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Metaheuristic algorithms play a vital role in addressing a wide range of real-world problems by 
overcoming hardware and computational constraints. The Chameleon Swarm Algorithm (CSA) is a 
modern metaheuristic algorithm that uses how chameleons act. To improve the capabilities of the 
CSA, this work proposes a modified version of the Chameleon Swarm Algorithm to find better optimal 
solutions applicable to various application areas. The effectiveness of the proposed algorithm is 
assessed using 97 typical benchmark functions and three real-world engineering design problems. To 
validate the efficacy of the proposed algorithm, it has been compared to a number of well-known and 
widely-used classical algorithms, the Gravitational Search Algorithm, the Earthworm Optimization. 
The proposed modified Chameleon Swarm Algorithm using Morlet wavelet mutation and Lévy flight 
(mCSAMWL) is superior to existing algorithms for both unimodal and multimodal functions, as 
demonstrated by Friedman’s mean rank test as well as three real world engineering design problems. 
Five performance metrics—average energy consumption, total energy consumption, total residual 
energy, dead node and cluster head frequency are taken into consideration when evaluating the 
performances against state-of-the-art algorithms. For nine different simulation scenarios, the 
proposed algorithm mCSAMWL outperforms the Atom Search Optimization (ASO), Hybrid Particle 
Swarm Optimization and Grey Wolf Optimization (PSO-GWO), Bald Eagle Search Algorithm (BES), the 
African Vulture Optimization Algorithm (AVOA), and the Chameleon Swarm Algorithm (CSA) in terms 
of average energy consumption and total energy consumption by 50.9%, 52.6%, 45%, 42.4%, 50.1% 
and 51.4%, 53.3%, 45.6%, 42.4%, 50.7%.
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Metaheuristic algorithms are effective solutions that can be utilized for a wide variety of engineering challenges 
that are encountered in the real world1. Compared to deterministic approaches, metaheuristic algorithms have 
excelled in recent decades due to their adaptability, ability to prevent local optima, and gradient-free framework. 
Deterministic approaches get identical results for the same problem. This behavior may result in local optimum 
trapping, which is a drawback of deterministic techniques2. Local optima trapping denotes an algorithm 
becoming stuck in local solutions. As a result, it is unable to find a global solution. Because of their inconsistent 
performance, deterministic methods can no longer be relied upon for solving practical optimization problems 
with several possible solutions. Most of these algorithms are derived from observations of natural phenomena, 
such as the intelligence of swarms of particles, the logic of biologically inspired algorithms, the physics of 
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everyday objects, etc. Evolutionary algorithms mimic nature. The fittest candidate survives in evolutionary 
algorithms. These algorithms start with a population of solutions surviving in a fitness-evaluated environment. 
Then, genetic crossover and mutation help the parent population pass on its environmental adaptations to the 
offspring. Finally, iterative generations are used to find the best environmental solutions. Genetic Algorithm, 
Biogeography-Based Optimization (BBO), Genetic Programming (GP), Differential Evolution (DE), and 
Evolution Strategies (ES), etc., are the evolutionary algorithms.

The notions and norms of physics are adhered to in physics-based procedures, in which person update their 
positions according to physical laws such as molecule dynamics, the force of inertia, the force of gravitation, 
etc., the Atom Search Optimization, the Simulated Annealing, the Artificial Electric Field Algorithm, and the 
Sine Cosine Optimization, etc. are all well-known methods based on physical principles. Natural metaheuristics 
inspired by the “collective intelligence” of swarms are referred to as “swarm intelligence”. Collective knowledge 
is developed when a group of similar agents collaborate and learn from their surroundings. Colonies of ants, 
swarms of bees, dense flocks of birds, and many other groups of animals have been used as examples of collective 
intelligence. The coordinated flocking of birds inspired the concept of Particle Swarm Optimization. Fireflies’ 
flashing habits inspired the firefly algorithm’s development. The Bat Algorithm (BA) is a nature inspired 
algorithm that employs a sophisticated echolocation-based navigation system. The Ant Colony Optimization was 
based on the way that real-life ant colonies lay down pheromone trails. Cuckoo Search (CS) is an evolutionary 
optimization method inspired by the behavioral patterns of the cuckoo bird. Among the most prominent are: 
Fruit Fly Optimization Algorithm (FFOA), the Ant Colony Optimization (ACO), the Grasshopper Optimization 
Algorithm (GOA), the Salp Swarm Algorithm (SSA), the Whale Optimization Algorithm (WOA), the African 
Vulture Optimization Algorithm (AVOA), the Glowworm Swarm Optimization (GSO), and Cat Swarm 
Optimization (CSO) etc. Existing CSA studies have several problems, such as insufficient diversity, local optima 
problems, and imbalanced exploitation. Each previously mentioned optimization algorithm must also consider 
how to best explore and exploit a given search space. Exploration and exploitation3 are the two distinct stages 
that make up the search process for an algorithm that is based on a population. The term “exploration” refers to 
the process of increasing the number of swarms in order to more thoroughly study every part of the search space, 
whereas the term “exploitation” describes the process of increasing the number of swarms to more thoroughly 
analyze any promising or intriguing locations that were discovered during the exploration phase. Stochastic 
behaviour makes it difficult to achieve equilibrium among the exploration and exploitation phases.

An effective optimization algorithm will strike a balance between exploring and exploiting the space. It 
is not guaranteed that an algorithm will be superior on all problems just because it performs well on some 
problems. It serves as inspiration for this research. The Chameleon Swarm Algorithm (CSA) is vulnerable 
to becoming trapped in local optima. The optimizer may be unable to locate the global solution because it is 
trapped in the local region. Generating new solutions is estimated using the solutions inherent to the previous 
iteration. Consequently, this may reduce the algorithm’s convergence rate, resulting in solutions that do not 
effectively encompass the entire search space and premature convergence. Considering this as a motivation, 
the mCSAMWL algorithm is proposed in this study as an improved version of the CSA, to increase the search 
capability, optimize the balance between exploitation and exploration phases, and prevent early convergence of 
the local optimum. mCSAMWL’s guiding principle is founded on the injection of two effective strategies into the 
original CSA: Morlet Wavelet mutation, and the Step Reducer Lévy flight. Swarm intelligence is the foundation 
of the Chameleon Swarm Algorithm (CSA). Recent advancements in optimization algorithms, particularly those 
utilizing Levy-based search techniques, have led to the development of several innovative approaches in the field 
such as the modified version of Dynamic Hunting Leadership (DHL) algorithm, have incorporated the Levy 
Flight technique to enhance convergence and solution precision. The mDHL algorithm4, which also addresses 
the challenges of local optima and convergence delays, integrates this technique with localized development 
strategies to improve global exploration and exploitation. The DGS-SCSO optimizer5, an enhanced version of 
Sand Cat Swarm Optimization (SCSO), incorporates Dynamic Pinhole Imaging and the Golden Sine Algorithm 
to mitigate issues like local optima entrapment and slow convergence. Similarly, AEFA-CSR6, a hybrid of the 
Artificial Electric Field Algorithm with Cuckoo Search and Refraction Learning, improves convergence and 
solution precision, showing superior performance across benchmark functions and engineering problems.

Related work
CSA has attracted significant attention from researchers due to its simple architecture and ease of implementation. 
To further enhance its functionality, numerous concepts and approaches have been introduced. This section 
offers an overview of CSA’s development and examines its applications in solving challenges across various 
domains. Sridharan7 developed a Chameleon Swarm Optimization (CSO) with machine learning- based Sarcasm 
Detection and Classification (CSOML-SASC) model. Umamageswari et al.8 introduced a framework using the 
Fuzzy C-Means (FCM) based Chameleon Swarm Algorithm (CSA) named FCM-CSA, which was used for plant 
leaf diseased part segmentation. RizkAllah and Hameed9 suggested a Chameleon Swarm Algorithm (MCSA) 
that extracts parameters from solid oxide fuel cell models using a semi-empirical and memory-based approach. 
Anitha et al.10 introduced a Modified Grey Wolf-based Chameleon Swarm Algorithm to minimize energy 
consumption and enable secure wireless sensor network communication. RizkAllah et al.11 introduced a hybrid 
approach comprising the Chameleon Swarm Algorithm(CSA) and Mayfly Optimization (MO) named CSMO 
for solving the Combined Heat and Power Economic Dispatch (CHPED) problem. Mostafa et al.12 proposed a 
modified mCSA algorithm that incorporates an Artificial Ecosystem-Based Optimization (AEO) consumption 
operator. Using a multi-objective chameleon swarm optimization algorithm and an advanced feature-selection 
method, Wang et al.13 introduced a short term wind speed forecasting system. A Multi strategy Chameleon 
Swarm Algorithm called (MCSA) was developed by Hu et al.14 using a Crossover-based Comprehensive 
Learning (CCL) strategy incorporating sinusoidal parameter tuning and fractional-order calculus. RMSCSA, 
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which was based on the Refraction Mirror Learning (RML) method to promote variety and segmental variation 
of population diversity using S-type weight, was presented by Damin et al.15. To handle non-convex Economic 
Load Dispatch (ELD) problems, an Enhanced Chameleon Swarm Algorithm (ECSA) was developed by Braik 
et al.16 that combines roulette wheel selection with Lévy flight approaches. A hybrid variant of CSA named 
CCECSA was suggested by Hu et al.17 in which mutation operations and elite guidance strategies were used. 
Also, CSA incorporated the horizontal and vertical crossovers of CSO to solve the disc Wang-Ball curve (DWB) 
reduced-degree optimization models. Sun et al.18 introduced an improved Chameleon Swarm Algorithm called 
CLCSA-LSTM enhanced by using the Somersault Foraging Technique of the Manta Ray Foraging Optimization 
algorithm (MRFO), a boundary neighborhood updating method to maintain a demographically diversified 
population. It initially optimizes LSTM network hyper parameters and finds the optimal ones to tackle the 
manual tuning process and the insufficient stability problem. This model was used to recognize OFDM signals 
after being trained with the aforementioned hyper parameters. Zhou and Xu19 find that the optimal size of each 
component is determined based on the actual local hourly weather data and the load demand over the course 
of a year using the Chameleon swarm algorithm (CSA) for the framework of the renewable micro-grid system. 
Dinh20 used CSA to build an algorithm that enhanced the image and synthesized the high-frequency layer. 
Table 1 gives an overview of the most recently proposed modifications that have been suggested for the CSA 
algorithm.

New advancements in optimization have led to the development of hybrid techniques aimed at improving 
performance and robustness. Abed-alguni introduced21 island-based Cuckoo Search (iCSPM) algorithm which 
improves population diversity and exploration by integrating an island model and replacing Levy flight with 
polynomial mutation, outperforming other methods in accuracy and reliability across standard benchmarks. 
The iCSPM2 algorithm introduced by Abed-alguni & Paul22 further enhances iCSPM by incorporating Elite 
Opposition-based Learning and multiple mutation strategies, such as HDP, Jaya, and pitch adjustment, achieving 
better accuracy, convergence, and surpassing four well-known swarm optimization algorithms in benchmark 
tests. The Exploratory Cuckoo Search (ECS) proposed by Abed-alguni et al.23 improves the original Cuckoo 
Search by integrating refraction learning, Gaussian perturbation, and multiple mutation methods, outshining 
traditional CS variations in 14 benchmark functions and exhibiting competitive performance compared to six 
renowned swarm optimization algorithms. Similarly, the Improved Salp Swarm Algorithm (ISSA)24 introduced 

References Year Methodology proposed Key findings

Sridharan7 2021
Chameleon Swarm Optimization with 
machine learning using Sarcasm Detection and 
Classification (CSOML-SASC)

Used to improves the overall classification performance for Sentimental Analysis and Sarcasm 
Detection
No change in CSA algorithm

Umamageswari 
et al.8 2021 Fuzzy C-Mean Based Chameleon Swarm 

Algorithm (FCM-CSA)
Used for segmentation of plant leaf disease
To overcome the short coming of Fuzzy C Mean
No change in the CSA algorithm

RizkAllah et al.9 2021 Semi-Empirical and Memory-based Chameleon 
Swarm Algorithm (MCSA)

Used for extraction of Solid Oxide Fuel Cell Models parameters.
Keeping record of best solution in prior stage using internal memory
No changes in the CSA algorithm

Mostafa et al.12 2022
Improved Chameleon Swarm Algorithm using 
Artificial Ecosystem-based Optimisation (AEO) 
consumption operator

Used as feature selection algorithm for Breast Cancer Diagnosis.
Non-linear transfer operator, Lévy flight control parameter and Consumption operator of AEO 
algorithm are used in the CSA algorithm

Anitha et al.10 2022 A modified Grey Wolf-based Chameleon Swarm 
Algorithm

Used for selection of cluster head (CH) nodes from WSN
Combination of improved Grey Wolf Optimizer and Chameleon Swarm Algorithm

RizkAllah et al.11 2022
Hybridization of Chameleon Swarm 
Algorithm(CSA) and Mayfly Optimization (MO) 
known as CSMO

Used to resolve the Combined Heat and Power Economic Dispatch (CHPED) problem
Mayfly Optimization (MO) is used with CSA algorithm.

Wang et al.13 2023
A Multi-Objective Chameleon Swarm 
Optimization Algorithm using advanced feature 
selection method

Developed wind speed forecasting system
Uses advanced feature selection method
No changes were proposed in the CSA algorithm

Hu et al.14 2023 Enhanced Chameleon Swarm Algorithm (MCSA)
Used for two truss topology optimization problems
Incorporation of Crossover-based Comprehensive Learning (CCL) strategy in CSA Algorithm
Sinusoidal parameter adjustment and Fractional-order calculus, are used in this algorithm.

Damin et al.15 2023
Refraction Mirror Learning (RML) using S-type 
weight-based Chameleon Swarm Algorithm 
(RMSCSA)

Refraction Mirror Learning Strategy is introduced along with S-type weight

Braik et al.16 2023 Enhanced Chameleon Swarm Algorithm (ECSA) Applied to address non-convex Economic Load Dispatch (ELD) problems
Roulette Wheel Selection method and Lévy flight operator are incorporated in the CSA algorithm

Hu et al.17 2023 A hybridization of CSA and Crisscross 
Optimization (CCECSA Algorithm)

Designed to tackle Disk Wang–Ball (DWB) curve degree reduction problem
Elite Guidance Strategy, Crisscross Optimization Algorithm, and Competitive Substitution 
Mechanism are added in CSA algorithm.

Sun et al.18 2023
An Improved Chameleon Swarm Algorithm 
(CLCSA-LSTM) using Manta Ray Foraging 
Optimization algorithm (MRFO)Somersault 
Foraging Technique

Applied to enhance the Long Short-Term Memory (LSTM) network
Lens-Imaging Learning and Coupling variation are introduced in CSA algorithm

Zhou and Xu19 2023 Used existing Chameleon Swarm Algorithm (CSA) Used to solve hybrid micro-grid design problem
Increase the use of inexpensive, locally available renewable resources.

Dinh20 2023 Used existing Chameleon Swarm Algorithm (CSA) Used for Medical image enhancement as well as Image fusion model
No change in CSA algorithm

Table 1. Modifications suggested for the CSA algorithm.
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by Abed-alguni et al. boosts the SSA’s optimization capabilities with Gaussian Perturbation, highly disruptive 
polynomial mutation, Laplace crossover, and Mixed Opposition-based Learning, outperforming other SSA 
variants and 18 top optimization algorithms in solving single-objective continuous optimization problems.

From the above table, it can be deduced that a few studies have modified the standard CSA algorithm by 
introducing various techniques to solve some engineering problems, but it still has scope to improve further. 
Therefore, to improve the original algorithm’s flaws, we proposed an improved Chameleon Swarm Algorithm 
using Morlet wavelet mutation and Lévy flight, named mCSAMWL.

The primary contributions of this paper are as follows:

• A modified CSA (Chameleon Swarm Algorithm) is proposed, developed and applied that combines the fea-
tures of the Morlet Wavelet mutation and Lévy flight methods to keep the balance between searching capabil-
ities by preventing the local optimal solution and slow convergence problems.

• The performance of the proposed mCSAMWL algorithm is established by evaluating it using 68 unimodal 
and multimodal benchmark test functions, CEC 2017 test suite functions and three real-world engineering 
design problems.

• A Clustering technique is implemented using the above metaheuristic algorithm, proving its efficiency.

The remainder of this paper is organized as follows: Sect. 2 reviews related work; Sect. 3 describes the materials 
and methods; Sect. 4 presents an empirical evaluation using 97 benchmark functions; Sect. 5 discusses a real-
world engineering design problem; Sect. 6 presents results of the proposed mCSAMWL algorithm for balanced 
clustering in WSNs; and Sect. 7 concludes the paper.

Materials and methods
In 2021, Braik25 introduced a meta-heuristic algorithm, the Chameleon Swarm Algorithm (CSA). This algorithm 
is based on the way a chameleon hunts and searches for food. Chameleons are a distinct species of animal due 
to their ability to adapt to their environment. Chameleons eat insects and can survive in alpine, lowland, desert, 
and semi-arid environments. Chameleons search for food through a series of processes, including locating their 
target, tracking it with their eyes, and finally attacking it. This section explains how to model this algorithm 
mathematically.

Initialization and function assessment
CSA begins the optimization process with the initial population as a population-based algorithm. In a d
-dimensional search space, a population of n chameleons, where each chameleon represents a potential solution 
to a problem, can be represented by a z -matrix of size n × d. As demonstrated below, a vector can be used to 
describe where chameleon h is in the search domain at each iteration itr.

 zh
itr =

[
zh

itr,1, zh
itr,2, zh

itr,3, . . . .zh
itr,d

]
 (1)

where, h = 1,2, 3 . . . .n.itr denotes the count of iterations. d denotes the problem dimension and zh
itr,d 

denotes the hthchameleon’s location. Using a uniform random initialization method, the search space’s initial 
population is generated while considering the problem’s dimensions and the number of chameleons, which is 
shown in Eq. (2).

 zh = lb + rnd (ubm − lbm) (2)

where, zh denotes hthchameleon initial vector, rnd is a random value between 0 and 1 and ub and lb denotes 
search area’s upper and lower boundaries in mth dimension. At each stage, the effectiveness of the solution is 
evaluated with the help of the objective function.

Search of the prey
The position update approach put forth below can be used to represent the chameleon’s movement while foraging 
mathematically as in Eq. (3).

 zh,m
itr+1 = zh,m

itr + B1

(
Bh,m

itr − Gm
itr

)
rnd1 + B2

(
Gm

itr − zh,m
itr

)
rnd2, rnditr ≥ Bt  (3)

where, zh,m
itr+1 is the hthchameleon’s new position in the mthdimension in the (itr + 1)th iteration, itr and 

(itr + 1) represent the itrthiteration count and itr + 1th iteration count respectively. h and d are the dth

dimensionof hth chameleon. zh,m
i represents the current position. The best and global best are Bh,m

itr  and Gh,m
itr . 

B1 and B2 govern the ability of exploration. rnd1, rnd2 and rnd3 denotes random uniform numbers between 
0 and 1. rnditr  is an index-based random number and Bt is the chameleon’s prey-recognition probability.

Chameleon’s eyes rotation
Chameleons have a characteristic in their eyes that allows them to rotate at 360°, allowing them to see in all 
directions, and monitor their prey’s presence. As a result, the position of each chameleon is adjusted so that it 
corresponds with this function as shown below:

 zh
itr+1 = zrch

itr + zh
itr  (4)
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where, zh
itr+1 the position after rotation, and zh

itr  is the current location prior to rotation. zrch
i denotes the 

chameleon’s search space rotational coordinates, as illustrated in Eq. (5).

 zrch
itr = rm × zch

itr  (5)

where, rm represents the rotational matrix which shows the rotation of chameleons, zrch
itr  denotes centering 

coordinates at iteration itr.

Hunting prey
Chameleons complete their hunts by ambushing their prey when the target predator gets too close to them. The 
chameleon that can approach its prey the most successfully is considered the best of the group, and optimal. This 
chameleon attacks prey using its tongue. As a result of being capable of extending its tongue twice as much, its 
position has been revised slightly. This permits chameleons to take advantage of the search space and catch their 
prey, which is mathematically described as follows:

 V h,m
itr+1 = ω V h,m

itr + c1(Gm
itr − zh,m

itr )rnd1 + c2
(
Bh,m

itr − zh,m
itr

)
rnd2 (6)

where, V h,m
itr+1 is the hthchameleon’s new speed in the mthdimension of iteration, V h,m

itr  is hthchameleon’s 
current speed in the dthdimension. The ithchameleon’s current location is denoted by poph,m

i  and the effects 
of zh,m

itr  and Gm
itr  on its tongue are regulated by two positive constant integers, c1 and c2. Here, rnd1and 

rnd2 are two arbitrary numbers chosen from the range 0 − 1, and the inertia weight, denoted by ω , decreases 
linearly with every successive generation, as shown in the below formula.

 
ω =

(
1 − itr

/
max_itr

)(ρ
√

itr/max_itr
 (7)

where, itr denotes the present iteration, max_itr denotes the total number of iterations and positive variable 
ρ  controls the exploitation capacity. The CSA algorithm demonstrates how the chameleon’s initial positions in 
the search space are created at random as an integral component of the optimization process. Equation (3) is 
used to update the chameleons’ positions in each iteration cycle. If a chameleon escapes the search region, the 
simulated procedures specified for CSA will be used to bring it back to the boundary. Next, a fitness function is 
used to determine which chameleon is the most fit after each iteration. The best position of a chameleon in its 
pursuit of prey is known as the fittest solution. Following the initialization step, Algorithm 1 iterates through 
the remaining steps until the maximum criteria is reached. According to a swarm behavior model created by the 
CSA, chameleons constantly hunt for and take advantage of both fixed and moving prey in their environment 
before moving in to capture it. The optimization potential of the CSA should be displayed via its mathematical 
models.

Chameleon swarm optimization
The swarm-based metaheuristic Chameleon swarm algorithm (CSA)25 was proposed by Braik in 2021.CSA 
mimic chameleon hunting and food finding. This method is based on how the chameleon hunts and looks for 
food. Chameleon food hunting involves several processes, including prey tracking, chasing the prey with their 
sight, and quickly attacking the prey with their long, sticky tongue. The fact that it is easy to operate and has a 
limited number of adjustment parameters are two of its positives; nonetheless, it is not very effective in resolving 
high-mode or multi-mode issues. The conventional CSA algorithm also suffers from insufficient population 
diversity, a sluggish convergence rate, and a low degree of precision. For this reason, a new modified Chameleon 
Swarm Algorithm incorporating the Morlet Wavelett mutation and Lévy Flight factor (mCSAMWL) is 
proposed. Finally, a modified Chameleon Swarm Algorithm is employed to tackle global optimization problems. 
The effectiveness of the algorithm has been measured against 68 benchmark test functions and three real world 
engineering design problems.

Concept of Morlet wavelet mutation
A physicist, Morlet, came up with the term “Morlet Wavelet” when he examined a seismic signal that had been 
transformed by a cosine function26.Wavelet mutation is used to improve algorithm stability. In addition, wavelet 
mutation operations exhibit a fine-tuning ability. The CSA is vulnerable to becoming ensnared in local optima, 
preventing the algorithm from exploring the complete search space. In this work, Morlet wavelet mutation is used 
to enhance the exploration stage, the accuracy of the search, and the stability of solutions. The straightforward 
mutation approach does not easily solve the stagnation phenomenon. The key to this advancement is figuring 
out how to enhance the conventional mutation approach so that it can overcome the local optimum. Wavelet 
mutation uses the wavelet function’s translation and expansion capabilities to look for other solutions in a feasible 
space that are close to the ones already known to be correct for a set of persons. To further fine-tune the mutation 
range with each iteration change, the wavelet function’s stretching parameters can be modified to decrease the 
function’s amplitude. As a result, wavelet mutation is used in place of the traditional mutation algorithm. A 
mutation probability, mpϵ [0,1] , is determined for each particle in the swarm at each iteration. If mp is positive 
( mp > 0) and getting close to 1, the mutated particle elements will tend toward the maximum value of zh,m

itr+1

. If mp is negative ( mp < 0) and getting close to -1, the mutated particle element will tend toward the lowest 
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value of zh,m
itr+1.When |mp| is big, the search space for fine-tuning is big, and vice versa, when |mp| is small, the 

search space for fine-tuning is small. The formula for mutation is:

 
zh

itr+1 =
{

zh,m
itr + mp ×

(
ub − zh,m

itr

)
, mp > 0

zh,m
itr + mp ×

(
zh,m

itr − lb
)

, mp < 0  (8)

where, zh,m
itr+1 (h = 1,2, . . . , N) denotes the hth individual location in itrth iteration, lb denotes the lower 

bound, ub denotes the upper bounds of the present search space. Similarly, mp represents mutating wavelet 
coefficient as given in Eq. (9).

 
mp =

(
1/

√
(aa)

)
× mw (9)

where, aa is the stretching parameter, which increases with the change of iterations. Its expression is given in 
Eq. (10).

 aa = ss × (1/ss)(1−(itr/maxitr)) (10)

where, ss indicates a given constant value. itr denotes the present iteration and maxitr  denotes the total 
number of iterations.

Morlet Wavelet function mw is expressed as in Eq. (11).

 mw = exp
(
−

((
numb2)

/2
))

× cos (5 × numb) (11)

where, numbdenotes a random number between − 2.5 aa and 2.5 aa.
This strategy ensures that an individual with superior fitness will enter the next iteration, thereby enhancing 

the algorithm’s convergence speed and optimization capability.

Lévy flight distribution
The Levy Flight is an example of a stochastic search algorithm introduced by Paul Pierre Levy in the year 
193026,27 which uses a random walk to revise its results. Step walks are characterized as random walks with a 
certain probability distribution. The step sizes of Lévy flights are too ornery, by altering the step size, they can 
be used for both exploration and exploitation. proposed strategy generates the step sizes using Lévy distribution 
to exploit the search area. While exploring new solutions, controlling the Lévy flight random walks is necessary, 
to avoid large moves that causing the solutions to jump outside of the search space. For this reason, a step size 
factor that is determined by the size of the relevant problem should be used step size controller with a default 
value of 0.005 has been put in place to minimize the impact of Lévy flight on the beginning positions and enable 
searching around the produced positions. To generate numbers that are random with a Lévy Flight distribution, 
Eq. (12) has been examined as follows:

 
L = γ × µ

|v|
1
β

 (12)

where, µ and v have a Gaussian distribution, γ  is step reducer factor having fixed value of 0.005.

 µ ∼
(
0, σ 2

µ

)
, v ∼

(
0, σ 2

v

)
 (13)

 
σ µ =

[
Γ (1 + β ) × sin(π β /2)

Γ [(1 + β )/2] β × 2β −1/2

]1
/

β  (14)

where, β = 1.5, σ v = 1, and a classic gamma function is denoted by the symbol Γ .
In Eq. (15), the Lévy flight procedure is presented which is used to update the chameleon positions:

 zh
itr+1 = zh

itr+1 + L × zh
itr+1 (15)

where, L represents the Lévy flight distribution.
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Algorithm 1. Pseudo-code of proposed mCSAMWL algorithm.

Computational complexity analysis of the proposed algorithm
The operational efficiency of the proposed mCSAMWL algorithm, with respect to time and space complexity, is 
discussed in this section.

Time complexity
The time complexity of the algorithm is influenced by the population size (n) , the variable dimension (d) , 
and the number of iterations (itr) . For the original Chameleon Swarm Algorithm (CSA), the primary factors 
contributing to time complexity are the initialization and update processes of chameleon positions (including 
prey searching, tracking, and capturing). This can be expressed as:

 O (CSA) = O (O( initialization) + itrO(update ))

 = O(n × d + itr × n × d)

The proposed mCSAMWL extends the CSA by incorporating parameter adjustment, Morlet Wavelet Mutation 
and Levy Flight with step reducer strategy in each iteration. However, only the Levy Flight Distribution strategy 
affects the algorithm’s time complexity. Therefore, the time complexity of proposed mCSAMWL algorithm is

 O (mCSAMW L) = O (O( initialization) + itr × (O (update) + O (Levy) ))

 = O ((n ∗ d) + irt × ((n × d) + (n × d)))

 = O(n × d + itr × n × d)

Thus, the proposed MCSA achieves different performance compared to CSA without increasing time complexity.

Empirical evaluation
MATLAB R2018b is used to examine the efficiency and capabilities of the proposed modified Chameleon 
Swarm Algorithm using Morlet Wavelet and Lévy Flight (mCSAMWL) algorithm. The “Intel(R), Core i7-4790 
CPU@3.60GHz with 8 GB RAM” was used in all experiments used to determine the results. This research 
evaluates the effectiveness of the suggested algorithm against 68 standard benchmark functions. There are four 
distinct types of benchmark functions: unimodal with fixed dimensions, multimodal with fixed dimensions, 
unimodal with variable dimensions, and multimodal with variable-dimensions. An algorithm’s exploitative 
and exploratory abilities are commonly evaluated using unimodal or multimodal functions. In this research, 
the proposed algorithm was evaluated using multiple benchmark functions. The functions utilized in this 
research are outlined in Annex A. The reference is drawn from28 for these benchmark functions. In addition, 
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the proposed CSAMWL’s algorithm performance has been compared to ten commonly used algorithms, the 
Chameleon Swarm Algorithm (CSA)25, the Elephant Herding Optimization (EHO)29, the Gravitational Search 
Algorithm (GSA)30, the Ant Colony Optimization (ACO)31, the Earthworm Optimization Algorithm (EWA)32, 
the Particle Swarm Optimization (PSO)33, the Sine Cosine Algorithm (SCA)34, the Krill Herd Algorithm 
(KHA)35, the Artificial Bee Colony (ABC)36, and the Monarch Butterfly Optimization (MBO)37. Table 2 displays 
the parameters of the contrasting algorithms as they were initially specified in the aforementioned published 
research articles. The ‘NFEs’ column in Table 2 indicates how many times a given function was evaluated. For 
each benchmark function, 30 separate runs for each algorithm are executed to generate the results.

Unimodal functions performance evaluation and statistical analysis
The exploitative potential of an algorithm can be measured with the help of unimodal functions. As a result, two 
tests were conducted using unimodal benchmark functions as part of this research. Table 3 depicts and compares 
all of the results from the first experiment for unimodal fixed-dimension functions. In the second experiment, 
the unimodal variable-dimension functions outcomes of 10 algorithms are compared. Table 4 summarizes the 
findings.

Tables 3 and 4 show that the mCSAMWL algorithm yielded the optimum results for the test functions F1-F3, 
F5, F6 as well as F8, F9, and F11 globally. It delivered excellent results for the benchmark functions F11, F18, 
and F21, and F15. It displays the effective exploitation capabilities of the proposed mCSAMWL method. To 
demonstrate the statistical distinction between the proposed mCSAMWL and other commonly used algorithms, 
the Friedman mean rank test is used. The statistical findings from the test are presented graphically in Fig. 1. The 
proposed algorithms and additional cutting-edge ones are represented on the X-axis. The Friedman mean ranks 
are displayed on the Y-axis.

The graph above illustrates that the best mean rank is the one with the smallest number. As can be seen 
in Fig. 1, the suggested mCSAMWL algorithm outperforms other popular metaheuristic algorithms when it 
comes to solving unimodal functions. The proposed algorithm mCSAMWL scores in first place, followed by 
GSA and CSA in second and third place, respectively. The results demonstrate that the mCSAMWL algorithm 
outperforms conventional metaheuristic algorithms in exploitative behaviour.

Multimodal function performance evaluation and statistical result analysis
Exploratory behaviour in algorithms is measured with the help of multimodal functions. Within the scope 
of this research, we conducted two experiments on multimodal benchmark functions. Table 5 shows the first 
experiment’s results, which compare the performance of 10 commonly used metaheuristic algorithms against 27 
multimodal fixed-dimension functions. The performance of 10 commonly used metaheuristic algorithms to the 
results of 17 multimodal variable-dimension functions is shown in Table 6.

After evaluating the statistics, we concluded that the proposed mCSAMWL algorithm can find global 
optimal solutions for the benchmark functions, F26-F35, F38-F39, F42, F43, F48-F50and comparable result 
for function F40 which are shown in Tables 5 and 6. The proposed mCSAMWL algorithm also outperforms 
the F46, F54, F61, F63 and gives competitive results for F50, F58, F67 function when compared to alternative 
algorithms. It demonstrates how the suggested mCSAMWL algorithm efficiently explores it’s given search 
space. The Friedman’s mean rank test demonstrates the statistical distinction between mCSAMWL and other 
commonly used algorithms. The graphical representation of Friedman’s mean rank outcomes from the test can 
be seen in Fig. 2.

In Fig.  2, the performance of the proposed mCSAMWL algorithm is superior to existing, widely used 
metaheuristic algorithms for multimodal benchmark functions. In light of the findings, the mCSAMWL 
achieved a top ranking, followed by the CSA and the GSA in the stipulated order. It shows that the suggested 
mCSAMWL algorithm has statistically superior exploratory behaviour compared to the other commonly used 
metaheuristic algorithms. It can be seen in Fig. 2, the proposed mCSAMWL algorithm outshines when applied 
to multimodal functions compared to the other commonly used metaheuristic algorithms. The findings showed 
that mCSAMWL was the winner, with CSA and GSA coming in second and third place, respectively. Finally, it 
can be concluded that the proposed mCSAMWL algorithm performs better in exploratory behavior than other 

Algorithms Parameters NFE’s

Population size = 50, Iteration = 1000

CSA25 p1 = 0.25, p2 = 1.50, p3 = 1, c1 = 1.75, c2 = 1.75 50,000

ACO31 N=50, Q=20, τ 0=1e−06, q0=1, ρ g=0.9, ρ l=0.5, s =1, β =5 50,000

ABC36 N = 50, Limit = 0.5 × N × D 50,000

EHO29 N = 25, α = 0.5, β = 0.1 50,000

EWA32 N = 50, α = 0.98, β = 1, γ = 0.9 50,000

GSA30 N=50, α =20, G0=100, k=[ N → 1] 50,000

KHA35 N = 50, Nmax = 0.01, Vf = 0.02, Dmax = 0.005 50,000

MBO37 N = 50, Smax = 1.0, BAR = 5/12, p = 5/12 50,000

PSO33 N=50, c1=2, c2=2, w=[ 0.2 → 0.9] 50,000

SCA34 N = 50, a = 2 50,000

Table 2. Algorithm’s parameter settings.
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popular metaheuristic algorithms. Friedman’s mean rank test is performed for the complete statistical evaluation 
of unimodal and multimodal benchmark functions. Figure 3 depicts the outcomes of a Friedman mean rank 
test. Friedman’s mean rank test results reveal that the proposed mCSAMWL algorithm is the finest among 
other algorithms, followed by the CSA and the GSA algorithms. Finally, the proposed mCSAMWL algorithm 
has proven its perfection and significant potential for handling a wide range of optimization challenges across 
various situations.

Comparison of proposed mCSAMWL algorithm with other algorithms on CEC2017 
benchmark functions
Table 7 presents a comparative analysis of ten optimization algorithms evaluated on the CEC 2017 benchmark 
functions (F69-F97). Performance is assessed using mean and standard deviation. The proposed algorithm 
outperformed the Chameleon Search Algorithm (CSA) specifically on benchmark functions F82, F84, F88, F95, 
and F97, while maintaining comparable performance levels across all other test functions. For other optimization 
algorithms, the proposed algorithm, mCSAMWL, achieved the lowest mean value for function F70 and also 
demonstrated superior performance by obtaining the lowest mean values among functions F75, F79-F82, 
and F84-F86. Furthermore, mCSAMWL exhibited relatively low standard deviations for functions F69-F75, 
indicating good stability. Notably, mCSAMWL significantly outperformed other algorithms on functions 
F79-F85, demonstrating exceptional stability in this range. While both mCSAMWL and ABC frequently 

F. No. F1 F2 F3

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 0 0 0 0 0 0 1.38E−87 1.38E−87 6.81E-103

CSA 0 0 0 0 0 0 1.38E−87 1.38E-87 6.81E-103

ABC 5.98E−05 9.43E−05 0.000112 1.87E−05 3.36E−05 3.64E−05 1.38E−87 1.38E-87 6.80E-103

ACO 0 4.19E−27 2.29E−26 0 0 0 1.38E−87 1.38E-87 6.80E-103

EHO 0.0032 0.004055 0.003694 0.018358 0.023039 0.018387 0.024692 0.039861 0.041087

EWA 0.145742 0.265849 0.360356 1.146993 2.006107 2.651282 4.516292 5.77657 3.933894

GSA 1.07E−20 1.58E−20 1.49E−20 8.59E−21 1.32E−20 1.32E-−20 2.73E−06 3.34E-05 6.68E-05

KHA 1.52E−11 0.026154 0.143252 2.88E−11 3.67E−11 3.99E−11 1.38E−87 1.38E-87 6.80E-103

MBO 0.026759 0.118279 0.285487 0.0014 0.003748 0.006119 1.38E−87 1.38E-87 6.80E-103

PSO 0 0.025402 0.139134 0 0 0 1.38E−87 1.38E-87 6.81E-103

SCA 4.80E−05 9.60E−05 1.51E−04 2.39E−04 3.34E−04 2.85E−04 1.38E−87 1.38E-87 6.81E-103

F. No. F4 F5 F6

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 4.68E−36 1.78E−35 3.46E−35 0.292579 0.292579 8.48E−11 19.10588 19.10588 1.12E-06

CSA 4.65E−65 1.62E−64 2.86E−64 0.292579 0.292579 8.87E−17 19.10588 19.10588 1.33E-14

ABC 2.40E−05 3.67E−05 3.51E−05 0.292588 0.292595 1.92E−05 19.10589 19.10591 3.03E-05

ACO 8.40E−176 2.04E−78 1.12E−77 0.292579 0.292579 7.46E−07 19.10588 19.10588 1.54E-14

EHO 1.93E−09 2.25E−09 1.75E−09 0.292584 0.29259 1.42E−05 19.20103 19.2239 0.116325

EWA 4.95E−07 1.83E−06 3.40E−06 0.293813 0.29456 0.002437 31.3169 105.956 236.8043

GSA 3.63E−22 5.72E−22 5.30E−22 0.30328 0.30602 0.011648 19.10588 19.10588 8.16E-15

KHA 1.55E−12 2.15E−12 1.85E−12 0.292579 0.292579 3.83E−07 19.10588 19.10589 1.10E-05

MBO 8.63E−12 1.78E−11 2.92E−11 0.292596 0.292674 0.000159 19.10731 19.11448 0.020192

PSO 4.78E−221 1.31E−211 0 0.292579 0.292579 9.94E−17 19.10588 19.10588 9.17E-15

SCA 1.92E−132 8.64E−122 4.72E−121 0.292579 0.292579 2.70E−07 19.11437 19.11842 1.05E-02

F. No. F7 F8 F9

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 1.74E−08 2.14E−08 1.76E−08 0 0 0 -0.00379 -0.00379 3.97E-14

CSA 0 0 0 0 0 0 -0.00379 -0.00379 1.76E-18

ABC 0.000582 0.001055 0.001004 0.001171 0.00151 0.001425 -0.00379 -0.00379 2.90E-08

ACO 0.015208 0.015547 0.010022 0.011239 0.012175 0.008807 -0.00379 -0.00379 1.76E-18

EHO 0.001531 0.001736 0.001328 0 0 0 -0.00379 -0.00379 2.23E-06

EWA 0.183569 0.24004 0.242151 0.314836 0.377297 0.35672 0.125618 0.180528 0.177383

GSA 0.001838 0.002423 0.0026 0 0 0 -0.00379 -0.00379 1.42E-18

KHA 0.00433 0.007633 0.008756 1.85E−09 3.92E−09 5.93E−09 -0.00379 -0.00379 2.75E-10

MBO 3.34E−09 6.39E−09 8.14E−09 0 0 0 -0.00379 -0.00379 3.09E-10

PSO 7.87E−22 1.68E−19 5.10E−19 0 0 0 -0.00379 -0.00379 1.76E-18

SCA 9.88E−05 1.76E−04 1.75E−04 0 0 0 -0.00379 -0.00379 1.09E-10

Table 3. Performance analysis for unimodal fixed-dimension benchmark functions.
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F. No. F10 F11 F12

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 6.19E−06 1.32E−05 2.51E−05 5.52E−21 2.40E−20 4.34E−20 0.00533168 0.00646178 0.0037578

CSA 6.60E−02 0.11517009 0.149641953 1.79E−07 2.47E−07 2.01E−07 48.04349124 50.54523542 17.34103894

ABC 1241.975 1402.788 750.5982 0.000124 0.000247 0.000282 128.8663 134.1316 29.39484

ACO 13.0063 13.7159 5.10303 7.39E−04 1.24E−03 1.16E−03 2.63076 2.70499 4.43E-01

EHO 0.006492 0.00651 0.000444 8.73E−11 1.28E−10 1.16E−10 0.353929 0.354485 0.014399

EWA 2.517293 11.39267 23.56852 8.94E−07 2.18E−06 3.29E−06 7.466396 14.35868 14.94444

GSA 2.07E−17 2.12E−17 6.08E−18 2.13E−18 3.38E−17 9.47E−17 2.17E−08 2.21E−08 3.49E-09

KHA 0.020362 0.026725 0.02001 2.22E−08 6.97E−08 1.50E − 07 0.035143 0.052076 0.061898

MBO 4596.25 14744.9 22191.3 1.71E−13 5.32E−13 8.30E−13 423.6722 455.6837 379.9961

PSO 3.21E−04 1.44E−02 6.22E−02 1.13E−15 1.75E−09 7.52E-09 2.37E-05 7.49E-05 9.73E-05

SCA 2.63E-04 1.13E-01 0.612081 4.96E-14 1.35E-09 6.45E-09 6.59E-06 4.71E-05 7.98E-05

F. No. F13 F14 F15

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 0.18304515 0.22068021 0.1882462 0.00010503 0.00010722 2.36E-05 -155 -155 0

CSA 11.8880527 12.1822205 2.30788966 0.04923997 0.04781611 0.02958289 -145 -144.1 12.8716475

ABC 61.09136 61.24847 3.794662 1102.435 1285.905 580.0211 -132 -131.9 5.510804

ACO 79.6819 80.3156 4.35088 12.7369 13.5783 5.8264 -155 -155 0

EHO 0.02531 0.025286 0.001971 2.904072 2.876425 0.282671 -42 -42.1667 4.000718

EWA 0.985505 1.344147 1.023447 10.87574 29.13764 36.82736 -29.5 -31.1667 9.089909

GSA 3.22E-09 0.00784 0.0316 2.60E-17 2.46E-17 6.72E-18 -118 -118.067 2.58554

KHA 0.672508 0.707143 0.251597 0.018918 0.025874 0.024961 -69.5 -69.7 8.847949

MBO 29.15408 31.31096 25.76838 5374.206 18974.32 25001.76 -155 -141.633 23.68978

PSO 11.62564 15.29934 10.26808 4.251723 4.17188 0.300366 -106.5 -107.033 5.635377

SCA 1.20E + 01 1.27E + 01 8.59E + 00 4.380958 4.339362 4.13E-01 -108 -108.567 3.88E + 00

F. No. F16 F17 F18

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 0.01837619 0.03352073 0.04473552 6.55E-35 1.12E-30 3.20E-30 0.1931209 2.63902853 7.45892528

CSA 285.490459 288.25074 47.4462996 9.06E-06 0.00072376 0.00360032 82.996705 140.372557 155.406148

ABC 194.1793 14811.07 71275.07 553.2635 4650.138 14193.3 193181.6 261336.7 222116.3

ACO 1.79E + 20 2.23E + 22 6.63E + 22 2.45E + 06 3.99E + 06 3.98E + 06 4.14E + 04 4.71E + 04 2.50E + 04

EHO 0.36319 0.357741 0.01336 3.92E-26 4.52E-26 3.18E-26 28.87013 28.86558 0.024155

EWA 16.71175 25.38461 23.04249 5.95E-09 0.013327 0.047334 256.4014 1538.986 3501.003

GSA 54.294 57.2278 38.3186 2.54E-88 4.47E-88 6.25E-88 26.0875 28.2475 11.7991

KHA 593.1884 2.47E + 12 1.28E + 13 1.01E-11 5.78E-11 1.49E-10 33.72902 61.43647 54.47974

MBO 3.94E + 28 1.81E + 38 6.85E + 38 44412.16 4.74E + 08 1.86E + 09 1.59E + 07 3.60E + 07 7.10E + 07

PSO 8.84E-06 1.63E-05 2.13E-05 0.019961 11.86305 37.93097 35.98856 239.1065 554.296

SCA 4.39E-06 5.41E-05 1.11E-04 0.004608 144.4601 548.8833 30.98788 148.2003 4.83E + 02

F. No. F19 F20 F21

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 3.23E-09 3.99E-09 3.20E-09 0.039781 0.12569 0.21624 1.29E-05 2.18E-05 2.66E-05

CSA 0.000290 0.000507 0.000947 3.921985 6.11043 6.445442 9.479590 12.36284 10.195504

ABC 1.835381 1.840576 0.913245 1803.107 2367.89 1856.635 109.4227 120.606 37.40893

ACO 5.26E-03 6.02E-03 2.72E-03 1.85E + 02 2.17E + 02 1.19E + 02 1.79E + 02 2.00E + 02 1.17E + 02

EHO 6.01E-05 5.99E-05 3.21E-06 0.909557 0.906891 0.01413 0.000292 0.000289 4.27E-05

EWA 275.002 280.5366 109.2263 2.663677 13.7822 34.05692 133.3671 128.9955 29.75407

GSA 3.71E-17 3.75E-17 1.28E-17 0.666667 0.667923 0.006882 0.011159 0.017749 0.016491

KHA 5.400354 9.023223 10.98069 0.827851 0.971692 0.43077 0.586635 0.67029 0.408763

MBO 14.16177 347.1522 616.0515 8.73E + 05 7.72E + 05 6.85E + 05 1991.609 3067.511 3226.672

PSO 1.02E-07 3.38E-06 1.38E-05 0.698241 1.295457 1.484248 2.46E-03 1.56E-01 4.76E-01

SCA 1.29E-07 4.98E-06 1.29E-05 0.710611 0.90133 0.499484 0.006219 0.025125 0.041677

F. No. F22 F23 F24

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -0.9999999 -0.7666655 0.43018239 -0.9999999 -0.76666545 0.43018239 6.20E-07 8.84E-07 9.16E-07

CSA 4.34E-232 4.34E-232 0 4.34E-232 4.34E-232 0 2.13E + 00 3.41E + 00 2.98E + 00

ABC 5.67E-51 2.74E-46 1.29E-45 5.67E-51 2.74E-46 1.29E-45 2.38E + 02 2.32E + 02 8.58E + 01

Continued
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achieved the lowest mean values for functions F88-F92, mCSAMWL maintained competitive performance 
across the remaining functions F86-F97, consistently yielding results close to the optimal values, even when not 
achieving the absolute lowest mean.

In contrast, EWA and EHO generally exhibited higher variability and less optimal performance compared 
to the other evaluated algorithms. Overall, mCSAMWL demonstrated strong performance, with particular 
excellence observed in functions F79-F85. This suggests balanced optimization capabilities, effectively combining 
exploration and exploitation, as evidenced by its consistent performance across diverse function types. The 
low standard deviations associated with mCSAMWL further underscore its reliable and stable performance, 
positioning it as a robust choice for a variety of optimization problems.

Ablation study of the proposed mCSAMWL algorithm
To overcome the defects in the original algorithm, this paper proposes a modified version of Chameleon 
Search Algorithm. First, the exploration phase of CSA is modified using Morlet Wavelet Mutation to achieve 
better convergence performance. Then, we introduce the Lévy Flight distribution with step reducer feature in 
the exploitation part to help search agents escape from the local optima. To evaluate the effectiveness of each 
component, two mCSAMWL-derived variants are designed individually for comparison study in this subsection, 
which are listed below:

• CSAMW (modification of CSA with Morlet Wavelet Mutation only).
• CSALF (modification of CSA with Lévy Flight distribution only).
• Proposed mCSAMWL (modified CSA using Morlet Wavelet mutation and Lévy Flight Distribution).

Under the same experimental setting original CSA, CSAMW, CSALF, and mCSAMWL are tested on 23 different 
types of benchmark functions concurrently. The obtained median, mean fitness (mean) and standard deviation 
(Std) results are listed in Table 8.

A preliminary analysis on the simple functions F1-F3 reveals comparable performance across all methods, 
with the proposed method and CSA achieving near-optimal results. CSAMW and CSALF exhibit marginally 
weaker performance on F1. While CSA and CSALF demonstrate advantages on specific functions (F4 and F7 for 
CSA; F4 for CSALF), the proposed method maintains competitive and comparable or equivalent performance 
across the majority of other functions.

The proposed algorithm demonstrates a distinct advantage on functions F10-F15, significantly outperforming 
CSA and CSAMW across most of this range (F10-F14) and achieving superior results on F15. Furthermore, it 
exhibits improved performance compared to CSALF on F11-F14. Regarding functions F16-F24, the proposed 
algorithm continues to perform strongly, exhibiting substantial improvements over CSA and generally achieving 
superior results compared to CSAMW. The comparison with CSALF is more complex, with CSALF demonstrating 
better performance on F22 and F24; however, the proposed algorithm demonstrates greater overall consistency 
across this function set. Overall, the proposed algorithm performs well, particularly on more complex functions, 
demonstrating significant improvements over CSA and frequently outperforming CSAMW.

Fig. 1. Friedman Mean Rank test comparison for unimodal variable-dimension benchmark functions.

 

F. No. F22 F23 F24

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

ACO 6.30E-216 3.00E-206 1.70E-209 6.30E-216 3.00E-206 1.70E-209 8.90E-01 1.00E + 00 4.82E-01

EHO 1.92E-74 7.76E-70 3.53E-69 1.92E-74 7.76E-70 3.53E-69 1.03E-03 9.96E-04 1.06E-04

EWA 7.00E-42 1.69E-37 7.70E-37 7.00E-42 1.69E-37 7.70E-37 3.05E-01 2.87E + 00 6.13E + 00

GSA 7.63E-43 3.27E-37 1.04E-36 7.63E-43 3.27E-37 1.04E-36 1.53E-16 1.81E-16 1.01E-16

KHA 9.10E-228 2.71E-45 1.48E-44 9.10E-228 2.71E-45 1.48E-44 4752.622 4874.505 3272.272

MBO 4.30E-232 1.50E-210 1.80E-222 4.30E-232 1.50E-210 1.80E-222 1.39E-02 3.28E-02 4.96E-02

PSO 7.73E-199 1.77E-191 0 7.73E-199 1.77E-191 0 4.84E-06 3.39E-05 8.33E-05

SCA 6.49E-199 1.87E-193 0 6.49E-199 1.87E-193 0 1.81E-05 3.56E-04 1.06E-03

Table 4. Performance analysis for unimodal variable- dimension benchmark functions.
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F. No. F25 F26 F27

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 2.11E-34 2.11E-32 5.94E-32 -195.62903 -195.62903 3.41E-09 -2.0218068 -2.0218068 0.159154704

CSA 3.36E-63 2.24E-62 5.60E-62 -195.629 -195.629 5.78E-14 -2.02181 -2.02181 1.36E-15

ABC 1.29E-13 3.03E-13 3.53E-13 -195.629 -195.629 7.83E-10 -2.02181 -2.02181 9.40E-16

ACO 0 0 0 -195.629 -195.629 5.78E-14 -2.02181 -2.02181 1.36E-15

EHO 1.14E-06 1.19E-06 4.57E-07 -195.617 -195.616 0.007699 -2.02181 -2.02181 7.83E-06

EWA 7.33E-05 8.33E-04 2.29E-03 -195.598 -195.539 0.173797 -1.87048 -1.82072 0.14998

GSA 8.50E-20 1.08E-19 1.07E-19 -195.629 -195.629 5.78E-14 -2.02114 -2.02087 0.00099

KHA 2.15E-11 4.36E-11 7.74E-11 -195.629 -195.629 4.67E-09 -2.02181 -2.02181 6.04E-11

MBO 2.82E-12 8.20E-12 1.37E-11 -195.629 -195.629 0.000321 -2.02166 -2.02134 0.000756

PSO 1.90E-157 1.44E-148 7.86E-148 -195.629 -195.629 6.14E-05 -2.02181 -2.02181 1.59E-09

SCA 2.88E-158 6.95E-152 3.79E-151 -195.629 -195.629 8.44E-05 -2.02181 -2.02181 1.05E-09

F. No. F28 F29 F30

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -106.765 -106.765 2.71E-06 -1.03163 -1.03163 7.25E-10 0.3978874 0.3978874 2.81E-08

CSA -106.765 -106.765 3.82E-14 -1.03163 -1.03163 6.65E-16 0.397887 0.397887 0

ABC -106.765 -106.765 8.81E-05 -1.03163 -1.03163 1.29E-10 0.397887 0.397887 3.09E-11

ACO -106.765 -106.765 4.05E-14 -1.03163 -1.03163 6.78E-16 0.397887 0.397887 0

EHO -106.557 -106.524 0.208396 -1.02369 -1.01918 0.012386 0.403988 0.405804 0.007404

EWA -99.6773 -95.3087 11.65851 -0.97467 -0.88761 0.204595 0.519468 0.631437 0.299147

GSA -106.765 -106.687 0.333367 -1.03163 -1.03163 5.61E-16 0.397887 0.397887 0

KHA -106.765 -106.765 4.31E-09 -1.03163 -1.03163 1.59E-10 0.397887 0.397887 9.52E-10

MBO -106.762 -106.754 0.023937 -1.03159 -1.0314 0.000505 0.397905 0.397922 5.48E-05

PSO -106.747 -106.738 0.02994 -1.03162 -1.03161 1.26E-05 0.398202 0.398307 0.000391

SCA -106.745 -106.737 0.028856 -1.03162 -1.03162 1.38E-05 0.398185 0.398302 3.90E-04

F. No. F31 F32 F33

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 3 3 2.81E-09 -3.862782 -3.862782 7.72E-08 -3.322 -
3.26650591 0.060329422

CSA 3 3 6.12E-16 -3.86278 -3.86278 2.68E-15 -3.322 -3.28214 0.057338

ABC 3.00005 3.00021 0.000453 -3.86278 -3.86278 3.78E-10 -3.32195 -3.32194 3.70E-05

ACO 3 3 1.25E-15 -3.86278 -3.86278 2.71E-15 -3.32199 -3.27443 0.05924

EHO 3.135808 3.192015 0.173313 -3.83639 -3.83114 0.019951 -2.83397 -2.81893 0.143102

EWA 20.88954 20.48409 13.54759 -3.75671 -3.74107 0.100396 -2.49959 -2.39237 0.519278

GSA 3 3 2.36E-15 -3.86278 -3.86278 2.44E-15 -3.322 -3.322 1.39E-15

KHA 3 3 6.79E-09 -3.86278 -3.86278 9.17E-10 -3.322 -3.27422 0.059526

MBO 3.004415 5.721823 14.78531 -3.86218 -3.86172 0.001306 -3.20289 -3.25594 0.060095

PSO 3 3 9.84E-06 -3.85482 -3.85683 0.003227 -3.01043 -3.0077 0.160297

SCA 3 3 6.99E-06 -3.85474 -3.85641 0.003118 -3.01438 -3.03234 9.49E-02

F. No. F34 F35 F36

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -2.0626119 -2.062611 3.58E-10 1 1 2.26E-15 90.66391828 91.73547588 4.461266533

CSA -2.06261 -2.06261 9.03E-16 1 1 2.55E-15 180.3276 180.3276 0

ABC -2.06261 -2.06261 5.09E-12 1.000146 1.000167 0.00014 180.2127 181.39 1.575748

ACO -2.06261 -2.06261 9.03E-16 1 1 0 180.031 181.432 1.66114

EHO -2.06257 -2.06255 6.94E-05 1.001608 1.001698 0.000707 180.3276 180.3276 0

EWA -2.06207 -2.05512 0.021859 1.067353 1.177343 0.298134 180.7353 180.8577 0.48185

GSA -2.06261 -2.06261 9.03E-16 1 1 1.05E-05 180.3276 180.3277 0.000182

KHA -2.06261 -2.06261 2.64E-11 1.000001 1.000007 1.15E-05 180.9794 182.3246 1.11834

MBO -2.06261 -2.06261 2.31E-13 1 1 3.69E-07 180.3276 180.3276 0

PSO -2.06261 -2.06261 4.68E-06 1 1 0 180.3276 180.3276 0

SCA -2.06261 -2.06261 6.70E-06 1 1 0 180.3276 180.3276 0

F. No. F37 F38 F39

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -4.31E + 07 -9.8E + 07 1.41E + 084 -42.944387 -42.944387 6.66E-08 4.85E-05 4.85E-05 1.23E-14

CSA -24.1568 -24.1568 1.03E-14 -42.9444 -42.9444 3.61E-14 4.85E-05 4.85E-05 1.41E-20
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F. No. F37 F38 F39

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

ABC -24.1568 -24.1568 2.66E-10 -42.9444 -42.9444 2.50E-12 4.85E-05 4.85E-05 6.14E-17

ACO -24.1568 -24.1549 0.00968 -42.9444 -42.9444 3.61E-14 4.85E-05 4.85E-05 1.38E-20

EHO -24.0661 -24.0457 0.081798 -42.8615 -42.8367 0.098118 4.85E-05 4.85E-05 1.52E-09

EWA -11.3453 -13.1553 6.227318 -42.4701 -40.2579 3.145068 4.85E-05 4.86E-05 2.36E-07

GSA -24.1568 -24.148 0.043026 -42.92 -42.8443 0.155228 4.84E-05 4.84E-05 1.37E-20

KHA -24.1568 -24.1568 1.55E-09 -42.7208 -42.7208 0.227429 4.85E-05 4.85E-05 2.49E-16

MBO -24.1568 -24.1568 3.00E-11 -42.9438 -42.9418 0.004484 4.85E-05 4.85E-05 5.45E-18

PSO -24.1464 -24.142 0.013467 -42.9438 -42.9434 0.000925 4.85E-05 4.85E-05 1.56E-10

SCA -24.1359 -24.1308 0.020502 -42.9436 -42.9432 0.001581 4.85E-05 4.85E-05 1.91E-10

F. No. F40 F41 F42

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -0.0004414 -0.000428 0.000110794 0.225177603 0.236948535 0.072175916 -1 -1 2.95E-08

CSA -0.08478 -0.08478 2.82E-17 0.00118 0.00118 0 -1 -1 0

ABC -0.00135 -0.00147 0.000477 0.085066 0.086875 0.018614 -0.2743 -0.38552 0.351841

ACO -0.00023 -0.00308 0.015429 0.40729 0.34216 0.19321 -1 -1 0

EHO -0.00033 -0.00033 8.30E-05 0.299955 0.319105 0.064923 -0.97574 -0.96931 0.023361

EWA -0.00018 -0.00019 6.03E-05 0.518583 0.538881 0.165609 -0.0821 -0.28969 0.360464

GSA -0.00721 -0.00734 0.000887 0.012586 0.012677 0.001616 -1 -1 0

KHA -0.00032 -0.00033 6.76E-05 0.31831 0.330702 0.066606 -1 -0.93333 0.253707

MBO -0.00147 -0.00153 0.000427 0.071294 0.073001 0.016403 -1 -1 2.79E-12

PSO -0.05622 -0.47053 0.50395 0.379077 0.275878 0.219059 -0.99968 -0.99928 0.001

SCA -0.00023 -0.26699 0.44958 0.415254 0.305494 0.218981 -0.99969 -0.99958 0.000406

F. No. F43 F44 F45

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 0.06447 0.06447 2.89E-10 6.33E-09 1.02E-08 1.11E-08 1.42E-07 2.33E-07 2.68E-07

CSA 0.06447 0.06447 5.65E-17 5.19E-62 2.09E-61 3.16E-61 0 1.58E-31 3.21E-31

ABC 0.06447 0.06447 6.35E-17 0.005392 0.0068 0.005398 6.53E-09 3.16E-08 7.23E-08

ACO 0.06447 0.06447 4.82E-17 1.22E-05 1.75E-03 4.97E-03 0 0 0

EHO 0.064678 0.064827 0.000361 2.360286 2.952881 1.908784 0.015626 0.027624 0.023508

EWA 0.067695 0.070012 0.007023 1.328246 2.232653 2.055741 0.424127 0.972663 1.938851

GSA 0.06447 0.06447 5.04E-17 0.001635 0.010816 0.031779 7.12E-20 1.17E-19 1.15E-19

KHA 0.06447 0.06447 1.13E-12 5.27E-09 0.000189 0.001033 1.73E-11 5.40E-11 7.20E-11

MBO 0.06447 0.06447 1.18E-12 0.074933 0.251114 0.424296 0.000758 0.007305 0.013659

PSO 0.064473 0.064476 4.85E-06 0.000602 0.001295 0.001885 0.0042 0.006728 0.007226

SCA 0.064475 0.064478 7.28E-06 0.000434 0.000853 0.001007 0.003451 0.004811 0.003892

F. No. F46 F47 F48

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -19.2085 -19.2085 31070.34351 -0.99999 -0.99999 5.82E-06 -10.8723 -10.868999 0.007508046

CSA -19.2085 -19.2085 4.57E-15 -0.96353 -0.96353 0 -10.8723 -10.869 0.007508

ABC -19.2085 -19.2085 3.72E-10 -0.96353 -0.96353 3.92E-13 -10.8723 -10.8723 7.06E-11

ACO -19.2085 -19.2084 2.74E-04 -0.96353 -0.96353 0 -10.8723 -10.8723 2.21E-09

EHO -19.1904 -19.176 0.035102 -0.96348 -0.96346 7.70E-05 -10.8692 -10.8695 0.00184

EWA -17.0841 -15.965 3.548643 -0.95901 -0.95425 0.011804 -10.8147 -10.7669 0.113016

GSA -19.2085 -19.1985 0.014989 -0.96339 -0.96329 0.000228 -10.8649 -10.8624 0.010089

KHA -19.2085 -19.2085 5.87E-10 -0.96353 -0.96353 1.08E-11 -10.8723 -10.8644 0.00987

MBO -19.2084 -19.2074 0.001899 -0.96353 -0.96353 2.16E-14 -10.8723 -10.8714 0.001805

PSO -19.2035 -19.2004 0.008389 -0.96352 -0.96352 1.56E-05 -10.8723 -10.8723 2.94E-07

SCA -19.2031 -19.2009 0.007262 -0.96352 -0.96352 2.07E-05 10.8723 -10.8723 3.92E-07

F. No. F49 F50 F51

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -186.731 -186.731 9.47E-05 -10.5364 -10.2783333 1.411185639 1.97E-35 1.41E-34 3.19E-34

CSA -186.731 -186.731 3.81E-14 -10.5364 -9.02633 2.579842 2.29E-64 8.22E-64 1.82E-63

ABC -186.731 -186.731 6.01E-05 -10.5305 -10.5247 0.010206 1.78E-12 1.06E-11 3.48E-11

ACO -186.652 -186.561 0.189325 -10.5364 -9.56257 2.56129 3.4e-315 2.4e-311 1.4e-310

EHO -186.201 -186.085 0.478853 -4.95503 -5.3281- 1.17823 4.77E-08 4.94E-08 2.27E-08
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The Proposed algorithm demonstrates superior overall performance, especially in complex functions, while 
maintaining good stability. CSAMW shows excellent performance in specific cases but lacks consistency. CSALF 
excels in simpler functions and maintains good precision but may struggle with more complex optimization 
problems. Therefore, it can be concluded that the modifications implemented have a demonstrable and positive 
impact on the algorithm’s capabilities.

Real-world engineering design problems
In this section, the proposed mCSAMWL algorithm is tested on three real world engineering design problems: 
the design of welded beams, tension/compression springs, the pressure vessel problem, and their performances 
are evaluated. In the real world, meta-heuristic algorithms are frequently used to solve engineering design 
problems. These engineering design problems from the actual world may involve up to 15,000 function 
evaluations. The parameter values are identical to those in Table 6. Thirty independent runs were conducted 
to determine the best, average, standard deviation, and worst outcomes. The MATLAB platform was used to 
evaluate the proposed mCSAMWL algorithm results, while the other algorithm’s findings were obtained from 
the main research publications.

Welded beam design
It serves as a crucial benchmark for evaluating various optimization techniques. This problem aims to bring down 
the costs of setting up, welder jobs, and material expenses associated with constructing the welded beam. Shear 
stress, bending stress, buckling load, end deflection, and side constraints are among the property constraints. 
The design variables include the length of the welded part ( l), the thickness of the welding ( h), width (b) and 
height ( t). The problem’s mathematical representation can be expressed in the following Eqs. (16–25).

Consider

 
−→x = [x1, x2, x3, x4] = [h, l, t, b] (16)

Minimize

 f (−→x ) = 1.10471x2
1x2 + 0.04811x3x4 (14.0 + x2) , (17)

Subject to

 z1 (−→x ) = τ (−→x ) − τ max ≤ 0, (18)

 z2 (−→x ) = σ (−→x ) − σ max ≤ 0, (19)

 z3 (−→x ) = δ (−→x ) − δ max ≤ 0, (20)

 z4 (−→x ) = x1 − x2 ≤ 0, (21)

 z5 (−→x ) = P − Pc (−→x ) ≤ 0, (22)

 z6 (−→x ) = 0.125 − x1 ≤ 0, (23)

 z7 (−→x ) = 1.10471x2
1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0 (24)

where,

 
τ (−→x ) =

√
τ ′ 2 + 2τ ′ τ ′ ′ x2

2R
+ τ ′ ′ 2, τ ′ = P√

2x1x2
, τ ′ ′ = MR

J
, M = P

(
L + x2

2

)
,

 
R =

√
x2

2
4 +

(
x1 + x3

2

)2
, J = 2

{√
2x1x2

[
x2

2

12 +
(

x1 + x3

2

)2
]}

, σ (−→x ) = 6P L

x4x2
3

,

F. No. F49 F50 F51

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

EWA -163.845 -152.86 32.1348 -2.26778 -2.37761 1.178693 1.55E-06 3.40E-05 9.46E-05

GSA -185.427 -185.171 1.287655 -10.5364 -10.5364 1.86E-15 2.92E-21 4.85E-21 5.40E-21

KHA -186.731 -186.731 7.49E-07 -10.5364 -7.78394 3.709944 1.78E-12 2.54E-12 2.93E-12

MBO -186.729 -186.718 0.020366 -2.87114 -4.47229 2.898341 3.01E-13 1.81E-12 3.85E-12

PSO -186.647 -186.592 0.137766 -5.01782 -5.17974 1.641081 1.63E-155 4.87E-145 2.66E-144

SCA -186.638 -186.513 0.274842 -4.95368 -4.99818 0.417868 1.94E-154 2.35E-146 9.10E-146

Table 5. Performance analysis on multimodal fixed- dimension benchmark test functions.

 

Scientific Reports |        (2025) 15:13971 14| https://doi.org/10.1038/s41598-025-97015-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


F. No. F52 F53 F54

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 8.796635 37.33597 46.83735 16.6103 15.79659 10.26487 0.9 0.908184 0.031144

CSA 238.3937 236.7943 5.995471 33.82992 34.46036 11.69824 1.000004 1.000005 5.43E-06

ABC 141.4293 142.5645 12.27796 101.5629 102.9385 9.394156 2.130489 2.083757 0.199241

ACO 268.1623 269.0643 7.641825 261.5707 258.3739 11.41031 7.44305 7.42176 0.28933

EHO 282.9957 283.2481 10.05296 0.004174 0.004197 0.000297 0.900089 0.900088 7.01E-06

EWA 308.6437 307.3129 20.38896 9.749386 17.30806 20.31796 1.238955 1.533064 0.682945

KHA 192.3084 189.6491 30.76055 14.45001 14.44976 5.087514 1.002005 1.670184 1.639661

GSA 334.164 329.096 18.884 13.929 14.725 3.8437 1 1 4.12E-17

MBO 120.3378 138.4848 95.70285 153.1993 182.8509 147.503 1.11029 1.984482 1.425243

PSO 284.885 283.941 10.731 2.403 22.051 32.595 5.352 5.187 1.932939

SCA 284.328 283.5439 9.383524 4.347903 23.4144 38.67129 5.80416 5.250232 1.544437

F. No. F55 F56 F57

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 2.975284 82.41973 220.0163 0.007112 0.359627 0.527572 0.000191 0.020201 0.059137

CSA 7261.82 15884.43 26610.79 3.889502 4.069479 2.154352 1.494609 7.157269 16.25589

ABC 2.02E + 08 2.57E + 08 2.13E + 08 8.093523 7.72828 1.512424 1.43E + 07 5.90E + 07 9.06E + 07

ACO 5.45E + 07 6.22E + 07 4.93E + 07 19.10605 19.49763 2.515075 3.313857 4.967021 5.238239

EHO 3185.183 3115.875 348.5288 0.003822 0.003748 0.00021 8.76E-08 9.38E-08 6.00E-08

EWA 8966.783 729977.8 2,427,104 0.149382 0.461467 0.578919 0.000483 0.002448 0.004004

KHA 62.0103 84.86197 79.89481 0.002959 0.007069 0.01026 39.05739 671.1095 1634.143

GSA 1.30E + 06 3.19E + 06 5.46E + 06 2.33E-09 2.41E-09 4.29E-10 9.63E-07 0.000117 0.00061

MBO 1.11E + 10 4.49E + 10 5.77E + 10 5.903644 16.86573 21.05661 9.62E + 09 2.31E + 11 4.71E + 11

PSO 5648.34 24108.2 74191.49 0.00263 0.36883 1.91746 1.61E-05 0.068383 0.235971

SCA 5467.49 155527.1 663171.5 0.012907 0.2607 1.027096 2.92E-06 0.00044 0.001596

F. No. F58 F59 F60

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 0.00053 0.426366 0.796014 167.3204 187.7189 101.2445 0.649873 0.789873 0.430997

CSA 19.96677 19.96677 2.50E-13 559.5002 551.3081 126.7834 2.199873 2.229873 0.453454

ABC 11.37484 11.44861 1.135508 34930.49 37092.29 17430.46 10.55882 10.48822 1.535124

ACO 20.1862 17.82319 6.144791 537.5839 544.264 115.8048 2.437575 2.430375 0.162851

EHO 0.020634 0.020484 0.000879 91.22564 89.54167 7.977985 0.003621 0.003589 0.00068

EWA 2.143827 2.272101 1.256036 240.376 642.5243 941.1934 0.703339 0.708207 0.403842

KHA 0.015684 0.593088 0.773717 26.23202 28.17637 11.21959 0.399873 0.37654 0.067891

GSA 3.60E-09 3.63E-09 5.96E-10 6938.763 7228.061 3661.526 1.10053 1.23176 0.37839

MBO 18.79768 14.48087 6.868299 320131.8 523060.6 580796.7 11.55212 12.37401 9.481711

PSO 20.03872 11.22343 9.946171 98.94225 108.0212 33.63604 0.19989 0.257741 0.127403

SCA 18.40507 12.60029 8.840296 98.17692 106.4712 22.18569 0.199893 0.234155 0.090015

F. No. F61 F62 F63

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -1174.94 -1174.94 0.005321 9.81E-07 0.008174 0.011995 -0.99962 -0.99963 0.000156

CSA -1033.61 -1029.02 38.97252 0.063872 0.072718 0.036005 3.70E-16 2.19E-15 6.89E-15

ABC -1017.71 -1021.8 22.05166 1.485707 1.470638 0.194775 1.52E-12 1.58E-12 5.04E-13

ACO -671.582 -668.226 49.94495 0.825488 0.802076 0.081675 1.65E-10 1.71E-10 6.44E-11

EHO -684.502 -688.633 23.95882 0.000323 0.000314 4.65E-05 -0.39712 -0.42138 0.108902

EWA -697.45 -689.519 40.91739 0.241972 0.373633 0.371149 5.51E-11 -0.04825 0.126594

KHA -1017.27 -1006.15 31.37359 0.010242 0.012663 0.011143 1.20E-14 4.00E-13 1.88E-12

GSA -1111.37 -1109.95 26.92511 0 0 0 5.52E-30 5.98E-30 2.03E-30

MBO -1076.01 -944.27 260.2547 4.011049 7.176058 6.325458 9.28E-12 1.46E-08 3.57E-08

PSO -619.056 -613.96 43.5838 0.000387 0.103111 0.178225 1.52E-10 1.80E-10 1.31E-10

SCA -623.941 -626.155 52.84877 0.003898 0.092368 0.157481 1.16E-10 1.56E-10 1.11E-10

F. No. F64 F65 F66

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 3.52E-12 3.52E-12 9.53E-16 8.70E-05 0.021863 0.055795 3.96E-06 0.007619 0.028974

CSA 1.76E-11 1.76E-11 3.69E-18 45.57699 41.77412 25.13016 6.2805 5.935862 2.325529

ABC 2.71E-11 2.64E-11 4.61E-12 53026.77 102341.9 125225.6 9.173057 5612.849 29411.94
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Fig. 3. Overall Friedman mean rank test comparison for 68-benchmark functions.

 

Fig. 2. Friedman mean rank test comparison for multi modal variable-dimension benchmark functions.

 

F. No. F64 F65 F66

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

ACO 3.12E-10 3.15E-10 1.67E-10 1.34E + 05 1.91E + 05 2.14E + 05 2.29E + 04 5.32E + 04 7.41E + 04

EHO 3.87E-07 4.23E-07 2.03E-07 2.473693 2.46669 0.132225 0.460823 0.45868 0.044851

EWA 9.86E-08 4.95E-07 1.09E-06 4.878637 5.158461 1.260947 1.82917 2.078248 0.963983

KHA 1.25E-10 2.32E-07 7.78E-07 0.000167 0.002012 0.004889 0.27899 0.467207 0.567746

GSA 3.65E-12 3.64E-12 5.52E-14 2.16E-18 2.26E-18 6.19E-19 1.47E-19 0.035409 0.103724

MBO 1.71E-11 1.50E-11 4.94E-12 1,410,627 1.72E + 08 3.03E + 08 65.10721 66,255,921 1.56E + 08

PSO 2.93E-10 3.30E-10 2.02E-10 2.438557 5.188774 11.15144 0.681527 1.258365 1.435293

SCA 4.15E-10 4.08E-10 1.79E-10 2.687764 3.719848 3.361161 0.669408 0.865804 0.520371

F. No. F67 F68

Metrics Median Mean Std. dev. Median Mean Std. dev.

Proposed -24.2097 -23.9244 1.192935 0.555545 0.55615 0.258694

CSA -18.4328 -18.5526 1.970272 0.576142 0.646125 0.268376

ABC -19.5097 -19.6271 1.195944 2.051203 2.155658 0.618281

ACO -9.60851 -9.58506 0.368916 0.212721 0.219866 0.053785

EHO -11.6481 -11.5874 0.593605 2.91E-
05

3.09E-
05

2.31E-
05

EWA -11.0755 -11.3069 0.87826 0.037217 0.044023 0.031715

KHA -22.3215 -22.3038 1.537473 0.037357 0.040049 0.016935

GSA -27.4414 -27.4173 0.739022 0.018441 0.020708 0.009074

MBO -16.5023 -15.9714 3.072747 82.25565 64.20257 42.81425

PSO -7.79848 -7.8029 0.748354 0.0117 0.015809 0.016752

SCA -7.5375 -7.60054 0.845505 0.01594 0.026684 0.03207

Table 6. Performance analysis on multimodal variable-dimension benchmark test functions.
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F. No. Metrics Proposed CSA ABC ACO EHO EWA GSA KHA MBO PSO SCA

F69
Mean 2.71E + 04 2.14E + 03 1.51e + 07 3473.399 3.91e + 09 9.11e + 09 275.9256 1231.884 2.69e + 09 6.84e + 08 7.63e + 08

Std. dev 1.15E + 04 2.39E + 03 1.10e + 07 3912.219 9.35e + 08 3.23e + 09 233.972 1535.154 1.44e + 09 2.18e + 08 2.99e + 08

F70
Mean 3.00E + 02 3.00E + 02 11870.86 429.3429 8551.457 13011.73 10930.07 2447.185 26292.06 1907.703 1667.599

Std. dev. 8.66E-01 1.62E-04 2601.034 100.7011 2534.666 3215.011 2476.143 2029.243 15858.02 1613.804 1068.301

F71
Mean 4.05E + 02 4.04E + 02 410.8322 403.9510 652.5524 1166.998 406.132 406.0538 570.7414 449.6804 442.3137

Std. dev. 1.21E + 01 2.70E + 00 2.67069 0.168421 72.50278 321.4921 1.31166 2.621986 161.6766 28.83612 22.11951

F72
Mean 5.24E + 02 5.09E + 02 522.2496 529.6379 568.2867 593.2093 557.1713 528.6551 551.0986 548.0846 546.8131

Std. dev. 9.82E + 00 3.51E + 00 3.519481 4.499739 8.934784 17.42522 9.202492 9.015167 15.73492 7.398523 5.74464

F73
Mean 6.06E + 02 6.02E + 02 602.8508 600 635.7782 652.2342 624.9813 609.1646 628.8333 619.3922 618.1006

Std. dev. 5.56E + 00 1.26E + 00 0.860507 4.22e-14 4.67684 12.12105 10.25628 5.834042 12.43779 3.409804 3.228987

F74
Mean 7.37E + 02 7.21E + 02 741.9019 742.8243 827.7705 828.1968 715.2126 721.3522 784.1267 773.5919 775.7746

Std. dev. 1.48E + 01 5.61E + 00 6.306468 4.737585 12.13333 25.76585 2.990161 6.346181 31.40896 10.22259 11.7603

F75
Mean 8.15E + 02 8.09E + 02 821.5658 830.0375 855.5772 864.5029 822.1544 818.7726 858.7612 839.6358 838.8361

Std. dev. 6.65E + 00 4.60E + 00 5.143925 4.060205 5.797003 10.65639 4.887784 8.482399 20.30692 7.819929 7.597678

F76
Mean 9.46E + 02 9.03E + 02 928.2383 900 1357.765 1903.74 900 908.6887 1284.198 1006.305 996.8667

Std. dev. 5.30E + 01 4.33E + 00 15.33102 0 128.6872 322.8076 0 28.82673 358.8684 64.61087 33.98794

F77
Mean 1.67E + 03 1.61E + 03 1558.567 2129.827 2497.313 3021.653 2765.49 2073.715 2217.919 2256.504 2317.386

Std. dev. 2.73E + 02 2.26E + 02 135.5875 297.6214 191.6777 292.5522 240.1817 309.9358 280.2803 280.8657 260.37

F78
Mean 1.13E + 03 1.12E + 03 1134.388 1107.343 1349.82 6825.715 1138.12 1141.113 2563.498 1184.773 1192.63

Std. dev. 1.47E + 01 2.88E + 01 10.65167 1.297857 80.78795 6327.225 14.08996 21.46149 2340.484 33.72219 37.18676

F79
Mean 3.12E + 04 1.12E + 04 9.50e + 05 22347.765 1.03e + 08 3.88e + 08 745403.5 1,820,698 77,676,773 14,944,227 16,555,949

Std. dev. 5.10E + 04 1.09E + 04 6.41e + 05 13611.621 35,872,548 3.97e + 08 478,064 1,538,504 82,611,343 10,984,716 17,144,986

F80
Mean 1.99E + 03 1.75E + 03 15297.02 9620.5418 626073.7 4.87e + 07 12266.49 11241.84 2.66e + 06 31942.19 33333.14

Std. dev. 3.45E + 02 2.70E + 02 6548.883 8275.0999 544045.6 6.26e + 07 3145.719 5797.629 3.35e + 06 19903.58 18764.29

F81
Mean 1.45E + 03 1.44E + 03 1947.539 2730.3463 1984.571 110349.4 6050.159 2808.717 141579.3 1754.587 1826.561

Std. dev. 1.72E + 01 1.23E + 01 378.4723 3022.3391 550.6392 190099.6 1902.638 2590.406 293227.6 706.1036 663.9633

F82
Mean 1.58E + 03 1.59E + 03 1999.952 4073.5241 6461.742 1.83e + 06 19462.96 9883.937 273324.6 2396.541 2094.954

Std. dev. 5.75E + 01 6.01E + 01 321.4302 4844.1921 2898.962 6.80e + 06 5487.597 9024.832 1,171,099 664.8275 358.072

F83
Mean 1.71E + 03 1.62E + 03 1665.888 1612.1326 1960.062 2197.858 2169.556 1947.692 1945.786 1736.888 1739.073

Std. dev. 9.47E + 01 3.56E + 01 46.79145 0.7997813 88.95026 146.9085 103.7306 116.05 132.5913 84.03994 69.70736

F84
Mean 1.74E + 03 1.74E + 03 1738.019 1747.7528 1801.469 1903.499 1893.805 1763.032 1791.424 1775.685 1779.924

Std. dev. 1.48E + 01 1.94E + 01 9.408983 2.6588455 20.7347 87.11427 109.6289 22.26015 65.79866 13.38982 18.55763

F85
Mean 2.80E + 03 2.01E + 03 15416.37 25677.209 1,531,451 1.74e + 08 9800.403 13680.13 3.03e + 06 127255.2 110502.3

Std. dev. 1.71E + 03 1.76E + 02 9039.951 14976.346 1,270,096 2.52e + 08 4763.055 9106.063 6.53e + 06 113605.9 83703.33

F86
Mean 1.94E + 03 1.93E + 03 2514.381 7690.0857 9278.28 8.68e + 06 46813.25 8120.749 55548.52 6002.25 4925.699

Std. dev. 2.94E + 01 2.86E + 01 959.7638 6775.2704 6721.444 1.39e + 07 19162.87 6219.891 231086.8 5463.183 4423.837

F87
Mean 2.05E + 03 2.03E + 03 2037.829 2004.4208 2141.217 2282.004 2275.684 2134.03 2112.056 2093.246 2096.934

Std. dev. 3.20E + 01 9.34E + 00 10.01486 21.904078 29.40974 104.6475 100.1734 67.27155 49.97817 19.88185 25.01844

F88
Mean 2.29E + 03 2.30E + 03 2217.431 2331.0533 2261.978 2368.285 2358.121 2256.811 2346.541 2251.825 2243.573

Std. dev. 5.72E + 01 3.28E + 01 12.55623 3.3602774 20.39812 47.79793 27.33747 61.28068 43.06961 62.53914 56.49253

F89
Mean 2.30E + 03 2.30E + 03 2285.16 2304.6889 2589.488 2945.56 2300.011 2302.17 2735.675 2355.994 2371.848

Std. dev. 1.47E + 01 2.76E + 01 17.93655 0.9469408 91.07898 224.153 0.06297 1.620206 307.9171 25.29143 35.03303

F90
Mean 2.63E + 03 2.61E + 03 2589.826 2626.7905 2705.663 2791.775 2756.771 2631.141 2648.309 2655.9 2654.836

Std. dev. 1.80E + 01 4.05E + 00 82.60015 4.3128631 15.3191 53.75314 53.20707 63.52294 17.83721 8.909316 11.34653

F91
Mean 2.73E + 03 2.73E + 03 2565.885 2760.0581 2706.624 2897.337 2653.707 2655.101 2793.87 2775.073 2755.772

Std. dev. 8.18E + 01 4.43E + 01 19.14422 3.8818984 55.72094 92.80119 168.3652 129.5381 43.37924 43.80023 73.90712

F92
Mean 2.92E + 03 2.91E + 03 2918.783 2942.0745 3115.528 3460.244 2942.62 2927.836 3019.739 2962.343 2957.563

Std. dev. 2.36E + 01 2.25E + 01 14.63454 15.009559 48.11038 207.4497 5.160336 22.26353 74.62458 12.74057 14.70874

F93
Mean 3.01E + 03 2.92E + 03 2821.021 3551.1879 3440.261 4140.495 3698.63 3073.743 3583.037 3081.613 3069.668

Std. dev. 1.39E + 02 5.36E + 01 83.7193 517.84485 108.0022 403.2259 710.2253 278.4648 462.6585 52.76962 28.39842

F94
Mean 3.10E + 03 3.09E + 03 3102.174 3090.2951 3174.783 3308.397 3260.365 3139.024 3122.047 3103.287 3102.828

Std. dev. 1.38E + 01 2.85E + 00 2.774271 1.3980473 19.00431 69.83134 38.84866 44.11037 26.0317 1.492919 1.780704

F95
Mean 3.30E + 03 3.37E + 03 3191.306 3411.8218 3466.476 3806.799 3456.981 3272.782 3435.844 3275.676 3253.551

Std. dev. 2.17E-01 1.43E + 02 46.93048 1.85e-12 78.28678 142.6995 35.92788 141.697 103.3833 68.47646 35.62172

F96
Mean 3.19E + 03 3.15E + 03 3195.017 3174.7205 3330.083 3522.554 3427.118 3249.654 3327.52 3238.357 3229.173

Std. dev. 3.84E + 01 1.51E + 01 28.17671 13.523257 48.34743 159.3801 138.0466 58.46674 104.0239 40.04224 39.43467
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F. No. F1 F2 F3

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 0 0 0 0 0 0 1.38E-87 1.38E-87 6.81E-103

CSA 0 0 0 0 0 0 1.38E-87 1.38E-87 6.81E-103

CSAMW 0 5.75E-33 1.42E-32 0 0 0 1.38E-87 1.38E-87 6.80E-103

CSALF 1.28E-09 2.30E-09 2.52E-09 5.51E-09 7.65E-09 5.96E-09 1.38E-87 1.38E-87 6.80E-103

F. No. F4 F5 F6

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 4.68E-36 1.78E-35 3.46E-35 0.292579 0.292579 8.48E-11 19.10588 19.10588 1.12E-06

CSA 4.65E-65 1.62E-64 2.86E-64 0.292579 0.292579 8.87E-17 19.10588 19.10588 1.33E-14

CSAMW 9.50E-36 3.52E-35 7.42E-35 0.292588 2.93E-01 6.84E-17 19.10589 19.10591 5.32E-15

CSALF 1.52E-65 9.28E-65 2.00E-64 0.292579 0.292579 1.12E-11 19.10588 19.10588 2.85E-07

F. No. F7 F8 F9

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 1.74E-08 2.14E-08 1.76E-08 0 0 0 -0.00379 -0.00379 3.97E-14

CSA 0 0 0 0 0 0 -0.00379 -0.00379 1.76E-18

CSAMW 0 0 0 0 0 0 -0.00379 -0.00379 1.75E-18

CSALF 5.65E-09 1.27E-08 1.34E-08 0 0 0 -0.00379 -0.00379 6.53E-15

F. No. F10 F11 F12

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 6.19E-06 1.32E-05 2.51E-05 5.52E-21 2.40E-20 4.34E-20 5.33E-03 6.46E-03 3.76E-03

CSA 6.60E-02 1.15E-01 1.50E-01 1.79E-07 2.47E-07 2.01E-07 4.80E + 01 5.05E + 01 1.73E + 01

CSAMW 6.93E-06 3.08E-03 9.60E-03 8.96E-14 1.36E-10 3.76E-10 5.72E-02 2.70E-01 4.21E-01

CSALF 8.44E-14 2.36E-13 5.15E-13 6.93E-44 2.56E-42 5.77E-42 1.78E-06 1.76E-06 9.61E-07

F. No. F13 F14 F15

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 1.83E-01 2.21E-01 1.88E-01 1.05E-04 1.07E-04 2.36E-05 -155 -155 0

CSA 1.19E + 01 1.22E + 01 2.31E + 00 4.92E-02 4.78E-02 2.96E-02 -145 -144.1 1.29E + 01

CSAMW 3.78E-02 8.60E-02 9.95E-02 1.26E-05 1.23E-03 4.06E-03 -155 -155 0

CSALF 1.68E + 00 1.72E + 00 9.37E-01 6.55E-05 6.70E-05 8.92E-06 -155 -154.8 9.13E-01

F. No. F16 F17 F18

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 1.84E-02 3.35E-02 4.47E-02 6.55E-35 1.12E-30 3.20E-30 1.93E-01 2.64E + 00 7.46E + 00

CSA 2.85E + 02 2.88E + 02 4.74E + 01 9.06E-06 7.24E-04 3.60E-03 8.30E + 01 1.40E + 02 1.55E + 02

CSAMW 1.28E-01 1.68E + 01 5.23E + 01 4.94E-43 1.58E-23 8.61E-23 2.16E-05 1.54E-03 5.45E-03

CSALF 1.71E-05 4.41E-05 7.51E-05 3.10E-45 3.54E-39 1.58E-38 2.51E + 01 3.08E + 01 1.75E + 01

F. No. F19 F20 F21

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed 3.23E-09 3.99E-09 3.20E-09 3.98E-02 1.26E-01 2.16E-01 1.29E-05 2.18E-05 2.66E-05

CSA 2.90E-04 5.03E-04 9.48E-04 3.92E + 00 6.11E + 00 6.45E + 00 9.48E + 00 1.24E + 01 1.02E + 01

CSAMW 1.68E-08 7.54E-07 2.03E-06 2.49E-01 2.74E-01 1.37E-01 2.07E-07 1.05E-04 2.95E-04

CSALF 2.04E-15 2.69E-15 2.87E-15 6.67E-01 6.67E-01 7.60E-04 2.79E-04 2.80E-04 1.21E-04

F. No. F22 F23 F24

Metrics Median Mean Std. dev. Median Mean Std. dev. Median Mean Std. dev.

Proposed -1.00E + 00 -7.67E-01 4.30E-01 1.73E + 00 4.40E + 00 6.86E + 00 6.20E-07 8.84E-07 9.16E-07

CSA 4.34E-232 4.34E-232 0.00E + 00 8.55E-02 2.29E + 00 6.59E + 00 2.13E + 00 3.41E + 00 2.98E + 00

CSAMW -1.00E + 00 -7.00E-01 4.66E-01 4.75E-02 2.72E-01 7.03E-01 5.95E-06 3.26E-04 1.12E-03

CSALF 4.34E-232 4.35E-232 0 9.58E-01 6.86E + 00 2.20E + 01 7.29E-13 1.61E-12 2.70E-12

Table 8. Analysis of derived variants of proposed mCSAMWL algorithm for 24 benchmark functions.

 

F. No. Metrics Proposed CSA ABC ACO EHO EWA GSA KHA MBO PSO SCA

F97
Mean 1.49E + 05 1.57E + 05 46151.02 393629.20 6,033,642 3.90e + 07 963721.7 1.23e + 06 4.56e + 06 832719.8 768822.3

Std. dev. 3.63E + 05 2.75E + 05 50420.62 533225.08 3,387,805 3.27e + 07 273350.8 1.47e + 06 4.09e + 06 636666.3 655289.3

Table 7. Comparison of proposed algorithm and other algorithms on CEC-2017 benchmark functions.
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√
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)
, P = 6000lb,

 L = 14 ∈ , E = 30 × 106psi, G = 12 × 106psi

Range of design variables

 0.1 ≤ x1 ≤ 2.00,0.1 ≤ x2 ≤ 10.0,0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4 ≤ 2.00 (25)

The mCSAMWL algorithm optimizes the welding beam problem’s parameters, and the outcome is 1.69702. It is 
evident from Tables 9 and 10 that the mCSAMWL algorithm has generated the best solution, which is superior 
to other algorithms except the ACO algorithm. In conclusion, the proposed algorithm is reliable for getting good 
results for the welded beam design problem.

Tension/compression spring design
Tension/compression spring design is another popular mechanical problem. The weight of the spring needs to 
be reduced as much as possible to accomplish the goal of this problem’s. It can be achieved by managing the coil 
mean diameter D, the wire diameter d, and the active coil count N . When designing a compression spring, 
the predetermined restrictions on shear stress, minimum deflection and surge frequency must be adhered to, 
all while maintaining as little weight as is feasible. The following is the way to define an individual of the goal 
variables:

Consider

 
−→x = [x1, x2, x3] = [d, D, N ] (26)

Minimize

 f (−→x ) = (2 + x3) x2x2
1, (27)

Subject to

 
z1 (−→x ) = 1 − x3

2x3

71785x4
1

≤ 0, (28)

 
z2 (−→x ) = 4x2

2 − x1x2

12566 (x2x3
1 − x4

1) + 1
5108x2

1
− 1 ≤ 0, (29)

 
z3 (−→x ) = 1 − 140.45x1

x2
2x3

≤ 0, (30)

 
z4 (−→x ) = x1 + x2

1.5 − 1 ≤ 0, (31)

Design variables range

Proposed ABC ACO CSA EHO EWA GSA MBO KHA PSO SCA

Best 1.69702 1.860814 1.695245 1.72485 1.7434 2.7008027 2.17286 1.7425535 1.7400148 1.8204 1.75917

Mean 1.7409 2.089541 1.781379 1.72485 2.0042 4.0255967 2.54424 2.455537 2.33025 2.23031 1.81766

Worst 1.7307 2.494788 2.009871 1.72485 2.48355 5.6322353 3.00366 3.284443 3.023209 3.04823 1.87341

Std. 0.40149 0.15017 0.097678 2.2352E−05 0.16505 0.8006264 0.25586 0.403898 0.367012 0.32453 0.02754

Table 10. Comparative statistical analysis for the welded beam design problem.

 

Algorithm Proposed ABC ACO CSA EWA GSA MBO KHA PSO SCA

Optimal values for variables

h 0.1994 0.2093828 0.205735 0.20573 0.3756133 0.1471 0.1981115 0.205899 0.19741 0.2047

l 3.2639 3.5463679 3.2530202 3.47049 2.2838984 5.49074 3.2881733 3.3844076 3.31506 3.53629

t 7.0541 9.0481796 9.0366232 9.03662 6.5632029 10 9.4315589 8.8912834 10 9.00429

b 0.20382 0.2211365 0.205729 0.20573 0.4560403 0.21773 0.2039614 0.2126729 0.2014 0.21003

Optimum cost 1.69702 1.860814 1.695245 1.72485 2.7008027 2.17286 1.7254857 1.7425535 1.8204 1.75917

Table 9. Comparative analysis for the welded beam design problem.
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 0.05 ≤ x1 ≤ 2.00,0.25 ≤ x2 ≤ 1.3,2 ≤ x3 ≤ 15 (32)

The tension/compression spring design results from mCSAMWL and other algorithms are shown in Table 11. 
The results illustrate that the mCSAMWL algorithm works better than the other state-of-the-art algorithms. 
Table 12 shows that the suggested mCSAMWL algorithm for the tension/compression spring design problem 
got similar results after a very small number of function evaluations.

Pressure vessel design
By optimizing four variables, the pressure vessel design problem’s objective is to reduce the cost of fabrication 
by satisfying four constraints. The design variables consist of the thickness of the head ( Th), the length of the 
section without a head ( L), thickness of the shell ( Ts), and the inner radius ( R). The problem can be modeled 
mathematically as in following Eqs. (33–39).

Consider

 
−→x = [x1, x2, x3, x4] = [Ts, Th, R, L] (33)

Minimize

 f (−→x ) = 0.6224x1x3x4 + 1.7881x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (34)

Subject to

 z1 (−→x ) = −x1 + 0.0193x3 ≤ 0 (35)

 z2 (−→x ) = −x2 + 0.0193x3 ≤ 0 (36)

 
z3 (−→x ) = −π x2

3x4 − 4
3π x3

3 + 1, 296, 000 ≤ 0 (37)

 z4 (−→x ) = x4 − 240 ≤ 0 (38)

Design variables range

 0 ≤ x1, x2 ≤ 99,10 ≤ x2, x4 ≤ 200 (39)

Algorithms Proposed CSA ABC ACO EWA GSA KHA MBO PSO SCA

Ts (x1) 0.778186 12.4507 0.8881 0.7841 2.007 1.0858 0.7917 0.7944 0.77896 0.81758

Th (x2) 0.38466 6.15439 0.4313 0.3874 5.3999 0.94961 0.3961 0.4233 0.38468 0.41793

R (x3) 40.3103 40.3196 45.930349 40.808465 59.0617 49.3452 41.033723 41.345423 40.3209 41.7494

L (x4) 199.9898 200 139.73094 193.30955 166.76476 169.487 190.68425 194.39631 200 183.573

f
(−→x

)
5885.228 5885.3 6280.4471 5886.9648 52642.982 11550.3 5930.2521 6179.5732 5891.39 6137.37

Table 13. Comparative analysis for pressure vessel design problem.

 

Algorithms Proposed ABC ACO CSA EWA GSA KHA MBO PSO SCA

Best 0.0126681 0.0129786 0.0126847 0.01267 0.0212676 0.01287 0.0126744 0.0131901 0.012674 0.01271

Mean 0.0126717 0.0141119 0.0135736 0.01267 9.66E + 04 0.01344 0.0129385 0.0185521 0.01273 0.01284

Worst 0.0126708 0.0193867 0.0160979 0.01267 8.19E + 05 0.01421 0.0141048 0.0260374 0.012924 0.013

Std. dev 1.2193E-05 1.40E-03 7.59E-04 1.23E−03 1.87E + 05 0.00029 4.17E-04 3.57E-03 5.19E-05 7.8E-05

Table 12. Comparative statistical analysis for tension/compression spring design problem.

 

Algorithms Proposed ABC ACO CSA EWA GSA KHA MBO PSO SCA

d (x1) 0.051899 0.05 0.0506762 0.05178 0.0576993 0.05 0.0500053 0.3104684 0.051728 0.05078

D (x2) 0.321778 0.3155046 0.3328353 0.35885 0.5148301 0.31731 0.3174998 14.993803 0.357644 0.33478

N (x3) 11.0644 14.454456 12.840343 11.165 10.408336 14.2287 14.024663 0.0131901 11.244543 12.7227

f
(−→x

)
0.012668 0.0129786 0.0126847 0.0127 0.0212676 0.01287 0.0126744 0.3104684 0.012674 0.01271

Table 11. Comparative analysis for tension/compression spring design problem.
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Table 13 presents a summary of the best results that the mCSAMWL algorithm and the other commonly used 
metaheuristic algorithms delivered when solving the problem of designing pressure vessels. Table 13 illustrates 
that the proposed mCSAMWL algorithm delivered superior outcomes compared to the rest of the algorithms. 
Table 14 illustrates the results of a statistical analysis carried out on the algorithms used to address the pressure 
vessel design problem. In summary, the mCSAMWL algorithm delivered the most accurate solutions to the 
pressure vessel design problem while exhibiting the smallest degree of standard deviation.

Application using mCSAMWL algorithm for balance clustering in WSN
Let T = {t1, t2, . . . tz} be the set of z sensors in the region of interest. by tz = (xi, yi) ∈ R2 indicates the 
location of the sensor Tz . In order to save energy, sensor nodes are organised into clusters38, with one node in 
each cluster acting as the cluster head. It is the job of the cluster head to gather data from the other nodes in 
the cluster and send it on to the base station bstCL = {cl1, cl2, . . . .cly} ⊂ S. denotes the subset of sensors 
chosen as cluster heads38. Sensor ti i is a member of cluster cl (ti) ,which is given by Eq. (40).

 cl (ti) = argclj
min (40)

where indicates the Euclidean distance between sensors tiand clj . For a cluster, the sensor subset Qj , Cluster 
head hj  is defined as Eq. (41).

 Qj = {ti| ti ∈ T, cl (ti) = clj} (41)

This research optimizes the three most recurrent functions. First, the objective function is the average intra 
cluster distance. If the sensor nodes and cluster head are closer, less energy is needed to transmit data between 
them. It is represented in Eq. (42).

 
PDsCH =

∑ N

i=1
Dchk

si
 (42)

where, Dchk

si
 denotes the Euclidean distance between sensor nodes and cluster heads

Balance cluster formation is the second objective function to consider, as it depends on the node degree, 
i.e. number of nodes that are associated with the CHs. It can be achieved by considering the average distance 
between the CHs. The distance between cluster heads should be maximum to attain disbursement of the clusters 
throughout the network. It is represented below in Eq. (43).

 
PDCH =

∑ K

i=1

∑ K

j=1Dchi
chj

K
 (43)

where, Dchi
chj

 denotes the distance between cluster heads.
The average cluster head-to-base station distance is the third objective function. The shorter the distance 

between CHs and BS, the more likely it is that a node closer to BS will be chosen as a CH because it will take less 
energy to send all the data to BS as given in Eq. (44).

 
PCHBS =

∑ M

i=1dis (CHi, BS)
K

 (44)

where, the distance from the cluster head to the base station is denoted by dis (CHi, BS) ,K represents number 
of cluster heads. So, PCHBS  is expressed as in Eq. (45).

 f = ϕ 1P DsCH + ϕ 2P DCH + ϕ 3P CHBS  (45)

where, ϕ 1, ϕ 12 ∧ ϕ 3 are the weighted coefficients such that, ϕ 1 + ϕ 2+ϕ 3 = 1

Results and discussion
In this research, we present an efficient method for selecting CHs using the modified Chameleon Swarm 
Optimization Algorithm (mCSAMWL) and a fitness function that considers average intra-cluster distance, 
average inter-cluster distance, and average cluster head to base station distance. Based on the area the WSN 
network covers, the algorithm comprises three distinct groups: WSN ~ 1 for 100 × 100, WSN ~ 2 for 200 × 200 m, 

Algorithms Proposed CSA ABC ACO EWA GSA KHA MBO PSO SCA

Best 5885.228 5885.33 6280.4471 5886.9648 52642.982 11550.3 5930.2521 52642.982 5891.39 6137.37

Mean 5887.867 5886.7 7595.104 6235.0563 377087.01 23342.3 6370.5053 377087.01 6531.5 6326.76

Worst 6645.244 5887.01 8984.3704 7264.8084 824178.13 33226.3 7451.2312 824178.13 7394.59 6512.35

Std. dev. 2.4009 2.2501 664.42143 345.23833 209370.59 5790.63 277.87154 209370.59 534.12 126.609

Table 14. Comparative statistical analysis for pressure vessel design problem.
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and WSN ~ 3 for 300 × 300 m. Each of these groups corresponds to a different size by varying the number of 
sensor nodes. G#1 consists of 100 nodes, G#2 consists of 200 nodes, and G#3 consists of 300 nodes, respectively. 
The parameter setting for the WSN network is shown in Table  15. In this section, the performance of six 
commonly used techniques, the Atom Search Optimization (ASO )39, the Hybrid Particle Swarm Optimization 
and Grey Wolf Optimization (PSO-GWO)40, the African Vulture Optimization Algorithm (AVOA)41, the Bald 
Eagle Search Algorithm (BES)42,43, and the Chameleon Swarm Algorithm (CSA)25, are assessed in light of 
simulation parameters, average energy consumption, residual energy of the network, total energy consumption, 
dead nodes, and cluster head frequency. The simulation was run 20,000 times to determine which nodes were 
alive and which were deceased, while 1,000 rounds of execution were performed to assess the metrics for the 
performance of the algorithms mentioned above.

Simulation parameters
The effectiveness of the proposed clustering technique has been determined using the simulated parameters 
listed below:

 (a) Average Energy Consumption: It determines the mean gap between every sensor node’s starting and ending 
energy levels. To put it another way, it’s the amount of energy that each node in a WSN network uses every 
round to send and receive packets of data.

 (b) Total Energy Consumption: The energy dissipation of a network over a single round is the total amount of 
power consumed by the network’s nodes during that round.

 (c) Total Residual Energy: The total amount of residual energy is equal to the sum of the energies currently 
present in each sensor node.

 (d) Dead Node: It is defined as the number of nodes that died over time during the simulation.
 (e) CH Frequency: The frequency at which the sensor nodes performed the duties of CH during a certain time 

frame. High frequency suggests a sensor node is regularly selected as a CH, while low frequency means it is 
not.

Average energy consumption evaluation
Table 16 illustrates the average energy consumption performance of metaheuristic algorithms for a range of 
network sizes as well as node densities. Clustering techniques using the mCSAMWL algorithm consume less 
energy on average than other algorithms. Table 14 clearly shows the clustering technique using the mCSAMWL 
algorithm has the lowest average energy consumption in all network scenarios. The performance of different 
algorithms based on average energy consumption is depicted in Figs. 4 and 5. This technique outperforms its 
rivals’ algorithms in each of the nine scenarios. The PSO-GWO algorithm performs the worst, followed by 
the ASO algorithm. The standard CSA algorithm has also demonstrated subpar performance compared to the 
mCSAMWL-based clustering method.

Name of technique

WSN ~ 1
100 × 100

WSN ~ 2
200 × 200

WSN ~ 3
300 × 300

G#1 G#2 G#3 G#1 G#2 G#3 G#1 G#2 G#3

ASO 0.0404 0.0381 0.0370 0.1505 0.1513 0.1446 0.3171 0.2835 0.3174

PSO-GWO 0.0415 0.0386 0.0372 0.1560 0.1278 0.1451 0.4532 0.3855 0.4099

BES 0.0390 0.0366 0.0357 0.1343 0.1258 0.1431 0.3800 0.3203 0.3291

AVOA 0.0388 0.0356 0.0340 0.1282 0.1093 0.0978 0.3678 0.3164 0.3029

CSA 0.0394 0.0365 0.0353 0.1480 0.0715 0.0672 0.1969 0.1249 0.1937

Proposed 0.0387 0.0351 0.0336 0.0738 0.0594 0.0539 0.1340 0.1015 0.0925

Table 16. Comparison based on average energy consumption for different network scenarios.

 

Parameter Value

Nodes in the network area 100 m × 100 m, 200 m × 200 m,
300 m × 300 m

Number of rounds 20,000

Number of cluster heads 10% of the network’s total nodes

Number of nodes G1# 100, G2 # 200, G#3 300

Base station position Centre

Initial energy ( E0) 1 Joules

Receiving power ( ERx) 50 × 0.000000001nJ/bit/ m2

Transmission power ( ET x) 50 × 0.000000001nJ/bit/ m2

Data aggregation energy ( EDA) 5 × 0.000000001nJ/bit/ m2

Table 15. Parameter setting.
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For WSN ~ 1, the average energy consumption of clustering techniques based on the mCSAMWL algorithm 
is 0.0387, 0.0351, and 0.0336 joules which is 1.77%, 3.83% and 4.81% lesser than CSA technique. Also, the 
respective values for WSN ~ 2 are 0.0738, 0.0594, and 0.0539 joules which are 50.1%, 59.8% and 19.7% better 
than CSA technique. Moreover, with values of 0.1340, 0.1015, and 0.0925 joules proposed technique consumes 
lesser average energy than CSA technique by 31.9%, 18.7%, and 52.2% respectively. These results reveal minimal 
energy consumption variance across all the mCSAMWL algorithm-based clustering scenarios. It is not the case 
for ASO39, PSO-GWO AVOA41, BES42,43, CSA25 techniques.

Total energy consumption evaluation
Figures 6, 7, 8, 9 and 10 depicts the total energy consumption of the clustering technique using the mCSAMWL 
algorithm in comparison to the remaining techniques ASO39, PSO-GWO AVOA41, BES42,43, CSA25 for 
1000 iterations. Based on Table  17, PSO-GWO and ASO are the worst performers in terms of total energy 
consumption, followed by the BES technique. In all the scenarios considered, the mCSAMWL algorithm for 
the clustering technique performs optimally, followed by the CSA and AVOA techniques. Compared to the 
mCSAMWL algorithm-based clustering technique, the total amount of energy consumed by other techniques 
is significantly higher. The faster the sensor node depletes its energy, the sooner the WSN network will collapse. 
Whereas, in the case of the mCSAMWL algorithm-based clustering technique, the WSN network will last longer 
due to its low energy consumption compared to the other techniques.

In the WSN ~ 1 scenario, the total energy consumption of the clustering technique based on the mCSAMWL 
algorithm is 7.7373, 6.9473, and 6.6526 joules which is lesser than 1.62% in G#1, 6.25% in G#3 scenario of 
CSA technique but in case of G#2 scenario, it is 5.64% higher as compared to CSA technique. For the WSN ~ 2 
scenario, the respective values are 14.7756, 12.0804, and 11.6942 joules which are 50.7%, 15.7% and 16.2% 
better than CSA technique. Furthermore, with values of 26.8223, 20.4252, and 17.6456 joules, mCSAMWL 
gives more efficient results in WSN ~ 3 than CSA technique by 44.3%, 31.9%, and 1%. Compared with the other 

Fig. 5. Comparison based on average energy consumption for WSN scenario-3.

 

Fig. 4. Comparative analysis of average energy consumption for WSN scenario-1 &WSN scenario-2.
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Fig. 8. Comparison based on total energy consumption for WSN 2 G#2 and WSN ~ 2 G#3.

 

Fig. 7. Comparison based on total energy consumption for WSN ~ 1 G#3 and WSN ~ 2 G#1.

 

Fig. 6. Comparison based on Total Energy Consumption for WSN ~ 1 G#1 and WSN ~ 1 G#2.
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techniques, the clustering technique based on the mCSAMWL algorithm demonstrated the least variation in 
energy consumption across all scenarios.

Total residual energy
Table 18 depicts residual network energy after 1000 iterations for various scenarios. The mCSAMWL algorithm-
based clustering technique outperforms the others in terms of residual energy, as shown in Table 18 The more 
energy that remains in the network, the longer it will last. Table 18 shows that the mCSAMWL algorithm-based 
clustering technique has the most residual energy left for all WSN scenarios.

As a result, the lifespan of the WSN network is prolonged. The PSO-GWO technique is the worst performer, 
followed by the ASO technique. The AVOA technique excelled in BES, ASO, and PSO-GWO, but it was unable 
to compete with the CSA and mCSAMWL algorithm-based clustering techniques.

Dead nodes
Table 19 presents the details of dead nodes in six algorithms based on the number of rounds. It represents the 
number of nodes that have some amount of energy that correlates with the number of rounds that have been 
completed. At the end of 4000 rounds, the mCSAMWL algorithm-based clustering method had no dead nodes, 
while other techniques did. ASO has the highest number of dead nodes, followed by PSO-GWO, BES, and 
CSA. It has been noted that the node lifespan has been extended in the clustering technique employing the 
mCSAMWL algorithm when compared to the ASO39, PSO-GWO AVOA41, BES42,43, CSA25 techniques.

Similarly, after 18,000 rounds, the CSA technique has 56 dead nodes, followed by AVOA, PSO-GWO, CSA, 
BES, and ASO. With only 30 dead nodes after 18,000 iterations, the mCSAMWL algorithm-based clustering 
technique clearly stands well ahead of other techniques.

Cluster head frequency
To ensure that each sensor node draws on a comparable amount of energy, the cluster head’s responsibility must 
be equally divided among sensor nodes. The frequency with which a node in a given network size and density 
becomes the cluster head throughout the duration of the first 1000 simulation iterations is depicted in Figs. 11, 
12, 13, 14, 15, 16, 17 and 18, and 19. It is clear that the behavior of many techniques changes as network size 
or density changes. The mCSAMWL-based clustering technique has demonstrated remarkable consistency in 
selecting sensor nodes to serve as cluster heads. It has been accomplished by distributing the responsibility of 
cluster head throughout the WSN network and maintaining small oscillations around the average cluster head 
frequency for all network densities. PSO-GWO, ASO, and BES techniques are the worst performers in terms of 
cluster head frequency parameters.

The proposed modified metaheuristic mCSAMWL algorithm applies Morlet wavelet mutation and Lévy 
Flight distribution as a different approach to solving optimization challenges. These modifications have made the 
standard CSA algorithm more effective and assisted in achieving a better equilibrium between the exploitation 
and exploration phases. The proposed mCSAMWL algorithm’s performance has been assessed using 97 
benchmark functions and three real-world engineering design problems. Based on the encouraging outcomes, 
the proposed mCSAMWL method has been implemented for clustering in WSN. The clustering technique using 
the proposed mCSAMWL algorithm excels over the original CSA and other clustering techniques in terms of 
average energy consumption, residual energy of the network, total energy consumption, dead nodes, and cluster 
head frequency. This technique performs extremely well in all network scenarios with variable node densities. 
The incorporation of Morlet wavelet and Lévy Flight into the existing standard CSA algorithm has improved the 
capabilities of the original CSA Algorithm.

Fig. 9. Comparison based on total energy consumption for WSN ~ 3 G#1 and WSN ~ 3 G#2.
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Conclusions and recommendations
Metaheuristic algorithms have gained popularity as a fast and effective way to solve optimization problems. To 
overcome the limitations of the existing studies in this area, this work proposes, develops, and applies a modified, 
better performing Chameleon Swarm Algorithm incorporating Morlet wavelet and Lévy Flight distribution 
to enhance the efficacy of the standard CSA algorithm. The Morlet wavelet mutation is used to enhance the 

Name of Technique

WSN ~ 1
100 × 100

WSN ~ 2
200 × 200

WSN ~ 3
300 × 300

G#1 G#2 G#3 G#1 G#2 G#3 G#1 G#2 G#3

ASO 8.0839 7.4727 8.6137 30.4609 34.4287 33.6945 61.3471 57.6814 70.7377

PSO-GWO 8.2962 7.7676 7.1644 31.7030 25.3171 32.2717 85.6833 78.0320 77.7704

BES 7.7904 6.6607 7.0981 27.1928 25.3527 22.8524 73.0381 66.8577 55.6158

AVOA 7.7757 7.1381 6.8028 25.6898 23.2069 21.9429 67.4622 56.3751 59.5466

CSA 7.8654 6.5761 7.0950 30.0110 14.3342 13.9598 48.1628 30.0099 17.8225

Proposed 7.7372 6.9473 6.6526 14.7756 12.0804 11.6942 26.8223 20.4252 17.6456

Table 17. Comparison based on total energy consumption for different network scenarios.

 

Fig. 10. Comparison based on total energy consumption for WSN ~ 3 G#3.
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exploration phase of the CSA algorithm by exploring the entire search space and dividing it into two distinct 
regions. To improve the exploitation phase, the Lévy Flight distribution strategy with a step reducer factor is 
added to the normal CSA algorithm. So, the proposed algorithm applies changes to achieve an appropriate 
equilibrium between the exploration and exploitation phases. The proposed algorithm’s efficacy is tested on 68 

Fig. 11. Comparative analysis of cluster head frequency WSN ~ 1 G#1.

 

Rounds ASO PSO-GWO AVOA BES CSA Proposed

2000 0 1 0 0 0 0

4000 5 4 1 4 4 0

6000 7 6 3 5 7 3

8000 10 8 5 8 9 7

10,000 13 11 9 9 11 9

12,000 16 14 16 13 19 13

14,000 20 17 24 17 29 15

16,000 29 23 36 28 39 22

18,000 45 49 50 48 56 30

20,000 63 79 80 66 69 52

Table 19. Comparative analysis in terms of dead nodes.

 

Name of technique

WSN ~ 1
100 × 100

WSN ~ 2
200 × 200

WSN ~ 3
300 × 300

G#1 G#2 G#3 G#1 G#2 G#3 G#1 G#2 G#3

ASO 82.8148 169.0419 250.9480 63.9322 130.4940 201.6039 45.5858 104.7615 139.9848

PSO-GWO 84.1456 168.5606 254.6063 66.4208 141.2798 201.8322 24.1213 77.4302 103.0415

BES 83.8614 169.9365 251.4467 68.2203 142.0272 226.6893 30.3246 88.9584 133.9864

AVOA 83.1846 167.8084 251.9390 69.8836 146.2063 228.9982 36.7370 90.0454 141.4964

CSA 83.6342 167.6406 252.6286 67.2867 157.6655 238.8621 55.3708 142.4404 219.7570

Proposed 83.6283 167.7664 252.1614 77.1133 159.0475 241.9464 66.2082 144.8714 220.7759

Table 18. Comparison based on residual energy of network for different network scenarios.
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unimodal and multimodal benchmark functions and CEC 2017 test suite functions, and results are compared 
with 10 commonly used metaheuristic algorithms. The proposed mCSAMWL algorithm obtains the lowest 
Friedman mean rank, demonstrating its superiority over the other state-of-the-art algorithms.

Furthermore, the proposed algorithm has been used to effectively address three real-world engineering 
design problems. Finally, the proposed mCSAMWL algorithm has been applied for clustering in WSN to find 

Fig. 13. Comparative analysis of cluster head frequency WSN ~ 1 G#3.

 

Fig. 12. Comparative analysis of cluster head frequency WSN ~ 1 G#2.
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the optimal cluster head set and balance out the clustering process. The fitness function for this clustering 
technique uses average intra-cluster distance, average inter-cluster distance, and distance between cluster heads 
and the base station. This clustering technique has been thoroughly tested with three different WSN scenarios 
under varying node densities. The simulation performance of this technique has been computed against six 
commonly used metaheuristic techniques. From the experimental results, the clustering technique using the 

Fig. 15. Comparative analysis of cluster head frequency WSN ~ 2 G#2.

 

Fig. 14. Comparative analysis of cluster head frequency WSN ~ 2 G#1.
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mCSAMWL algorithm outperforms the other technique in terms of average energy consumption, total energy 
consumption, residual energy, dead nodes and cluster head frequency. Significantly, the clustering technique 
using the mCSAMWL algorithm has resulted in increasing the lifetime of the WSN network by balancing out 
the cluster formation process and the average energy consumption of the sensor nodes. Further, the proposed 
improved algorithm can have applications to address various clustering, medical imaging, image segmentation, 

Fig. 17. Comparative analysis of cluster head frequency WSN ~ 3 G#1.

 

Fig. 16. Comparative analysis of cluster head frequency WSN ~ 2 G#3.
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engineering design, data forecasting, classification, feature selection, and other real-world problems. As a future 
work, a variant of the mCSAMWL is being worked on to handle multi-objectives problems.

Data availability
The benchmark functions used in this research are publicly available and can be accessed from the CEC-BC-2017 
dataset, referenced in28,29.  h t t p s :  / / w w w .  k a g g l e  . c o m / c  o d e / k  o o a s l a  n s e f a t  / c e c - 2  0 1 7 - b e n c h m a r k.

Appendix 1
In the following table, f. no. represents the function number, function name defines the name of the function, 
dim represents the number of dimensions (design variables) of the function, range defines the lower and upper 
bound of search space for the function, global value defines the global optimum value of the function.

Fig. 19. Comparative analysis of cluster head frequency WSN ~ 3 G#3.

 

Fig. 18. Comparative analysis of cluster head frequency WSN ~ 3 G#2.
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F. no. Function name Dim Range Global value

Unimodal functions with fixed dimension

F1 Beale 2 [-4.5, 4.5] 0

F2 Booth 2 [-10, 10] 0

F3 Brent 2 [-10, 10] 0

F4 Matyas 2 [-10, 10] 0

F5 Schaffer N. 4 2 [-100, 100] 0.292579

F6 Wayburn Seader 3 2 [-500, 500] 19.10588

F7 Leon 2 [-1.2, 1.2] 0

F8 Cube 2 [-10, 10] 0

F9 Zettl 2 [-5, 10] -0.00379

Unimodal functions with variable dimensions

F10 Sphere 30 [-100, 100] 0

F11 Power Sum 30 [-1, 1] 0

F12 Schwefel’s 2.20 30 [-100, 100] 0

F13 Schwefel’s 2.21 30 [-100, 100] 0

F14 Step 30 [-100, 100] 0

F15 Stepint 30 [-5.12, 5.12] -155

F16 Schwefel’s 2.22 30 [-100, 100] 0

F17 Schwefel’s 2.23 30 [-10, 10] 0

F18 Rosenbrock 30 [-30, 30] 0

F19 Brown 30 [-1, 4] 0

F20 Dixon and Price 30 [-10, 10] 0

F21 Powell Singular 30 [-4, 5] 0

F22 Xin-She Yang 30 [-20, 20] -1

F23 Perm 0, D, Beta 5 [-Dim, Dim] 0

F24 Sum Suqares 30 [-10, 10] 0

Multimodal functions with fixed- dimension

F25 Egg Crate 2 [-5, 5] 0

F26 Ackley N.3 2 [-32, 32] -195.629

F27 Adjiman 2 [-1, 2] -2.02181

F28 Bird 2 [-2 π , 2 π ] -106.765

F29 Camel 6 Hump 2 [-5, 5] -1.0316

F30 Branin RCOS 2 [-5, 5] 0.397887

F31 Goldstien Price 2 [-2, 2] 3

F32 Hartman 3 3 [0, 1] -3.86278

F33 Hartman 6 6 [0, 1] -3.32236

F34 Cross-in-tray 2 [-10, 10] -2.06261

F35 Bartels Conn 2 [-500, 500] 1

F36 Bukin 6 2 [(-15, -5), (-5, -3)] 180.3276

F37 Carrom Table 2 [-10, 10] -24.1568

F38 Chichinadze 2 [-30, 30] -43.3159

F39 Cross function 2 [-10, 10] 0

F40 Cross leg table 2 [-10, 10] -1

F41 Crowned Cross 2 [-10, 10] 0.0001

F42 Easom 2 [-100, 100] -1

F43 Giunta 2 [-1, 1] 0.060447

F44 Helical Valley 3 [-10, 10] 0

F45 Himmelblau 2 [-5, 5] 0

F46 Holder 2 [-10, 10] -19.2085

F47 Pen Holder 2 [-11, 11] -0.96354

F48 Test Tube Holder 2 [-10, 10] -10.8723

F49 Shubert 2 [-10, 10] -186.731

F50 Shekel 4 [0, 10] -10.5364

F51 Three-Hump Camel 2 [-5, 5] 0

Multimodal function with variable dimension

F52 Schwefel’s 2.26 30 [-500, 500] -418.983

F53 Rastrigin 30 [-5.12, 5.12] 0
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F. no. Function name Dim Range Global value

F54 Periodic 30 [-10, 10] 0.9

F55 Qing 30 [-500, 500] 0

F56 Alpine N. 1 30 [-10, 10] 0

F57 Xin-She Yang 30 [-5, 5] 0

F58 Ackley 30 [-32, 32] 0

F59 Trignometric 2 30 [-500, 500] 0

F60 Salomon 30 [-100, 100] 0

F61 Styblinski-Tang 30 [-5, 5] -1174.98

F62 Griewank 30 [-100, 100] 0

F63 Xin-She Yang N. 4 30 [-10, 10] -1

F64 Xin-She Yang N. 2 30 [-2 π , 2 π ] 0

F65 Gen. Penalized 30 [-50, 50] 0

F66 Penalized 30 [-50, 50] 0

F67 Michalewics 30 [0, π ] -29.6309

F68 Quartic Noise 30 [-1.28, 1.28] 0

CEC-BC-2017 Functions

F69 Shifted and Rotated Bent Cigar Function 10 [-100, 100] 100

F70 Shifted and Rotated Rosenbrock Function 10 [-100, 100] 300

F71 Shifted and Rotated Rastrigin Function 10 [-100, 100] 400

F72 Shifted and Rotated Expanded Scaffer’s F6 Function 10 [-100, 100] 500

F73 Shifted and Rotated Lunacek Bi Rastrigin Function 10 [-100, 100] 600

F74 Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [-100, 100] 700

F75 Shifted and Rotated Levy Function 10 [-100, 100] 800

F76 Shifted and Rotated Schwefel’s Function 10 [-100, 100] 900

F77 Hybrid Function 1 (N = 3) 10 [-100, 100] 1000

F78 Hybrid Function 2 (N = 3) 10 [-100, 100] 1100

F79 Hybrid Function 3 (N = 3) 10 [-100, 100] 1200

F80 Hybrid Function 4 (N = 4) 10 [-100, 100] 1300

F81 Hybrid Function 5 (N = 4) 10 [-100, 100] 1400

F82 Hybrid Function 6 (N = 4) 10 [-100, 100] 1500

F83 Hybrid Function 6 (N = 5) 10 [-100, 100] 1600

F84 Hybrid Function 6 (N = 5) 10 [-100, 100] 1700

F85 Hybrid Function 6 (N = 5) 10 [-100, 100] 1800

F86 Hybrid Function 6 (N = 6) 10 [-100, 100] 1900

F87 Composite Function 1 (N = 3) 10 [-100, 100] 2000

F88 Composite Function 2 (N = 3) 10 [-100, 100] 2100

F89 Composite Function 3 (N = 4) 10 [-100, 100] 2200

F90 Composite Function 4 (N = 4) 10 [-100, 100] 2300

F91 Composite Function 5 (N = 5) 10 [-100, 100] 2400

F92 Composite Function 6 (N = 5) 10 [-100, 100] 2500

F93 Composite Function 7 (N = 6) 10 [-100, 100] 2600

F94 Composite Function 8 (N = 6) 10 [-100, 100] 2700

F95 Composite Function 9 (N = 6) 10 [-100, 100] 2800

F96 Composite Function 10 (N = 3) 10 [-100, 100] 2900

F97 Composite Function 11 (N = 3) 10 [-100, 100] 3000
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