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Computation of Laminated Composite Plates using Integrated Radial Basis
Function Networks

N. Mai-Duy1 A. Khennane2 and T. Tran-Cong3

Abstract: This paper reports a meshless method,
which is based on radial-basis-function networks
(RBFNs), for the static analysis of moderately-thick lam-
inated composite plates using the first-order shear defor-
mation theory. Integrated RBFNs are employed to repre-
sent the field variables, and the governing equations are
discretized by means of point collocation. The use of in-
tegration rather than conventional differentiation to con-
struct the RBF approximations significantly stabilizes the
solution and enhances the quality of approximation. The
proposed method is verified through the solution of rec-
tangular and non-rectangular composite plates. Numeri-
cal results obtained show that the method achieves a very
high degree of accuracy and a fast convergence rate.

keyword: laminated composite plate, radial-basis-
function network, meshless method.

1 Introduction

Principal discretization methods for solving partial dif-
ferential equations (PDEs) include a finite-difference
(FD), finite-element (FE), boundary-element (BE), finite-
volume (FV) and spectral method. Among them, the
FEM is the most widely used method in computational
engineering. To integrate a weak form and interpolate a
solution variable, the FEM requires the division of the
domain of interest into a number of small elements that
are connected together by a fixed topology (i.e. mesh).
This task is seen to be quite cumbersome especially for
problems involving complex geometries, large degrees
of deformation and free/moving surfaces. The idea of
developing numerical methods without using a mesh for
the solution of PDEs has received considerable attention
from the scientific and engineering research communi-
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ties in recent decades. As the name suggests, there will
not be any connectivity requirements between interpola-
tion points, leading to an easy process of numerical mod-
elling. A comprehensive review of meshless methods can
be found in, for example, [Atluri and Shen (2002);Liu
(2003)].

Radial-basis-function networks have been an active re-
search area in numerical analysis [Haykin (1999)]. It
has been proved that RBFNs have the property of uni-
versal approximation [Park and Sandberg (1991);Park
and Sandberg (1993)]. Madych and Nelson (1988), and
Madych and Nelson (1990) showed that the RBF interpo-
lation scheme using multiquadrics (MQ) exhibits expo-
nential convergence/spectral accuracy. The application
of MQ-RBFNs for the numerical solution of PDEs was
first reported by Kansa (1990). The RBFN collocation
method needs only a set of discrete points—instead of a
set of elements—throughout a volume to approximate the
field variables; hence, it can be regarded as a truly mesh-
less method. The main drawback of the method is the
lack of mathematical theories for finding the appropri-
ate values of network parameters. For example, the RBF
width, which strongly affects the performance of RBFNs,
has still been chosen either by empirical approaches or by
optimization techniques. Furthermore, in a computation,
only a finite number of digits can be retained by the com-
puter. As a result, it remains very difficult to achieve such
exponential convergence in practice, even for the case
of function approximation. As an alternative to the con-
ventional direct/differentiated RBFN (DRBFN) method,
Mai-Duy and Tran-Cong (2003), and Mai-Duy and Tran-
Cong (2001) proposed the use of integration to construct
the RBFN expressions (the indirect/integrated RBFN
(IRBFN) method) for the approximation of a function
and its derivatives and for the solution of PDEs. Numeri-
cal results showed that the IRBFN method achieves supe-
rior accuracy [Mai-Duy and Tanner (2005);Mai-Duy and
Tran-Cong (2005);Mai-Duy and Tran-Cong (2006)]. The
improvement is attributable to the fact that integration is
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a smoothing operation and is more numerically stable.

In this paper, the meshless IRBFN-based method is fur-
ther developed for the static analysis of moderately-thick
laminated composite plates using the first-order shear de-
formation theory. The obtained results are compared
to existing results from different methods reported in
the literature. Indeed, laminated fibre composite plates
are extensively used in aeronautics and space indus-
tries, and much research effort has been dedicated to im-
prove the ability to predict the behaviour of these struc-
tures. Closed form solutions based either on the first-
or higher-order shear deformation theory (e.g. [Whit-
ney and Pagano (1970);Bert and Chen (1978);Reddy
and Chao (1981);Reddy (1984);Pandya and Kant (1988);
Liu, Zhang, and Zhang (1994)]) as well as 3D elastic-
ity solutions (e.g. [Srinivas and Rao (1970);Pagano and
Hatfield (1972);Wang and Tarn (1994)]) are available to
assess the accuracy of the numerical methods.

A brief review of the first-order shear deformation the-
ory is given in Section 2. The governing equations in-
volve a large number of derivative terms, some of which
are mixed partial derivatives. The discretization of these
equations using DRBFNs and IRBFNs is presented in
section 3. In section 4, the IRBFN method is used to
analyze composite plates with different geometries and
boundary conditions. The obtained results show that the
present method attains fast convergence rates and high
degrees of accuracy. Section 5 gives some concluding
remarks.

2 First-Order Shear Deformation Theory of Lami-
nated Composite Plates

The first-order shear deformation theory (FSDT) of lam-
inated composite plates is an extension of the Reissner-
Mindlin theory for homogeneous isotropic thick plates.
The governing differential equations are well known, and
their derivation can be found in details in Reddy (2004).
However, for the sake of consistency an outline of the
main equations will be given below.

In FSDT, the displacement field is given as

u = u0 + zψx, (1)

v = v0 + zψy, (2)

w = w0, (3)

where(u0,v0,w0) are the displacements of a point situ-
ated in the middle plane, thexy plane, andψx andψy are

respectively the rotations of the transverse normal, i.e. in
thez direction, with respect to they andx axes.

In the present theory of thick plate without membrane
action, u0 and v0 are discarded. As a result, the strain
displacement relationships are given as

εxx = −z
∂ψx

∂x
, (4)

εyy = −z
∂ψy

∂y
, (5)

γxy = z
(∂ψx

∂y
−

∂ψy

∂x

)

, (6)

γyz =
∂w
∂y

−ψy, (7)

γxz =
∂w
∂x

+ψx. (8)

The stresses in any given laminak are expressed as
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(9)
The previous expression can be rewritten as
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and

{

τyz
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}

=

[
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γyz

γxz

}

, (11)

where the termsQi j andCi j represent the stiffness con-
stants of a unidirectional orthotropic composite making
an angleθ with the principal material x-axis. They are
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given as

Q11 = Q11cos4 θ+Q22sin4 θ
+2(Q12+2Q66)sin2 θcos2θ, (12)

Q12 = (Q11+Q22−4Q66)sin2 θcos2θ
+Q12(cos4 θ+sin4 θ), (13)

Q16 = (Q11−Q12−2Q66)sinθcos3θ
+(Q12−Q22+2Q66)sin3 θcosθ, (14)

Q22 = Q11sin4 θ+Q22cos4 θ
+2(Q12+2Q66)sin2 θcos2 θ, (15)

Q26 = (Q11−Q12−2Q66)sin3 θcosθ
+(Q12−Q22+2Q66)sinθcos3 θ, (16)

Q66 = (Q11+Q12−2(Q12+Q66)sin2 θcos2θ
+Q66(cos4 θ+sin4 θ), (17)

C44 = C44cos2 θ+C55sin2 θ, (18)

C45 = (C55−C44)cosθsinθ, (19)

C55 = C44sin2 θ+C55cos2 θ. (20)

The termsQi j andCi j represent the stiffness constants
of a unidirectional orthotropic ply in its principal axes.
They are given as

Q11 =
E1

1−ν12ν21
, (21)

Q22 =
E2

1−ν12ν21
, (22)

Q12 =
ν12E2

1−ν12ν21,
(23)

Q66 = G12, (24)

C44 = G23, (25)

C55 = G13. (26)

The moments and shears are defined as acting per unit
length. They are given as

Mxx =
Z h/2

−h/2
σxxzdz, (27)

Myy =
Z h/2

−h/2
σyyzdz, (28)

Mxy =
Z h/2

−h/2
τxyzdz, (29)

Qx =
Z h/2

−h/2
τxzdz, (30)

Qy =
Z h/2

−h/2
τyzdz, (31)

whereh is the thickness of the laminate. Substituting for
the stresses using equations (10) and (11), the moments
and shear forces are rewritten as
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with

Di j =
1
3

n

∑
k=1

(h3
k −h3

k−1)(Qi j)(k) i, j = 1,2,6, (34)

Ai j = κ
n

∑
k=1

(hk −hk−1)(Ci j)(k). (35)

whereκ = 5/6 is a shear correction factor. Considering
the equilibrium of an infinitesimal plate element leads to
the following equations

∂Qx

∂x
+

∂Qy

∂y
+q(x,y) = 0, (36)

∂Mxy

∂x
+

∂Myy

∂y
= Qy, (37)

∂Mxy

∂x
+

∂Mxx

∂x
= Qx. (38)

Substituting forQx , Qy, Mxx, Myy andMxy, the equilib-
rium equations become

A45
( ∂2w

∂x∂y
−

∂ψy

∂x

)

+A55
(∂2w

∂x2 +
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)
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)
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)

+q(x,y) = 0, (39)

D16
(

−
∂2ψx

∂x2

)

+D26
(

−
∂2ψy

∂x∂y

)

+D66
(∂2ψx

∂x∂y
−

∂2ψy

∂x2

)

+

D12
(

−
∂2ψx

∂x∂y

)

+D22
(

−
∂2ψy

∂y2

)

+D26
(∂2ψx

∂y2 −
∂2ψy

∂x∂y

)

= A44
(∂w

∂y
−ψy

)

+A45
(∂w

∂x
+ψx

)

, (40)
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For a cross-ply laminated composite plate (00,900), the
equilibrium equations reduce to

A55
(∂2w

∂x2 +
∂ψx

∂x

)

+A44
(∂2w

∂y2 −
∂ψy

∂y

)

+q(x,y)

= 0, (42)

D66
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−
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)

+D12
(

−
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)

+D22
(

−
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∂y2

)

= A44
(∂w

∂y
−ψy

)

, (43)

D66
(∂2ψx

∂y2 −
∂2ψy
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)

+D11
(

−
∂2ψx

∂x2

)

+D12
(

−
∂2ψy
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)

= A55
(∂w

∂x
+ψx

)

. (44)

3 Radial Basis Function Networks

RBFNs allow a conversion of a function from low-
dimensional space (e.g., 1D-3D) to high-dimensional
space in which the function can be expressed as a linear
combination of RBFs [Haykin (1999)]

fe(x) ≈ f (x) =
m

∑
i=1

w(i)g(i)(x), (45)

where fe and f are the exact and approximate functions,
respectively; superscripts denote the elements of a set
of neurons;x the input vector;m the number of RBFs;
{w(i)}m

i=1 the set of network weights to be found; and
{g(i)(x)}m

i=1 the set of RBFs.

3.1 Direct (DRBFN) approach

The RBFN (45) is utilized to represent the original func-
tion fe; subsequently, its derivatives are computed by dif-
ferentiating (45), e.g. those with respect tox

∂ fe(x)

∂x
≈

∂ f (x)

∂x
=

∂
(

∑m
i=1 w(i)g(i)(x)

)

∂x
=

m

∑
i=1

w(i)h(i)(x), (46)

∂2 fe(x)

∂x2 ≈

∂2 f (x)

∂x2 =
∂
(

∑m
i=1 w(i)h(i)(x)

)

∂x
=

m

∑
i=1

w(i)h
(i)

(x), (47)

whereh(i)(x) = ∂g(i)(x)/∂x andh
(i)

(x) = ∂h(i)(x)/∂x are
new basis functions for the approximation of the first-
and the second-order derivatives of the original function
fe, respectively.

3.2 Indirect (IRBFN) approach

RBFNs are used to represent the highest-order deriva-
tives in the system under consideration, e.g.,∂2 fe/∂x2

and∂2 fe/∂y2. Lower-order derivatives and the function
itself are then obtained by integrating those RBFNs, e.g.
those with respect tox

∂2 fe(x)

∂x2 ≈
∂2 f (x)

∂x2 =
m

∑
i=1

w(i)
[x]g

(i)(x), (48)

∂ fe(x)

∂x
≈

∂ f (x)

∂x
=

m+q1

∑
i=1

w(i)
[x]H

(i)
[x] (x), (49)

fe(x) ≈ f[x](x) =
m+q2

∑
i=1

w(i)
[x]H

(i)
[x](x), (50)

where subscript[x] denotes the quantities resulting from
the process of integration along thex direction; q1 the
number of new centres in a subnetwork that is employed
to approximate a set of nodal integration “constants”,

q2 = 2q1; and H(i)
[x] =

R
g(i)dx and H

(i)
[x] =

R
H(i)

[x] dx (i =
1,2, · · · ,m) new basis functions for the approximation of
the first-order derivative and the original functionfe, re-
spectively. For convenience of presentation, the new cen-
tres and their associated known basis functions in subnet-
works are also denoted by the notationsw(i) andH(i)(x)

(H
(i)

(x)), respectively, but withi > m.

There are two expressions, namelyf[x](x) and f[y](x), to
represent the functionf (x) (

{

w[x]

}

6=
{

w[y]

}

). At the col-
location points, they are forced to be exactly the same,
i.e., f[x](x) = f[y](x) = f (x) (these nodal function values
are unknowns to be found); at other points, the functionf
can be taken to be the average value off[x](x) and f[y](x).

For 1D problems, the system matrices obtained by the
DRBFN and IRBFN methods have similar sizes for a
given number of data points; for 2D and 3D problems,
the unknown vector of the latter is much larger than that
of the former. To overcome this drawback, prior con-
versions of the multiple spaces of network weights into
the single space of nodal variable values are necessary.
The evaluation of (48)–(50) at a set of collocation points
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{x(k)}p
k=1 = {c(k)}m

k=1, with p = m, yields

f,xx = Gw[x], (51)

f,x = H[x]w[x], (52)

f = H[x]w[x], (53)

whereG, H and H are the design matrices associated
with the approximation of the second-order derivative,
the first-order derivative and the function, respectively;
w[x] is the set of network weights in thex direction to be

found; f = { f (x(k))}m
k=1; f,x = { ∂ f (x(k))

∂x }m
k=1; and f,xx =

{ ∂2 f (x(k))
∂x2 }m

k=1. For the purpose of computation, the two
matricesG andH are augmented using zero-submatrices
so that they have the same size as the matrixH. By solv-
ing (53) with the general linear least-squares technique,
the set of network weights can be expressed in terms of
the nodal function values, as

w[x] = H
−1
[x] f, (54)

whereH
−1
[x] is the Moore-Penrose pseudo-inverse; and the

dimensions ofw[x], H
−1
[x] and f are (m + q2)× 1, (m +

q2)×m andm×1, respectively.

Substituting (54) into the system (51)-(53) yields

f,xx = GH
−1
[x] f, (55)

f,x = H[x]H
−1
[x] f, (56)

f = If , (57)

whereI is the unit matrix. Cross derivatives∂ f 2(x)/∂x∂y
can be straightforwardly computed using the design ma-
trices associated with the first-order derivatives (56). Al-
though the order of differentiation makes no difference
theoretically, due to numerical error, it would be more
accurate to take the average of the two equivalent repre-
sentations,

∂2 f
∂x∂y

=
1
2

(

∂
∂x

(

∂ f
∂y

)

+
∂
∂y

(

∂ f
∂x

))

,

f,xy =
1
2

(

H[x]H
−1
[x]

(

H[y]H
−1
[y] f

)

+

H[y]H
−1
[y]

(

H[x]H
−1
[x] f

))

. (58)

Expressions off and its derivatives at an arbitrary point
x can be given by

f (x)=
1
2

([

H
(1)
[x] (x), · · · ,H

(m+1)
[x] (x), · · · ,H

(m+q1+1)
[x] (x),

· · · ]H
−1
[x] f

)

+
1
2

([

H
(1)
[y] (x), · · · ,H

(m+1)
[y] (x), · · · ,

H
(m+q1+1)
[y] (x), · · ·

]

H
−1
[y] f

)

, (59)

∂ f (x)

∂x
=

[

H(1)
[x] (x), · · · ,H(m+1)

[x] (x), · · · ,0, · · ·
]

H
−1
[x] f,

(60)
∂ f (x)

∂y
=

[

H(1)
[y] (x), · · · ,H(m+1)

[y] (x), · · · ,0, · · ·
]

H
−1
[y] f,

(61)
∂2 f (x)

∂x2 =
[

g(1)(x), · · · ,0, · · · ,0, · · ·
]

H
−1
[x] f, (62)

∂2 f (x)

∂y2 =
[

g(1)(x), · · · ,0, · · · ,0, · · ·
]

H
−1
[y] f, (63)

∂2 f (x)

∂x∂y
=

1
2

[

H(1)
[x] (x), · · · ,H(m+1)

[x] (x), · · · ,0, · · ·
]

H
−1
[x]

(

H[y]H
−1
[y] f

)

+
1
2

[

H(1)
[y] (x), · · · ,H(m+1)

[y] (x), · · · ,0, · · ·
]

H
−1
[y]

(

H[x]H
−1
[x] f

)

. (64)

The field variablesw, ψx andψy in the governing equa-
tions (42)–(44) are represented by RBFNs, using either
(45)–(47) for the DRBFN approach or (60)–(64) for the
IRBFN approach. The system of PDEs is then dis-
cretized by means of point collocation. The RBFN so-
lutions thus satisfy the governing equations pointwise,
rather than in the average sense. Both approaches di-
rectly lead to square equation systems. In the case of
Dirichlet boundary conditions, i.e.w,ψx and ψy pre-
scribed along the whole boundary, the dimensions of the
system matrix are 3n×3n (n—the number of data points)
for the DRBFN approach and 3nip×3nip (nip—the num-
ber of interior points) for the IRBFN approach. The
IRBFN matrix is slightly smaller than the DRBFN ma-
trix because the IRBFN formulation is written in terms
of nodal variable values rather than network weights.

4 Numerical Results and Discussions

Since multiquadrics (MQ) are ranked as the most accu-
rate among RBFs and they can offer exponential conver-
gence with the refinement of spatial discretization, this
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study will employ these basis functions whose form is

g(i)(x) =
√

(x−c(i))T (x−c(i))+a(i)2, (65)

wherec(i) and a(i) are the centre and width of theith
MQ basis function, respectively, and superscriptT de-
notes the transpose of a vector. In the present study, the
width of theith MQ-RBF,a(i), is simply chosen to be the
minimum distance from theith centre to its neighbours.

For all problems, the shear correction factor is taken to
be 5/6, and the interlaminar shear stresses are computed
through 3D elasticity equilibrium equations. Letn and
t denote the normal and tangent to an arbitrary edge of
the plate, respectively. Simply-supported and clamped
edge conditions, which are considered herein, can be ex-
pressed as follows

Simply supported:

w = 0, ψt = 0, Mn = 0, (66)

Clamped:
w = 0, ψt = 0, ψn = 0, (67)

where

Mn = n2
xMx +2nxnyMxy +n2

yMy, (68)

ψn = nxψx +nyψy, (69)

ψt = nxψy −nyψx, (70)

in whichnx andny are the direction cosines at a boundary
point.

4.1 Problem 1

Consider a simply-supported cross-ply laminatea × a
(Figure 1) with four layers 0o/90o/90o/0o under a sinu-
soidally distributed transverse load

q = q0sin
(πx

a

)

sin
(πy

a

)

.

The material properties are chosen to be [Reddy (2004)]
E1 = 25E2, ν12 = 0.25,
G12 = G13 = 0.5E2, G23 = 0.2E2

A number of uniform densities, namely
{11×11,17×17,21×21, · · · ,41×41}, are em-
ployed to study the convergence behaviour of the
present method. The IRBFN results are compared with
those obtained by the DRBFN method, the close form
FSDT solutions [Reddy (2004)] and the 3D-elasticity

solutions [Reddy (1984)]. All results are presented in
dimensionless forms according to the following relations

w →
100E2h3

q0a4 w, (71)

{σxx,σyy,τxy}→
h2

q0a2{σxx,σyy,τxy}, (72)

{τyz,τxz}→
h

q0a
{τyz,τxz}. (73)

Table 1 presents the results obtained by the DRBFN and
IRBFN methods. When compared to the close form solu-
tions using FSDT [Reddy (2004)], it can be clearly seen
that the IRBFN method is far superior to the DRBFN
method with respect to both accuracy and convergence.
For the IRBFN method, the percentage errors are very
small and they are consistently reduced with increasing
density. It is remarkable that a high degree of accuracy is
achieved even with a small number of collocation points.
For example, at a density of only 21×21, the error of the
maximum displacement is about 0.02%. For the DRBFN
method, it can be noticed that although the computed val-
ues of the field variables (i.e.w, ψx andψy) are in good
agreement with the close form solutions, large errors ap-
pear in the calculation of their derivatives (e.g.σxx). The
DRBFN method is thus very sensitive to noise, and one
needs to pay special attention to the process of chosing
network parameters in order to achieve good accuracy.
On the other hand, the use of integration to construct the
RBF approximations significantly stabilizes the solution
and enhances the quality of approximation.

Tables 2 and 3 show the full results of the IRBFN method
for two different plate thicknesses, namelya/h = 10 and
a/h = 20. For both cases, very high degrees of accu-
racy are achieved for the transverse displacement and the
in-plane stresses when compared to the close form solu-
tions. However, there is some discrepancy between the
two solutions for the transverse shear stressesτyz andτxz.
It can be seen that the present results are much closer to
the 3D elasticity solutions. This is due to the fact that the
IRBFN method uses the 3D equilibrium equations rather
than the constitutive equations for computing these val-
ues. Figure 2 shows the distribution of transverse shear
stresses through the thickness of the plate obtained by the
present method.
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4.2 Problem 2

The present method is further verified through the so-
lution of a composite plate with a curved geometry. A
clamped circular plate with radiusR under a uniform load
q is considered here. The set of material properties is
chosen as follows
E1 = 5.6×106, E2 = 1.2×106, ν12 = 0.26,
G12 = G13 = G23 = 0.6×106

The laminate is unidirectional with fibers oriented at
θ = 0o with respect to the global coordinates. A
wide range of the radius-to-thickness ratio,R/h =
{10,16.67,25,50,100}, is investigated.

The present method does not require any underly-
ing mesh. Nodes can thus be located in a flexible
way. If one uses Cartesian-grid nodes to represent non-
rectangular/irregular domains, the computational cost of
generating data points can be significantly reduced. This
discretization approach is generally recommended for
use. For the present problem, the circular plate is first
embedded in a square domain and the extended domain
is then discretized using a Cartesian grid, i.e. an array of
straight lines that run parallel to thex− andy−axes. The
interior points are defined as grid points inside the analy-
sis domain, while the boundary points are generated by
the intersection of the grid lines with boundaries. Grid
nodes outside the analysis domain are removed from the
computations (Figure 3).

Convergence studies are conducted using 9 Cartesian
grids, namely 11× 11,17× 17, · · · ,51× 51. The cen-
tral displacement of the plate is non-dimensionalized by a
factor ofD/qR4 with D = 3(D11+D22)+2(D12+2D66).
Table 4 lists the central displacement of the plate. The
corresponding results obtained by FEM and the exact
solution corresponding to the special case of thin plate
[Wilt, Saleeb, and Chang (1990)] are also included for
comparison. It is clearly indicated that the present
method yields a very high order of accuracy. For ex-
ample, atR/h = 16.67, at least 4 decimal digits remain
unchanged when densities are greater than 21×21. How-
ever, when the thickness is reduced, higher densities are
required to obtain a converged solution. This is proba-
bly due to the fact that the thick-plate theories are used
here. The results obtained are in good agreement with
the FEM results, and they approach the thin-plate exact
solution with decreasing thickness. The typical distribu-
tion of the displacement obtained by the present method
is displayed in Figure 4.

4.3 Problem 3

The results obtained in exampples 1 and 2 have clearly
demonstrated the excellent accuracy achieved by the
present method. It is believed therefore that the IRBFN
method can now be confidently used to analyse non-
trivial problems. Thus in this example, a plate similar
in lamina lay-out to the one in Problem 1 with a cut-out
square holea/2×a/2 is analyzed under a uniform pres-
sureq0. Good convergence is achieved, as shown in Ta-
ble 5, with a shear correction factor of 5/6 which is most
suitable for isotropic plates.

Since close form or 3D elasticity solutions are not avail-
able for this problem, the obtained results are compared
to a FEM solution obtained with Abaqus [Hibbitt, Karls-
son, and Sorenson (2006)]. Figure 5 shows discretiza-
tions by the IRBFN and FEM. In the FEM solution, an
eight-node conventional shell element with reduced in-
tegration and six degrees of freedom per node is used.
However, the commercial software ABAQUS does not
reveal the value of the shear correction factor for com-
posite plates, if any. Therefore it is not possible to make
a quantitative comparison between the IRBFN and the
ABAQUS results. Nonetheless, the similarity between
the results is noticeable on the contour plots obtained
with both methods as shown on Figures 6 and 7.

5 Concluding Remarks

The meshless IRBFN method is applied to the static
analysis of the bending behaviour of moderately thick
laminated composite plates. Different geometries and
boundary conditions are considered. The RBFN methods
require only a minimum amount of effort to implement as
its formulation is based on strong form/point collocation,
and its “shape functions” are given in analytic forms.
Unlike the DRBFN, the construction of IRBFN approxi-
mations is based on integration rather than conventional
differentiation, which significantly stabilizes the solution
and improves the accuracy of the numerical results. In
contrast to the spectral collocation method, the IRBFN
does not require an underlying mesh. For efficiency,
Cartesian grids are employed to generate the interpolat-
ing points representing the analysis domain. Numerical
results obtained show that the method attains good accu-
racy and fast convergence for both rectangular and non-
rectangular plates.
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Table 1 : Problem 1,a/h = 10: Comparison of the accuracy of the DRBFN and IRBFN methods. It is noted thata(−b) meansa×10−b.

Density DRBFN IRBFN
w(a/2,a/2) Error(%) σxx(a/2,a/2,h/2) Error(%) w(a/2,a/2) Error(%) σxx(a/2,a/2,h/2) Error(%)

11×11 6.8515(-1) 3.38 5.6738(-1) 13.72 6.6163(-1) 0.16 4.9759(-1) 0.26
17×17 6.8499(-1) 3.36 5.5818(-1) 11.88 6.6240(-1) 0.04 4.9852(-1) 0.07
21×21 6.8821(-1) 3.84 5.9050(-1) 18.36 6.6254(-1) 0.02 4.9868(-1) 0.04
27×27 6.8109(-1) 2.77 4.9086(-1) 1.61 6.6263(-1) 0.01 4.9878(-1) 0.02
31×31 6.7962(-1) 2.55 5.0164(-1) 0.54 6.6265(-1) 0.00 4.9881(-1) 0.01
37×37 6.7715(-1) 2.18 5.0036(-1) 0.29 6.6267(-1) 0.00 4.9884(-1) 0.01
41×41 6.7871(-1) 2.41 5.0226(-1) 0.67 6.6268(-1) 0.00 4.9885(-1) 0.01

Close form 6.627(-1) 4.989(-1) 6.627(-1) 4.989(-1)
FSDT solution
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Table 2 : Problem 1: Displacement and stresses fora/h = 10. It is noted thata(−b) meansa×10−b.

Density w(a/2,a/2) σxx(a/2,a/2,h/2) σyy(a/2,a/2,h/4) τxy(a/2,a/2,h/2) τyz(a/2,0,0) τxz(0,a/2,0)

11×11 6.6163(-1) 4.9759(-1) 3.6084(-1) -2.4209(-2) 1.7678(-1) 3.1275(-1)
17×17 6.6240(-1) 4.9852(-1) 3.6125(-1) -2.4190(-2) 1.7877(-1) 3.1525(-1)
21×21 6.6254(-1) 4.9868(-1) 3.6133(-1) -2.4178(-2) 1.7933(-1) 3.1599(-1)
27×27 6.6263(-1) 4.9878(-1) 3.6137(-1) -2.4165(-2) 1.7978(-1) 3.1663(-1)
31×31 6.6265(-1) 4.9881(-1) 3.6139(-1) -2.4159(-2) 1.7996(-1) 3.1689(-1)
37×37 6.6267(-1) 4.9884(-1) 3.6140(-1) -2.4153(-2) 1.8014(-1) 3.1716(-1)
41×41 6.6268(-1) 4.9885(-1) 3.6141(-1) -2.4150(-2) 1.8022(-1) 3.1729(-1)

Close form 6.627(-1) 4.989(-1) 3.614(-1) -2.41(-2) 1.292(-1) 4.165(-1)
FSDT solution
3D elasticity 7.43(-1) 5.59(-1) 4.01(-1) -2.75(-2) 1.96(-1) 3.01(-1)
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Table 3 : Problem 1: Displacement and stresses fora/h = 20. It is noted thata(−b) meansa×10−b.

Density w(a/2,a/2) σxx(a/2,a/2,h/2) σyy(a/2,a/2,h/4) τxy(a/2,a/2,h/2) τyz(a/2,0,0) τxz(0,a/2,0)

11×11 4.8911(-1) 5.2504(-1) 2.9481(-1) -2.2070(-2) 1.4400(-1) 3.2535(-1)
17×17 4.9066(-1) 5.2676(-1) 2.9542(-1) -2.2121(-2) 1.4750(-1) 3.2947(-1)
21×21 4.9091(-1) 5.2703(-1) 2.9553(-1) -2.2121(-2) 1.4844(-1) 3.3057(-1)
27×27 4.9105(-1) 5.2719(-1) 2.9559(-1) -2.2117(-2) 1.4915(-1) 3.3144(-1)
31×31 4.9109(-1) 5.2723(-1) 2.9561(-1) -2.2114(-2) 1.4942(-1) 3.3179(-1)
37×37 4.9112(-1) 5.2727(-1) 2.9562(-1) -2.2111(-2) 1.4968(-1) 3.3213(-1)
41×41 4.9114(-1) 5.2728(-1) 2.9563(-1) -2.2109(-2) 1.4979(-1) 3.3229(-1)

Close form 4.912(-1) 5.273(-1) 2.956(-1) -2.21(-2) 1.087(-1) 4.370(-1)
FSDT solution
3D elasticity 5.17(-1) 5.43(-1) 3.08(-1) -2.30(-2) 1.56(-1) 3.28(-1)
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Table 4 : Problem 2: The central displacement of the plate. The grid densities are displayed in the case of the IRBFN method while the numbers of
elements are quoted in the case of FEM (Wilt, Saleeb, and Chang (1990) discretised a quarter of the circular plate with 12 and 48 elements which
correspond to 48 and 192 elements displayed here for the full plate). It isnoted thata(−b) and TPES meana×10−b and Thin Plate Exact Solution,
respectively.

IRBFN FEM
R/h 11×11 17×17 21×21 27×27 31×31 37×37 41×41 47×47 51×51 48 192
10 1.3805(-1) 1.3851(-1) 1.3857(-1) 1.3859(-1) 1.3860(-1) 1.3860(-1) 1.3860(-1) 1.3860(-1) 1.3861(-1) 1.355(-1) 1.378(-1)

16.67 1.2879(-1) 1.2975(-1) 1.2988(-1) 1.2993(-1) 1.2995(-1) 1.2995(-1) 1.2996(-1) 1.2996(-1) 1.2996(-1) 1.266(-1) 1.291(-1)
25 1.2517(-1) 1.2683(-1) 1.2707(-1) 1.2716(-1) 1.2718(-1) 1.2720(-1) 1.2721(-1) 1.2721(-1) 1.2721(-1) 1.237(-1) 1.264(-1)
50 1.2044(-1) 1.2455(-1) 1.2514(-1) 1.2537(-1) 1.2545(-1) 1.2550(-1) 1.2552(-1) 1.2553(-1) 1.2554(-1) 1.211(-1) 1.247(-1)
100 1.1105(-1) 1.2251(-1) 1.2400(-1) 1.2463(-1) 1.2484(-1) 1.2498(-1) 1.2503(-1) 1.2507(-1) 1.2508(-1) 1.193(-1) 1.242(-1)

TPES 1.250(-1) 1.250(-1)
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Table 5 : Problem 3: Displacement and stresses. It is noted thata(−b) meansa×10−b.

Density w(a/2,a/8) σxx(a/2,a/8,h/2) σyy(a/2,a/8,h/2) τxy(a/2,a/8,h/2) τyz(a/2,0,0) τxz(0,a/2,0)

17×17 2.9590(-2) 8.0824(-4) 3.7160(-3) 1.6625(-8) -4.3448(-2) -4.0660(-2)
25×25 2.9900(-2) 1.3515(-3) 3.7761(-3) 1.5205(-9) 2.1391(-1) 1.0193(-1)
33×33 3.0060(-2) 1.2745(-3) 3.9142(-3) 1.6929(-10) 2.9333(-1) 1.4319(-1)
41×41 3.0148(-2) 1.1473(-3) 3.9290(-3) 1.9078(-11) 3.1695(-1) 1.5514(-1)
49×49 3.0199(-2) 1.0453(-3) 3.9460(-3) -5.5379(-13) 3.2419(-1) 1.5870(-1)
57×57 3.0232(-2) 9.6820(-4) 3.9525(-3) 1.7980(-11) 3.2681(-1) 1.5993(-1)
65×65 3.0253(-2) 9.1134(-4) 3.9576(-3) 1.4088(-11) 3.2804(-1) 1.6048(-1)
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Figure 1 : Problem 1: Domain of interest and its discretization.
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Figure 2 : Problem 1,a/h = 10, 41×41: The distribution of transverse shear stresses through the thicknessof the
plate using 3D equilibrium equations.
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Figure 3 : Problem 2: Domain of interest and its discretization.
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Figure 4 : Problem 2: Contour plot of the displacement of the plate using a density of 37×37.
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Figure 5 : Problem 3: Discretizations by IRBFN (left) and FEM (S8R elements) (right).

w

Figure 6 : Problem 3: Displacement atz = h/2 obtained by IRBFN (left) and FEM (right).
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a) σxx

b) σyy

c) τxy

Figure 7 : Problem 3: In-plane stresses atz = h/2 obtained by IRBFN (left) and FEM (right).


