
A dynamic uncertainty-aware ensemble model: Application to lung cancer
segmentation in digital pathology

Massimo Salvi a,*, Alessandro Mogetta a, U. Raghavendra b, Anjan Gudigar b,
U. Rajendra Acharya c,d, Filippo Molinari a

a Biolab, PoliToBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
b Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
c School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
d Centre for Health Research, University of Southern Queensland, Australia

H I G H L I G H T S

• Adaptive uncertainty-based ensemble model (AUE) proposed for tumor segmentation.
• AUE outperformed traditional ensemble models by a significant margin.
• Utilizing uncertainty estimates enhances segmentation performance.
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A B S T R A C T

Ensemble models have emerged as a powerful technique for improving robustness in medical image segmen-
tation. However, traditional ensembles suffer from limitations such as under-confidence and over-reliance on
poor performing models. In this work, we introduce an Adaptive Uncertainty-based Ensemble (AUE) model for
tumor segmentation in histopathological slides. Our approach leverages uncertainty estimates from Monte Carlo
dropout during testing to dynamically select the optimal pair of models for each whole slide image. The AUE
model combines predictions from the two most reliable models (K-Net, ResNeSt, Segformer, Twins), identified
through uncertainty quantification, to enhance segmentation performance. We validate the AUE model on the
ACDC@LungHP challenge dataset, systematically comparing it against state-of-the-art approaches. Results
demonstrate that our uncertainty-guided ensemble achieves a mean Dice score of 0.8653 and outperforms
traditional ensemble techniques and top-ranked methods from the challenge by over 3 %. Our adaptive ensemble
approach provides accurate and reliable lung tumor delineation in histopathology images by managing model
uncertainty.

1. Introduction

Digital pathology and Artificial Intelligence (AI) integration have
enabled major advancements in medical image analysis [1,2] particu-
larly for the critical task of tumor delineation in histopathological im-
ages [3,4]. Convolutional Neural Networks (CNNs) now form the
foundation of many segmentation frameworks [5,6] leveraging their
unmatched capabilities in feature learning and pattern recognition [7,
8].

Lung cancer is a major global health problem and a leading cause of
cancer-related mortality worldwide [9]. In digital pathology, accurate

segmentation of lung lesions from Whole Slide Images (WSIs) -
high-resolution scans of entire histopathological slides - is important for
critical applications such as tumor grading, surgical planning, and
treatment response evaluation [10]. However, automatic segmentation
of lung cancer in WSIs faces multiple challenges. Lung lesions exhibit
high heterogeneity in appearance, with variations in size (from small
nodules to large masses), shape (from round to irregular), and histo-
logical characteristics (e.g., cell morphology, tissue architecture) [11].
WSIs can also vary substantially in staining and imaging quality due to
differences in tissue preparation and scanning protocols. Moreover,
delineating the irregular boundaries between tumor and normal tissue
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requires pixel-level precision from segmentation algorithms. Inaccurate
segmentation can lead to misclassification of tumor extent and severity,
potentially impacting clinical decision-making and patient outcomes
[12].

Addressing these complexities is crucial for lung cancer segmenta-
tion tools to achieve the high diagnostic performance needed for clinical
adoption in pathology workflows. Ensemble methods, which combine
predictions from multiple models, have shown promise in improving
segmentation accuracy and robustness [13]. Additionally, quantifying
the uncertainty of segmentation predictions can provide valuable in-
formation for clinical decision-making and help identify areas requiring
further expert review [14]. In 2019, the ACDC@LungHP challenge [15]
was introduced to evaluate computer-aided diagnosis systems for seg-
menting lung cancer WSIs. This challenge highlighted two different
paradigms: single-model approaches using individual models, and
multi-model approaches integrating diverse models.

Single CNN models have demonstrated success in accurately delin-
eating tumors. However, relying on a single architecture may limit the
ability to capture the intricacies and variations in tumor morphology
across diverse WSIs. To address this limitations, recent research has
explored ensemble learning techniques that combine predictions from
multiple models. By integrating diverse model architectures such as
CNNs, ResNets, and Transformers into a heterogeneous ensemble, we
can leverage their complementary strengths and improve overall accu-
racy in tumor segmentation tasks [16,17]. The multi-model approach
has yielded superior lung tumor segmentation results by acknowledging
the complexity of this task. Ensemble techniques have demonstrated
consistent improvements in lung tumor segmentation by harnessing
complementary insights from individual models [18,19].

Traditional ensemble techniques, such as simple averaging [20] and
majority voting [21], often treat all models equally during inference,
which fails to address inter-model performance variability on different
input images. Averaging predictions in this manner can lower overall
performance if certain models underperform significantly for a given
input. For example, if one model in the ensemble has low accuracy for a
specific class of images, its predictions will negatively impact the final
output even if the other models perform well on those images [22].
Additionally, traditional ensembles do not selectively leverage individ-
ual model strengths, missing opportunities to optimize based on intrinsic
capabilities. One method that can be employed in ensemble models is
the STAPLE (Simultaneous truth and performance level estimation) al-
gorithm [23]. STAPLE takes as input a collection of maps, which may
come from different segmentation algorithms, and estimates both a
probabilistic true segmentation as well as a performance level for each
input segmentation simultaneously. However, the performance esti-
mates produced for each algorithm do not account for image-specific
variability. To better handle inter-model performance differences on a
per-image basis, more advanced ensemble techniques that dynamically
weight or select models based on their predicted performance for each
input would be beneficial. Such adaptive ensembles could potentially
improve overall accuracy by leveraging the strengths of individual
models and mitigating the impact of their weaknesses in an
input-dependent manner.

To address traditional ensemble limitations, recent research has
explored integrating uncertainty estimation during testing [24,25].
Uncertainty estimation involves assigning confidence metrics to the
predictions made by deep learning models [26,27]. These uncertainty
estimates help indicate how reliable a model’s outputs are for a given
input image. For example, Maadi et al. [28] proposed a two-stage se-
lective bagging model that considers both uncertainty and accuracy for
classifier selection in ensemble learning. In another study, Maadi et al.
[29] introduced a performance measure that integrates uncertainty and
accuracy for feature selection in classification. While uncertainty esti-
mation is largely used for classification tasks, it is not yet widely
employed for segmentation networks [30]. In this paper, we introduce
an Adaptive Uncertainty-based Ensemble (AUE) model for lung tumor

segmentation in histopathological images. Our AUE model leverages
estimated uncertainty to select the best-performing individual models
during inference for each WSI. To the best of our knowledge, this work
represents the first attempt to leverage predictive uncertainty within an
ensemble pipeline for the task of image segmentation. The key contri-
butions of this work can be summarized as:

− We propose an AUE model that leverages estimated uncertainty to
dynamically select the optimal individual models during inference
for each WSI. By identifying the best-performing models for the
current image, our approach enhances overall segmentation
performance.

− We introduce a novel technique to quantify uncertainty for each
model. These model-specific uncertainty estimates are utilized to
calibrate the AUE during testing. By assessing each model’s uncer-
tainty, we can better predict segmentation accuracy and perform
refined tumor delineation for a given WSI.

− We incorporate color normalization and smart patch extraction into
our pipeline to focus model attention on salient regions of interest.
This improves segmentation precision while reducing computational
costs by excluding non-informative areas.

− We validate our methodology on the public ACDC@LungHP dataset
and benchmark against state-of-the-art approaches from the chal-
lenge. We also systematically compare the ensemble to individual
models and analyze the impact of different aggregation techniques
like majority voting and median ensemble.

This paper is structured as follows: Section 2 provides a compre-
hensive overview of the proposed method, while Section 3 details the
experimental results. Finally, Sections 4 and 5 offer a thorough discus-
sion of the overall work.

2. Materials and methods

In this paper, we present an AUE method for lung cancer segmen-
tation. The workflow of our approach is illustrated in Fig. 1. Our AI
pipeline for lung cancer segmentation consists of three key steps: i)
training the individual models, ii) testing and calibrating each model
based on uncertainty estimates, and iii) utilizing the AUE model for
semantic segmentation of cancerous regions. We provide a detailed
description of our methodology in the following sections.

2.1. Dataset

The dataset used in this study is from the ACDC@LungHP challenge
[15], comprising 200 WSIs stained with Hematoxylin and Eosin (H&E).
This dataset covers the major lung cancer types, including squamous cell
carcinoma, small cell carcinoma, and adenocarcinoma, with an
approximate distribution ratio of 6:3:1. The organizers of the challenge
divided the entire dataset into two groups: 150 WSIs were randomly
selected for the training set, while the remaining 50 were used as the test
set. As the test set for this challenge is not publicly accessible, we divided
the available 150 WSIs into three subsets for the development of our
method: 110WSIs for the training set, 15WSIs for the validation set, and
25 WSIs for the test set.

2.2. Data preparation and models training

The original WSIs in the ACDC@LungHP dataset have a resolution of
0.5 μm/pixel (20x magnification). Stain normalization was applied to
the entire WSI at this original resolution to reduce color variability
across WSIs, irrespective of the specific lung cancer subtype. Stain
normalization is commonly used as a pre-processing step in deep
learning frameworks to reduce stain variability and improve diagnostic
algorithms [16,27]. This operation involves normalizing the color pro-
file of an input image to match a template image.
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For stain normalization, we employ a Generative Adversarial
Network (GAN) -based approach similar to that proposed by Bentaieb
et al. [31], which demonstrated state-of-the-art performance for color
normalization tasks in histology images. The goal is to translate the color
pattern of images from one domain (domain A) to the color pattern in
another domain (domain B), where domain A exhibits a wide range of
color patterns and domain B has a relatively uniform color pattern. The
model used in this work is a Pix2Pix GAN model with a U-net generator
and a PatchGAN discriminator [32]. Fig. 2a shows the stain normali-
zation process on a sample image. The proposed algorithm is designed to
extract patches from informative regions, which are most likely to
contain cancerous tissue. We define informative regions as areas within
the WSI with a high density of cell nuclei, as changes in nuclei
morphology and architecture are key indicators of lung cancer. Our
patch extraction technique is inspired by strategies introduced by
Janowczyk et al. [33], who developed targeted extraction methods
focused on nuclear regions to improve training efficiency. Specifically,
the algorithm segments the image to detect unstained areas and nuclear
regions. Since simple thresholding may be ineffective for segmenting all
the white areas, our algorithm employs Gaussian filtering to smooth the
original image before thresholding at 95 % of the maximum filtered
value. To detect nuclei positions, it uses the segmentation algorithm
from our previous work [34].

To reduce the computational cost of subsequent processing steps, we
extracted tiles from the normalized WSIs. These tiles had a dimension of
3840×3840 pixels at 20x magnification (0.5 μm/pixel). From these tiles,
we extracted patches of size 768 × 768 pixels with a 50 % overlap. The
patch size was chosen to provide sufficient context for the segmentation
model while keeping computational requirements manageable. The
50 % overlap ensures adequate coverage of all tile regions and helps
capture spatial dependencies between adjacent patches during seg-
mentation. Specifically, a smart patch extraction is adopted that exploits
the segmentation masks (nuclei and white) previously identified. All
patches that show a minimum of 10 % area covered by nuclei and a
maximum of 80 % white areas are selected by the algorithm to train the
deep network. In this way, patches with a high nuclei density are
considered informative and are selected for further processing, while
patches containing mostly stromal tissue or large areas of white back-
ground are excluded. The pseudo-code and example results obtained
with this selective patch extraction strategy are illustrated in Fig. 2b.

Fig. 3 illustrates the four different architectures that compose our
ensemble model: K-Net, ResNeSt, Segformer, and Twins. These archi-
tectures were selected because they represent state-of-the-art ap-
proaches in semantic segmentation and utilize diverse mechanisms for
feature extraction and decoding. K-Net and ResNeSt are based on CNNs,
while Segformer and Twins are built upon vision transformers. K-Net

Fig. 1. Schematic overview of the process for constructing the ensemble model. (a) After preprocessing and patch extraction, the individual models are trained for
the segmentation task. (b) Each deep neural network (DNN) is tested and calibrated based on the uncertainty estimates. (c) During inference, the AUE selects the best
performing networks for the current WSI to perform tumor segmentation.
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[35] employs a dual-branch structure to extract multi-scale features
while ResNeSt model [36] leverages a split-attention mechanism to
capture both local and global dependencies. Segformer [37] utilizes a
hierarchical transformer encoder to extract features at different scales,
and Twins [38] employs a two-branch architecture with self-attention
and locally-grouped self-attention to capture both global and local
context. By incorporating these diverse architectures into our ensemble,
we aim to exploit their complementary strengths and improve the
overall segmentation performance. The combination of CNN-based and
transformer-based models allows our ensemble to benefit from both the
local feature extraction capabilities of CNNs and the global context
modeling abilities of transformers. All four networks were trained using
the hyperparameters listed in Table 1.

2.3. Adaptive uncertainty-based ensemble (AUE)

The construction of the AUE model consists of 2 phases: ensemble
calibration and model implementation.

2.3.1. AUE calibration
In this work, we quantify the uncertainty of each individual model’s

predictions using Monte Carlo (MC) dropout [39]. MC dropout involves
applying dropout regularization during inference to generate multiple
predictions for a given input, allowing us to estimate the model’s un-
certainty by analyzing the variability in these predictions.

We strategically place dropout layers at different depths within each
network architecture to capture uncertainty at various stages of the
feature extraction process [40]. In K-Net, dropout is applied after layers
3, 6, and 9; in ResNeSt, after the split attention blocks; in Segformer,
following the multi-scale feature fusion stages; and in Twins, after the
transformer encoders. This approach allows us to assess the confidence
of the learned features at different levels of abstraction, from low-level
to high-level representations.

For each model, we generate five randomMC samples per WSI of the
validation set by applying dropout with a probability of 0.5 [41]. The
probability pr of the tumor region r is then computed by averaging the T
samples using the following equation [41]:

pr =
1
T
∑T

t=1
pr,t (1)

From these probabilities, we compute the normalized entropy [41],
defined as:

H = − [prlogpr +(1 − pr)log(1 − pr) ]
1

log(2)
H ∈ [0, 1] (2)

From the MC dropout, we generate an uncertainty map for each WSI
in the validation set (Fig. 4a). The uncertainty estimates obtained from
MC dropout reflect the reliability of each model’s predictions for a given
input image. In our AUE model, we leverage these uncertainty estimates
to dynamically select the two most confident models for each input
image during inference. By choosing the models with the lowest un-
certainty, we prioritize the predictions that are most likely to be accu-
rate for the specific input. It is important to note that the uncertainty in
our AUEmodel is derived from the variability in each individual model’s
predictions when MC dropout is applied, rather than from a difference
map between two models.

To quantify the uncertainty for each WSI, we calculate the median of
the non-zero values in the uncertainty map. We then compare the Dice
similarity coefficient from the segmentation map to the uncertainty
value to identify potential correlations between uncertainty and seg-
mentation accuracy. The motivation behind using the correlation be-
tween the Dice score and the median entropy stems from the
fundamental principles of uncertainty quantification in deep learning
models. In the context of semantic segmentation, we expect that a model
with low uncertainty would produce more accurate and consistent
segmentations (Dice score) across multiple forward passes. On the other
hand, the choice of using the median entropy as a summary statistic for
the uncertainty map is based on its robustness to outliers and its ability
to capture the central tendency of the uncertainty distribution.

Since each of the four architectures has different dropout place-
ments, we calibrate the uncertainty individually for each network. The
goal is to relate the uncertainty from MC dropout to the Dice score,
which indicates segmentation quality. Fig. 4b shows the calibration
curves learned to relate estimated uncertainty to the Dice score for each

Fig. 2. Patch extraction employed in this work. (a) First, stain normalization is employed to standardize the color appearance of the histological images. Then, all the
relevant structures (cell nuclei and white areas) are extracted to guide the patch extraction. (b) Pseudocode and results obtained with our smart patch selec-
tion approach.
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Fig. 3. Segmentation networks that compose our ensemble model. (a) K-net, (b) ResNeSt, (c) Segformer, (d) Twins. In K-Net architecture, a Swin Transformer
backbone is employed with a UperNet neck module.
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model. As can be seen from the same figure, a strong negative correla-
tion is observed between these two variables, showing lower segmen-
tation uncertainty corresponds to higher tumor segmentation accuracy.
These curves also demonstrate that our approach is able to align un-
certainty with segmentation accuracy through linear regression [42].
Specifically, we establish a linear association between the median
non-zero uncertainty values and Dice scores for the full validation set.
For each model, we obtain the slope (m) and intercept (q) using:

y = mx+ q (3)

Where ’y’ is the Dice score and ’x’ is the median non-zero uncertainty
value. This calibration aligns the uncertainty estimates with the Dice
scores, improving the model’s segmentation performance.

2.3.2. AUE implementation
The calibration functions obtained for each of the four models on the

validation set are utilized during inference on the test set (Fig. 5). To
make predictions on a test whole slide image (WSI), we follow these
steps:

1. MC dropout is applied to the test WSI for all four trained models to
capture prediction uncertainties. Five MC samples are generated per
model, producing uncertainty maps using Eq. 1 and 2.

2. The median of the positive uncertainty values is calculated from each
model’s uncertainty map, providing a per-model uncertainty mea-
sure. The expected Dice scores are estimated using the linear
regression functions from the validation set, quantitatively evalu-
ating segmentation performance.

Table 1
Hyperparameters and settings used during model training.

Hyperparameter K-Net
[35]

ResNeSt
[36]

Segformer[37] Twins
[38]

Backbone PCPVT ResNetV1c MixVisionTransformer PCPVT
Depths [3, 4, 6,

3]
50 [2, 2, 2, 2] [3, 8,

27, 3]
Embed Dims [64,

128,
320,
512]

- 64 [64,
128,
320,
512]

Num Heads [1, 2, 5,
8]

- [1, 2, 5, 8] [1, 2, 5,
8]

Patch Sizes [4, 2, 2,
2]

- [7, 3, 3, 3] [4, 2, 2,
2]

Strides [4, 2, 2,
2]

[1, 2, 1, 1] - [4, 2, 2,
2]

MLP Ratios [8, 8, 4,
4]

- 4 [8, 8, 4,
4]

SR Ratios [8, 4, 2,
1]

- [8, 4, 2, 1] [8, 4, 2,
1]

Decoder Channels 128 512 256 256
Decoder Dropout
Ratio

0.1 0.1 0.1 0.1

Learning Rate 0.0001 0.0001 0.0001 0.0001
Optimizer AdamW AdamW AdamW AdamW
Weight Decay 0.0005 0.0005 0.0005 0.0005
Loss function Dice Dice Dice Dice
Batch Size 4 4 4 4
N◦ epochs 80 80 80 80

Fig. 4. AUE calibration process. (a) Multiple inferences are performed using Monte Carlo dropout to estimate a normalized entropy uncertainty map. The median
uncertainty value is extracted from each WSI as its overall measure of uncertainty. (b) For each of the four neural networks used in the AUE, the plots approximate
the relationship between the estimated uncertainty values and the corresponding Dice scores for the WSIs in the validation set. This calibration helps assess the
accuracy of the uncertainty estimates for each network.
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3. The two models with the highest expected Dice scores are selected to
perform the final tumor segmentation, ensuring accurate and reliable
model contributions.

4. Without dropout, the probability maps (softmax values) are extrac-
ted from the chosen models, generating two binary tumor masks by
thresholding at 0.5. A logical OR operation between the masks pro-
duces the final tumor segmentation mask.

This uncertainty-guided selection process enhances the segmenta-
tion performance by leveraging the most reliable models, while effec-
tively managing model uncertainty. To obtain the final mask,
morphological operations are applied to the ensemble output. These
morphological operations are necessary to address potential issues, such
as disconnected objects or small holes that may arise during the fusion of
two predictions. The post-processing step serves to regularize the shape
of the final prediction by applying dilation with a 20-pixel disk, filling
holes over 10,000 pixels, and erosion with a 10-pixel disk to refine
boundaries. We also refined the mask by removing segmented areas
outside the tissue regions, following the same approach used by several
authors who participated in the challenge [15]. This step helps maintain
the consistency of the segmentation mask.

2.4. Evaluation metrics and performance comparison

To assess the performance of the AUE model, we utilize a compre-
hensive set of segmentation metrics. The Dice score, which serves as our
primary evaluation criterion, is the reference metric of the ACD-
C@LungHP challenge [15]. In addition to the Dice score, our evaluation
framework includes secondary metrics. These metrics encompass
sensitivity (true positive rate), specificity (the model’s ability to identify
true negative instances), and accuracy (the overall correctness of pre-
dictions). While the Dice score remains our primary metric for ranking
and assessing segmentation quality, the inclusion of sensitivity, speci-
ficity, and accuracy ensures a comprehensive evaluation, enhancing our
understanding of the model’s performance in the context of lung cancer
segmentation.

In this study, we assess the robustness of our proposed model by
incorporating the DICE curve as an additional metric. The DICE curve is
generated by examining the relationship between the mean DICE value
of the AUE model and different segmentation thresholds applied to the
ensemble’s output [43]. Furthermore, we compare our proposed AUE
model to five traditional ensemble techniques for merging individual
network predictions:

1. Mean Ensemble: The probability maps from the four networks are
averaged, and the resulting map is thresholded at 0.5 to generate the
final tumor mask. This approach treats all networks equally and
combines their outputs through a simple averaging operation.

2. Logical AND Ensemble: The softmax outputs from each network are
thresholded at 0.5 to create binary masks. These masks are then
combined using a logical AND operation, where a pixel is considered
part of the tumor only if all networks agree. This strict approach
favors precision over recall.

3. Logical OR Ensemble: Similar to the Logical AND Ensemble, the
softmax outputs are thresholded at 0.5 to create binary masks.
However, in this case, a logical OR operation is applied, where a
pixel is considered part of the tumor if any of the networks predict it
as such. This approach prioritizes recall over precision.

4. Majority Voting Ensemble: The softmax outputs from each network
are thresholded at 0.5 to create binary masks. The final tumor mask
is obtained through majority voting, where a pixel is considered part
of the tumor if at least half of the networks agree. This approach aims
to balance precision and recall.

5. STAPLE: STAPLE algorithm [23] is applied to the thresholded soft-
max outputs from each network. This algorithm simultaneously es-
timates the true segmentation and the performance level of each
network, producing a final segmentation map based on a threshold of
0.5. STAPLE takes into account the agreement between networks and
their estimated performances to generate a weighted combination of
the individual predictions.

To assess the statistical significance of our results, we employed a
two-tailed paired t-tests to compare the performance of our AUE model
against other ensemble methods on the test set (N=25). Prior to applying
the t-tests, we verified the underlying assumptions. The normality of the
differences between paired observations was confirmed using Shapiro-
Wilk tests for each comparison. Our performance metrics (Dice score,
accuracy, sensitivity, and specificity) are continuous variables ranging
from 0 to 1, satisfying the continuity assumption. All statistical tests
were conducted with a significance level of 0.05.

3. Results

3.1. Segmentation performance

Table 2 compares the test set segmentation results of the four indi-
vidual models described in the Methods with the top-ranked model from

Fig. 5. AUE implementation during test time. Monte Carlo dropout is applied to each of the four trained models to generate uncertainty maps using normalized
entropy. Then, the median uncertainty value is extracted from each map. Expected Dice scores are estimated using regression on the validation set and the two
models with the highest Dice scores are selected for final segmentation. Softmax maps from these models are extracted and thresholded at 0.5 to create binary masks.
A logical OR combines the masks to generate the segmented tumor mask and post-processing is applied to further refine the result.
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the ACDC-LungHP challenge. Among the proposed single models, K-Net
achieves the highest mean Dice score on the test set at 0.8362 while the
ResNeSt model has the lowest at 0.8239. All four individual models
outperformed the top ACDC-LungHP model, which had a mean Dice of
0.77.

Table 3 compares the proposed ensemble model (AUE) to the top
ACDC-LungHP challenge participant’s multi-model approach. The AUE
model achieved a mean Dice of 0.8653 on the test set, while the top
participant had 0.8373, an improvement of around 3 % for AUE. This
demonstrates the superior performance of the AUE ensemble versus the
current multi-model approach.

3.2. AUE vs. single models

Fig. 6 and Fig. 7 show two examples of how the AUE model greatly
improves tumor segmentation accuracy compared to the individual
networks. This enhancement is achieved by intelligently combining the
predictions of the two models and leveraging the information provided
by their respective prediction uncertainties.

Fig. 8 presents a comparison of the Dice score distributions for the
AUE model and the individual networks (K-Net, ResNeSt, Segformer,
Twins) on the test set. The AUE model achieves a mean Dice coefficient
of 0.8653, which is 2–4 % higher than the performance of each indi-
vidual network alone (Table 2). This positions AUE as a highly
competitive solution, especially in terms of Dice and sensitivity. To
confirm the statistical significance of our ensemble’s improved accu-
racy, paired t-tests were conducted between AUE and individual models.
All tests reported p-values < 0.05, confirming the significant perfor-
mance improvement achieved by AUE. Additionally, AUE outperforms
all individual networks in DICE curves, with a significantly higher AUC-
DICE of 0.84 (Fig. 8b). The Dice coefficient of the AUE model remains
stable as the segmentation threshold changes, unlike the substantial
decreases observed with the individual networks. This suggests that the
proposed AUE model has superior coherence and stability in tumor
segmentation compared to the individual networks. This suggests that
the proposed AUE model has higher consistency and stability in tumor
segmentation compared to the individual networks.

To further analyze the performance variability, we calculated the
coefficient of variation (CV) of the Dice score for each model. The CV
values are as follows: AUE (7.22 %), K-Net (9.37 %), ResNeSt (10.75 %),
Segformer (9.53 %), and Twins (10.27 %). The lower CV value for the
AUE model indicates that it exhibits less relative variability in perfor-
mance compared to the individual networks. This suggests that the AUE
model not only improves the overall segmentation accuracy but also

provides more consistent results across different test images.

3.3. AUE vs. traditional ensemble models

We evaluate our novel AUE model in two different configurations:
AUE with logical AND between the best estimated predictions, and AUE
with logical OR between the best predictions (as described in Section
2.3). This is done to identify the most effective ensemble approach. As
shown in Table 4, AUE with OR operator outperforms all five traditional
ensembles, achieving superior mean Dice of 0.8653, accuracy of 0.9689,
and sensitivity of 0.9244 on the test set. Paired t-tests confirm that AUE
(OR) significantly outperforms all traditional ensemble methods (p <

0.05) in almost all evaluationmetrics (Dice score, Accuracy, Sensitivity).
While AUE excelled overall, its specificity of 0.9673 is slightly lower
than the logical AND ensemble. However, AUE’s specificity remains
competitive and reasonably robust, balancing correct non-tumor iden-
tification while minimizing false negatives (high sensitivity).

4. Discussion

Combining the predictions of single deep learning models into an
effective ensemble model remains an open challenge. Traditional
ensemble methods, such as majority voting and average pooling, often
yield suboptimal results by oversimplifying how they treat the constit-
uent networks. These traditional methods treat all networks within the
ensemble equally, regardless of their varying performance on specific
images. This one-size-fits-all approach can have negative effects on
ensemble performance, as the limitations of one model can propagate
across the entire ensemble.

In our work, we introduce a novel and effective strategy called AUE
model to address this limitation during test time. Through our proposed
approach, we gain valuable insights during inference, allowing for
better control of the individual networks that compose the ensemble.
Specifically, thanks to uncertainty estimation, we are able to select the
"best" pair of networks for each input data.

We tested our approach on the ACDC-LungHP challenge [15] for
lung cancer segmentation from histopathological slides. Lung cancer
segmentation from histopathology slides is challenging due to variations
in stain intensity and tissue structure between slides. Accurately seg-
menting tumor boundaries is essential for treatment planning, assessing
tumor progression, and monitoring treatment response. Our pipeline
contains a stain normalization procedure as a pre-processing step and a
"smart patch extraction" technique that extracts patches only from
informative tissue regions. Notably, our ensemble leverages a model
pool consisting of K-Net, ResNeSt, Segformer and Twins - all of which
individually outperform the top-ranked single model [15] from the
ACDC-LungHP challenge in terms of Dice score (Table 2). The models’
performance is largely due to the effective use of stain normalization and
patch extraction techniques during training.

By employing calibration functions and adopting a model selection
process based on uncertainty quantification, our ensemble approach
provided reliable and accurate tumor segmentation for each WSI during
testing. The correlation values between the uncertainty estimates and
the Dice scores range from 0.43 to 0.57, indicating a moderate corre-
lation. While a stronger correlation would be ideal, it is important to
consider the purpose and impact of this correlation in the context of our
AUE model. The primary objective of establishing this correlation is to
enable the AUE model to estimate the Dice scores during the testing
phase and combine the most reliable predictions adaptively, rather than
relying on simple averaging like traditional ensemble models. Even a
moderate correlation can provide valuable information for guiding the
ensemble’s decision-making process, as it allows the AUE model to
prioritize the predictions from models that are expected to perform
better on a given input image. This approach significantly improved the
overall performance and generalization capability of the segmentation
models, achieving around a 3 % improvement compared to the multi-

Table 2
Single model performance on test set. Comparison between the top-ranked
single model of the challenge and individual models of our ensemble.

Network Dice
score

Accuracy Sensitivity Specificity

Single model ranked 1st on
ACDC-LungHP [15]

0.7700 0.9375 0.8003 0.9567

Knet 0.8362 0.9526 0.8190 0.9639
Twins 0.8291 0.9500 0.8189 0.9618
Segformer 0.8322 0.9525 0.8079 0.9683
Resnest 0.8239 0.9499 0.8150 0.9743

Table 3
Multi-model performance on test set. Comparison between the top-ranked multi-
model of the challenge and the proposed AUE model.

Network Dice
score

Accuracy Sensitivity Specificity

Multi-model ranked 1st on
ACDC-LungHP [15]

0.8373 0.9505 0.9052 0.9531

AUE (proposed) 0.8653 0.9689 0.9244 0.9673
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model ranked first in the challenge [15]. This notable improvement
underscores the effectiveness of leveraging uncertainty information to
optimize ensemble predictions. The obtained results highlight the effi-
cacy of the AUE model in the challenging task of lung tumor segmen-
tation across entire WSIs. Notably, our approach employs precise model

selection during inference, effectively exploiting the most optimal
models for each specific WSI. Rigorous t-tests confirm the statistical
significance of this methodology in combining the two
highest-performing models during testing.

Our ensemble model not only enhances segmentation accuracy but

Fig. 6. Sample #1 - Application of AUE on a WSI from the test set. The AUE model is able to select the two best performing networks of the ensemble to produce the
final segmentation mask with more than 3 % improvement over the single model.

Fig. 7. Sample #2 - Application of AUE on a WSI from the test set. The AUE model is able to select the two best performing networks of the ensemble to produce the
final segmentation mask with more than 4 % improvement over the single model.

Fig. 8. (a) Comparative analysis of Dice scores: AUE vs. individual models, with statistically significant differences marked by *. (b) Dice Score Curves: AUE vs.
Individual Models.
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also outperforms traditional ensemble methods, which often overlook
the varied performance of individual models across different images.
AUE achieves a remarkable Dice score of 0.8653, surpassing traditional
ensembles. Importantly, this superior segmentation performance main-
tains a critical maximal sensitivity of 0.9244 for tumor segmentation
tasks. By correctly managing uncertainty during testing, our model can
effectively merge only the reliable predictions for each input data.

It is important to acknowledge that our AUE model relies on a semi-
empirical approach, as it leverages the correlation between the uncer-
tainty estimates and the Dice scores to guide the ensemble’s decision-
making process. While this correlation provides valuable information
for combining the most reliable predictions, it is not a perfect measure of
segmentation accuracy. The effectiveness of the AUE model is contin-
gent upon the following hypotheses and conditions:

1. The uncertainty estimates obtained through MC dropout are infor-
mative and capture the model’s confidence in its predictions. We
assume that lower uncertainty corresponds to higher segmentation
accuracy, which is supported by the observed moderate correlation
between the median entropy and the Dice scores.

2. The calibration curve, which relates the uncertainty estimates to the
Dice scores, is representative of the relationship between model
confidence and segmentation accuracy. We hypothesize that this
relationship is consistent across different images within the dataset
and can be approximated using linear regression.

3. The AUE model’s performance is expected to be optimal when the
individual models in the ensemble exhibit diversity in their pre-
dictions and uncertainties. If all models consistently produce similar
uncertainties, the AUE model may not provide significant improve-
ments over traditional ensemble methods.

Our AUE model is not without limitations. Currently, it relies on a
fixed pool of models for ensemble selection. Future work could explore
expanding the model pool to further enhance performance. Addition-
ally, while our current calibration method employs the median of en-
tropy value as the uncertainty measure, refinements may involve using
additional features from the uncertainty map. Optimizing the calibra-
tion process with more features and with non-linear calibration could
enable even better performance. Another limitation is the computational
complexity of the ensemble approach. The time complexity of our AUE
approach depends on several factors, including the number of individual
models in the ensemble, the complexity of each model’s architecture,
and the size of the input images. In the inference phase, our AUE model
requires running each individual model on the input image to obtain
their segmentation predictions and uncertainty estimates. The time
complexity of this step is linear with respect to the number of models in
the ensemble. Compared to single-model approaches, our AUE model

has a higher computational cost during inference due to the need to run
multiple models. However, this increased cost is offset by the improved
segmentation accuracy and robustness achieved through the ensemble
approach. In comparison to traditional ensemble methods, such as ma-
jority voting, our AUE model has a higher time complexity, as it also
performs the additional step of uncertainty estimation. However, the
number of samples used by MC dropout (n=5) is lower than that used in
current literature (typically n≥20) [44,45]. Exploring techniques to
optimize the ensemble process or designing efficient architectures can
address these computational limitations.

As we continue to refine our AUE model, we aim to address the
current limitations and explore potential improvements. One avenue for
enhancement is to investigate alternative uncertainty quantification
methods beyond MC dropout, such as Bayesian neural networks, which
may provide more robust and reliable uncertainty estimates. Another
potential area for improvement is to explore more advanced calibration
methods for relating the uncertainty estimates to the segmentation ac-
curacy. While our current approach uses a linear regression model to
approximate this relationship, non-linear or probabilistic calibration
methods may better capture the complex interactions between uncer-
tainty and performance.

Our upcoming research aims to broaden the comparative analysis of
our AUE model with a more comprehensive set of state-of-the-art
methods for lung cancer segmentation in digital pathology. Addition-
ally, we will explore and compare different ensemble techniques, such as
weighted averaging, and stacking [46], to further assess the effective-
ness of our uncertainty-based ensemble strategy. Furthermore, we will
investigate the performance of our AUE model in comparison to other
uncertainty-aware approaches, such as Bayesian neural networks [47],
and ensemble methods that incorporate uncertainty estimates [48].

Future applications of our approach may extend beyond lung cancer
segmentation to encompass other challenging tasks in digital pathology,
such as gland [49] or vessel [2] segmentation. Leveraging uncertainty
maps more broadly opens the possibility of application to other imaging
modalities as well. Investigating and integrating additional uncertainty
map features could refine the calibration process and potentially achieve
even more accurate and reliable ensemble predictions. This ongoing
research holds great promise for the advancement of medical image
analysis and, ultimately, for the improvement of diagnosis and treat-
ment of various medical conditions.

5. Conclusion

In this work, we have introduced a novel adaptive uncertainty-based
ensemble model for robust lung tumor segmentation in whole slide
images. To the best of our knowledge, this work represents the first
attempt to leverage predictive uncertainty within an ensemble pipeline
for the task of image segmentation. Our approach dynamically selects
the best pair of models during testing by leveraging uncertainty esti-
mates from Monte Carlo dropout. Experiments on the ACDC-LungHP
challenge dataset demonstrate superior performance over single
models, traditional ensembles, and top-ranked methods from the chal-
lenge. The proposed ensemble model provides an effective pipeline to
manage uncertainty across models and optimally combine predictions,
enhancing lung cancer delineation. Our methodology could also be
extended to other histopathology segmentation tasks, providing a
valuable tool for computer-aided diagnosis. Further work should
investigate expanding the model pool and refining the uncertainty
calibration process. Overall, this research demonstrates that leveraging
predictive uncertainty can optimize ensemble-based medical image
analysis by integrating heterogeneous models. Our findings thus
advance the development of reliable computer-assisted diagnosis tech-
niques toward improved personalized healthcare.

Table 4
Comparison between AUE and traditional ensemble models. Best performance
for each metric is highlighted in bold. The asterisk (*) indicates a statistically
significant difference between the AUEmethod and all compared methods based
on a paired t-test.

Ensemble method Dice
score

Accuracy Sensitivity Specificity

Mean of the four networks 0.8394 0.9383 0.8203 0.9675
Logical AND of the four
networks

0.7821 0.9066 0.6927 0.9853

Logical OR of the four
networks

0.8532 0.9361 0.8972 0.9333

Majority voting between
the four networks

0.8254 0.9349 0.7907 0.9826

STAPLE [23] 0.8424 0.9451 0.8235 0.9615
AUE with logical AND
(proposed)

0.8355 0.9247 0.7899 0.9745

AUE with logical OR
(proposed)

0.8653
(*)

0.9689
(*)

0.9244(*) 0.9673
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