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33 Abstract

34 Actigraphs are the gold standard for measuring light exposure in human non-laboratory 

35 experiments due to their portability and long battery lives. However, actigraphs typically 

36 have a limited illuminance operating range not representative of real-world conditions, and 

37 for many actigraphs, the accuracy of their light measurement has not been verified 

38 independently. We assessed the illuminances recorded by Activinsights GENEActiv Original 

39 and Philips Actiwatch 2 actigraphs in comparison to a calibrated, laboratory standard 

40 photometer, under both artificial LED and natural sunlight illuminations that might be 

41 encountered by a person under real-world conditions. We show that in response to ~20,000 

42 lux white LED light, the GENEActiv and Actiwatch 2 underestimate illuminance by 

43 recording 50% and 25% of the true value respectively. Under ~30,000 lux sunlight, the 

44 GENEActiv readily saturates while the Actiwatch 2 reports ~46% of the true illuminance. 

45 These underestimations are highly linear and we provide correction factors to estimate the 

46 illuminance levels of the ambient environment measured by the actigraphs. We also evaluate 

47 the application of neutral density filters for extending the operating range of both devices in 

48 natural sunlight illuminations (as high as 30,000 lux during our measurements) and 

49 demonstrate that this may be a viable approach for increasing the operating range of the 

50 Actiwatch 2 but not the GENEActiv. We conclude that both actigraphs provide good 

51 performance monitoring of the temporal patterning of light, whereas the absolute illuminance 

52 values require correction to accurately evaluate the effects of light intensity on human health 

53 and behaviours.

54

55 Key words:

56 actigraph, photometer, illuminance, LED, sunlight

57 Introduction

58 Photoentrainment to the pattern of light and dark influences a variety of human behavioural 

59 processes including circadian rhythms, sleep, alertness and mood (Czeisler et al., 1986; 

60 Dawson & Campbell, 1991; Golden et al., 2005; LeGates, Fernandez, & Hattar, 2014; Rüger, 
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61 Gordijn, Beersma, Vries, & Daan, 2006). Photoreceptors in the eye that transduce 

62 environmental light information to brain areas for mediating these processes (Altimus et al., 

63 2010; Bellingham & Foster, 2002; Chen, Badea, & Hattar, 2011; Rollag, Berson, & 

64 Provencio, 2003) are affected in disease (Adhikari, Zele, Thomas, & Feigl, 2016; Dumpala, 

65 Zele, & Feigl, 2019; Joyce, Feigl, Kerr, Roeder, & Zele, 2018; Maynard, Zele, Kwan, & 

66 Feigl, 2017)  and the magnitude and timing of light exposure are associated with the circadian 

67 rhythm phase (Duffy, Kronauer, & Czeisler, 1996), sleep quality (Ancoli-Israel et al., 2003; 

68 Phipps-Nelson, Redman, Dijk, & Rajaratnam, 2003) and mood (Rüger et al., 2006),  The 

69 efficacy of light therapy in treating disorders, including sleep abnormalities and depression 

70 (Campbell et al., 1995; Golden et al., 2005; Mishima et al., 1994; Montgomery & Dennis, 

71 2002; Rosenthal, Sack, Gillin, & et al., 1984; Terman & Terman, 2014), underscores the 

72 importance of understanding and optimising light exposures for human wellbeing and health.

73

74 While calibrated research-grade photometers and radiometers accurately quantify light levels, 

75 they are not practical for measuring the light exposure of a freely moving individual over 

76 time. The standard instrument used for this purpose is a wrist worn actigraphy device 

77 (Bernhofer, Higgins, Daly, Burant, & Hornick, 2014; Flynn et al., 2014; Grandner, Kripke, & 

78 Langer, 2006; Higgins, Hornick, & Figueiro, 2010; Higgins, Winkelman, Lipson, Guo, & 

79 Rodgers, 2007; Liu et al., 2005; Shochat, Martin, Marler, & Ancoli-Israel, 2000). However, 

80 the accuracy of many of these devices in measuring environmental light exposure has not 

81 been verified independently, while those devices that have been independently measured 

82 show inaccuracies. For example, compared to a calibrated Extech Light Meter, the 

83 Sleepwatch-L device underestimates the indoor illuminance (11 AM to 5 PM; both artificial 

84 and natural lights) during daylight hours by up to 64% (Higgins et al., 2007). To further 

85 verify the use of actigraphs in measuring light exposure, here we determine the accuracy of 

86 environmental LED light and natural sunlight measurements reported by Activinsights 

87 GENEActiv Original and Philips Actiwatch 2 devices.

88

89 Methods

90 Actigraphs

91 Two commercially available actigraph devices were tested in this study, the GENEActiv 

92 Original (n = 6; Activinsights, Kimbolton, Cambridgeshire, UK) and Actiwatch 2 (n = 6; 

93 Philips Respironics, Murrysville, PA, USA). The GENEActiv device has a stated operating 

94 range of 5 to 3000 lux, 5 lux resolution, an accuracy of +/- 10% at 1000 lux and a wavelength 
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95 range of 400 to 1,100 nm (ActivInsights, 2015) (Fig. 1a). The Actiwatch 2 device has a stated 

96 operating range of 5 to 100,000 lux spanning 400 to 900 nm (other parameters not stated) 

97 (Philips Respironics, 2008). Both devices include visible and partial infrared portions of the 

98 electromagnetic spectrum, and record illuminance rather than the spectral power distribution 

99 of the light. 

100

101 Protocol

102 The LED and sunlight illuminances were continuously measured with the GENEActiv and 

103 Actiwatch 2 devices as well as a calibrated ILT1700 photometer (International Light 

104 Technologies, Peabody, Massachusetts, USA). For the artificial light measurements 

105 (Experiment 1), an enclosed light exposure cabinet was constructed with a high-reflectance 

106 white surface. The light exposure cabinet comprised a dimmable 4,000 k white light LED 

107 panel (Lumex NovaBlade LL9PX66N) typical of artificial lighting conditions in an office 

108 environment. The spectral power distribution (SPD) of the LED light was measured in the 

109 plane of the actigraph devices with a high resolution spectroradiometer (Stellarnet Inc. 

110 EPP2000, Tampa, Florida, USA) (Fig. 1a). The luminaire used a Samsung LM 561 B-5630 

111 LED chip on board module controlled with a pulse width modulated (PWM) signal at 400 hz, 

112 higher than the upper limit of human flicker perception (Smith, Pokorny, Lee, & Dacey, 

113 2008; Zele & Vingrys, 2005). The LED panel had a 120° beam angle and high colour 

114 rendering index (> 90) and was diffused by a flat cosine panel. The LED output was 

115 controlled using the DALI protocol with Dynet Software (Smartscape Automation, Brisbane, 

116 Australia). Measurements were conducted in a 6-hour protocol, where the light ranged from 

117 4.39 to 20,600 lux and featured gradual increases and decreases in illuminance, periods of 

118 darkness, and rapid step-wise changes in illuminance (Fig. 1b). In Experiment 2, we assessed 

119 the performance of the actigraphs under natural sunlight. The actigraphs and photometer 

120 sensor were placed on a level, unshaded surface on the roof of a building in Brisbane, 

121 Australia on a bright sunny morning in December (summer) for one hour. To determine 

122 whether the operating ranges of the devices could be extended, we applied flexible, 

123 lightweight 0.3, 0.6 and 1.2 neutral density (ND) filters (LEE Filters, Hampshire, UK) to the 

124 actigraph photosensors. For all recordings, the actigraph wristbands were removed and the 

125 devices arranged at even intervals in a circle around the ILT1700 photometer sensor. The 

126 sampling frequencies of each device were set to 60 Hz and then downsampled into 1 s epochs 

127 by each manufacturer’s software. The photometer was set to an integration time of 500 ms 

128 and a measurement taken every 500 ms, before averaging. For analyses, the data in 
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129 Experiment 1 were averaged and in Experiments 1 and 2 the data were further downsampled 

130 into 1 min epochs using MATLAB (R2016a, Mathworks, Natick, MA, USA). Post-hoc 

131 analysis revealed that the intra-device coefficients of variation (CoV, SD/mean) were <4% 

132 for both the GENEActiv and Actiwatch 2 devices.

133

134 Fig. 1

135

136 Results

137 Under broadband LED illumination, compared to the photometer, both actigraph devices 

138 (GENEActiv n = 6 Actiwatch 2 n = 6) underestimate the illuminance but show the same 

139 temporal light profile (Fig. 2a). Both devices show systematic underestimation of the peak 

140 20,800 lux illuminance reported by the photometer, the GENEActiv peaks at 9,527 lux 

141 whereas the Actiwatch 2 peaks at 5,755 lux (Fig. 2a), 46% and 28% of the photometer value 

142 respectively (Fig. 2b,d), with the underestimation independent of true illuminance. Although 

143 the devices underestimate the true illuminance, the relationships between photometer and 

144 actigraph outputs are highly linear (Fig. 2c) including both within and above the 5 to 3,000 

145 lux operating range of the GENEActiv device. The magnitude of underestimation by the 

146 actigraphs was most variable at illuminances < 2,500 lux (Fig. 2d).

147

148 Fig. 2

149

150 We next evaluated the performance of the devices in measuring the illuminance of sunlight. 

151 As sunlight illuminance can readily exceed the stated operating range of both devices (upper 

152 limit: 3,000 lux for GENEActiv and 100,000 lux for Actiwatch 2), flexible neutral density 

153 filters were attached to individual devices to determine whether the operating range could be 

154 extended (0.3, 0.6, 1.2 ND filters and no filter (0 ND); n = 4 GENEActiv and n = 4 Actiwatch 

155 2). We show that under sunlight, without ND filters, both devices underestimate the true 

156 illuminance in comparison to the calibrated photometer (Fig. 3a,b). The GENEActiv appears 

157 to saturate under these conditions, reporting ~18,000 lux at peak whereas the Actiwatch 2 

158 does not. For the ND-attenuated devices, reported illuminance decreased as ND value 

159 increased as expected however, this effect was non-systematic for the GENEActiv devices 

160 (c.f. 0.3 vs. 0.6 ND tracings, Fig. 3c). When the data are normalised to maximum, the tracings 

161 demonstrate poor concordance for the GENEActiv devices, indicative of saturation (Fig. 3c), 

162 but good concordance for the Actiwatch 2 devices (Fig. 3d). Response variability is higher 
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163 under sunlight conditions for the Actiwatch 2 (Fig. 3e) compared to LED light (Fig. 2c). 

164 Actigraph outputs show a positive linear relationship with photometer outputs (Fig. 3e,f). The 

165 Actiwatch 2 systematically underestimates illuminance while the GENEActiv transitions 

166 from overestimating to underestimating as illuminance increases (Fig. 3f). The actigraph 

167 output expressed as a percentage of the corresponding photometer output decreases with 

168 increasing illuminance (Fig. 3f) indicating that the magnitude of illuminance underestimation 

169 by the actigraphs increases with increasing light level. GENEActiv saturation at light levels > 

170 18,000 lux manifests in the regression, but the statistically significant regression is driven by 

171 the data <18,000 lux.

172

173 Fig. 3

174

175 Discussion

176 This study evaluates the light measurement performance of two commercially available 

177 actigraphs, the Activinsights GENEActiv and the Philips Actiwatch 2 under artificial (LED) 

178 illumination and sunlight. The data demonstrate that while both devices have good 

179 performance monitoring the temporal patterning of light, they have poor illuminance-sensing 

180 accuracy under moderately intense artificial and natural sunlight conditions as might be 

181 encountered in the real-world (Fig. 2 and 3). In the absence of rigorous manufacturer-

182 provided calibrations, our linear regression models provide a tool to scale the actigraph 

183 output for accurate representation of environmental illumination, including artificial as well 

184 as natural lights as measured by the laboratory standard photometer.

185

186 Across both artificial light and sunlight conditions, illuminance is typically underestimated by 

187 the actigraph devices but differed depending on the light level and source. For LED lighting, 

188 these underestimates are systematic and linear, particularly for higher intensities (Fig. 2). 

189 Under sunlight, the estimates are more variable with the GENEActiv transitioning from 

190 overestimating light intensity to underestimating once saturation occurred (Fig. 3a,f). That 

191 sunlight contains infrared (IR) spectrum which however is negligible for our LED lights 

192 (0.6% of the total spectral power distribution) (Fig. 1a), the overestimation of sunlight 

193 illuminance may be due to the GENEActiv sensitivity (400-1,100 nm) which ranges into the 

194 infrared region well beyond the human luminous efficiency functions (400-700 nm) used by 

195 the ILT1700 photometer to quantify illuminance (lux). Specifying the measurement of 

196 ambient illuminance in a spectrum broader than human vision can result in the intrusion of 
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197 undesired radiometric components. Our analysis suggests that due to the highly linear 

198 relationship between device and photometer measurements, a conversion factor can be 

199 applied to estimate actual illuminance from that reported by the devices. This holds for LED 

200 lighting for both the GENEActiv and Actiwatch 2 (Fig. 2c) and for sunlight for the Actiwatch 

201 2 only (Fig. 3e), but not for the GENEActiv under sunlight as they readily saturate under the 

202 conditions tested. The application of neutral density filters may be one cost-effective method 

203 to extend the operating range of these devices to include high light levels that may be 

204 encountered in daily living. Flexible neutral density filters ranging from 0.3 to 1.2 ND 

205 maintain the fidelity of the (filtered) light intensities recorded by the Actiwatch 2 (Fig. 3b), 

206 but were ineffective for the GENEActiv due to continued saturation (Fig. 3a). More 

207 generally, the data demonstrate that the absolute illuminance values reported by the 

208 actigraphs are not accurate at illuminances both within and outside of their stated operating 

209 ranges, either under artificial LED light or natural sunlight. This finding extends the growing 

210 body of evidence demonstrating significant inaccuracies in measuring light intensity with 

211 actigraphs, including substantial inter-device variation in light sensing between units from the 

212 same manufacturer (Cao & Barrionuevo, 2015; Price, Khazova, & O'Hagan, 2012). 

213

214 Wrist-worn light sensing devices have potential to monitor naturalistic behaviours including 

215 prolonged light exposures over days or weeks, in situations where traditional laboratory-

216 based light measurement devices are impractical. Current-generation iterations of the 

217 GENEActiv and Actiwatch 2 can provide information as to the temporal patterning of light, 

218 but they do not accurately report illuminance under either artificial or natural lighting 

219 conditions, both within and without their stated operating ranges. We encourage actigraph 

220 users to apply these correction factors to more accurately quantify ambient light levels. It 

221 would be advantageous if actigraphs included high-fidelity logging of not just the temporal 

222 patterning, but also the illuminance patterning of light across ecologically valid ranges, in 

223 both artificial and natural light. Increasing the accuracy and precision of these wearable 

224 devices is required to quantify, under naturalistic conditions, how the irradiance, patterning, 

225 and spectral qualities of light are sensed by the image and non-image forming visual 

226 pathways to drive human behaviour. 

227
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