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A B S T R A C T

Human-elephant conflict (HEC) is a significant issue in Sri Lanka and many parts of the world
where elephants and humans coexist. To address HEC, this study integrates remote sensing and
GIS analysis, focusing on monitoring changes in greenery. The study prepared the latest land
cover and land use (LCLU) maps with Sentinel-2 satellite data, correlating them with reported
HEC incidents reported in 2021 and 2022 to identify HEC hotspots in two forest-dominated re-
gions of Southeast Sri Lanka. High-resolution sentinel-2 satellite imagery were used to detect ar-
eas of human activities and elephant habitats in proximity to each other. Random Forest (RF) and
Support Vector Machine (SVM) classification methods were used for LCLU classification. The
overall accuracy of the classification was 97.31 and 94.62, and kappa was 0.95 and 0.90 for RF
and SVM, respectively. Multi-temporal normalised difference vegetation index (NDVI) analysis
provided insights into vegetation health and coverage, offering a clear picture of greenery
changes. Monthly changes in vegetation cover readings were quantified using NDVI values de-
rived from MODIS data, identifying suitable regions for elephants to forage frequently. Further-
more, Kernel density estimation identified high-density areas for reported incidents of human
and elephant deaths. This process involved assigning weight to conflict incidents within a 5 km
radius, considering the proximity to the forest, and evaluating greenery changes using NDVI val-
ues, revealing varying levels of HEC risk, ranging from very high to low. The LCLU map, created
using the RF classifier, indicates that all potential HEC hotspots for very high and high HEC risks
are closely aligned with forest boundaries. The findings support HEC mitigation strategies
through community awareness, HEC hotspots mapping and restoration practices to ensure a sus-
tainable human-elephant coexistence. This method will help policymakers in wildlife conserva-
tion to identify high risk HEC zones to support HEC mitigation. In conclusion, this study high-
lights the potential of integrating remote sensing and GIS techniques in demarcating HEC
hotspots in Sri Lanka to support conflict mitigation efforts.
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1. Introduction
1.1. HEC and its impact on both humans and elephants

The human-elephant conflict (HEC) presents a significant challenge to wildlife conservation and human livelihoods in many parts
of the world, including Sri Lanka (Köpke et al., 2023). HEC observed in elephant range countries (Gross et al., 2022; Prakash et al.,
2020) arises primarily due to the competition for space and resources between humans and elephants, exacerbated by habitat frag-
mentation, agricultural expansion, and population growth. Various management strategies have been developed and practised at dif-
ferent scales to prevent and mitigate HEC (Thakshila D. Gunawansa et al., 2023a,b; Jarungrattanapong and Olewiler, 2024; Nguyen
et al., 2021). However, HEC remains pervasive as most existing prevention strategies are driven by site-specific factors that only offer
short-term solutions, while mitigation strategies frequently transfer conflict risk from one place to another (Somu and Palanisamy,
2022; Urio, 2020).

This conflict negatively impacts local communities and the elephant population. It has contributed to the critical endangerment of
the African forest elephant and the listing of the African savannah elephant and Asian elephant as endangered species (IFAW, 2023;
Riddle et al., 2010). All three remaining elephant species are included in the International Union for Conservation of Nature's Red List
of Threatened Species (Bonnald et al., 2024). Wild elephants are distributed in 50 countries worldwide, 13 in Asia and 37 in Africa
(Perera and Tsuchiya, 2009). The current population of wild Asian elephants (Elephas maximus) is estimated to range from 35,000 to
50,000, with approximately 16,000 in captivity (de Nazareth and Nagarathinam, 2012). Across all Asian range states, there is a con-
cerning trend of significant declines in wild elephant populations, largely attributed to human-related factors (Bai et al., 2022; Morley
and Van Aarde, 2007; Sitati et al., 2003).

The rapid increase in human populations in Asia and Africa has led to expansion of urban area and extending agricultural fields
(Meyer and Turner, 1992; Yang et al., 2022), encroaching on wildlife areas and impacting traditional elephant habitats (Breuer et al.,
2016; Köpke et al., 2021). In Asia, approx. Wild elephants can damage 10 to 15 percent of total agricultural output, threatening hu-
man security and well-being (Kitratporn and Takeuchi, 2020). Managing competition between people and elephants for space and re-
sources is a critical conservation issue. This has reduced elephant habitat, degraded forage, and decreased landscape connectivity
(Shaffer et al., 2019).

Change in land cover and land use (LCLU) in rural Sri Lanka are a major driving force behind habitat change, which significantly
impacts the distribution of wildlife (Billah et al., 2021; Mishra et al., 2020). In 1992, the forest cover in Sri Lanka was 1,624,757.5 ha
in 2019, it was 1,377,799.1 ha, a decrease from 24.8 percent to 21 percent over a mere 27 years (Ranagalage et al., 2020). African
and Asian elephants are prone to such conflict due to the increasing proximity between elephants and human settlements and the en-
croachment of human activities into elephant habitat areas. Their presence can lead to significant burdens for local communities due
to crop damage, property destruction, infrastructure harm, and even threats to human safety. Retaliation by killing elephants can oc-
cur, emphasising the urgent need to address the issue with effective mitigation programmes.

When widespread damage occurs, the economic impact on affected communities is significant. HEC encompasses various negative
physical interactions between humans and elephants (Mumby and Plotnik, 2018), resulting in injuries, deaths, and economic loss
with crops, properties, and livestock damages (Di Minin et al., 2021; Enukwa, 2017; Jiang et al., 2021; Naha et al., 2020). Such nega-
tive interactions pose significant conservation and social challenges, food insecurity, emotional distress, and restricted mobility in af-
fected human communities (Fernando et al., 2023). Individuals residing in areas with frequent HEC may suffer from psychological
trauma and safety concerns (Sampson et al., 2021). The associated perceptions and fear exacerbate the conflict, posing direct interac-
tions and making mitigation a challenge (Dickman, 2010; Mumby and Plotnik, 2018).

HEC has become a major concern in conservation biology worldwide (Bai et al., 2022; Billah et al., 2021; Bonnald et al., 2024;
Anwar, 2023) and requires immediate attention (Zafir and Magintan, 2016). Within the 13 elephant range countries, almost two-
thirds of the habitat suitable for elephants has declined within 300–500 years (de Silva et al., 2023). Humans may have to abandon
their homes and land due to the danger elephants pose (Evans and Adams, 2018). At the same time, elephants can be forced to leave
their natural habitat due to habitat destruction or fragmentation (Nyaligu and Weeks, 2013). Despite its small land area, Sri Lanka has
a considerable wild elephant population, approximately 0.1 elephants/km2 compared to 0.01 elephants/km2 in India (Fernando et
al., 2011; Perera et al., 2012).

The application of remote sensing and geographic information system (GIS) technology in ecological studies of elephants has
rapidly increased in recent decades (Thakshila D Gunawansa et al., 2023a,b; Kitratporn and Takeuchi, 2020; Perera et al., 2012;
Rathnayake et al., 2022; Withanage et al., 2023). However, studies based on spatial analysis focusing on identifying potential HEC
risk zones remain relatively limited, particularly in the context of Sri Lanka. Compared to other Asian and African countries, where re-
search in this area has seen more extensive development. This research gap underscores the pressing need to employ advanced satel-
lite remote sensing techniques and GIS methodologies to identify potential critical conflict hotspots and inform targeted mitigation ef-
forts. Therefore, this study was conducted to predict potential HEC hotspots, ultimately contributing to more effective conflict mitiga-
tion strategies in Sri Lanka.

1.2. Research objectives
The primary objective of this study is to identify HEC hotspots through a comprehensive analysis utilising satellite remote sensing

and GIS techniques. The study focused on four key objectives to achieve this goal: (1) produce accurate LCLU maps using Sentinel-2
satellite imagery; (2) investigate the spatial distribution of human and elephant death incidents; (3) use moderate-resolution imaging
spectroradiometer (MODIS) satellite data to evaluate greenery changes through the normalised difference vegetation index (NDVI);
(4) identify HEC hotspots by analysing greenery changes and LCLU patterns and correlating these changes with conflict incidents.



Remote Sensing Applications: Society and Environment 35 (2024) 101261

3

T.D. Gunawansa et al.

2. Materials and methods
2.1. The study area

The study was conducted in two forest-dominated areas of Southeast Sri Lanka, shown in Fig. 1, covering parts of the Southern,
Uva, and Sabaragamuwa provinces. This area occupies approximately 5836 km2 and includes a variety of types of LCLU, such as
forests, open forests, paddy fields, and cultivated tropical crops. The environment is hot and humid, with a mean annual temperature
of around 29 °C. Temperatures can reach 37 °C during the dry season (Anwar, 2023). The region includes the national parks of
Udawalawe, Yala, Lunugamvehera, Bundala, and Weheragala, and Bundala-Wilmanna and Katagamuwa wildlife sanctuaries, home
to many elephants. Based on individual identification, the Udawalawe National Park holds a population of between 804 and 1160 ele-
phants (Fernando et al., 2011; Silva et al., 2011), resulting in a high density of wild elephants, approximately 1.02–1.16
elephants/km2 (Fernando et al., 2011).

Furthermore, agriculture dominates land cover in the central region, with primary crops being rice, banana, and maise (Kumarage
and Arunakumara, 2017). The consistently low height of this region allows elephants to spread quickly onto the agricultural land. The
northeast monsoon season, which occurs from December to February, brings an average rainfall of 898 mm, with the highest precipi-
tation in November, December, and January, experiencing up to 336 mm of rain (Department of Meteorology, 2023).

The selected study area included forest-dominated regions characterised by diverse LCLU patterns. This selection was based on
many historical HEC incidents and noticeable variations in LCLU patterns within these areas. By focusing on regions with a significant
history of HEC incidents, the study could explore these conflicts' causes, patterns, and trends.

2.2. Overview of HEC incident data
Based on the previous HEC incident data, Fig. 2 illustrates a detailed comparison of the deaths of humans and elephants due to the

HEC in Sri Lanka from 2010 to 2022. The graph highlights the variations and trends in deaths for each species, clearly visualising po-
tential conflict points. In particular, these data are compared to the densities of the elephant and human populations over the same
period, allowing for a deeper understanding of the correlation between population densities and death rates.

Understanding the patterns and trends of HEC incidents over time is essential for organising effective mitigation strategies and
conservation efforts. This study uses regression analysis to investigate the relationship between time and HEC incidents, as shown in
Fig. 3. Coefficients of determination (R2) of 0.7065 and 0.7605, respectively, were used to predict the relationship between the year
and HEC incidences. These equations express the proportion of variance in HEC incidents that the year variable can explain. Equation
R2 = 0.7065 indicates that approximately 70.65 percent of the variability in HEC incidents can be explained by time. This shows a
moderate degree of association between time and HEC incidents.

On the other hand, equation R2 = 0.7605 indicates that temporal changes account for around 76.05 percent of the variability in
HEC incidents. This higher R-squared value suggests a stronger linear relationship between time and HEC incidents.

Fig. 1. Map of the study area.
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Fig. 2. Comparative analysis of elephant and human deaths and densities in Sri Lanka from 2010 to 2022.
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Fig. 3. Temporal trend of human and elephant deaths reported from 2010 to 2022.

2.3. Data
Three key datasets were used to identify the HEC hotspots: reported HEC incidents from the Sri Lankan Department of Wildlife

Conservation (DWC), Sentinel-2 and MODIS satellite data, and rainfall data from the Department of Meteorology.

2.4. HEC data
HEC incident records were obtained from the DWC of Sri Lanka for 12 years, from 2010 to 2022 (Department of Wildlife

Conservation, 2023). HEC data are organised into four categories: human deaths, elephant deaths, human injuries, and property dam-
ages. These incidents have been documented with location information, wildlife region, district secretary's division (DSD), district,
and incident date (or year). The initial phase of the study focused on identifying HEC hotspots and analysing incident reports from
2018 to 2020. Quantum Geographic Information System (QGIS) 3.28 software was used to map the data and identify hotspots. DWC
and field data were collected between January 2021 and January 2022 to validate identified hotspots. The study was intended to cor-
rectly identify high-risk locations using a combination of statistics and spatial analysis.

2.5. Satellite data
This study involved Sentinel-2 and MODIS data collected from June 2021 to January 2022. Sentinel-2 imagery was classified and

analysed separately for two temporal periods: dry and rainy seasons. The latest QGIS 3.28 software was used to analyse the MODIS
data.

2.6. Sentinel-2 satellite data
The development of the Copernicus programme has facilitated effective monitoring of the Earth's surface by producing the Sen-

tinel-2 multispectral products (Zhang et al., 2021). The Sentinel-2 mission's primary objective is to provide free access to high-
resolution satellite data for monitoring LCLU, climate change, and disasters (Phiri et al., 2020). In addition, Sentinel-2 is intended to
deliver high-resolution satellite data for land monitoring, emergency management, security, climate change, and marine studies.
LCLU types on the mainland are artificial surfaces such as roads and paved areas, forest areas, agricultural areas, and small water bod-
ies (ESA, 2015). Sentinel-2 satellite data can potentially improve forest classification on medium to large scales due to high spatial
resolution. Sentinel-2 has 13 spectral bands, three spatial resolution levels of 10 m, 20 m, and 60 m (ESA, 2014), a 290 km swath, and
a radiometric resolution of 12 bits. The Sentinel-2 constellation consists of twin satellites: Sentinel-2A (launched on June 23, 2015)
and Sentinel-2B (launched on March 7, 2017) (Phiri et al., 2020). These Sentinel-2 satellites revisit each ten days, thus, the combined
constellation revisit frequency is five days.

2.7. MODIS satellite data
MODIS was launched into Earth's orbit by the National Aeronautics and Space Administration (NASA) on Terra (EOS AM satellite)

in 1999 and Aqua (EOS PM satellite) in 2002. The instruments capture data in 36 spectral bands ranging in wavelength from 0.4 to
14.4 μm. Spatial resolutions ranging from 250 m to 1 km (two bands at 250 m, five bands at 500 m, and 29 bands at 1 km) are ap-
plied to map vegetation dynamics and processes at a large scale. Due to the coarse spatial resolution, MODIS data sets are suitable for
mapping LCLU types over large areas. The swath is 2330 km (cross-track) by 10 km (along-track at the nadir). Together, the instru-
ments image the entire Earth every one to two days (Elshora, 2023). Combining multiple types of imagery can lead to better monitor-
ing results through image fusion.

MODIS data provide a precious set of real-time details of relatively large green patches on the ground (Perera and Tateishi, 2012).
Rapid satellite data streams in operational applications benefit vegetation monitoring when information can be delivered as fast as
changing surface conditions (Brown et al., 2015). MODIS data, including NDVI and true colour images, are freely available via the
NASA website (NASA, 2023; Perera et al., 2012). The NDVI was used to assess vegetation health and density in the region of interest
for this study.
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2.8. Rainfall data
Daily total rainfall data were collected from the Department of Meteorology (Ranagalage et al.) for nine months, from May 01,

2021 to January 31, 2022. This information was collected from the seven distinct rainfall stations illustrated in Fig. 4. This data col-
lection aimed to clarify the precipitation patterns and variations observed across these stations within the specified time frame.

2.9. Sentinel data analysis
For this study, 12 Sentinel-2 level-2A (L2A) imagery from 2021 to 2022 from 104 available imagery was selected. These selected

images cover the entire study area, with four separate Sentinel-2 imagery captures covering the entire area and a minimal cloud cover
of less than 14 percent. Details of the selected Sentinel-2 imagery are given in Table 1.

2.10. Image classification categories and algorithms
Six LCLU classification categories were identified within the study area, highlighting the region's vast diversity of landscape and

variegated land use. The selected classification schemes represent human-induced transformations and natural variations. Table 2
lists the definitions of these categories.

2.11. Image classification methods
In this study, the Sentinel-2 satellite imagery was classified using supervised classification, random forest (RF), and support vector

machine (SVM) algorithms. Training sites were selected using a combination of resources, including Google Earth, on-site field data,
prior knowledge, and publicly available information. These training areas provide essential references for the algorithms to recognise
the spectral signatures associated with each LCLU type.

Fig. 4. Distribution map of weather stations within the study area.

Table 1
The characteristics of the Sentinel-2 data used in this study.

Satellite Processing level Cloud cover percentage Date of acquisition

Sentinel-2A Level-2A 0.38–13.78 June 21, 2021
Sentinel-2A Level-2A 0.41–11.90 January 22, 2022
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Table 2
LCLU categories and definitions.

LCLU category Definition

Forest Trees and bushes, covered by natural, newly forested, or planted forests
Open forest Moderately tall trees and an open canopy that lets in some light
Homestead/Other crops A house, the adjoining area of land, and the land planted for crops, including cultivated land on a commercially large scale
Sand/Residential

land/Open land
Sand on the sea floor or seashore, land specifically for living or dwelling for individuals or households, land used for townships
and rural settlements, unbuilt land with insignificant or no vegetation cover

Paddy field A flooded field of arable land used for growing rice
Inland water Any of the water, such as reservoirs, ponds, and tanks, within the territory

2.12. RF classification
The RF classifier is an ensemble tree-based classifier that chooses features randomly from the training dataset to minimise tree cor-

relations (Gislason et al., 2006). It builds models using bootstrap aggregation using two parameters, mtry and ntree. These parameters
function independently to create a final prediction by randomly selecting samples from the training dataset (Genuer et al., 2010).
Specifically, mtry denotes the number of predictors tested at each decision tree node split, while ntree indicates the number of deci-
sion tree runs performed during each iteration (Chabalala et al., 2022). All trees are combined to achieve a final prediction. Thus, ap-
plying various decision trees grown using different random subsets decreases bias and prevents overfitting in the model. The boot-
strap aggregating (bagging) method is robust against model fitting and helps develop a stable model.

In this study, the SNAP 9.0.0 image processing software was used for RF classification, and data preprocessing for Sentinel-2 im-
agery was performed using the Level-2A algorithm in Sen2Cor within the Sentinel Application Platform (SNAP) provided by the Euro-
pean Space Agency (ESA). SNAP seamlessly integrates with Sentinel satellite data, which is advantageous when working with im-
agery heavily reliant on Sentinel data. SNAP offers comprehensive support for the preprocessing, visualisation, and analysis of Sen-
tinel data. Moreover, SNAP is optimised for efficiently processing large volumes of satellite data, leveraging parallel processing and
optimisation techniques. Furthermore, SNAP benefits from a large user and development community, providing ample support, docu-
mentation, and tutorials for RF classification. Fig. 5 shows the methodology followed for the RF classification of Sentinel-2 data. In
this study, the RF model was optimised, and the model accuracy was maximised by setting mtry and ntree parameters to 3200 and 50,
respectively.

2.13. SVM classification
The principle behind the SVM classifier is a hyperplane that separates the data for different classes (Szuster et al., 2011). The focus

is on constructing the hyperplane by maximising the distance from the hyperplane to the nearest data point of either class (Nguyen et
al., 2020). These nearest data points are known as support vectors. By mapping the input data into a high-dimensional space, the ker-
nel function converts nonlinear boundaries in the original data space into linear boundaries in the high-dimensional area, which can
then be located using an optimisation algorithm (Huang et al., 2002). Therefore, the selection of the kernel function and the appropri-
ate values for the corresponding kernel parameters, referred to as the kernel configuration, can affect the performance of the SVM
(Shafizadeh-Moghadam et al., 2017).

The Orfeo Toolbox (OTB) software is an open-source remote sensing project (Michel and Grizonnet, 2015). This OTB 8.1.0 plugin
was used for SVM classification integrated with QGIS 3.28. The OTB plugin was optimised using a cost parameter with an optimal pa-
rameter setting of one. The training and validation sample ratio was selected as 0.5 percent of the study. This SVM classification was
executed in QGIS 3.28 using a linear kernel-type algorithm (De Luca et al., 2019). Fig. 6 shows the methodology followed for the SVM
classification of Sentinel-2 data.

2.14. Accuracy assessment
Confusion matrices were created to compare the actual and assigned classes. This included the overall accuracy (OA), user accu-

racy (UA), producer accuracy (PA) and the kappa coefficient (Kc). A total of 188 randomly selected points were used for this accuracy
assessment. Validation data were obtained from various resources, including Google Earth, on-site field data, prior knowledge, and
publicly available information. The performances of the SVM and RF classifiers were measured.

A high accuracy in LCLU has to be maintained in this study for several reasons. First, maps help to determine the pattern of LULC
change and its correlation with HEC. Accurate LULC data is essential for identifying and characterising potential HEC hotspots, as it
provides detailed information about the types and distribution of LULC features that may attract or deter elephants, such as agricul-
tural fields, forest patches, or human settlements. High-accuracy maps essential for pinpointing potential conflict hotspots accurately.
Additionally, precise maps provide valuable spatial information on the distribution and intensity of HEC occurrences, enabling tar-
geted mitigation efforts and resource allocation.

2.15. MODIS data analysis
Analysis of MODIS data has been an instrumental tool in monitoring and understanding various ecological dynamics worldwide.

Previously, researchers (Perera and Tateishi, 2012) demonstrated the successful applicability of MODIS NDVI products in detecting
changes in forest cover in Sri Lanka (Perera et al., 2012). Based on those research findings, a detailed analysis was conducted on the
seasonal NDVI values in the study area. These locations also included HEC hotspots identified during the study. Out of the 123 MODIS
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Fig. 5. Workflow diagram of the RF classification process.

images examined, 54 were selected for this study's NDVI analysis due to their minimal cloud coverage. The NDVI image was derived
using Equation 01, and the red and near-infrared (Köpke et al.) bands were used to compute the NDVI in this study.

NDVI =
𝜌NIR − 𝜌RED

𝜌NIR + 𝜌RED

=
B2 − B1

B2 + B1
1

The methodology used in this study will be directly applied to other regions with differing environmental and socio-economic
characteristics. By utilising satellite imagery, it can effectively cover large areas typically affected by HEC. Through GIS, various envi-
ronmental and anthropogenic factors contributing to HEC can be analysed spatially, allowing for the identification of hotspots where
conflicts are most prevalent.
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Fig. 6. Workflow diagram of the SVM classification process.

3. Results
3.1. LCLU classification

The RF and SVM methods were used to produce LCLU classification maps which are illustrated in Figs. 7 and 8, respectively.
Tables 3 and 4 comprehensively present the classification accuracies.

Tables 3 and 4 present the classification accuracy of different LULCs over six months. The six-month interval between June and
January encompasses different seasons, which can significantly impact the appearance of the LCLU. Seasonal planting and harvest-
ing cycles could influence changes in agricultural land cover, such as paddy fields. This can lead to variations in classification accu-
racy over the different months. Any environmental changes occurring within these six months, such as deforestation, urbanisation,
or water body dynamics, can also impact the LULC classification results.

The spatial analysis of the LCLU map shows distinct patterns for various classifications. The outputs derived from SVM and RF
classifiers exhibit more precise and pronounced boundaries of the areas designated as forest, open forest, and homestead and other
crops. Conversely, regions characterised by sand/residential land/open land, paddy fields, and inland water are reasonably classified
in all utilised classifiers. Further quantitative insights into the accuracy and reliability of these classifications can be found in Table 5,
which details the OA and Kc of each classification. The RF classifier has been detected as a highly accurate LCLU model with a Kc.

3.2. Analysis of NDVI
The NDVI is a widely used index for image classification, continuous monitoring, and the rapid assessment of forest quality. The

highest NDVI values correspond to dense vegetation, forests, or crops at their peak growth stage. Based on growth characteristics, for-
est areas can be extracted by the difference in NDVI values between the dry and rainy seasons, reflecting vegetation growth dynamics.
NDVI analysis was performed to evaluate vegetation health and cover, and the NDVI threshold value varied between −1 and +1.
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Fig. 7. LCLU classification maps of Sentinel-2 imagery using RF classifiers for 2021 to 2022.

Fig. 8. LCLU classification maps of Sentinel-2 imagery using SVM classifiers for 2021 to 2022.

Table 3
PA and UA for RF classification results of classification images taken on June 21, 2021 and January 22, 2022.

Classification Scheme June 21, 2021 January 22, 2022

PA % UA % PA % UA %

Forest 100.00 98.59 98.88 98.88
Open forest 87.93 96.23 100.00 92.31
Homestead and other crops 89.47 94.44 88.46 95.83
Sand/Residential land/Open land 66.67 66.67 95.00 95.00
Paddy field 100.00 83.87 100.00 100.00
Inland water 100.00 100.00 100.00 100.00

Fig. 9 shows NDVI values significantly vary between these two phenological periods. In the study area, the dry season is from
May to September 2021, while the transition to the rainy season occurs in October 2021. The recorded rainfall data from May
2021 to August 2021 indicate a rainfall level of less than 150 mm per month, except for Balangoda Post Office Weather Station
(Fig. 10). NDVI values notably increased from September 2021, aligning with rainfall (Fig. 11). The NDVI image can discriminate
between forests in the dry and rainy seasons because the NDVI values of forests are much higher than those of other vegetation
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Table 4
PA and UA for SVM classification results of classification images taken on June 21, 2021 and January 22, 2022.

Classification Scheme June 21, 2021 January 22, 2022

PA % UA % PA % UA %

Forest 91.43 88.89 97.75 95.60
Open forest 79.31 93.88 79.17 86.36
Homestead and other crops 89.47 62.96 92.31 88.89
Sand/Residential land/Open land 33.33 33.33 95.00 100.00
Paddy field 96.15 100.00 100.00 100.00
Inland water 100.00 100.00 100.00 100.00

Table 5
Comparison of classification performance of RF and SVM classification.

Date Classification Methods OA Kc

June 21, 2021 RF 94.68 0.93
SVM 87.77 0.83

January 22, 2022 RF 97.31 0.95
SVM 94.62 0.90

Fig. 9. NDVI results of the study area: (a) NDVI map in the dry season; (b) NDVI map in the rainy season.

types. NDVI values of vegetation in the rainy season increase significantly and can be easily distinguished from other LCLU types,
such as water and bare land.

Fig. 12 visually represents the monthly seasonal vegetation changes over nine months from May 01, 2021 to January 31, 2022 us-
ing NDVI. During a dry period from June to August, the Hambantota region, which includes Maha Lewaya, Mattala, Suriyawewa, and
Okkampitiya, recorded monthly rainfall levels of less than 150 mm. In the subsequent months, a considerable increase in NDVI val-
ues occurred. To be precise, from September 2021 to January 2022, such values increased and even exceeded 0.6, indicating a land-
scape with healthy vegetation.

3.3. Detection of HEC hotspots
Detecting high-density conflict points with QGIS involved systematically analysing recorded human and elephant death incidents

from 2018 to 2021 (see Fig. 13). The kernel density estimation (KDE) method quantified the spatial distribution of human and ele-
phant deaths using historical incident data from the selected period and was used to identify areas with a high density of such inci-
dents. This analysis revealed eight specific geographic points. Fig. 13 shows the spatial distribution of these focal points for HEC
hotspots.

Human and elephant death incidents within a 5 km radius were analysed using a spatial weight matrix (Rathnayake et al., 2022).
The calculation involved determining the incident count within a 5 km radius and assigning weights ranging from 0 to 0.3 based on
the distance from the designated reference point. An accurate LCLU map was utilised to evaluate the proximity to forested areas from
the eight identified high-density conflict points. Weights were assigned between 0 and 0.5 based on the distance from the nearest
forested area. Additionally, the impact of changes in greenery on incident occurrences was considered, with weights assigned be-
tween 0 and 0.2.
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Fig. 10. Monthly variation of rainfall from May 2021 to January 2022.

Fig. 11. Monthly variation of NDVI from May 2021 to January 2022.

The integration of estimated weights determined the total weight for each identified high-density point, as outlined in Table 6.
This comprehensive approach enabled a detailed understanding of the factors contributing to the concentration of HEC incidents in
specific areas.

3.4. HEC hotspots
Identifying HEC hotspots revealed a range of risk values, from a 0.8741 (very high) to 0.1593 (relatively lower). Consequently,

based on conflict probability, the model was used to classify these HEC hotspots into four distinct risk categories, as detailed in Table
7.

According to Fig. 14, notably, all hotspots categorised as very high and high risk were located close to forest boundaries. This spa-
tial relationship highlights the significant influence of forested regions on the occurrence of HEC incidents, further emphasising the
critical need for conservation and mitigation efforts in these areas.

4. Discussion
HEC poses a significant challenge in many parts of the world, including Sri Lanka, where it threatens wildlife conservation and hu-

man livelihoods. Understanding HEC incident patterns and trends is crucial for developing effective mitigation and conservation
strategies. In this study, regression analysis was used to investigate the relationship between years and HEC incidents, with a moder-
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Fig. 12. Monthly seasonal variations in NDVI from May 2021 to January 2022.

ate association identified. Sri Lanka has a significant population of wild elephants, approximately 0.1 elephants/km2 compared to
0.01 elephants/km2 in India.

Sentinel-2 L2A imagery with less than 14 percent cloud coverage and MODIS satellite data with minimal cloud coverage were
utilised to produce six LCLU classification schemes within the study area, illustrating the region's vast diversity of landscapes and var-
ied LCLU. Sentinel-2 satellite imagery was classified using supervised classification methods, RF, and SVM algorithms. SNAP 9.0.0
and QGIS 3.28 software with OTB 8.1.0 plugin tools were used in this classification.

Training sites were chosen using a combination of resources, including Google Earth, on-site field data, prior knowledge, and pub-
lic datasets. The RF model was optimised, and the model accuracy was maximised by setting two main parameters, mtry at 3200 and
ntree at 50. This SVM classification was executed using a linear kernel-type algorithm with a setting of 1 for cost parameters and
training and validation sample ratio of 0.5 percent.

Confusion matrices were created to compare the actual and assigned classes. For this accuracy assessment, 188 randomly selected
points were used. The RF classifier achieved a higher accuracy overall of 97.31 percent, while the SVM classifier reached 94.62 per-
cent. Kc values that peak at 0.95 for RF and 0.90 for SVM indicate a strong consistency between the ground truth and the processed
classifications. The results confirm that RF and SVM are reliable and accurate methods for classifying Sentinel-2 satellite imagery into
LCLU maps.

Moreover, NDVI analysis provides insights into vegetation health and its correlation with rainfall patterns. During the dry season
from May 2021 to August 2021, the recorded rainfall level was less than 150 mm per month. In this period, NDVI values were lower,
indicating reduced vegetation cover. However, following increased rainfall, NDVI values rose notably in September 2021, indicating
healthy vegetation cover with such values exceeding 0.6.

The KDE technique was used to identify areas with a high density of humans and elephants. Subsequently, eight specific geo-
graphic points were pinpointed as exhibiting a heightened density of human and elephant death incidents. A spatial weight matrix
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Fig. 13. (a) Distribution of reported human and elephant death incidents from 2018 to 2021; (b) The density of human and elephant death incidents per km2 within the
study area.

Table 6
High-density points of human and elephant deaths and conflict probability.

Point ID Conflict probability

1 0.8714
2 0.7093
3 0.8074
4 0.8278
5 0.2283
6 0.2378
7 0.1593
8 0.5742

Table 7
Conflict probability and risk level of HEC hotspots.

Conflict probability Risk level

0–0.25 Very high
0.26–0.50 High
0.51–0.75 Moderate
0.76–1.00 Low

was used for further analysis. For human and elephant death incidents within a 5 km radius of each point, weights ranging from 0 to
0.3 were assigned based on the distance from the designated reference point. Also, the proximity to forest areas from these points was
measured using an LCLU map with weights from 0 to 0.5 assigned. Additionally, the impact of changes in greenery on incident occur-
rences was considered based on NDVI and weights were assigned from 0 to 0.2 accordingly.

Identifying HEC hotspots revealed a range of risk values, from a very high 0.8741 to a relatively lower 0.1593. Therefore, the
model classified these HEC hotspots into four distinct risk categories: very high, high, moderate, and low. Specifically, three hotspots
were classified as very high risk and two as high risk, all strategically situated close to forest boundaries.

The main strength of this study is its proposed and validated HEC high-risk zone identification method by integrating GIS and
satellite data fusion techniques. Remote sensing and GIS analysis have been successfully combined to monitor changes in greenery
correlated with HEC incidents. The purpose of identifying high-risk HEC zones using remote sensing and GIS is to alert communities
of high-risk HEC hotspots and provide some guidance for implementing HEC mitigation plans.

The proposed method in this study has several limitations in real-world applications. The availability and quality of input data
heavily influence the accuracy of satellite data classification. Although satisfactory results for LCLU classification can be obtained, se-
curing enough cloud-free images is difficult. The accuracy of the classification model depends on the appropriate representativeness
and quality of the training data. Classification accuracy can be compromised if training data do not adequately capture the variability
and characteristics of target LCLU classes. This may have an adverse effect on classification accuracy.

The adopted study methodology will be applied to other regions dealing with similar human-wildlife conflict, considering several
factors such as scalability, similar characteristics, and adaptability. The ability to scale up or down is essential for its applicability to
different regions, ensuring that the methodology remains effective and feasible.
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Fig. 14. HEC hotspots and their risk level.

5. Conclusions
With significant economic, social, and ecological implications, HEC in Sri Lanka poses a significant threat to local communities

and the elephant population. This study comprised an investigation into utilising Sentinel-2 satellite imagery for LCLU classification
in Sri Lanka and MODIS satellite data for monitoring changes in greenery. Remote sensing and GIS techniques were applied to exam-
ine the relationship between HEC incidents and LCLU changes in two forest-dominated regions of Southeast Sri Lanka from 2021 to
2022.

The efficiency of RF and SVM classification methods in producing LCLU maps using Sentinel-2 satellite data was evaluated. The RF
classifier achieved a higher overall accuracy of 97.31 percent compared to the SVM classifier, which reached 94.62 percent, still a ro-
bust result. The strong consistency between ground truth and processed classifications, indicated by Kc values peaking at 0.95 for RF
and 0.90 for SVM, underscores the effectiveness of RF and SVM in classifying Sentinel-2 satellite imagery into LCLU maps.

NDVI analysis was carried out to evaluate vegetation health and cover, revealing fluctuations and changes in greenery. Following
a dry period from May 2021 to August 2021, significant increases in NDVI readings were observed in the Hambanthota and Monera-
gala districts. NDVI values exceeded 0.6 with rainfall. Moreover, a correlation between rainfall and NDVI was established, with in-
creased rainfall corresponding to higher NDVI values and healthier vegetation cover.

For HEC hotspot detection, the KDE technique was used to identify high incident density. Spatial weight matrices were employed
to assess factors such as the count of human and elephant death incidents within a 5 km radius, proximity to forested areas, and
changes in greenery, with hotspots classified into four risk categories: very high, high, moderate, and low. Notably, three very high
risk and two high-risk HEC hotspots were situated close to forest boundaries.

The findings of this study offer valuable insights for mitigating HEC and fostering coexistence between humans and elephants.
Sentinel-2 imagery and MODIS satellite data can facilitate the timely identification of greenery changes, aiding in detecting HEC
hotspots. Collaborations with local governments are essential for implementing inclusive strategies incorporating wildlife conserva-
tion and HEC mitigation into LCLU policies. Augmenting strategy with machine learning models trained on historical HEC incidents
and greenery changes can enhance predictive capabilities, while interactive community feedback platforms can further refine mitiga-
tion efforts. Importantly, these strategies and methodologies are transferable to other regions facing similar HEC challenges.

In conclusion, the precision mapping of HEC high-risk zones in Sri Lanka and other affected regions through GIS and satellite data
fusion is crucial for evidence-based conservation strategies. This study underscores the potential of HEC hotspot identification for pre-
cision in mapping HEC zones in Sri Lanka and any other country with HEC, to promote effective resource allocation, community en-
gagement and awareness, data-driven decision-making, international collaboration, and research. In conclusion, demarcating high-
risk zones of HEC in Sri Lanka through GIS and satellite data fusion is crucial for evidence-based, effective conservation strategies.
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