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Computation of Laminated Composite Plates using Integrated Radial Basis
Function Networks

N. Mai-Duy? A. Khennan€® and T. Tran-Cong®

Abstract:  This paper reports a meshless methdtiks in recent decades. As the name suggests, there will
which is based on radial-basis-function network®t be any connectivity requirements between interpola-
(RBFNSs), for the static analysis of moderately-thick lantion points, leading to an easy process of numerical mod-
inated composite plates using the first-order shear defalfing. A comprehensive review of meshless methods can
mation theory. Integrated RBFNs are employed to repiee found in, for example, [Atluri and Shen (2002);Liu
sent the field variables, and the governing equations &603)].

discretized by means of point collocation. The use of iRz dial-basis-function networks have been an active re-
tegration rather than conventional differentiation to coBearch area in numerical analysis [Haykin (1999)]. It
struct the RBF approximations significantly stabilizes thgs been proved that RBENs have the property of uni-
solution and enhances the quality of approximation. Tjgrsal approximation [Park and Sandberg (1991);Park
proposed method is verified through the solution of regng Sandberg (1993)]. Madych and Nelson (1988), and
tangular and non-rectangular composite plates. Num@fiadych and Nelson (1990) showed that the RBF interpo-
cal results obtained show that the method achieves a vgfbn scheme using multiquadrics (MQ) exhibits expo-
high degree of accuracy and a fast convergence rate. nential convergence/spectral accuracy. The application
. . . .of MQ-RBFNs for the numerical solution of PDEs was
keyw'ord: laminated composite plate, rad|al-ba3|sfrrst reported by Kansa (1990). The RBFN collocation
function network, meshless method. method needs only a set of discrete points—instead of a
set of elements—throughout a volume to approximate the
field variables; hence, it can be regarded as a truly mesh-
Principal discretization methods for solving partial difSS method. The main drawback of the method is the

ferential equations (PDEs) include a finite-differend@Ck Of mathematical theories for finding the appropri-
(FD), finite-element (FE), boundary-element (BE), finité"-t_e value_s of network parameters. For example, the RBF
volume (FV) and spectral method. Among them, tméudth,.whlch strongly affects the perfprmance of RBFNs,
FEM is the most widely used method in computationdfS Still been chosen either by empirical approaches or by
engineering. To integrate a weak form and interpolat@Blimization techniques. Furthermore, in a computation,
solution variable, the FEM requires the division of trgly a finite number of digits can be retained by the com-
domain of interest into a number of small elements tHY{ter- As aresult, it remains very difficult to achieve such
are connected together by a fixed topology (i.e. mesRfPonential convergence in practice, even for the case
This task is seen to be quite cumbersome especially §fUNction approximation. As an alternative to the con-
problems involving complex geometries, large degre\é‘:‘sr‘_t'onal direct/differentiated RBFN (DRBFN) method,
of deformation and free/moving surfaces. The idea ¥i-Duy and Tran-Cong (2003), and Mai-Duy and Tran-
developing numerical methods without using a mesh fgPnd (2001) proposed the use of integration to construct
the solution of PDEs has received considerable attentfBf RBFN expressions (the indirect/integrated RBFN

from the scientific and engineering research commufRBFN) method) for the approximation of a function
and its derivatives and for the solution of PDEs. Numeri-
! Computational Engineering and Science Research Centre, Ug&} results showed that the IRBFN method achieves supe-
Zngvrr:?)z?;gih(eflLEDng?:SeﬁEZt?A?lScience Research Centre Urior accuracy [Mai-Duy and Tanner (2005);Mai-Duy and
Toowoomba, QLD 4350 Australia, ' ‘T‘%n-Cong (2005);Mai-Duy and Tran-Cong (2006)]. The

3Computational Engineering and Science Research Centre, UGProvement is attributable to the fact that integration is
Toowoomba, QLD 4350 Australia.

1 Introduction
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a smoothing operation and is more numerically stablerespectively the rotations of the transverse normal, i.e. in

In this paper, the meshless IRBFN-based method is fiitez direction, with respect to theandx axes.

ther developed for the static analysis of moderately-thibk the present theory of thick plate without membrane
laminated composite plates using the first-order shear detion, ug andvg are discarded. As a result, the strain
formation theory. The obtained results are comparéidplacement relationships are given as

to existing results from different methods reported in

the literature. Indeed, laminated fibre composite plates

are extensively used in aeronautics and space indus- Oy

tries, and much research effort has been dedicated tofm- = —Z5-~; (4)
prove the ability to predict the behaviour of these struc- ay,

tures. Closed form solutions based either on the firfly = _ZTy’ (%)
or higher-order shear deformation theory (e.g. [Whit- oy o

ney and Pagano (1970);Bert and Chen (1978);Redgly = z(a—x—a—y), (6)
and Chao (1981);Reddy (1984);Pandya and Kant (1988); y X

Liu, Zhang, and Zhang (1994)]) as well as 3D elasti(;-yz - ‘LW_W 7)
ity solutions (e.g. [Srinivas and Rao (1970);Pagano and oy

Hatfield (1972);Wang and Tarn (1994)]) are available WZ _ ow Uy (8)
assess the accuracy of the numerical methods. ox

A brief review of the first-order shear deformation the-

ory is given in Section 2. The governing equations in-

volve a large number of derivative terms, some of whidte stresses in any given lamikare expressed as
are mixed partial derivatives. The discretization of these

equations using DRBFNs and IRBFNs is presented in

section 3. In section 4, the IRBFN method is used O 01 O O 0 O i
analyze composite plates with different geometries a doyy QO On Ox 0 O £y
boundary conditions. The obtained results show that t €Ly v =| Qe Q6 Qe O O Yiy
present method attains fast convergence rates and h ghryz 0 0 0 Cas Cas Ve
degrees of accuracy. Section 5 gives some concludi 9, 0 0 0 Cus Css Ve
remarks. (9)
The previous expression can be rewritten as

2 First-Order Shear Deformation Theory of Lami-

nated Composite Plates
The first-order shear deformation theory (FSDT) of lam- Oxx Qi1 Q2 Qus Exx
inated composite plates is an extension of the Reissner-q Oy » = | Qx Qx Q% Eyy (10)
Mindlin theory for homogeneous isotropic thick plates. Tyy Qs Q6 Qs Yy
The governing differential equations are well known, and
their derivation can be found in details in Reddy (2004).
However, for the sake of consistency an outline of thgy
main equations will be given below.
In FSDT, the displacement field is given as { Ty }: [ Cas Cas ] { Ve } an
u = U+ 2y, (1) Txz Cas Css Yz |’
Vo= Vo-+zyy, (2
W = Wp,

where the term€);; andCj; represent the stiffness con-
where (up, vo,Wo) are the displacements of a point situstants of a unidirectional orthotropic composite making
ated in the middle plane, the plane, andpy andy, are an angled with the principal material x-axis. They are
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given as whereh is the thickness of the laminate. Substituting for
_ 4 the stresses using equations (10) and (11), the moments
Qu = QuC08'0+Qapsir'0 and shear forces are rewritten as
+2(Q12+2Q65) SinzeCOSZe, (12) M, D11 D12 Dis Exx
Q2 = (Qu1+ Q22— 4Qge)Sin’6cos’0 { Myy } { D12 D22 D26] { Eyy } (32)
+Q12(cod'0 +sin’@), (13) Myy Dis D26 Des Yoy
Qe = (Qu1— Q12— 2Qes)SinBcos’d and
_ n36 0 Qy _ A44 A45 Vyz
+(Q12 — Q22+ 2Qegs) Sin” 6 oSO, (14) (33)
S 4 Q« Ass Ass Yz
Q2 = Qqisin 9+Q22C0§19 with
+2(Q12+ 2Qg6) SiFBcos 6, (15) L o
Q26 = (Qu—Quz—2Qs0)Sin*Bcosd Dij = 32 Mk-Med)@Qiw  11=126 @34
+(Q12— Q22+ 2Qg6) SiNBCOS'6, (16) n -
Qo6 = (Qu1+Qi2—2(Qu2+ Qes) Sin? Bcos?0 Aj = Kkil(hk_hk—l)(cij)(ky (35)
+Q66(co<' 8 + sin*g), (17) B
Csa = Cu4C020+Csssin?o, (18) WhereK”: 5/6 is a sh.egr _correction factor. Considering
Cis — (Css—Cas)cossing, (19) EEE foﬁlg&?glgzquazggﬂn|te5|mal plate element leads to
Css = Cuasin?0+Csscos 6. (20)
9, 0 | ixy) =0 (36)
The termsQ;; andCjj represent the stiffness constants ox oy ’ ’
of a unidirectional orthotropic ply in its principal axes. oM oM
They are given as T;y + T;’y =Qy, (37)
E oM oM
Qu = ﬁllzvzf (21) T):y + T;X = Qx. (38)
Qpr — E> 22) Substituting forQy , Qy, My, Myy andMyy, the equilib-
2 = 1 Vv rium equations become
P =) 2 2 2
Qo = oy (23) Pw Oy W O W Oy
0 é—VleZL (24) A45(6X0y X )+A55( X2 + X )+A44( 02 oy )
6 = G12,
02 d
Cu = G23, (25) +A45(5X(\3A)//+ al.l;/X) +q(x,y) = 0, (39)
Css = Gia (26)
2 2 2 2
The moments and shears are defined as acting per ur]jj16(_Lq;X) +Dag(— w) +D66(a Wx _Lq;y)
length. They are given as ‘zx a;«)y 6;<ay E’ZX
0y, Py Py %Yy
M = / Ve 020z, (27) Dol axay) + Dz oy )+ Dasf 0y axay)
—h/2 ow ow
h/2 :A44((-T—pr) +A45(67‘H“x); (40)
My, = / Oyyzdz, (28) y X
—h/2
" (- 28 4 Das(- 58 D G - T
Myy = /_ h/eryzdz, (29) 16 9y 26 3y? 66 32 oxdy
h/2 0*Yy Py PPy 0%y
= /_h/ztxzdz’ (30)  Dul=z) +Du(~ 7)) D16(6y6x_ )
h/2 B ow ow
Q = / Ty,0z, (31) = A45(67y - lIJy) +A55(& + lJJX) (41)

103




104 Copyright(© 2004 Tech Science Press

For a cross-ply laminated composite platé, @), the
equilibrium equations reduce to

Pw o

ss(ﬁ-l- ax) A44(07y2_67y)+q( )
=0, (42)
%Py 0%y 0* Y
Des( 3oy ~ e ) T P12(~ ayy) TP2(~ 52)
ow

= A44(67y - '~|Jy)7 (43)

0% 0y Gl 0%y
Des( ayzx - axa;) +Du( - o) +Daa( - aya;)
ow
= Ass(& +Uy). (44)

3 Radial Basis Function Networks

RBFNs allow a conversion of a function from low-
dimensional space (e.g., 1D-3D) to high-dimensional

CMC, vol.1, no.1, pp.102=2, 2004

whereh(® (x) = ag®) (x) /dx andh"’ (x) = ah(h) (x) /ox are
new basis functions for the approximation of the first-
and the second-order derivatives of the original function
fe, respectively.

3.2 Indirect (IRBFN) approach

RBFNs are used to represent the highest-order deriva-
tives in the system under consideration, edjfe/dx?
andd?fe/dy. Lower-order derivatives and the function
itself are then obtained by integrating those RBFNSs, e.g.
those with respect tv

0% fe(x) PEX) & i)
ox2 ox2 :.ZW[X]g(l)(X>’ (48)
i=
dfe(x) of(x) " iy )
x T x - 2 WigHig (X); (49)
i=
TP (i)
fe(x) ~ f[x](x):_ W[X]H[X](X), (50)
|

space in which the function can be expressed as a linear

combination of RBFs [Haykin (1999)]

W0~ f00 - 3 wgleo. @)

where subscripfx] denotes the quantities resulting from
the process of integration along tledirection; q; the
number of new centres in a subnetwork that is employed
to approximate a set of nodal integration “constants”,

wherefe and f are the exact and approximate function§z = 2d1; and Hél) = [g"dx a”dﬁ% =/ H[()l])dx (i=

respectively; superscripts denote the elements of a k& - ,M) new

| ) LN
asis functions for the approximation of

of neurons;x the input vectorm the number of RBFs; the first-order derivative and the original functidg re-
{wl) M the set of network weights to be found; angpPectively. For convenience of presentation, the new cen-

{g"(x)}M, the set of RBFs.

3.1 Direct (DRBFN) approach

tres and their associated known basis fu_nctions i_n subnet-
works are also denoted by the notatiorl§ andH @ (x)

(ﬁ(i)(x)), respectively, but with > m.

The RBFN (45) is utilized to represent the original fund-here are two expressions, naméjy(x) and fy(x), to
tion f.; subsequently, its derivatives are computed by digpresent the functiofi(x) ({wy } # {wy; }). Atthe col-

ferentiating (45), e.g. those with respecito

0fe(x)
ox
of(x) _ a(Zimzlw(i)g(i)(X)) . il () (D)
ox X _i:W h (X)7 (46)
02 o(x)
N
2f(x) (M whnh(x) m .
o) = ( o ) 5w, @)

location points, they are forced to be exactly the same,
i.e., fry(X) = ffy (x) = f(x) (these nodal function values
are unknowns to be found); at other points, the funcfion
can be taken to be the average valudgfx) and fy(x).

For 1D problems, the system matrices obtained by the
DRBFN and IRBFN methods have similar sizes for a
given number of data points; for 2D and 3D problems,
the unknown vector of the latter is much larger than that
of the former. To overcome this drawback, prior con-
versions of the multiple spaces of network weights into
the single space of nodal variable values are necessary.
The evaluation of (48)—(50) at a set of collocation points
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Expressions of and its derivatives at an arbitrary point
X can be given by

{X(k)}Ezl = {C(k)}ﬂ‘zl, with p=m, yields

fxx Gwiy, (51) 1
(1 p(ml 1
fx = Hywy, 62)  100=7 ([FR 00, Fg 0, A P,
f = Hywy, (53) 1 1 /1201 1
S Fp ) + 5 ([Fl 00 F 00,

whereG, H andH are the design matrices associated H&‘WH )(x),-‘-] Hy f>7 (59)
with the approximation of the second-order derivative,
the first-order derivative and the function, respectively; of (x) 1 1 _

Wiy is the set of network weights in thedirectiontobe 5, = [H[(x})(x)) aH[(;]n '(x),--,0,-- H[X]f
found; f——{f( KN ;o= {21X3m - andf, = 21 (60)
21 (x S = [H 00, HIT ), +,0,0 |
{ ax2 }k .- For the purpose of computation, the two ay M T Y v
matricesG andH are augmented using zero-submatrices (61)
so that they have the same size as the matriBy solv- O I Nt PR (|
ing (53) with the general linear least-squares technique, 9x2 [g 0+++,0,-+-,0, ] Ht  (62)
the set of network weights can be expressed in terms of 92 (x) W _
the nodal function values, as o [9 (x),++,0,+-,0,- ] Hyf,  (63)

—1
W =Hyf, G4 5
i aa)f«gy) % [Hﬁ)( )y ’H[(XTI) (X), - ,O,---} ﬁ[:ql

whereH,;" is the Moore-Penrose pseudo-inverse; and the

. : =1 1 H( 1 H (m+1) 0
dimensions ofwy, H, andf are (m+0qz) x 1, (m+ +§ i (s Hym (%), 0,

gz2) x mandm x 1, respectively.
Substituting (54) into the system (51)-(53) yields

fx = GHyf, (55)
— 1

fx = HyHyt, (56)

f = I, (57)

wherel is the unit matrix. Cross derivativés2(x) /dxdy

=1 =1
HM(HMHMQ. (64)

The field variablesv, Y, andyy in the governing equa-
tions (42)—(44) are represented by RBFNSs, using either
(45)—(47) for the DRBFN approach or (60)—(64) for the
IRBFN approach. The system of PDEs is then dis-
cretized by means of point collocation. The RBFN so-
lutions thus satisfy the governing equations pointwise,
rather than in the average sense. Both approaches di-

can be straightforwardly computed using the design mactly lead to square equation systems. In the case of
trices associated with the first-order derivatives (56). Abirichlet boundary conditions, i.e.w,y and Yy pre-
though the order of differentiation makes no differencgriped along the whole boundary, the dimensions of the
theoretically, due to numerical error, it would be Mol stem matrix arer8x 3n (n—the number of data points)
accurate to take the average of the two equivalent refjg§-the DRBFN approach anch3 x 3n;, (Nip—the num-

sentations,

0% f
oxoy

_1(0 (ofy 2 (ot
- 2\ox\ady) ay\ox/))’

fyy = % (H[x]ﬁ[;ql (H[y]ﬁ[;]lf) T

HyHy (HxFyf)) . (58)

ber of interior points) for the IRBFN approach. The
IRBFN matrix is slightly smaller than the DRBFN ma-
trix because the IRBFN formulation is written in terms
of nodal variable values rather than network weights.

4 Numerical Results and Discussions

Since multiquadrics (MQ) are ranked as the most accu-
rate among RBFs and they can offer exponential conver-
gence with the refinement of spatial discretization, this
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study will employ these basis functions whose form is solutions [Reddy (1984)]. All results are presented in
dimensionless forms according to the following relations

g"(x) = \/(x—cO)T(x—c) +a2,  (65)

wherec) andaV are the centre and width of thiéh 100E,h3

MQ basis function, respectively, and supersciiptie- W= Qo W, (71)
notes the transpose of a vector. In the present study, the h2

width of theith MQ-RBF,al", is simply chosen to be the {0, Oyy, Ty} — —5{Oxx; Oyy, Ty} (72)
minimum distance from thih centre to its neighbours. qﬁa

For all problems, the shear correction factor is taken to {Tyz, Te} — qﬁ{TyZvsz}- (73)

be 5/6, and the interlaminar shear stresses are computed
through 3D elasticity equilibrium equations. Letand

t denote the norm.al and ‘?‘”ge”t to an arbitrary edge.ro le 1 presents the results obtained by the DRBFN and
the plate, respectively. Simply-supported and clamp

- . ) ! FN methods. When compared to the close form solu-
edge conditions, which are considered herein, can be ex- . .
tions using FSDT [Reddy (2004)], it can be clearly seen
pressed as follows

that the IRBFN method is far superior to the DRBFN

Simply supported: method with respect to both accuracy and convergence.
For the IRBFN method, the percentage errors are very
small and they are consistently reduced with increasing
density. It is remarkable that a high degree of accuracy is

WZO? llJt:Q anoa (66)

Clamped:

W=0, W =0, Yn=0, (67) achieved even with a small number of collocation points.
For example, at a density of only 2121, the error of the
where maximum displacement is about 0.02%. For the DRBFN
2 2 method, it can be noticed that although the computed val-
Mn = MMy + 2n,ny My + My, (68) es of the field variables (i.av, Wy and W) are in good
Wn = NxPx + Ny, (69) agreement with the close form solutions, large errors ap-

W = Ny — Ny, (70) pear in the calculation of their derivatives (edy.). The
DRBFN method is thus very sensitive to noise, and one
in whichn, andny are the direction cosines at a boundaryeeds to pay special attention to the process of chosing
point. network parameters in order to achieve good accuracy.
On the other hand, the use of integration to construct the
RBF approximations significantly stabilizes the solution

Consider a simply-supported cross-ply laminate a and enhances the quality of approximation.
(Figure 1) with four layers &/90°/9(°/0° under a sinu- Tables 2 and 3 show the full results of the IRBFN method

41 Problem1

soidally distributed transverse load for two different plate thicknesses, namelyh = 10 and
- a/h =20. For both cases, very high degrees of accu-
g= gosin (€> sin (%) . racy are achieved for the transverse displacement and the

in-plane stresses when compared to the close form solu-
The material properties are chosen to be [Reddy (20044ns. However, there is some discrepancy between the
E; = 25E,, vio = 0.25, two solutions for the transverse shear stresgesndTy,.
Gi2 = G13=0.5E,, Gy3=0.2E» It can be seen that the present results are much closer to
A number of uniform densities, namelthe 3D elasticity solutions. This is due to the fact that the
{11x11,17x17,21x 21,--- ,41x 41}, are em- IRBFN method uses the 3D equilibrium equations rather
ployed to study the convergence behaviour of thtigan the constitutive equations for computing these val-
present method. The IRBFN results are compared wites. Figure 2 shows the distribution of transverse shear
those obtained by the DRBFN method, the close fostresses through the thickness of the plate obtained by the
FSDT solutions [Reddy (2004)] and the 3D-elasticifgresent method.
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4.2 Problem?2 43 Problem3

The present method is further verified through the sphe results obtained in exampples 1 and 2 have clearly
lution of a composite plate with a curved geometry. Qemonstrated the excellent accuracy achieved by the
clamped circular plate with radilunder a uniform load present method. It is believed therefore that the IRBFN
q is considered here. The set of material propertiespigthod can now be confidently used to analyse non-

chosen as follows trivial problems. Thus in this example, a plate similar
E1=56x10°, E; =1.2x 1P, v12=0.26, in lamina lay-out to the one in Problem 1 with a cut-out
G12=G13=G3=0.6x 10° square hol@/2 x a/2 is analyzed under a uniform pres-

The laminate is unidirectional with fibers oriented &freq,. Good convergence is achieved, as shown in Ta-

8 = 0° with respect to the global coordinates. Ale 5, with a shear correction factor of 5/6 which is most
wide range of the radius-to-thickness ratiR/h = suitable for isotropic plates.

{10,16.67,25,50,100}, is investigated. Since close form or 3D elasticity solutions are not avail-
The present method does not require any underfisle for this problem, the obtained results are compared
ing mesh. Nodes can thus be located in a flexild¢a FEM solution obtained with Abaqus [Hibbitt, Karls-
way. If one uses Cartesian-grid nodes to represent nggn, and Sorenson (2006)]. Figure 5 shows discretiza-
rectangular/irregular domains, the computational costipfns by the IRBFN and FEM. In the FEM solution, an
generating data points can be significantly reduced. Thjght-node conventional shell element with reduced in-
discretization approach is generally recommended {efration and six degrees of freedom per node is used.
use. For the present problem, the circular plate is fifgdwever, the commercial software ABAQUS does not
embedded in a square domain and the extended domgi@al the value of the shear correction factor for com-
is then discretized using a Cartesian grid, i.e. an arrayfsite plates, if any. Therefore it is not possible to make
straight lines that run parallel to tixe- andy—axes. The a quantitative comparison between the IRBFN and the
interior points are defined as grid points inside the anay\BAQUS results. Nonetheless, the similarity between
sis domain, while the boundary points are generatediR¥ results is noticeable on the contour plots obtained

the intersection of the grid lines with boundaries. Grigfith both methods as shown on Figures 6 and 7.
nodes outside the analysis domain are removed from the

computations (Figure 3).

Convergence studies are conducted using 9 CartegjanConcluding Remarks

grids, namely 1% 11,17 x 17,--- ,51x 51. The cen-

tral displacement of the plate is non-dimensionalized byfae meshless IRBFN method is applied to the static
factor of D /qR* with D = 3(D11+D22) +2(D12+2Dgs). analysis of the bending behaviour of moderately thick
Table 4 lists the central displacement of the plate. Tlaninated composite plates. Different geometries and
corresponding results obtained by FEM and the ex&ctundary conditions are considered. The RBFN methods
solution corresponding to the special case of thin platguire only a minimum amount of effort to implement as
[Wilt, Saleeb, and Chang (1990)] are also included fits formulation is based on strong form/point collocation,
comparison. It is clearly indicated that the preseand its “shape functions” are given in analytic forms.
method yields a very high order of accuracy. For ekilike the DRBFN, the construction of IRBFN approxi-
ample, atR/h = 16.67, at least 4 decimal digits remaimations is based on integration rather than conventional
unchanged when densities are greater thaxn2l. How- differentiation, which significantly stabilizes the solution
ever, when the thickness is reduced, higher densities amd improves the accuracy of the numerical results. In
required to obtain a converged solution. This is probeentrast to the spectral collocation method, the IRBFN
bly due to the fact that the thick-plate theories are usddes not require an underlying mesh. For efficiency,
here. The results obtained are in good agreement witartesian grids are employed to generate the interpolat-
the FEM results, and they approach the thin-plate exawj points representing the analysis domain. Numerical
solution with decreasing thickness. The typical distribtesults obtained show that the method attains good accu-
tion of the displacement obtained by the present methagy and fast convergence for both rectangular and non-
is displayed in Figure 4. rectangular plates.
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Table 1: Problem 1a/h = 10: Comparison of the accuracy of the DRBFN and IRBFN methods. Itterthata(—b) meansa x 10°°.

Density DRBFN IRBFN
w(a/2,a/2) Error(%) ox(a/2,a/2,h/2) Error(%) w(a/2,a/2) Error(%) ox(a/2,a/2,h/2) Error(%)
11x11 6.8515(-1) 3.38 5.6738(-1) 13.72 6.6163(-1) 0.16 4.9759(-1) 0.26
17x 17 6.8499(-1) 3.36 5.5818(-1) 11.88 6.6240(-1) 0.04 4.9852(-1) 0.07
21x 21 6.8821(-1) 3.84 5.9050(-1) 18.36 6.6254(-1) 0.02 4.9868(-1) 0.04
27x 27 6.8109(-1) 2.77 4.9086(-1) 1.61 6.6263(-1) 0.01 4.9878(-1) 0.02
31x31 6.7962(-1) 2.55 5.0164(-1) 0.54 6.6265(-1) 0.00 4.9881(-1) 0.01
37x37 6.7715(-1) 2.18 5.0036(-1) 0.29 6.6267(-1) 0.00 4.9884(-1) 0.01
41x 41 6.7871(-1) 241 5.0226(-1) 0.67 6.6268(-1) 0.00 4.9885(-1) 0.01
Close form 6.627(-1) 4.989(-1) 6.627(-1) 4.989(-1)
FSDT solution




Table 2: Problem 1: Displacement and stressesaftit = 10. It is noted thaa(—b) meansa x 107",

saje|d aysodwo) pajeuiwe jo uoneindwo)

Density w(a/2,a/2) oxw(a/2,a/2,h/2) ow(a/2,a/2,h/4) 1y(a/2,a/2,h/2) T1y,(a/2,0,0) T1x(0,a/2,0)
11x11 6.6163(-1) 4.9759(-1) 3.6084(-1) -2.4209(-2) 1.7678(-1) B(A)
17x 17 6.6240(-1) 4.9852(-1) 3.6125(-1) -2.4190(-2) 1.7877(-1) 2(4)
21x 21 6.6254(-1) 4.9868(-1) 3.6133(-1) -2.4178(-2) 1.7933(-1) )
27x 27 6.6263(-1) 4.9878(-1) 3.6137(-1) -2.4165(-2) 1.7978(-1) &3(4)
31x31 6.6265(-1) 4.9881(-1) 3.6139(-1) -2.4159(-2) 1.7996(-1) 89(4)
37x 37 6.6267(-1) 4.9884(-1) 3.6140(-1) -2.4153(-2) 1.8014(-1) B(2)
41x 41 6.6268(-1) 4.9885(-1) 3.6141(-1) -2.4150(-2) 1.8022(-1) (1)
Close form 6.627(-1) 4.989(-1) 3.614(-1) -2.41(-2) 1.292(-1) B8(1H
FSDT solution
3D elasticity 7.43(-1) 5.59(-1) 4.01(-1) -2.75(-2) 1.96(-1) 3.01(-1)

TTT
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Table 3: Problem 1: Displacement and stressesaftit = 20. It is noted thaa(—b) meansa x 107",

Density w(a/2,a/2) ox(a/2,a/2,h/2) oyw(a/2,a/2,h/4) Ttx(a/2,a/2,h/2) 14,(a/2,0,0) T14(0,a/2,0)
11x 11 4.8911(-1) 5.2504(-1) 2.9481(-1) -2.2070(-2) 1.4400(-1) 36pH)
17x 17 4.9066(-1) 5.2676(-1) 2.9542(-1) -2.2121(-2) 1.4750(-1)  4&/29)
21x 21 4.9091(-1) 5.2703(-1) 2.9553(-1) -2.2121(-2) 1.4844(-1)  378Q)
27x 27 4.9105(-1) 5.2719(-1) 2.9559(-1) -2.2117(-2) 1.4915(-1)  4481)
31x31 4.9109(-1) 5.2723(-1) 2.9561(-1) -2.2114(-2) 1.4942(-1)  781)
37x 37 4.9112(-1) 5.2727(-1) 2.9562(-1) -2.2111(-2) 1.4968(-1)  B3BA)
41x 41 4.9114(-1) 5.2728(-1) 2.9563(-1) -2.2109(-2) 1.4979(-1) 2082)

Close form 4.912(-1) 5.273(-1) 2.956(-1) -2.21(-2) 1.087(-1) a(3an)

FSDT solution
3D elasticity 5.17(-1) 5.43(-1) 3.08(-1) -2.30(-2) 1.56(-1) 3.28(-1)




Table 4: Problem 2: The central displacement of the plate. The grid densitiessplaykd in the case of the IRBFN method while the numbers o
elements are quoted in the case of FEM (Wilt, Saleeb, and Chang (199tidisd a quarter of the circular plate with 12 and 48 elements whic
correspond to 48 and 192 elements displayed here for the full plateydtesl thai(—b) and TPES meaa x 10~° and Thin Plate Exact Solution,

respectively.
IRBFN FEM

R/h 11x11 17x 17 21x 21 27x 27 31x 31 37x 37 41x 41 47x 47 51x 51 48 192

10 1.3805(-1) 1.3851(-1) 1.3857(-1) 1.3859(-1) 1.3860(-1) 1088 1.3860(-1) 1.3860(-1) 1.3861(-1) 1.355(-1) 1.378(-1)
16.67 1.2879(-1) 1.2975(-1) 1.2988(-1) 1.2993(-1) 1.2995(-1) 99bR1) 1.2996(-1) 1.2996(-1) 1.2996(-1) 1.266(-1) 1.291(-1)

25 1.2517(-1) 1.2683(-1) 1.2707(-1) 1.2716(-1) 1.2718(-1) 10p7A2 1.2721(-1) 1.2721(-1) 1.2721(-1) 1.237(-1) 1.264(-1)

50 1.2044(-1) 1.2455(-1) 1.2514(-1) 1.2537(-1) 1.2545(-1) 1085 1.2552(-1) 1.2553(-1) 1.2554(-1) 1.211(-1) 1.247(-1)

100 1.1105(-1) 1.2251(-1) 1.2400(-1) 1.2463(-1) 1.2484(-1) 98p4) 1.2503(-1) 1.2507(-1) 1.2508(-1) 1.193(-1) 1.242(-1)
TPES 1.250(-1) 1.250(-1)

saje|d ausodwo) pajeuiwe jo uonendwo)
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Table 5: Problem 3: Displacement and stresses. It is notedahalb) meansa x 10°°.

Density ~ w(a/2,a/8) oxw(a/2,a/8,h/2) oy(a/2,a/8h/2) T14y(a/2,a/8,h/2) 14,(a/2,0,0) Tx(0,a/2,0)
17x 17 2.9590(-2) 8.0824(-4) 3.7160(-3) 1.6625(-8) -4.3448(-2)  6@00-2)
25x% 25 2.9900(-2) 1.3515(-3) 3.7761(-3) 1.5205(-9) 2.1391(-1)  1BE19
33x 33 3.0060(-2) 1.2745(-3) 3.9142(-3) 1.6929(-10) 2.9333(-1) 1943)
41x 41 3.0148(-2) 1.1473(-3) 3.9290(-3) 1.9078(-11) 3.1695(-1)  1453)
49x 49 3.0199(-2) 1.0453(-3) 3.9460(-3) -5.5379(-13) 3.2419(-1) 870%-1)
57x 57 3.0232(-2) 9.6820(-4) 3.9525(-3) 1.7980(-11) 3.2681(-1)  9364)
65x 65 3.0253(-2) 9.1134(-4) 3.9576(-3) 1.4088(-11) 3.2804(-1)  4864Q)
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Figure 1: Problem 1: Domain of interest and its discretization.
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Figure 2: Problem 1a/h =10, 41x 41: The distribution of transverse shear stresses through the thiakintaes
plate using 3D equilibrium equations.
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Figure 3: Problem 2: Domain of interest and its discretization.
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Figure 4 : Problem 2: Contour plot of the displacement of the plate using a densify»33.
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Figure 5: Problem 3: Discretizations by IRBFN (left) and FEM (S8R elements) (right)
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Figure 6 : Problem 3: Displacement at= h/2 obtained by IRBFN (left) and FEM (right).
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Figure 7 : Problem 3: In-plane stresseszat h/2 obtained by IRBFN (left) and FEM (right).



