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Abstract—Significant research is currently focused on the 

issue of malicious UAVs or drones disrupting critical services 

(e.g. civilian airport operations). One mitigation is to track or 

pursue a malicious UAV back to its point of origin (and possibly 

its owner) using a swarm of surveillance UAVs. This becomes of 

particular academic interest when the malicious UAV has 

superior capabilities to the individual surveillance UAVs (e.g. in 

terms of maximum speed). In this paper, we deduce a guidance 

law (i.e. a rule for determining the direction of flight) for 

individual surveillance UAVs to maximize the tracking time of 

a highly capable malicious UAV. We then demonstrate the 

validity of the analysis using some examples with realistic 

contemporary UAV capability parameters. The significance of 

this research is that, in a networked swarm of surveillance 

UAVs which communicate with each other, if each surveillance 

UAV maximizes its tracking time, there is a higher probability 

that the next closest surveillance UAV can be in a position to 

assume tracking responsibilities when the malicious UAV moves 

out of tracking range of the original surveillance UAV. In order 

to demonstrate this, a simulation of a networked swarm of 

surveillance UAVs which track a high capability malicious UAV 

is undertaken under various scenarios. 

Keywords — UAV, drone, networking, tracking, pursuit, 

guidance 

I. INTRODUCTION 

There have been several instances recently of Unmanned 
Aerial Vehicles (UAVs), sometimes referred to as drones, 
acting in a malicious and/or unlawful capacity to disrupt 
critical services or even cause physical damage to 
infrastructure. One of the most notorious examples was the 
use of a malicious UAV to disrupt civilian airline operations 
at London Gatwick airport in December 2018 [1, 2]. 

Several different physical, technical, administrative and 
legal/regulatory controls have been proposed, and in some 
cases implemented, to deter, detect and manage malicious 
UAV events [1,2]. An example of a physical control is the 
ability to capture or destroy a UAV which is acting 
maliciously or unlawfully while it is in flight, but there are 
clearly health and safety issues around such a countermeasure. 
An example of a technical control is to jam or hijack the 
wireless link between the UAV and its operator, although this 
is only effective when the UAV is being controlled manually 
via the wireless link as opposed to being on an autonomous 
mission. Finally, an example of an administrative and 
legal/regulatory control is the proposed FAA remote ID 
initiative to allow identification and tracking of UAVs while 
in flight, but a malicious UAV is unlikely to support this 
capability. It seems clear that different controls, and perhaps 

combinations of controls, are required to satisfy different 
threat types and scenarios.  

Another approach to managing a malicious UAV is to 
physically track it back to its point of origin (and possibly its 
owner) without interfering directly with its flight or operation. 
For example, this can be achieved in principle with ground 
based or airborne based radar. Airborne based detection and 
tracking can be implemented using one or more surveillance 
UAVs [3-5]. A particularly interesting scenario from an 
academic perspective occurs when the malicious UAV has 
superior capabilities than the surveillance UAV(s) in terms of 
such parameters as maximum speed, such that it can outrun or 
evade any one of them. However, by dispersing multiple 
surveillance UAVs across a spatial region of interest as part of 
a swarm, it is still possible to track the malicious UAV by 
handing off tracking responsibilities of the malicious UAV 
from one surveillance UAV to the next. 

This concept of swarm based tracking is illustrated in Fig. 
1, in which M represents the malicious UAV with a flight path 
illustrated by the arrowed line, and S1, S2 and S3 are 
surveillance UAVs which are able to detect another UAV 
inside the area delineated by the dashed circles. The detection 
method could be, for example, radar based or computer vision 
based. 

 

Fig. 1. Using a swarm of surveillance UAVs (S1, S2 and S3) to track a 

malicious UAV (M) of superior capability 

As the malicious UAV M enters the detection area of 
surveillance UAV S1, S1 can attempt to pursue M, but M will 
ultimately exit the detection area and outrun S1 if it has 
superior capabilities. If the swarm of surveillance UAVs are 
networked, S1 can inform S2 and S3 of its estimates of the 
position, bearing and speed (if available) of M as soon as it 
detects M, and continue to do so throughout its pursuit of M. 
This allows S2 and S3 to predictively move to positions where 

S2 M 
S1 

S3 



the tracking of M can seamlessly be handed off from S1 to S2 
to S3 over time. Without such networking and predictive pre-
positioning of surveillance UAVs, S2 would not be able to 
detect and pursue M given the flight path of M, although S3 
would be able to. 

Clearly each surveillance UAV should individually 
attempt to maximize the time during which M remains within 
its detection range during the pursuit. One objective of this 
paper is to establish a guidance law for initial pursuit which 
sets a bearing for S1 (i.e. the surveillance UAV that first 
detects M) based upon its estimation of the position, bearing 
and speed of M in order to maximize the tracking time. We 
also discuss aspects of the predictive pre-positioning of other 
surveillance UAVs in the networked swarm ready for the 
hand-off of tracking responsibility from one surveillance 
UAV to the next. Of course, M may dynamically change its 
bearing and speed throughout the pursuit, but the surveillance 
UAVs can also dynamically change their directional 
parameters in sympathy based upon the established guidance 
law. Finally, we execute a simulation of a networked swarm 
of surveillance UAVs which track a high capability malicious 
UAV under various scenarios, and in particular with and 
without the developed guidance law.     

The topic discussed in this paper bears some similarities to 
missile guidance and other forms of interception. Guidance 
laws such as pure pursuit (i.e. setting an instantaneous course 
towards the current estimated position of the target) and 
proportional navigation (i.e. setting an instantaneous course 
towards a specific predicted future position of the target) are 
often cited in those cases [6]. However, the objective in this 
paper is to maximize surveillance time (rather than achieve 
interception) under the constraint that the pursuing agent has 
inferior capabilities than the pursued agent and will eventually 
be outrun.   

The paper has the following organisation. Section II 
provides a review of the literature in this field. Section III 
establishes a guidance law to maximize the tracking time for 
the initial surveillance UAV that first detects the malicious 
UAV. It then provides some illustrative graphical examples 
using realistic UAV parameters to validate the guidance law 
and provide insight into it. In Section IV, we discuss the 
design of the simulation of a networked swarm of surveillance 
UAVs which track a high capability malicious UAV with the 
developed guidance law. Section V discusses the results of the 
simulation. In Section VI, we present our conclusions and 
areas for further research. 

The contributions of this paper are as follows: 

 A guidance law for individual surveillance UAVs to 
maximize the tracking time of a highly capable 
malicious UAV has been developed, verified and 
analysed. 

 Tracking of a high capability malicious UAV by a 
networked swarm of surveillance UAVs has been 
simulated both using the developed guidance law for 
maximum tracking time and, for comparison, a 
simple parallel trajectory. Various scenarios have 
been considered in this simulation e.g. purely reactive 
tracking by individual surveillance UAVs and 
predictive tracking by the swarm.  

II. PREVIOUS WORK 

In this section, we review and discuss some of the previous 
research work on using UAV swarms for surveillance of a 
malicious UAV. This shows quite clearly that while tracking 
of a malicious UAV using a surveillance UAV swarm has 
been the subject of significant research, consideration of a 
guidance law or strategy for tracking when the malicious 
UAV has superior capabilities has not been investigated to any 
great degree.   

In [3], the authors discuss a UAV defense system 
comprising a networked UAV swarm of defense UAVs 
(dUAVs) that can self organize and encircle a malicious UAV 
(mUAV) so as to restrict its movement. The operation of the 
defense system comprises clustering, formation, chase phase 
and escort phases. However, one assumption of the paper is 
that the mUAV has a lower top speed than the dUAVs. Our 
research instead focuses on the scenario where the malicious 
UAV has superior capabilities than the surveillance UAVs 
and thereby can outrun individual surveillance UAVs. In this 
case, employing a swarm to encircle the malicious UAV may 
not be the best defensive strategy, since the malicious UAV 
may be able to outrun the whole swarm if it breaks through 
the virtual encirclement barrier. Instead, the swarm of 
surveillance UAVs are distributed in space so as to allow 
handoff of tracking responsibilities from one surveillance 
UAV to the next as the malicious UAV traverses the region of 
interest. 

In [4], a surveillance UAV swarm is employed to track a 
target UAV (whether malicious or otherwise) based upon the 
irregular radio transmissions of a target UAV. The 
surveillance UAVs use received signal strength indicator 
(RSSI) sensors to detect these transmissions and estimate the 
position of the target UAV. The surveillance UAVs then move 
into different positions to reduce the estimation error of the 
target UAV position. There is no explicit discussion regarding 
the relative capabilities of the surveillance and target UAVs. 

The authors of [7] propose a guidance law for UAV swarm 
tracking of a moving target in three dimensions which is an 
amended pure pursuit strategy. The moving target may be a 
hostile UAV, but can be other entities such as a flock of birds 
that need to be escorted away from critical infrastructure. The 
paper demonstrates that the UAV swarm can maintain a 
specific formation while avoiding collisions with the target or 
within the swarm. There is an explicit assumption stated that 
the target has a lower maximum speed than the tracking 
UAVs. 

An investigation into the hardware and software testbed 
for a Counter Unmanned Aerial System (CUAS) involving 
UAV swarms that use computer vision for target detection is 
presented in [8]. Although there is no explicit discussion of 
the capability of the malicious UAV relative to the 
surveillance UAVs, this testbed could in principle be 
employed to test various UAV swarm tracking strategies, 
including when the malicious UAV has superior capability 
than the surveillance UAVs. 

In [9], the authors consider a swarm of UAVs that employ 
on-board radar to detect and track a malicious UAV. The 
swarm is referred to as a Dynamic Radar Network (DRN) in 
this context. Again, the malicious UAV to be tracked is not 
considered to be of superior capability to the UAVs in the 
DRN.       



III. THEORETICAL ANALYSIS 

A. Model 

The model for this introductory theoretical analysis is 
based upon a horizontal plane at an arbitrary altitude. A 
surveillance UAV denoted as S is initially hovering at the 
origin of the co-ordinate system. S can detect a malicious 
UAV denoted as M at a maximum distance of r. The method 
of detection is not specified, but, for example, could be via on-
board computer vision or radar. 

Fig. 2 illustrates the situation when S first detects M at time 
t=0 as a result of M moving towards S. M is assumed to be 
travelling at a constant speed v (which is greater than the 
maximum speed of S) in the direction of the x axis at an angle 
φ (− 𝜋 2 ≤ 𝜑 ≤ + 𝜋 2⁄⁄ ) to the line joining S and M. When S 
detects M, it moves a constant speed u < v and at a constant 
angle θ relative to the x axis in order to pursue/track M. 
Acceleration is ignored. The problem is to determine the value 
of θ (− 𝜋 2 ≤ 𝜃 ≤ + 𝜋 2⁄⁄ ) that maximizes the duration for 
which the distance between S and M remains no more than r 
assuming that S can estimate the parameters φ and v (and r too 
if this is not already known) as part of the detection of M.

 

Fig. 2. Model when surveillance UAV (S) first detects malicious UAV (M) 

at t=0 

In a realistic pursuit, the malicious UAV is likely to 
change its speed and/or bearing, and the surveillance UAV is 
unlikely to be able to estimate the position and velocity of the 
malicious UAV with complete accuracy. However, this 
theoretical analysis is still of significant utility, because it 
provides insight into what action S should take, at least 
initially, in order to optimise the pursuit. 

Note that there is no loss of generality in specifying that M 
travels along the x axis; the co-ordinate system can always be 
rotated to ensure that this is the case. 

B. Derivation of Maximum Tracking Time 

Given the model of Fig. 2, at time t the co-ordinates of S 
are (𝑢𝑡 cos 𝜃 , 𝑢𝑡 sin 𝜃)  and the co-ordinates of M are 
(−𝑟 cos 𝜑 + 𝑣𝑡, 𝑟 sin 𝜑). Therefore the distance d between S 
and M is given by: 

𝑑2 = (𝑢𝑡 cos 𝜃 + 𝑟 cos 𝜑 − 𝑣𝑡)2 + (𝑢𝑡 sin 𝜃 − 𝑟 sin 𝜑)2 

 (1) 

Expanding (1) and simplifying yields: 

𝑑2 = (𝑢2 + 𝑣2 − 2𝑢𝑣 cos 𝜃)𝑡2 
+2𝑟(𝑢 cos[𝜃 + 𝜑] − 𝑣 cos 𝜑)𝑡 
+𝑟2 

(2) 

At 𝑡 = 𝑡𝑙𝑜𝑠𝑠, S is on the threshold of losing the ability to track 
M because the distance between the UAVs is equal to the 
maximum detection distance for S i.e. 𝑑 = 𝑟. Substituting 𝑡 =
𝑡𝑙𝑜𝑠𝑠  and 𝑑 = 𝑟  into (2), eliminating the 𝑡 = 0  solution 
(which is the initial condition) and re-arranging gives: 

𝑡𝑙𝑜𝑠𝑠 =  
2𝑟(𝑣 cos 𝜑 − 𝑢 cos[𝜃 + 𝜑])

(𝑢2 + 𝑣2 − 2𝑢𝑣 cos 𝜃)
 

(3) 

The problem is for S to determine the value of θ that 
maximizes 𝑡𝑙𝑜𝑠𝑠 (and thereby maximizes the tracking time of 
M) given the parameters r, φ, u and v. This is achieved by 
setting the derivative of 𝑡𝑙𝑜𝑠𝑠  with respect to θ to zero and 
solving for θ. The derivative of 𝑡𝑙𝑜𝑠𝑠 with respect to θ is given 
by: 

𝑑𝑡𝑙𝑜𝑠𝑠

𝑑𝜃
=  

2𝑟𝑢 sin[𝜃 + 𝜑](𝑢2 + 𝑣2 − 2𝑢𝑣 cos 𝜃)

(𝑢2 + 𝑣2 − 2𝑢𝑣 cos 𝜃)2

−
4𝑟𝑢𝑣 sin 𝜃 (𝑣 cos 𝜑 − 𝑢 cos[𝜃 + 𝜑])

(𝑢2 + 𝑣2 − 2𝑢𝑣 cos 𝜃)2
 

(4) 

Setting this derivative to zero yields: 

 

[(𝑢2 + 𝑣2) sin 𝜑] cos 𝜃 − [(𝑣2 − 𝑢2) cos 𝜑] sin 𝜃
= 2𝑢𝑣 sin 𝜑 

(5) 

Using 𝐴 cos[𝜃 + 𝛼] = [𝐴 cos 𝛼] cos 𝜃 − [𝐴 sin 𝛼] sin 𝜃  and 
comparing with Eq. (5), we see that: 

 

𝐴 = √[𝐴 cos 𝛼]2 + [𝐴 sin 𝛼]2 

=  √[(𝑢2 + 𝑣2) sin 𝜑]2 + [(𝑣2 − 𝑢2) cos 𝜑]2 

= √𝑢4 + 𝑣4 − 2𝑢2𝑣2 cos 2𝜑 

(6) 

and: 

tan 𝛼 =
[𝐴 sin 𝛼]

[𝐴 cos 𝛼]
=

[(𝑣2 − 𝑢2) cos 𝜑]

[(𝑢2 + 𝑣2) sin 𝜑]
=

𝑣2 − 𝑢2

[𝑢2 + 𝑣2] tan 𝜑
 

(7) 

Combining (5), (6) and (7), the optimal value θoptimal of θ is 
therefore given by: 

 

𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  cos−1 (
2𝑢𝑣 sin 𝜑

√𝑢4 + 𝑣4 − 2𝑢2𝑣2 cos 2𝜑
)

− tan−1 (
𝑣2 − 𝑢2

[𝑢2 + 𝑣2] tan 𝜑
)

 

(8) 

M 
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Note that θoptimal depends upon φ, u and v, but not r. 

C. Analysis of Tracking Time 

Fig. 3, Fig. 4 and Fig. 5 illustrate 𝑡𝑙𝑜𝑠𝑠, the time at which 
the surveillance UAV loses the ability to track the malicious 
UAV because the distance between the two is greater than r, 
versus θ, the angle of travel of the surveillance UAV relative 
to the x axis, for 𝑢 = 20𝑚/𝑠, 𝑢 = 25𝑚/𝑠 and 𝑢 = 29𝑚/𝑠 
respectively. These plots are based upon Eq. (3) for various 
values of φ, the angle between the direction of travel of the 
malicious UAV and the line joining the surveillance and 
malicious UAVs at time 𝑡 = 0. A malicious UAV speed of 
𝑣 = 30𝑚/𝑠 and a detection/tracking distance of 𝑟 = 100𝑚 
are employed. See Fig. 2 for a reminder of the definition of 
these parameters. Also plotted, as discrete crosses, are the 
maximum values of 𝑡𝑙𝑜𝑠𝑠 predicted by selecting 𝜃 = 𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  

from Eq. (8). It can clearly be seen that Eq. (8) provides the 
correct optimal value of θ to maximize the tracking time. 

As the surveillance and malicious UAVs become more 
evenly matched in capabilities (i.e. as u approaches v in 
moving from Fig. 3 to Fig. 5), the 𝑡𝑙𝑜𝑠𝑠 curves become more 
peaked and therefore the importance of choosing the optimal 
value of θ increases (it should be noted that the optimal value 
of θ becomes closer and closer to zero as this transition 
occurs). This has implications when the surveillance UAV 
cannot accurately estimate the bearing φ and speed v of the 
malicious UAV. In such a case, the 𝑡𝑙𝑜𝑠𝑠  curves show it is 
better to over-estimate the optimal value of θ than to under-
estimate it, since the curves fall off more slowly when 𝜃 >
𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  than when 𝜃 < 𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . 

In any one of Fig. 3, Fig. 4 or Fig. 5, the maximum of  𝑡𝑙𝑜𝑠𝑠 
is largest for 𝜑 = 0, and decreases for increasing values of φ. 
This suggests that in a scenario where a surveillance UAV has 
advance knowledge of the position and bearing of the 
malicious UAV (e.g. because another surveillance UAV has 
already detected the malicious UAV and communicated its 
trajectory), it would be advantageous for the surveillance 
UAV with advance knowledge to predictively pre-position 
itself such that 𝜑 = 0 when it first detects the malicious UAV, 
thereby maximizing the tracking time. However, the 
disadvantage of this strategy is that the surveillance and 
malicious UAVs are then on a collision course. 

D. Analysis of Tracking Distance 

Another metric of interest is the instantaneous distance d 
between the surveillance and malicious UAVs as a function of 
time t. Fig. 6 illustrates this metric based upon Eq. (2) for 𝑢 =
25𝑚/𝑠 and various φ values, assuming the surveillance UAV 
selects 𝜃 = 𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  in all cases. The plots for 𝑢 = 20𝑚/𝑠 

and 𝑢 = 29𝑚/𝑠 are very similar, only the scale of the x axis 
differs. 

At time 𝑡 = 0 , 𝑑 = 𝑟 = 100𝑚  by definition. As the 
surveillance UAV selects 𝜃 = 𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ,  the two UAVs 

become closer together as time advances before the malicious 
UAV outruns the surveillance UAV. Only in the case 𝜑 = 0 
do the two UAVs collide. This shows that, in general, the 
guidance law employed in this paper i.e. to maximize the 
tracking time, is quite different to traditional guidance laws 
such as proportional navigation which aim to ultimately 
intercept the malicious entity. 

 

 

 

 Fig. 3. tloss versus θ for u=20m/s, v=30m/s and various φ values 

 

Fig. 4. tloss versus θ for u=25m/s, v=30m/s and various φ values 

 
Fig. 5. tloss versus θ for u=29m/s, v=30m/s and various φ values 



 
Fig. 6. Distance d between surveillance and malicious UAVs versus time t 

for u=25m/s, v=30m/s and various φ values 

IV. SIMULATION DESIGN 

A simulation of a surveillance UAV swarm tracking a 
malicious UAV has been undertaken using MATLAB. Both 
reactive tracking and predictive pre-positioning have been 
considered. 

Reactive tracking involves a surveillance UAV hovering 
until it detects the malicious UAV in its own detection zone, 
after which it actively tracks the malicious UAV until it is 
outrun. There is no explicit communication or co-ordination 
between members of the surveillance swarm. 

In predictive pre-positioning [10], the first surveillance 
UAV to detect the malicious UAV communicates the 
estimated trajectory of the malicious UAV to all other UAVs 
in the surveillance swarm so they can predictively position 
themselves in the optimum location ready to track the 
malicious UAV when it arrives. For the purposes of this paper, 
the predictive pre-positioning involves surveillance UAVs 
following the shortest path to the estimated trajectory of the 
malicious UAV. 

In all, four different scenarios have been considered: 

i. Reactive tracking in which a surveillance UAV that 
has detected the malicious UAV moves parallel to 
the malicious UAV (i.e. with 𝜃 = 0)  until it is 
outrun. 

ii. Reactive tracking in which a surveillance UAV that 
has detected the malicious UAV moves with the 
optimum bearing to maximize tracking time (i.e. 
with 𝜃 = 𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  from Eq. (8)) until it is outrun. 

iii. Reactive tracking and predictive pre-positioning, in 
which surveillance UAVs move towards the 
estimated trajectory of the malicious UAV once the 
malicious UAV is initially detected by any member 
of the swarm, and each surveillance UAV that has 
detected the malicious UAV moves parallel to the 
malicious UAV (i.e. with 𝜃 = 0) until it is outrun. 

iv. Reactive tracking and predictive pre-positioning, in 
which surveillance UAVs move towards the 
estimated trajectory of the malicious UAV once the 
malicious UAV is initially detected by any member 
of the swarm, and each surveillance UAV that has 
detected the malicious UAV moves with the 

optimum bearing to maximize tracking time (i.e. 
with 𝜃 = 𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  from Eq. (8)) until it is outrun. 

The parameters of the simulation are specified in Table I. 
The primary metric of interest is the proportion of time the 
malicious UAV is actively tracked i.e. within the detection 
zone of one or more surveillance UAVs. 

TABLE I.  PARAMETERS OF THE TRACKING SIMULATION 

Parameter Value 

Step  
1m movement of the malicious 

UAV 

Number of randomized iterations for 
each set of parameters 

500 

Shape and size of tracking area Circular with 15km radius 

Surveillance swarm size Varies between 10 and 1000 

Surveillance swarm initial formation Randomly generated 

Surveillance swarm networking 
method 

Broadcast (each UAV hears the 
transmissions of all other UAVs) 

Surveillance UAV speed (u) 
Three speed capabilities 

considered: 20m/s, 25m/s, 29m/s 

Malicious UAV detection range (r) 100m 

Malicious UAV speed (v) 30m/s  

Malicious UAV path Linear via centre of tracking area 

V. SIMULATION RESULTS AND ANALYSIS 

Fig. 7, Fig. 8 and Fig. 9 illustrate the proportion of time for 
which the malicious UAV is actively tracked i.e. it is within 
the detection zone of one or more surveillance UAVs, as a 
function of the number of surveillance UAVs in the swarm, 
for surveillance UAV speeds of 𝑢 = 20𝑚/𝑠,  𝑢 = 25𝑚/𝑠 
and 𝑢 = 29𝑚/𝑠  respectively. Therefore, given the fixed 
malicious UAV speed of 𝑣 = 30𝑚/𝑠, Fig. 7 represents the 
scenario of a significantly more capable malicious UAV, 
whereas Fig. 9 represents the scenario of a marginally more 
capable malicious UAV. All four tracking strategies relating 
to reactive tracking and predictive pre-positioning are 
represented in each figure. Clearly, and as expected, a tracking 
strategy which involves predictive pre-positioning 
outperforms one which is based on reactive tracking only. 

It can be seen that when individual UAVs set an optimal 
bearing when pursuing the malicious UAV (i.e. with 𝜃 =
𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  from Eq. (8)), as opposed to setting a bearing which 

is parallel to the malicious UAV (i.e. with 𝜃 = 0), there is a 
systematic increase in the proportion of time for which the 
malicious UAV is actively tracked. The increase is quite 
small, because with reference to Fig. 3, Fig. 4 and Fig. 5, the 
optimal bearing is usually quite close to the parallel trajectory. 
Therefore, the parallel trajectory is only marginally sub-
optimal in the majority of pursuit cases. 

The superior performance resulting from individual UAVs 
setting an optimal bearing when pursuing the malicious UAV 
is perhaps more noticeable when using reactive tracking only 
(i.e. no predictive pre-positioning). This is to be expected, 
because when using predictive pre-positioning, some if not 
most of the surveillance UAVs that take part in the pursuit will 
have predictively moved to an optimum position on the 
estimated trajectory of the malicious UAV prior to the arrival 
of the latter. For these surveillance UAVs, the optimum 



bearing when tracking the malicious UAV is the parallel 
trajectory. 

 

Fig. 7. Proportion of time for which malicious UAV is tracked for different 

tracking strategies and u=20m/s, v=30m/s 

 
 

Fig. 8. Proportion of time for which malicious UAV is tracked for different 

tracking strategies and u=25m/s, v=30m/s 

 
 

Fig. 9. Proportion of time for which malicious UAV is tracked for different 

tracking strategies and u=29m/s, v=30m/s 

VI. CONCLUSIONS 

In this paper, we have derived a guidance law that a 
surveillance UAV should follow to maximize the tracking 
time of a malicious UAV of higher capability that it has 
detected for the first time. The law comprises selecting the 
optimum direction of flight based upon the estimated speed 
and bearing of the malicious UAV. Although the surveillance 
UAV will always ultimately be outrun by a malicious UAV of 
higher capability, maximizing the tracking time is important 
when there are other geographically dispersed surveillance 
UAVs ready to take over tracking responsibility as part of a 
networked surveillance swarm. This is because there is a 
higher probability that the next surveillance UAV will be in 
position to hand off tracking responsibility to, and ultimately 
because fewer surveillance UAVs are required to observe a 
specific area of airspace. 

Example plots have been provided to provide further 
insight into the implications of the guidance law. One of the 
interesting observations from these plots is that a surveillance 
UAV to which tracking responsibility is to be handed off 
should predictively pre-position itself so that the malicious 
UAV is heading directly towards it in order to maximize its 
tracking time. However, this requires some collision 
avoidance strategy. 

The developed guidance law has been employed in a 
network simulation of a swarm of surveillance UAVs tracking 
a highly capable malicious UAV with various tracking 
strategies including reactive tracking and predictive pre-
positioning. Although it only offers a small increase in 
performance in terms of the proportion of time for which the 
malicious UAV is actively tracked compared to parallel 
tracking, the increase is nonetheless noticeable and it must be 
realized that parallel tracking itself is only marginally sub-
optimal. 

Future work will involve generalizing these results to three 
dimensions and examining the performance gains possible 
from organising the surveillance UAV swarm into a regular 
lattice-like formation. 
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