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Abstract 

 
It is important to develop reliable finite element models (FEMs) for real structures not only in the design phase 

but also for the structural health monitoring and life-cycle management purposes. To do so, model updating is 

often carried out to minimise the discrepancies between FEMs and real structures. Among existing model 

updating approaches, sensitivity based model updating methods which can be either manual or automated, have 

proven to be very effective in the application of real structures and have been widely used on flexible bridge 

structures. However, very few studies were reported on buildings especially those with medium-rise 

characteristics which are often associated with complicated initial modelling and different degrees of parameter 

uncertainties. In addition, even-though a handful of studies has been done on manual model updating for bridge 

structures, not much research has taken into account the influence of external structural components on manual 

model updating process. To address these issues, two case studies with real structures are established in this 

research. One is conducted with a 10 story concrete building to demonstrate the importance of having 

sufficiently detailed initial FEMs in automated model updating of medium-rise buildings and effective use of 

boundary limits and parameter groups to maintain the physical relevance of the updated FEMs. Other is an 

investigation with a single span inflexible foot bridge to highlight the necessity to consider external structural 

components in manual model updating of inflexible structures to develop reliable FEMs. Both case studies 

employ actual ambient vibration monitoring data obtained from the test structures for the model updating 

processes. 
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1 Introduction 

Model updating is the process of correcting the modelling errors of an  analytical FEM by using  measured data 

and this technique is applied to generate a refined baseline FEM that accurately predicts the dynamic or static 

behaviour of a structure [1]. In recent times, there has been much attention in the area of structural dynamics 
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towards the derivation of accurate models of structures. These accurate models are useful in many civil 

engineering applications such as structural health monitoring, damage detection, structural evaluation and 

maintenance. During the development of the FEMs there are several assumptions and structural idealizations 

taken into consideration.  When the experimental modal identification is carried out for the real structures it is 

inevitable to experience differences with the developed FEMs. These differences  originate from the 

uncertainties in the simplifying assumptions of structural geometry, materials and inaccurate boundary 

conditions in the FEM [2]. The purpose of model updating is to adjust the mechanical and materials properties 

as well as geometrical properties of structural elements in order to obtain a better agreement between numerical 

and experimental results.  

Among many model updating methods available, sensitivity based model updating has been very popular in real 

structure applications for the last two decades. Such methods can be either manual where the tuning parameters 

changed manually to improve the initial FEMs or automated which is often conducted in iterative manners. 

Several successful studies had been reported in using sensitivity based model updating, mostly on flexible 

bridge structures such as long span cable stayed bridges [3-10]. However, very few comprehensive studies have 

been carried out on automated model updating of building structures [11,12] especially those with medium rise 

characteristics. These types of structures are often associated with complicated initial modelling and different 

degrees of parameter uncertainties leading to real challenges for the users to establish satisfactory initial FEMs 

as well as appropriate updating parameters and ranges. Another issue arisen from previous studies is that even 

though several case studies have been done with manual model updating, they were mostly concerned about 

flexible-type bridge structures such as cable-stayed bridges and choosing internal structural elements for model 

tuning [4,7,10]. As a result, there has been a shortage of studies on inflexible bridge structures (such as short- 

and mid-span concrete bridges) and assessing the influence of external structural components on manual model 

updating processes.  

In order to address some of the aforementioned issues, two case studies of model updating with real structures 

are established in this research. The first case study considers a 10 storey building located at Queensland 

University of Technology (QUT) premises. Due to its low height/width ratio, the structure is considered to be 

non-slender and demanding to be calibrated by means of ambient vibration measurements. Further, the structure 

is rather complex in terms of internal structural variation such as slab thicknesses and elemental orientations 

which are often found in medium-rise buildings. The aim of this case study is, firstly, to demonstrate the 

importance of having sufficiently detailed initial FEMs of complex medium rise buildings in automated model 



updating. Secondly, it is intended to show how boundary limits and parameter groups based on element types 

can be defined for tuning parameters for such types of building structures in order to maintain the physical 

relevance of the updated FEM. To expedite the updating process, FEM tools which is a multi-functional 

computer-aided engineering program for FEM updating will be used in conducting the automated model 

updating [13].  

The second case study treats a single span foot bridge which is considered to be an in-flexible planar structure 

with challenging boundary conditions at one of its supports (see Section 3.2 for more details). Manual model 

updating coupled with systematic sensitivity analysis is used in this study to obtain the high sensitivity elements 

for each response of every parameter. This case study highlights the importance of taking into account the 

external structural components (located in the vicinity of the support of the structure under consideration) in the 

manual model updating process.  

The dynamic characteristics of interest for the model updating are the first few natural frequencies and the 

corresponding mode shapes. The experimental modal analysis results obtained from the ambient vibration 

measurements are used to update the FEMs of these two structures.. The experimental output-only modal 

analysis (OMA) procedure and modal properties obtained for the two case studies are described in the previous 

research work at QUT [14,15]. It is worth noting that OMA has gained more popularity in comparison to the 

input-output counterpart in recent years as it is more applicable for monitoring in-service civil structures 

[16,17]. The details of the two case studies are discussed in the next two succeeding sections before conclusions 

along with summary of the findings are made.  

2 Case Study 1: QUT-SHM Benchmark Building  

 
The first case study concerns the 10 story P block of the Science and Engineering Centre complex at Gardens 

Point Campus of QUT. This is a concrete frame structure with post tensioned slabs and reinforced concrete 

columns. Overall, the building has a rather common level configuration with four semi-underground bases 

consisting of lowest four levels with horizontal dimensions of approximately 75m x 65m. The upper floor levels 

possess a smaller floor area with dimensions of 65m x 45m.  The total height of the building is 42m from the 

formation level of the building while the floor height of the building varies in the range 2.7m to 4.5m. Even 

though the structure has an overall common configuration, for structural detailing a number of variations in slab 

thicknesses, slab openings, column sizes and orientations will need to be considered. The three main shear walls 

are placed in the middle of the building, two to the east and other to the west to resist the lateral loads due to 



potential wind, lateral seismic loads and torsional forces. An overview of the P block and level 4 layout which 

can be considered as a typical floor level are presented in Fig. 1 and Fig. 2 respectively. 

 

 

 
 

Fig. 1 View of P block sensor arrangement 

 



 
 

Fig. 2 Level 4 layout of the building 

 
The P block contains a vibration sensing system employing a software-based synchronization method and 

operating in a continuous monitoring manner. As illustrated in Fig. 1, there are six analog tri-axial 

accelerometers and two single-axis accelerometers installed to capture the vibration responses of the structure. 

The sensors were located on the upper part of the building which is globally more sensitive to the ambient 

excitation sources such as wind loads and human activities. Acceleration data of the sensors were sampled at a 

frequency of 2000Hz and then split into 30-minute subsets to allow sufficient undisrupted data acquisition 

length for modal analysis purposes. Data driven Stochastic Subspace Identification (SSI-data) with unweighted 

principal component estimator was selected as the main OMA technique for this case study. For illustration 

purposes, a typical SSI-data stabilization diagram for OMA of the building is shown in Fig. 3 (upper diagram). 

Even though only a limited number of sensors were available to capture the ambient vibration responses, six 



frequently excited modes of the building were extracted with high confidence [14]. First five global modes 

extracted from OMA are illustrated in Fig. 3 (lower diagram) (Table 2 in section 2.1.2 provides more detailed 

description about the mode shapes). Further details regarding the vibration sensors and data synchronization 

solutions of P block can be found in Nguyen et al. [15]. 

 

 

 
Fig. 3 Stabilization diagram and typical animation views of first five modes 

 

2.1 Model Updating Procedure 

 
 



2.1.1 Initial Finite Element modelling 

 
To study the importance of the initial finite element modelling in medium rise inflexible building structures, a 

simple FEM developed during the design process was trialed for the model updating. In this model, the level of 

detailing is low in-terms of modelling shear cores and columns. The results were not satisfactory as the original 

error for the frequencies of first three global modes is close to 50%. The model updating resulted in over 100% 

change to the selected updating parameters, which caused losing the physical relevance of the updated FEM. 

Hence, a more detailed FEM was developed using the commercially available software package SAP2000 

nonlinear version 15.2.0 [19]. Maximum error of the frequencies for first five global modes is reduced to 17% 

which highlights the importance of initial finite element modelling in relatively inflexible structures for model 

updating purposes (See Table 1 for more details). The particular considerations taken during the development of 

initial FEM are summarized below; 

 Detailed modelling is considered when modelling the shear cores taking into account major and minor 

openings and internal thin walls to make the torsional behaviour of the structure as close as possible to 

the real structure 

 The spandrel beams are modelled as shell elements instead of frame elements  

 Floor diaphragms are assigned to each floor level to maintain rigid behaviour of floor levels 

 Since the building cladding fully glazed and all the partitions are light-weight initial investigations 

revealed that the effect of mass and stiffness of non-structural elements is negligible,  hence not 

included in the FEM 

 The building consists of complex interior slab configurations which makes it impossible to model the 

floor slabs in detail. Therefore average slab thicknesses are considered in the initial FEM. This can be 

justified since in the automated model updating floor slab thickness can be used as a updating 

parameter to account for the simplifying assumption used in initial FEM  

The developed initial FEM consists of 9400 local elements (1400 frame elements and 8000 shell elements). 

Since the floor system of the building consists of only post-tensioned slabs all the frame elements are 

representing columns in the building. Amongst 8000 shell elements 2320 are shear walls and 5680 shell 

elements are floor slabs. 

2.1.2 Correlation Analysis  

 



To correlate the results between initial FEM and OMA results, the FEM data generated in SAP2000 and test 

data were imported into the updating software FEMtools. The Modal Assurance Criterion (MAC) which is a 

correlation criterion in statistics used for this purpose. 
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Where a  and e  are analytical and experimental mode shape vectors, respectively. The correlations of 

dynamic properties for the first five global modes are tabulated in Table 1. Table 1 show that the correlation was 

good in-terms of frequency except for the 1st and 5th mode where the error exceeds 10%. The correlation of 

mode shapes expressed in-terms of MAC values was not good except for the 1st mode.  

 

 

Table 1 Correlation between initial FE model and OMA results 

Mode OMA Frequency 

(Hz) 

Initial FE model 

(Hz) 

Error 

(%) 

MAC 

(%) 

Mode Shape 

1 1.147 0.990 -13.69 89.9 1st translational- X direction 

2 1.544 1.452 -5.96 50.5 1st  translational– Y direction 

3 1.653 1.678 1.51 42.5 1st torsional 

4 3.989 3.680 -7.75 63.2 2nd translational 

5 4.254 4.972 16.88 68.4 2nd torsional 

 

2.1.3 Model Updating 

 
Even though the initial FEM developed produce good correlation compared to the model used by the designers 

for static analysis, the correlation is not satisfactory for dynamic analysis purposes. Hence, model updating was 

used to improve the FEM. 

According to Brownjohn, Xia [20], successful model updating depends on choosing correct number of 

responses, appropriate selection of updating parameters. Initial studies carried out on response selection revealed 

that selection of OMA frequencies and OMA mode shape ordinates for the first five modes produce good results 

in model updating.  Hence, the frequencies and associated mode shape pairs of first five modes were selected for 

the model updating. 

As stated earlier, selection of appropriate updating parameters is vital for a successful model updating. The 

selected updating parameters should be physically realisable; hence the chosen parameters should be uncertain 



in the FEM. Otherwise, the updated model will produce physically meaningless updated parameters. Further, it 

is necessary to select the updating parameters that are most sensitive to the selected responses [3]. Sensitivity 

analysis is carried out to choose the appropriate parameters for the model updating. 

Since the parameters chosen are of different types, normalized relative sensitivities have been used for the 

sensitivity analysis. 
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 rS  = Relative sensitivity matrix; 

 jP  = A diagonal, square matrix holding parameter values 

The sensitivity matrix is obtained by finite difference method. Then the relative sensitivities have been 

normalized with respect to the response values. 

 

                                                                                                          (3) 

 

 nS  = Normalized relative sensitivity matrix; 

 iR  = A diagonal, square matrix holding the response values 

When selecting the local elements for the model updating, initially all the possible uncertain parameters can be 

used, but through sensitive analysis low sensitivity parameters should be eliminated for more effective updating 

process. In structural modelling there are always uncertainties associated with the cross sectional areas of 

elements, stiffness of elements and boundary conditions of the structure. However the uncertainties in boundary 

conditions such as arbitrary structural configurations and variations at the boundary are difficult to deal within 

automated model updating of large civil engineering structures. Hence in this case study only the parameters 

that can be systematically coped are considered for sensitivity analysis and later for automated model updating. 

The uncertain parameters included in the sensitivity analysis are Young’s modulus mass density of all local 

elements (9400 local elements each), cross sectional area, torsional stiffness, bending moment of inertia about Y 

direction and Z direction of all columns (1400 local elements each) and shell thickness of floor slabs (5680 local 

elements). Hence, the total parameter space used for the sensitivity analysis is 30080 local parameters. 

Then through normalized sensitivity analysis, sensitive local elements for each response are identified and 

selected for the automated model updating. The parameter sets are defined in order to make the model updating 

        j
j

j

iirn P
P

R
RRSS


















11



more realistic and meaningful. For an example, for the selected parameters for columns (frame elements), sets 

are defined based on individual columns, except for the shell thickness. No sets are used for the shell elements 

and in automated model updating allow varying in local shell element basis. As stated in section 2.1.1, since the 

actual internal variation of slab thickness is impossible to model, in most cases average slab thicknesses are used 

in the initial FEM. Hence, it is justifiable to allow variation of slab thickness in shell element level. Summary of 

all the sets defined for the identified high sensitive elements are presented in Table 2.  

After selection of responses and parameters, automated model updating is carried out. The selected parameters 

are estimated by an iterative process in the updating procedure. Sensitivity-based parameter estimation coupled 

with pseudo-inverse parameter estimation is used as the updating algorithm. The functional relationship between 

the modal characteristics and the structural parameters can be expressed in terms of a Taylor series expansion 

limited to linear terms.  
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}{ eR  = Experimental data 

}{ aR  = Predicted system responses for a given state }{ 0P  of the parameter values 

}{ uP  = Updated parameter values 

Since the Taylor’s expansion is truncated after the first term, the neglected higher order terms necessitate several 

iterations, especially when }{ R  contains large values. 

Pseudo-inverse of the sensitivity matrix is calculated to determine the desired parameter variation.  
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The least squares solutions obtained from the above equation will minimize the residue: 

}{}]{[}{ RPSresidue                                                                                                                            (7) 

In order to obtain physically realisable and meaningful values for updating parameters upper and lower bounds 

are used in the updating procedure. If a parameter reaches its allowable maximum/minimum value during any 

iteration, the parameter will be made inactive for the rest of the model updating. Upper and lower bounds used 

for all the parameters are tabulated in Table 2. Higher upper and lower bounds are used for the shell thickness of 

floor slabs to account for the use of average slab thicknesses (instead of actual thicknesses)in the initial FEM. 



The automated updating process will be stopped when a given residue value is achieved, or a given minimum 

improvement between two consecutive iterations is achieved or maximum number of iterations achieved. In this 

case study the above mentioned values are as follows; 

 Minimum residue value is 0.1% 

 Minimum improvement between two consecutive iterations 0.01% 

 Maximum number of iterations 100 

 

 

 
Table 2 Parameters selected for the model updating and the implemented limits 

 

Parameter  Group Minimum Limit Maximum Limit 

Young’s Modulus (E)  Element-Shell type -15% +15% 

Mass Density ()  Element-Shell type -15% +15% 

Cross Sectional Area (AX) Element type -15% +15% 

Torsional Siffness (IX) Element type -15% +15% 

Bending Moment of Inertia about Y (IY) Element type -15% +15% 

Bending Moment of Inertia about Z (IZ) Element type -15% +15% 

Shell Thickness (H) Individual shell elements -30% +30% 

 

 

2.2 Model Updating Results 
 
The automated procedure stops after 39 iterations due to the minimum improvement between two consecutive 

improvements falls below the established value of 0.01%. The updated model results are summarized in Table 3. 

The table shows the OMA frequencies and the FEM frequencies for both before and after updating for the first 

five natural modes. From the table it can be seen that four FEM modes match the corresponding OMA modes 

with 1.3% or less error which is considered to be an excellent match. The largest error is 4.6% for the first mode 

which is still a very good match for practical purposes considering the scale of the structure. 

 
Table 3 Comparison of first five natural frequencies of the P block before and after model updating 

 

Mode Number OMA Frequency FEM Before FEM After 

Frequency Error Frequency Error 

1 1.147 Hz 0.990 Hz -13.69% 1.094 Hz -4.62% 

2 1.544 Hz 1.452 Hz -5.96% 1.555 Hz 0.71% 

3 1.653 Hz 1.678 Hz 1.51% 1.657 Hz 0.24% 

4 3.989 Hz 3.680 Hz -7.75% 3.988 Hz -0.03% 

5 4.254 Hz 4.972 Hz 16.88% 4.258 Hz 0.09% 



 
The Modal Assurance Criterion (MAC) values for the mode shapes are also considered in the model updating. 

Table 3 shows the MAC values for each mode shape pair before and after updating the model. A graphical 

comparison of mode shapes of FEM and OMA is shown in Fig. 4. From Table 4 it can be seen that there are 

three pairs matching with 84% or higher MAC values. The other two modes also have a reasonable match with 

over 60% MAC values. This can be considered as an acceptable result considering the complexities of the 

structure’s details and boundary conditions as previously mentioned as well as the limited number of sensors 

used for measurement. 

 
Table 4 Comparison of MAC values for mode shape pairs before and after model updating 

 

Mode Shape Pair MAC Before Model Updating MAC After Model Updating 

1 89.9% 88.6% 

2 50.5% 89.4% 

3 42.5% 62.7% 

4 63.2% 62.6% 

5 68.4% 84.4% 

 

Table 5 summarises the parameter changes after updating the FEM. Since the upper and lower limits are 

introduced to each parameter, the outcomes are realistic and meaningful. A variation of 15% for material 

properties such as the E value and  value can be allowed for certain elements of a structure from the design 

values due to various reasons such as changes of concrete batches etc. Considering the maximum and minimum 

changes to the above mentioned parameters, the results are physically realisable. In the updated model there are 

two aspects to justify for the shell thickness of the floor slab elements which are the variation limit for the 

thickness and the choice of no grouping for shell elements. The rationale of no grouping for shell element 

thicknesses is that according to the as built drawings the slab thicknesses vary significantly in small portions so 

this type of grouping is impractical. The reason for choosing 30% variation limit is that in some areas actual 

thickness is 30% higher or lower from the average values used in the initial FEM.  while according to the as 

built drawings the slab thicknesses vary significantly in small portions. Hence these two setups for the shell 

element level is justifiable for this particular case study.   

To highlight the importance of the model updating procedure adopted in this research, it is worth comparing the 

results of this study with the results of similar cases reported in literature. Previously mentioned (In section 1) 

case study [11,12]  on sensitivity based model updating on a  15 story building used basic initial FEMs 

developed with design drawings to correlate the frequencies and associated mode shapes of first six global 



Pair 4 @ MAC Value 62.6% 

modes. The largest error in terms of frequency and maximum MAC value for the mode shape pairs is 13.3% and 

85% respectively as opposed to the 4.6% and 89.4% in this case study. Further, in the aforementioned case 

study most tuning parameters achieved higher variation from the initial values such as E values of floor slabs 

70% and I values of columns 50% which tend to cause the loss in physical relevance of the updated FEMs. 

However, in this research most of the parameter variations were limited to 15% (including E values of floor 

slabs and I values of columns) except the shell thickness of the slabs a higher variation (30%) is used for 

legitimate reasons.  

Table 5 Maximum and minimum changes to the parameters after model updating 

Parameter Initial Value Max. Value % Difference Min. Value % Difference 

E 3.5E+07 kN/m3 4.26E+07 kN/m3 +15 2.98E+07 kN/m3 -15 

 2.4 kN/m3 2.76 kN/m3 +15 2.04 kN/m3 -15 

AX Varies Varies +8.34 Varies -9.61 

IX Varies Varies +1.31 Varies -1.51 

IY Varies Varies +14.3 Varies -15 

IZ Varies Varies +10.7 Varies -4.35 

H Varies Varies +30 Varies -30 

 

 
Pair 2 @ MAC Value 89.4% Pair 3 @ MAC Value 62.7% 

Pair 5 @ MAC Value 84.4% 



Fig. 4 Comparison of FEM mode shapes of updated model and OMA mode shapes of P Block 

 

3. Case Study 2: QUT-SHM Benchmark Foot Bridge 

 
The footbridge is a concrete overpass located at the fourth floor of the P block. It is a concrete slab of 375mm 

thickness, simply supported at two ends and has the span of approximately 8.5m. The support at one end is an 

extension of the main building floor slab, while at the other end, the structure is roller supported on a reinforced 

concrete beam.  Fig. 5 shows an overview (left) and a layout (right) of the foot bridge. The foot bridge has two 

tri-axial analog accelerometers positioned in the middle of the two unsupported edges as shown in Fig. 5. 

Additionally two single axis accelerometers were placed at quarter and three quarter spans to measure the 

vertical motion.  

 



 

 
 

Fig. 5 Overview (left) and layout (right) of the Foot Bridge 

 

Even though the structure is inflexible, the number of sensors is limited and the ambient vibration conditions are 

quite challenging, the first two modes of the footbridge are identified (with the computer program ARTeMIS ) 

which serves the purpose of model updating application presented in this paper. .As illustrated in Fig. 6, the first 

mode is a first order bending mode while the second one is a first order torsional mode.  

 

 

 

 

 

 

 

 
Fig. 6 First two mode shapes of the foot bridge 

 

3.1 Model Updating Procedure 

 
As with the case study of the benchmark building structure, a FEM was developed using SAP2000. The as-built 

drawings have been used in order to represent the real structure as accurately as possible. 

For this structure, unlike in the previous case study, a manual model updating procedure is used. The model 

developed by SAP2000 is exported to FEMtools. The FEM consists of 361 local elements used to model the 

concrete deck and 26 spring elements used to idealise the support boundaries. Then a sensitivity analysis is 

performed for the parameters that are likely to change during the model updating procedure. The same process 

used for the P block structure is used for the sensitivity analysis of the foot-bridge. The total local element count 

for the sensitivity analysis is 1239, which consists of translational stiffness of spring elements in X, Y and Z 



directions (26 X 3 = 78), rotational stiffness of spring elements in X, Y and Z directions (26 X 3 = 78), young’s 

modulus of concrete deck shell elements (361), mass density of concrete deck shell elements (361) and shell 

thickness of concrete deck elements (361) The sensitivity of each local element for each local parameter is 

tested against the target responses. Since only the first two natural frequencies and the associated mode shapes 

are available for model updating only four target responses are chosen for the sensitivity analysis purpose. They 

are: 

 Frequency of mode number 1 (Response 1) 

 Frequency of mode number 2 (Response 2) 

 Mode shape of mode 1 (Response 3) 

 Mode shape of mode 2 (Response 4) 

 

Following this, the highest sensitive elements are figured out and tabulated for each parameter. The outcomes of 

the sensitivity analysis are then analysed against the likelihood of occurrence. Finally the respective parameters 

of the selected elements are changed and the response of the FEM is observed. This procedure is repeated until 

there is a good match between the FEM and OMA results. 

 

3.2 Model Updating Results   

 
Fig. 7-10 shows the normalized sensitivities for each local parameter of each local element. It is clear from the 

figure that the normalized sensitivities are high towards the end of the graph. This means that the local 

parameter shell thickness is the highest sensitive parameter for all responses, especially for the first two 

responses. The individual elements with highest sensitivities are identified. Interestingly the highest sensitive 

elements for the parameter shell thickness are in a 0.5 strip of meshed slab elements at the end the foot bridge 

that is connected to the main building floor. 



 
   

Fig. 7 Normalized sensitivities vs. uncertain parameters (Response 1) 

 

 

 
 

Fig. 8 Normalized sensitivities vs. uncertain parameters (Response 2) 

 



 
 

Fig. 9 Normalized sensitivities vs. uncertain parameters (Response 3) 

 

 

 
 

Fig. 10 Normalized sensitivities vs. uncertain parameters (Response 4) 

 
A trial and error process is then carried out by changing the slab thicknesses of those local elements and 

observing the changes to the responses. Table 6 summarises the frequencies and MAC values for the first two 

modes before and after performing several trial and error processes. 

Table 6 Comparison of the first two natural frequencies before and after model updating 

 

Mode 

Number 

OMA 

Frequency 

FEM Before FEM After MAC 

Before 

MAC 

After Frequency Error Frequency Error 

1 14.88 Hz 13.1 Hz -11.96 % 14.30 Hz -3.90 % 86.4 % 83.4 % 

2 23.01 Hz 21.86 Hz -4.99 % 23.25 Hz 1.04 % 74 % 74 % 

 



Table 6 provides the resultant change for the shell thickness of each local element considered in the model 

updating of the foot bridge. The table shows a significant change with an increase in shell thickness of 166.67% 

for 10 local elements and 300% increase for 5 local elements. However, interestingly in the real structure very 

close to the strip of local elements considered for model updating there is a beam at the boundary of the 

footbridge with a 1000mm depth for 2/3rd of the span and 1500mm depth for remaining 1/3rd of the span. Since 

the beam is not part of the original foot bridge, this was not considered in the initial FEM. However, by using 

the sensitivity analysis of the structure it is found that such an adjacent structural component is crucial for the 

FEM to represent the actual structure in terms of modal behaviours and that the model updating process has 

successfully resolved this. For illustration purposes, the view at the particular boundary is shown in Fig. 11(left) 

while Fig. 11 (right) shows an extruded view of SAP2000 model after updating the foot bridge. It is also noted 

that there is no improvement to the MAC values for both the modes. As discussed in the previous case study the 

MAC values can be seen as acceptable considering the complexities of the structure’s boundary conditions and 

the limited number of sensors used for measurement. A reason for the lack of improvement of MAC values is 

that even though the shell thickness has a higher sensitivity for the first 2 natural frequencies, some of the local 

elements have a positive correlation and some elements have a negative correlation (refer Fig. 9 and Fig. 10) for 

the mode shapes. The results can be further improved by conducting automated model updating after successful 

manual model tuning of the initial FEM [4,10,7]. However, since the main purpose of this case is to focus only 

on some aspects of manual model updating, further improvement of the FEM through automated model 

updating is beyond the scope of the case study. 

 
Table 7 Parameter changes before and after model updating 

 
Local  Element Number Initial Shell Thickness 

mm 

Final Shell Thickness 

mm 

Percentage Difference % 

367 375 1000 166.67 

307 375 1000 166.67 

301 375 1000 166.67 

295 375 1000 166.67 

289 375 1000 166.67 

355 375 1000 166.67 

349 375 1000 166.67 

343 375 1000 166.67 

337 375 1000 166.67 

283 375 1000 166.67 

331 375 1500 300 

325 375 1500 300 

319 375 1500 300 

406 375 1500 300 



405 375 1500 300 

 

 
 

Fig. 11 View at the boundary and the extruded view of the updated SAP model 
 

 

4. Conclusions 

 
The model updating procedure has been successfully carried out for two case studies, the P block and the foot 

bridge. These case studies show that it is possible to accomplish effective model updating techniques for real 

civil engineering structures but greater care needs to be taken when dealing with complex concrete structures 

not only in automated model updating but also in manual model updating applications. On one hand, even 

though automated model updating is efficient in real civil structure applications, the first case study herein 

showed that it is necessary to develop sufficiently detailed initial FEMs to obtain satisfactory correlation using 

automated model updating of medium-rise inflexible building structures. In addition, it was shown that how 

parameter groups based on element types (such as columns) and reasonable upper/lower limits based on 

engineering judgement (such as 30% for slab thickness and 15% for other tuning factors herein) should be 

introduced onto the tuning parameters to maintain the physical relevance of the updated FEMs. On the other 

hand, the second case study highlighted the importance of considering the external structural components in the 

vicinity of the main structure when conducting manual model updating of inflexible structures such as short-

span concrete bridges. The advantage of manual model updating is that a significant change can be made for 

certain elements if it is physically meaningful and justifiable, which is very useful in dealing with complex local 

conditions as demonstrated in the second case study. 

 

 

 

Foot bridge boundary 



 

REFERENCES 

 

1. Liu Y, Li Y, Wang D, Zhang S (2014) Model Updating of Complex Structures Using the Combination of 

Component Mode Synthesis and Kriging Predictor. The Scientific World Journal 2014:476219 

2. Jaishi B, Ren WX (2005) Structural finite element model updating using ambient vibration test results. 

Journal of Structural Engineering 131 (4):617-628 

3. Brownjohn JM, Xia P-Q (2000) Dynamic assessment of curved cable-stayed bridge by model updating. 

Journal of Structural Engineering 126 (2):252-260 

4. Živanović S, Pavic A, Reynolds P (2007) Finite element modelling and updating of a lively footbridge: The 

complete process. Journal of Sound and Vibration 301 (1):126-145 

5. Zhang Q, Chang T, Chang C (2001) Finite-element model updating for the Kap Shui Mun cable-stayed 

bridge. Journal of Bridge Engineering 6 (4):285-293 

6. Brownjohn JMW, Moyo P, Omenzetter P, Lu Y (2003) Assessment of highway bridge upgrading by dynamic 

testing and finite-element model updating. Journal of Bridge Engineering 8 (3):162-172 

7. Park W, Kim H-K, Jongchil P (2012) Finite element model updating for a cable-stayed bridge using manual 

tuning and sensitivity-based optimization. Structural Engineering International 22 (1):14-19 

8. Kim J-T, Ho D-D, Nguyen K-D, Hong D-S, Shin SW, Yun C-B, Shinozuka M (2013) System identification 

of a cable-stayed bridge using vibration responses measured by a wireless sensor network. Smart Struct Syst 11 

(5):533-553 

9. Cismaşiu C, Narciso AC, Amarante dos Santos FP (2015) Experimental Dynamic Characterization and 

Finite-Element Updating of a Footbridge Structure. Journal of Performance of Constructed Facilities 29 

(4):04014116. doi:10.1061/(asce)cf.1943-5509.0000615 

10. Daniell WE, Macdonald JH (2007) Improved finite element modelling of a cable-stayed bridge through 

systematic manual tuning. Engineering Structures 29 (3):358-371 

11. Lord J-Fo (2003) Model updating of a 48-storey building in Vancouver using ambient vibration 

measurements.  

12. Ventura C, Lord J, Turek M, Brincker R, Andersen P, Dascotte E FEM updating of tall buildings using 

ambient vibration data. In: Proceedings of the Sixth European Conference on Structural Dynamics 

(EURODYN), 2005. pp 4-7 

13. FEMtools UM (2012) FEMtools Dynamic Design Solutions N.V. (DDS). .  



14. Nguyen T, Chan THT, Thambiratnam DP (2014) Field validation of controlled Monte Carlo data generation 

for statistical damage identification employing Mahalanobis squared distance. Structural Health Monitoring 13 

(4):473-488 

15. Nguyen T, Chan THT, Thambiratnam DP, King L (2015) Development of a cost-effective and flexible 

vibration DAQ system for long-term continuous structural health monitoring. Mechanical Systems and Signal 

Processing Vol 64-65, 2015 (December 2015):313-324 

16. Nguyen T, Chan THT, Thambiratnam DP (2014) Effects of wireless sensor network uncertainties on output-

only modal-based damage identification. Australian Journal of Structural Engineering 15 (1):15 

17. Nguyen T, Chan THT, Thambiratnam DP (2014) Effects of wireless sensor network uncertainties on output-

only modal analysis employing merged data of multiple tests. Advances in Structural Engineering 17 (3):319-

330 

18. Structural Vibration Solutions A/S (2011) SVS-ARTeMIS Extractor-Release 5.3, User's manual. Aalborg-

Denmark,  

19. Computers & structures  Inc. (2014) Integrated software for Structural analysis & design, Computers & 

structures, Inc., Berkeley, California, USA, V. 15.2.0.  

20. Brownjohn JM, Xia P Finite element model updating of a damaged structure. In: Society for Experimental 

Mechanics, Inc, 17 th International Modal Analysis Conference., 1999. pp 457-462 

 

 


