount of messages that we see in the screen will become bigger 

than before. For most of the web sites feed contents with the 

RDF/RSS/Atom standards, we can read news coming from 

different web sites and blogs by RSS readers. News that 

continuously comes from different web sites looks like a stream 

which has become an important part of the Internet resources. 

All these mentioned above make information spread more widely. 

It is hard to imagine that finding useful information just means 

inputting a few keywords into a search engine. Sites no longer 

change in weeks or days, but hours, minutes or even seconds. For 

instance, if more people are followed in twitter, more messages 

show up on the timeline. It is impossible for a person to follow 

such a big amount of information. Moreover, there are lots of 

noise messages and duplicated messages among the data streams. 

Therefore, seeking high-quality information for users from data 

streams has become increasingly important. 

Some services which analyze the popularity trends of a whole 

community have been developed based on data streams in twitter.  

However, in most of the time, what we really concern are the 

trends that are related to an individual rather than the whole 

community. So it is critical to seek information referring to users’ 

current and personal interests or needs. 

In our previous study, we proposed and defined metaphors to 

represent a variety of data streams in order to categorize the 



stream data and organize the information schema. In this study, 

we try to seek information related to users’ personal and current 

needs in data streams. We define two new metaphors: Heuristic 

Stone and Associative Ripple to assist the seeking process and 

describe the results. We further propose two algorithms which are 

used to catch “ripples” in the “river” to achieve the seeking 

purpose. 

The rest of this paper is organized as follows. We give a brief 

overview on the related issues and works with data streams in 

Section 2. In Section 3, we first introduce several metaphors for 

data streams in order to organize the information schema. Then 

we propose two new metaphors to describe the seeking process 

and result. After that, two algorithms are proposed to serve for the 

seeking purpose. In Section 4, a scenario of the seeking process is 

described, and some seeking results are given based on it. We 

conclude this study and give some promising perspectives on 

future works in Section 5. 

2. RELATED WORK 
Research works [1-6] have been tried to make use of microblog-

generated stream data to create Social Semantic Microblogs, or 

use Semantic Webs to link and reuse data across Web 2.0 

communities. J.G. Breslin et al present the SIOC (Semantically 

Interlinked Online Community) ontology which combines terms 

from vocabularies that already exist with new terms that are to be 

described on the relationships between concepts in the realm of 

online community sites [1]. Uldis Bojars et al. use the Semantic 

Web to link and reuse data across Web 2.0 communities [2]. 

Studies have also been tried to create a prototype for distributed 

semantic microblogging [3]. Wolfgang Reinhardt et al. tried to 

use microblog to enhance the knowledge of a given group or 

community by micro-connecting a diverse online audience [4]. 

Martin Ebner et al. indicated microblogging should be seen as a 

completely new form of communication that can support informal 

learning beyond classrooms [5]. SMOB (Semantic-

MicrOBlogging) is a platform for open, semantic and distributed 

microblogging combining Social Web principles and state-of-the-

art Semantic Web and Linked Data technologies [6].  

Research works also been tried on Data Streams Mining [7], such 

as clustering, classification, frequency counting and time series 

analysis techniques. A host of algorithms have been proposed for 

extracting knowledge from streaming information. Aggarwal et al. 

[8] have proposed a framework for clustering data steams called 

CluStream algorithm. The proposed technique divides the 

clustering process into two components. Guha et al. [9, 10] have 

studied analytically clustering data streams using K-median 

technique. Ordonez [11] has proposed several improvements to k-

means algorithm to cluster binary data streams.  

Stream reasoning, which was developed by E. Della Valle et al. 

[12, 13] is a new multidisciplinary approach for semantically 

processing high-frequency high-volume streams of information in 

combination with rich background knowledge. 

As discussed above, we propose and develop a new way to assist 

information seeking based on the metaphors introduced in this 

study, and by utilizing the streams clustering method as well, in 

order to best fit users’ current interests and needs in such a stream 

environment, which could be seen as catching the “ripples” in the 

“river”. 

3. GENERATING ASSOCIATIVE RIPPLES 

OF RELEVANT INFORMATION: 

METAPHORS AND ALGORITHMS 
To seeking information for users, in this section, we first 

introduce a set of metaphors to represent data streams in different 

levels. We further define two new metaphors: heuristic stone and 

associative ripple. We propose two algorithms to generate 

associative ripples of relevant information from a variety of data 

streams by throwing a heuristic stone (a specific keyword), and 

show how to catch the information to serve a specific user using 

these metaphors and algorithms.  

3.1 Metaphors for Streams 
To seek information for a specific user, we introduce the 

metaphors for data streams as follows [14]. 

 Drop: Drop is a minimum unit of data streams, such as 
a message posted to the microglog (e.g., Twitter) by a 
user, or a status change in SNS (e.g., FaceBook).  

 Stream: Stream is a collection of drops in timeline, 
which contains the messages, activities and actions of a 
user. 

 River: River is a confluence of streams from different 
users which are formed by following or subscribing 
his/her followers/friends. It could be extended to 
followers’ followers. 

 Ocean: Ocean is a combination of all the streams. 

As mentioned above, message posted from every users can be 

seen as a drop, and the drops come from one user converge 

together to form a stream. Then the streams of the user and his 

friends form the river. Finally, all the streams come together to 

form the ocean. All these metaphors are shown in Figure 1. 

 

 

Figure 1. Metaphors for data streams 

 

The following definitions are used to seek information that 

satisfies users’ current needs. Differing with the definition of 

ripple in [14] which is formed naturally in the river, the ripple 

defined in this paper is formed artificially in an associative way, 
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which is called an associative ripple, and produced by throwing a 

heuristic stone into the river. 

Heuristic Stone: it represents one of a specific user’s current 

interests which may be changed dynamically. 

Associative Ripple:  it is a meaningfully associated collection of 

the drops related to some topics of a specific user’s interests, 

which are formed by the heuristic stone in the river.  

3.2 Collecting Heuristic Stones  
Before seeking for the ripple, we should collect the heuristic stone 

first. 

As defined above, a heuristic stone represents a user’s current 

interest. We discover a specific user’s interests from his/her 

streams and the streams of users that he/she is following, using the 

clustering method. And the method used to decide whether a data 

should be clustered to a group is based on keyword matching 

methods, such as the one introduced in [15]. We do not concern 

the result of clustering but the cluster centers. That means the 

elements in each cluster are not important in this study. We just 

use the cluster centers to catch a user’s current interests. 

Before introducing the algorithm for catching the user’s interests, 

the sample space should be defined as a quadplex tuple (Zs, Gs, Q, 

Cs ): 

Zs = {Z1, Z2, Z3, …, Zn}: a non-empty set of input data, which 

consist of messages posted by the user and messages in his 

favorites.  

Gs = {G1, G2, G3, …, Gm}: a non-empty set of the final clusters. Gi 

consists of a series of Zi.  

s s nQ(Z , C ) Z mG  : a matching function which is used to 

decide whether Zi belongs to Gi or creates a new cluster Gr to 

contain Zi.  

Cs = {C1, C2, C3, …, Cm}: a non-empty set of the cluster centers. 

The clustering algorithm is shown in Figure 2, and described as 

follows. 

For Zs = {Z1, Z2, Z3, …, Zn} 

(1) Take any Zi of Zs, for instance Z1, create G1 = {Z1} and 

the cluster center C1 of G1. 

(2) Compare the remaining elements in Zs for example Z2 

with C1 by function Q, if the comparing result is less 

than a specific value; add Z2 into G1, so G1 = {Z1, Z2}, 

else if the comparing result is higher than the value; 

create G2 = {Z2} and the cluster center C2 of G2. 

(3) Repeat the process; use function Q to compare the 

relevance between the remaining Zi in Zs and each Ci; if 

satisfying the condition mentioned above, add it into Gi; 

else create a new GR and CR until all the elements in Zs 

is assigned into a Gi. 

(4) Collect all the cluster center Ci, so that Cs = {C1, C2, 

C3, …, Cm} is what we need. 

To guarantee the quality of the clusters as well as the heuristic 

stones, in this process, it is crucial to evaluate the keywords that 

are extracted from each message posted by the user and messages 

in his favorites as well. The well-known feature selection method 

TF-IDF (Term Frequency - Inverse Documentation Frequency) 

has been widely applied in information retrieval field. The main 

idea of this method is that if a term appears in a document with a 

high frequency, and it rarely occurs in other documents, then that 

term has good discrimination among these categories.  

 
input: the sample {Z1, Z2, Z3, …, Zn} 

output: the set of cluster centers Γ: {C1, C2, C3, …, Cm} 

Begin 

Γ=Ф; //the initial center set is empty 

SamSpace[ ]；//for storing the sample data 

Gcluster[ ]; // for storing the clusters 

Ccenter[ ]; // for storing the centers 

Queue Q; //create a queue 

InitS();//initiate SamSpace[ ] 

Q.insert(Q, SamSpace[ ]) //initiate the queue 

While(!Q.isEmpty()) //cluster 

{ 

 index = findData(Q.peek()); 

if (Gcluster.isEmpty()) //initiation 

{ 

Gcluster.addG(Gcluster[0], index); 

Ccenter.createC(Ccenter[0], Gcluster[0]) 

} 

if(!Gcluster.isEmpty()) 

{ 

int [ ] value ; 

int j; 

for(int i = 0; i < Gcluster.getsize(); i++) 

//calculate the relevancy 

{ 

value[i]=compareG(Ccenter[i], index)); 

} 

for(int i=0, j = value[i]; i< value.getsize()-1; i++) 

//get the most related group  

{ 

if (j>value[i+1]) 

j = value[i+1]; 

} 

if (j)  

//if exist the matched group, add the data into this group 

Gcluster.addG(Gcluster[j], index); 

else//else, create a new group and the center 

{ 

Gcluster.addG(Gcluster[Gcluster.getsize()], index); 

Ccenter.createC(Ccenter[Ccenter.getsize()], 
Gcluster[Gcluster.getsize()]) 

} 

Γ=Γ∪{Ccenter};//collect the centers 

} 

Q.delete(); 

} 

clean();//free the space 

output Γ; //out put the results 

End 

Figure 2. Algorithm for collecting heuristic stones 



The common formulas are given as follows: 
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From the past experiments, TF-IDF method has achieved good 

results in keywords discrimination when the document contains 

more than 200 words. But as we know, every messages posted in 

twitter should be less than 140 characters. So we should improve 

the common TF-IDF formula to adapt to our calculation of the 

keywords weight. We assume that all users have filled their 

profiles, therefore, we use users’ information filled in their 

profiles to create some categories. When we calculate the weights 

of every term in users’ messages, we first employ the TF-IDF to 

calculate a weight. Then if this term belongs to some categories 

that we have created before, we will add an additional weight to it. 

Finally, if the total weight of this term is more than a specific 

value, it will become a keyword.  Based on these, the improved 

TF-IDF to extract the keywords is described as follows: 
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In this formula, Wi is the total weight of the word ti in message m, 

TF(ti, m) is the number of times  word ti occurs in message m. M 

is the total number of  messages. MF(ti) is the number of messages 

in which the word ti occurs at least one time. 

0

*
n
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j

t C


  is an 

additional weight, that is, if ti belongs to a category which we 

have created, it will get one additional weight. The more 

categories it belongs to, the more additional weights it will get. 

After all the weights of words in messages have been calculated, 

we will select those words with higher quality to become the 

keywords, using a specific threshold by which those words with 

lower weight can be filtered. And this can also guarantee the 

quality of the following clusters and the clusters’ centers. 

VSM (Vector Space Model) is a widely employed model in 

information retrieval field these days. The main idea is that: 

assume that words are not related with each other, so that an 

algebraic model for representing text documents (and any objects, 

in general) as vectors of identifiers can be built to simplify the 

complexity relationship between keywords of the text. 

Based on these, we can build the VSM to calculate the similarities 

between each message, which are then used in the clustering. 

Therefore, in Zs, each Zi is described like this:  

 

Zi = ((t1, w1), (t2, w2), …(tn, wn))                                                (4) 

 

where ti means the keyword in this message, and wi is its weight. 

And we use the cosine method to calculate the similarity. The 

formula is described as the following: 

, , , ,
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In this formula, Mi is the message feature vector, Mi,t is the t 

vector in message Mi. 

After that, we cluster the messages posted by the user and 

messages in his favorites based on these similarities and finally 

get the cluster centers as the heuristic stones. 

3.3 Generating Associative Ripples 
Now we use the heuristic stone to generate the associative ripples, 

just as we throw a stone into a river in which ripples then will 

emerge. The process is similar to the clustering. Each heuristic 

stone in the river could be seen as a cluster center. When we 

throw it into the river, the drops which related to this center in the 

river will converge to it. We use the distance from the drop to the 

center to describe the relevance between them. And the drops 

which have the same relevance to the center will form a circle. 

When we throw the heuristic stone into a river, it may generate a 

series of ripples, which depends on the timeline and the 

granularity of the user’s interest. We divide the whole timeline 

into several time slices in which a cluster center will be produced 

by the heuristic stone and then a ripple will be generated. Figure 3 

shows these ripples in every time slices.  

In Figure 3, the “+” indicates the cluster center of each ripple, and 

the “+” with several circles around it compose a ripple. Obviously, 

there are 4 ripples in this figure, while each ripple belongs to a 

time slice. For example, the ripple R1 belongs to slice1. All these 

four ripples are generated by one heuristic stone, which compose 

a ripple sequence. The drops in the circle mean they are clustered 

to a ripple in some degrees, while others are not. And we should 

notice that at the beginning, the drops from different users 

distribute in the river following the timeline. However, after the 

clustering, the time sequence is broken, so that they do not follow 

the timeline any more in each ripple. We only show the relevancy 

between the drops and the cluster center in these ripples.  We can 

further show the ripples in sequence, in which way they still 

follow the timeline. 
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Figure 3. Associative ripples generated by a heuristic stone 



The ripple consists of several circles, which divide the drops 

converging to the center into different scales of the radius. This 

means the closer to the center, the higher relevance to the user’s 

interest. The whole ripple is also divided into several parts 

depending on the amount of users, in which drops related to this 

ripple from different users are distributing. A series of ripples 

which are generated by one heuristic stone could be seen as a 

group of topics around a user’s interest indicated by that heuristic 

stone, which then follow the timeline to come into a sequence.  

From Figure 3, we can see 

 Different ripples may have different sizes. The size of the 

ripple does not relate to the amount of the information in it. 

This means a small ripple may contains more information 

than a big one. For example, ripple R2 is bigger than R3, but 

it contains less information. We do not use size but density 

to assess the amount of information in each ripple even each 

circle. 

 Different ripples may contain different amount of circles. 

And the sizes of circles from inside to outside do not follow 

a unified measure. For example, the most inner circle of 

ripple R3 and R4 do not have the same size. The circle closer 

to the center only means it contains more relative 

information. We use the distance, i.e. the radius of each 

circle to assess the relevance of the information and the 

center interest. 

 We don’t cluster all the drops in the river, because not all of 

them are related to a specific user’s interest. Those drops 

which have not been clustered could be seen as noises in 

this process. We can find in Figure 3 that the amount of the 

drops that have been clustered in these ripples is less than 

the whole amount in the river. 

For each ripple, we recommend the information by rank to the 

user. As we can record users who post the drops, we can even 

recommend this specific user to follow the user who posts the 

most or the user who posts the most relevant information.  

For the whole sequence of ripples, we can not only send these 

information clusters in a specific order to the user, for example by 

timeline, but also can let the user know that in which time slice 

people concern more about his/her interest in some degrees, for 

instance, quantity or quality. 

We can also use a sextuplet (Zs, Hs, rx, Rs, Gs, Q) to describe those 

discussed above: 

Zs = {Z1, Z2, Z3, …, Zn}: a non-empty set of input data, which 

consist of messages posted by all the users in this community.  

Hs = {h1, h2, h3, …, hm}: a non-empty set of the heuristic stones, 

which are generated by the algorithm shown in Figure 2. Each hi 

will generate a series of ripples. 

rx =  <Z1, Z2, Z3, …, Zt>: a non-empty sequence of messages 

clustering to a center, which follows the relevance from the 

closest to the furthest in sequence. 

Rs = <r1, r2, r3, …, rx>: a non-empty sequence of ripples produced 

by one heuristic stone, which follows the timeline in sequence. 

Gs = {R1, R2, R3, …, Rm}: a non-empty set of Rs, which is the 

final cluster results 

i i n xQ(Z, H) Z r  : a matching function which is used to decide 

whether Zi belongs to rx and the distance to the center of  rx.  

 

input: the sample {Z1, Z2, Z3, …, Zn} 

output: the set of clusters Γ: {R1, R2, R3, …, Rm} 

Begin 

Γ=Ф; //the initial set of clusters is empty 

SamSpace[ ]；//for storing the sample data 

HS[ ] ; // for storing the set of heuristic stones 

Ripple[ ]; // for storing the ripple in one time slice 

Ripples[ ] [ ];  

// for storing the ripples caused by one heuristic stone 

Queue Q; //create a queue 

SamTimeslice [ ] [ ] = InitS(SamSpace[ ], timeline); 

//initiate SamSpace[ ] into several time slice by the timeline 

Q.insert(Q, HS[ ]) //initiate the queue 

While(!Q.isEmpty()) //cluster 

{ 

index = findData(Q.peek()); 

for (int i = 0; i < SamTimeslice.getsize( ); i++) 

//generate ripples in each time slice 

{ 

for (int j = 0; j < SamTimeslice[i].getsize( ); j++) 

//calculate the relevancy between the center and the data 

{ 

value[j] = compareR(SamTimeslice[i] [j], index); 

} 

for(int s=0; s< value.getsize(); s++) 

//cluster the satisfied data into the ripple and sort them by the 
value 

{ 

if (value[s]) 

Ripple.addbyV(value[s]); 

} 

Ripples.addbyT(Ripple[i]); 

//collect the ripples caused by one heuristic stone 

} 

Γ=Γ∪{Ripples};//collect the ripples 

Q.delete(); 

} 

clean();//free the space 

output Γ; //out put the results 

End 

Figure 4. Algorithm for generating associative ripples 

 

The algorithm used to generate ripples is shown in Figure 4, and 

described as follows. 

(1) Divide sample space Zs into several group, each group 

belongs to a time slice. 

(2) For each hi, generate a cluster center in each time slice 

to form a ripple. 

(3) In a time slice, use the function Q to compare the Zi with 

the cluster center, then use the comparing result to 

decide whether Zi should be clustered to the center. If 

the result value is higher than the degree, Zi will cluster 



into the ripple and be given a relevancy value. Each 

time slice will contain a rx. 

(4) Collect all the rx generated by one hi into a sequence by 

timeline to form the Rs. 

(5) Collect all the Ri, so that the Gs = {R1, R2, R3, …, Rm} is 

the final cluster result. 

In this process, we use another improved TF-IDF method to 

extract the keywords. That is, we use the keywords and the 

weights calculated in the last clustering calculation which is used 

to extract the heuristic stones to plot a dictionary liked table. 

Therefore, in this keywords extraction, if the word can be found in 

that table, it will get an additional weight, because this word may 

be more related to the user. The following is the formula: 

* ( , )*log
( )

i i i

i

M
W LW TF t m

MF t
                                           (6) 

In this formula, LWi is the additional weight. 

In the clustering process, we still use the cosine method to 

calculate the similarity. 

4. SCENARIO 
Take a group of people who all use twitter to communicate with 

each other for example. In this case, users follow each other to 

form a small community. Messages posted by a user could be 

seen as drops which join together into a stream. Streams from 

these users then converge together into a river. Figure 5 shows the 

drops from users distribute in the river before clustering. We use 

different colors to show the drops come from different users. Take 

a user in this community for instance. We take the messages 

he/she sent last month and the messages he/she collected in 

his/her favorites to build the data set in which we collect his/her 

interests as heuristic stones in an associative way. After the 

interest clustering, all the messages are divided into several 

clusters. For example, two cluster centers “NBA” and “soccer” are 

formed, as shown in Figure 6. This means we have caught two 

heuristic stones--“NBA” and “soccer”. 

 

 
Figure 5. Drops in a river before clustering 

 

Then we throw these two “stones” into the river to spark the 

clustering, which attracts the drops related to them to converge 

together and finally generates the ripples. Figure 6 shows this 

process. The “NBA” generates one ripple, and the “soccer” 

generates several ripples. Each interest center of the ripple in 

different time slices may have different names such as “UEFA 

Champions League”, “World Cup”, “Transfer Market” and so on. 
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 Figure 6. An example of generating associative ripples 

 

Figure 7 shows the result after the clustering. In this figure, R1 is 

the ripple generated by “NBA”. R2, R3, R4 are a series of ripples 

generated by “soccer”, which distribute in the river following the 

timeline. The drops clustered to the cluster center in different 

circles, represent the messages that are related to the 

corresponding interest center in various degrees, while others are 

not clustered.  

 

 
Figure 7. Drops in a river after clustering 

 

Based on these, we show these clustered information as well as 

the relevancy between them and the interest center to the specific 

user. Moreover, in this case, we can find in Ripple 1 that, 

messages posted by User 1 compose the closest drops to the 

center. Therefore, we recommend User 1 to this specific user for 

this interest. We can find in Ripple 4 that, messages posted by 

User 3 compose the biggest number of drops around the center. 

We recommend User 4 to the user. We can also come to a result 

from the ripples caused by “soccer” that users in this community 

concern more about “soccer” during the ripple R2’s time slice 

because R2 contains more information. 

5. CONCLUSIONS 
In this paper, we have proposed a method for users to seek 

information related to his/her current interests in the stream 

environment, such as in twitter. 
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We have introduced a set of metaphors for data streams to 

organize the information schema. We have further defined two 

new metaphors: heuristic stone and associative ripple to assist 

users’ information seeking that best fits users’ current needs and 

interests. Based on these, we have proposed a seeking method 

which uses heuristic stones to generate associative ripples of 

relevant information and collect them from a variety of data 

streams to provide users with meaningfully organized information. 

We have also developed two algorithms for collecting heuristic 

stones and generating associative ripples. Finally, we showed a 

scenario to demonstrate how to catch the associative ripples and 

get useful information from them. 

As for future work, a prototype system with improved algorithms 

will be implemented. In addition, we will consider other elements 

which may also influence the relevancy, for example time, 

because more recent message may be more relative than earlier 

one in general. In this paper, we only considered the situation in 

the “river” level. In our future work, we will investigate the 

situation in the “ocean” level, since the information scale will 

become much bigger than that in the“ river” level.  We will 

further consider more efficient approaches for information seeking 

and avoid the problem such as combinatorial explosion. 
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