scientific reports

OPEN

Check for updates

Chameleon swarm algorithm with Morlet wavelet mutation for superior optimization performance

Vipan Kusla¹, Gurbinder Singh Brar², Harpreet Kaur², Ramandeep Sandhu², Chander Prabha³, Md. Mehedi Hassan⁴, Shahab Abdulla⁵, Md Rittique Alam⁶, Samah Alshathri⁷ & Walid El-Shafai^{8,9}

Metaheuristic algorithms play a vital role in addressing a wide range of real-world problems by overcoming hardware and computational constraints. The Chameleon Swarm Algorithm (CSA) is a modern metaheuristic algorithm that uses how chameleons act. To improve the capabilities of the CSA, this work proposes a modified version of the Chameleon Swarm Algorithm to find better optimal solutions applicable to various application areas. The effectiveness of the proposed algorithm is assessed using 97 typical benchmark functions and three real-world engineering design problems. To validate the efficacy of the proposed algorithm, it has been compared to a number of well-known and widely-used classical algorithms, the Gravitational Search Algorithm, the Earthworm Optimization. The proposed modified Chameleon Swarm Algorithm using Morlet wavelet mutation and Lévy flight (mCSAMWL) is superior to existing algorithms for both unimodal and multimodal functions, as demonstrated by Friedman's mean rank test as well as three real world engineering design problems. Five performance metrics—average energy consumption, total energy consumption, total residual energy, dead node and cluster head frequency are taken into consideration when evaluating the performances against state-of-the-art algorithms. For nine different simulation scenarios, the proposed algorithm mCSAMWL outperforms the Atom Search Optimization (ASO), Hybrid Particle Swarm Optimization and Grey Wolf Optimization (PSO-GWO), Bald Eagle Search Algorithm (BES), the African Vulture Optimization Algorithm (AVOA), and the Chameleon Swarm Algorithm (CSA) in terms of average energy consumption and total energy consumption by 50.9%, 52.6%, 45%, 42.4%, 50.1% and 51.4%, 53.3%, 45.6%, 42.4%, 50.7%.

Keywords Morlet wavelet, Lévy flight, Benchmark functions, Wireless sensor network (WSN), Cluster head

Metaheuristic algorithms are effective solutions that can be utilized for a wide variety of engineering challenges that are encountered in the real world¹. Compared to deterministic approaches, metaheuristic algorithms have excelled in recent decades due to their adaptability, ability to prevent local optima, and gradient-free framework. Deterministic approaches get identical results for the same problem. This behavior may result in local optimum trapping, which is a drawback of deterministic techniques². Local optima trapping denotes an algorithm becoming stuck in local solutions. As a result, it is unable to find a global solution. Because of their inconsistent performance, deterministic methods can no longer be relied upon for solving practical optimization problems with several possible solutions. Most of these algorithms are derived from observations of natural phenomena, such as the intelligence of swarms of particles, the logic of biologically inspired algorithms, the physics of

¹Department of Computer Science and Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab 148106, India. ²School of Computer Science & Engineering, Lovely Professional University, Jalandhar, Punjab 144411, India. ³Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India. ⁴Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh. ⁵UniSQ College, University of Southern Queensland, Toowoomba, QLD 4305, Australia. ⁶Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh. ⁷Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia. ⁸Automated Systems and Soft Computing Lab (ASSCL), Computer Science Department, Prince Sultan University, Riyadh 11586, Saudi Arabia. ⁹Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering , Menoufia University, Menouf 32952, Egypt. ⊠email: maatibrar@gmail.com; mehedihassan@ieee.org; welshafai@psu.edu.sa; eng.waled.elshafai@gmail.com; walid.elshafai@el-eng.menofia.edu.eg everyday objects, etc. Evolutionary algorithms mimic nature. The fittest candidate survives in evolutionary algorithms. These algorithms start with a population of solutions surviving in a fitness-evaluated environment. Then, genetic crossover and mutation help the parent population pass on its environmental adaptations to the offspring. Finally, iterative generations are used to find the best environmental solutions. Genetic Algorithm, Biogeography-Based Optimization (BBO), Genetic Programming (GP), Differential Evolution (DE), and Evolution Strategies (ES), etc., are the evolutionary algorithms.

The notions and norms of physics are adhered to in physics-based procedures, in which person update their positions according to physical laws such as molecule dynamics, the force of inertia, the force of gravitation, etc., the Atom Search Optimization, the Simulated Annealing, the Artificial Electric Field Algorithm, and the Sine Cosine Optimization, etc. are all well-known methods based on physical principles. Natural metaheuristics inspired by the "collective intelligence" of swarms are referred to as "swarm intelligence". Collective knowledge is developed when a group of similar agents collaborate and learn from their surroundings. Colonies of ants, swarms of bees, dense flocks of birds, and many other groups of animals have been used as examples of collective intelligence. The coordinated flocking of birds inspired the concept of Particle Swarm Optimization. Fireflies' flashing habits inspired the firefly algorithm's development. The Bat Algorithm (BA) is a nature inspired algorithm that employs a sophisticated echolocation-based navigation system. The Ant Colony Optimization was based on the way that real-life ant colonies lay down pheromone trails. Cuckoo Search (CS) is an evolutionary optimization method inspired by the behavioral patterns of the cuckoo bird. Among the most prominent are: Fruit Fly Optimization Algorithm (FFOA), the Ant Colony Optimization (ACO), the Grasshopper Optimization Algorithm (GOA), the Salp Swarm Algorithm (SSA), the Whale Optimization Algorithm (WOA), the African Vulture Optimization Algorithm (AVOA), the Glowworm Swarm Optimization (GSO), and Cat Swarm Optimization (CSO) etc. Existing CSA studies have several problems, such as insufficient diversity, local optima problems, and imbalanced exploitation. Each previously mentioned optimization algorithm must also consider how to best explore and exploit a given search space. Exploration and exploitation³ are the two distinct stages that make up the search process for an algorithm that is based on a population. The term "exploration" refers to the process of increasing the number of swarms in order to more thoroughly study every part of the search space, whereas the term "exploitation" describes the process of increasing the number of swarms to more thoroughly analyze any promising or intriguing locations that were discovered during the exploration phase. Stochastic behaviour makes it difficult to achieve equilibrium among the exploration and exploitation phases.

An effective optimization algorithm will strike a balance between exploring and exploiting the space. It is not guaranteed that an algorithm will be superior on all problems just because it performs well on some problems. It serves as inspiration for this research. The Chameleon Swarm Algorithm (CSA) is vulnerable to becoming trapped in local optima. The optimizer may be unable to locate the global solution because it is trapped in the local region. Generating new solutions is estimated using the solutions inherent to the previous iteration. Consequently, this may reduce the algorithm's convergence rate, resulting in solutions that do not effectively encompass the entire search space and premature convergence. Considering this as a motivation, the mCSAMWL algorithm is proposed in this study as an improved version of the CSA, to increase the search capability, optimize the balance between exploitation and exploration phases, and prevent early convergence of the local optimum. mCSAMWL's guiding principle is founded on the injection of two effective strategies into the original CSA: Morlet Wavelet mutation, and the Step Reducer Lévy flight. Swarm intelligence is the foundation of the Chameleon Swarm Algorithm (CSA). Recent advancements in optimization algorithms, particularly those utilizing Levy-based search techniques, have led to the development of several innovative approaches in the field such as the modified version of Dynamic Hunting Leadership (DHL) algorithm, have incorporated the Levy Flight technique to enhance convergence and solution precision. The mDHL algorithm⁴, which also addresses the challenges of local optima and convergence delays, integrates this technique with localized development strategies to improve global exploration and exploitation. The DGS-SCSO optimizer⁵, an enhanced version of Sand Cat Swarm Optimization (SCSO), incorporates Dynamic Pinhole Imaging and the Golden Sine Algorithm to mitigate issues like local optima entrapment and slow convergence. Similarly, AEFA-CSR⁶, a hybrid of the Artificial Electric Field Algorithm with Cuckoo Search and Refraction Learning, improves convergence and solution precision, showing superior performance across benchmark functions and engineering problems.

Related work

CSA has attracted significant attention from researchers due to its simple architecture and ease of implementation. To further enhance its functionality, numerous concepts and approaches have been introduced. This section offers an overview of CSA's development and examines its applications in solving challenges across various domains. Sridharan⁷ developed a Chameleon Swarm Optimization (CSO) with machine learning- based Sarcasm Detection and Classification (CSOML-SASC) model. Umamageswari et al.8 introduced a framework using the Fuzzy C-Means (FCM) based Chameleon Swarm Algorithm (CSA) named FCM-CSA, which was used for plant leaf diseased part segmentation. RizkAllah and Hameed⁹ suggested a Chameleon Swarm Algorithm (MCSA) that extracts parameters from solid oxide fuel cell models using a semi-empirical and memory-based approach. Anitha et al.¹⁰ introduced a Modified Grey Wolf-based Chameleon Swarm Algorithm to minimize energy consumption and enable secure wireless sensor network communication. RizkAllah et al.¹¹ introduced a hybrid approach comprising the Chameleon Swarm Algorithm(CSA) and Mayfly Optimization (MO) named CSMO for solving the Combined Heat and Power Economic Dispatch (CHPED) problem. Mostafa et al.¹² proposed a modified mCSA algorithm that incorporates an Artificial Ecosystem-Based Optimization (AEO) consumption operator. Using a multi-objective chameleon swarm optimization algorithm and an advanced feature-selection method, Wang et al.¹³ introduced a short term wind speed forecasting system. A Multi strategy Chameleon Swarm Algorithm called (MCSA) was developed by Hu et al.¹⁴ using a Crossover-based Comprehensive Learning (CCL) strategy incorporating sinusoidal parameter tuning and fractional-order calculus. RMSCSA,

which was based on the Refraction Mirror Learning (RML) method to promote variety and segmental variation of population diversity using S-type weight, was presented by Damin et al.¹⁵. To handle non-convex Economic Load Dispatch (ELD) problems, an Enhanced Chameleon Swarm Algorithm (ECSA) was developed by Braik et al.¹⁶ that combines roulette wheel selection with Lévy flight approaches. A hybrid variant of CSA named CCECSA was suggested by Hu et al.¹⁷ in which mutation operations and elite guidance strategies were used. Also, CSA incorporated the horizontal and vertical crossovers of CSO to solve the disc Wang-Ball curve (DWB) reduced-degree optimization models. Sun et al.¹⁸ introduced an improved Chameleon Swarm Algorithm called CLCSA-LSTM enhanced by using the Somersault Foraging Technique of the Manta Ray Foraging Optimization algorithm (MRFO), a boundary neighborhood updating method to maintain a demographically diversified population. It initially optimizes LSTM network hyper parameters and finds the optimal ones to tackle the manual tuning process and the insufficient stability problem. This model was used to recognize OFDM signals after being trained with the aforementioned hyper parameters. Zhou and Xu¹⁹ find that the optimal size of each component is determined based on the actual local hourly weather data and the load demand over the course of a year using the Chameleon swarm algorithm (CSA) for the framework of the renewable micro-grid system. Dinh²⁰ used CSA to build an algorithm that enhanced the image and synthesized the high-frequency layer. Table 1 gives an overview of the most recently proposed modifications that have been suggested for the CSA algorithm.

New advancements in optimization have led to the development of hybrid techniques aimed at improving performance and robustness. Abed-alguni introduced²¹ island-based Cuckoo Search (iCSPM) algorithm which improves population diversity and exploration by integrating an island model and replacing Levy flight with polynomial mutation, outperforming other methods in accuracy and reliability across standard benchmarks. The iCSPM2 algorithm introduced by Abed-alguni & Paul²² further enhances iCSPM by incorporating Elite Opposition-based Learning and multiple mutation strategies, such as HDP, Jaya, and pitch adjustment, achieving better accuracy, convergence, and surpassing four well-known swarm optimization algorithms in benchmark tests. The Exploratory Cuckoo Search (ECS) proposed by Abed-alguni et al.²³ improves the original Cuckoo Search by integrating refraction learning, Gaussian perturbation, and multiple mutation methods, outshining traditional CS variations in 14 benchmark functions and exhibiting competitive performance compared to six renowned swarm optimization algorithms. Similarly, the Improved Salp Swarm Algorithm (ISSA)²⁴ introduced

Year	Methodology proposed	Key findings
2021	Chameleon Swarm Optimization with machine learning using Sarcasm Detection and Classification (CSOML-SASC)	Used to improves the overall classification performance for Sentimental Analysis and Sarcasm Detection No change in CSA algorithm
2021	Fuzzy C-Mean Based Chameleon Swarm Algorithm (FCM-CSA)	Used for segmentation of plant leaf disease To overcome the short coming of Fuzzy C Mean No change in the CSA algorithm
2021	Semi-Empirical and Memory-based Chameleon Swarm Algorithm (MCSA)	Used for extraction of Solid Oxide Fuel Cell Models parameters. Keeping record of best solution in prior stage using internal memory No changes in the CSA algorithm
2022	Improved Chameleon Swarm Algorithm using Artificial Ecosystem-based Optimisation (AEO) consumption operator	Used as feature selection algorithm for Breast Cancer Diagnosis. Non-linear transfer operator, Lévy flight control parameter and Consumption operator of AEO algorithm are used in the CSA algorithm
2022	A modified Grey Wolf-based Chameleon Swarm Algorithm	Used for selection of cluster head (CH) nodes from WSN Combination of improved Grey Wolf Optimizer and Chameleon Swarm Algorithm
2022	Hybridization of Chameleon Swarm Algorithm(CSA) and Mayfly Optimization (MO) known as CSMO	Used to resolve the Combined Heat and Power Economic Dispatch (CHPED) problem Mayfly Optimization (MO) is used with CSA algorithm.
2023	A Multi-Objective Chameleon Swarm Optimization Algorithm using advanced feature selection method	Developed wind speed forecasting system Uses advanced feature selection method No changes were proposed in the CSA algorithm
2023	Enhanced Chameleon Swarm Algorithm (MCSA)	Used for two truss topology optimization problems Incorporation of Crossover-based Comprehensive Learning (CCL) strategy in CSA Algorithm Sinusoidal parameter adjustment and Fractional-order calculus, are used in this algorithm.
2023	Refraction Mirror Learning (RML) using S-type weight-based Chameleon Swarm Algorithm (RMSCSA)	Refraction Mirror Learning Strategy is introduced along with S-type weight
2023	Enhanced Chameleon Swarm Algorithm (ECSA)	Applied to address non-convex Economic Load Dispatch (ELD) problems Roulette Wheel Selection method and Lévy flight operator are incorporated in the CSA algorithm
2023	A hybridization of CSA and Crisscross Optimization (CCECSA Algorithm)	Designed to tackle Disk Wang–Ball (DWB) curve degree reduction problem Elite Guidance Strategy, Crisscross Optimization Algorithm, and Competitive Substitution Mechanism are added in CSA algorithm.
2023	An Improved Chameleon Swarm Algorithm (CLCSA-LSTM) using Manta Ray Foraging Optimization algorithm (MRFO)Somersault Foraging Technique	Applied to enhance the Long Short-Term Memory (LSTM) network Lens-Imaging Learning and Coupling variation are introduced in CSA algorithm
2023	Used existing Chameleon Swarm Algorithm (CSA)	Used to solve hybrid micro-grid design problem Increase the use of inexpensive, locally available renewable resources.
2023	Used existing Chameleon Swarm Algorithm (CSA)	Used for Medical image enhancement as well as Image fusion model No change in CSA algorithm
	2021 2021 2022 2022 2022 2023 2023 2023	2021Chameleon Swarm Optimization with machine learning using Sarcasm Detection and Classification (CSOML-SASC)2021Fuzzy C-Mean Based Chameleon Swarm Algorithm (FCM-CSA)2021Semi-Empirical and Memory-based Chameleon Swarm Algorithm (MCSA)2022Improved Chameleon Swarm Algorithm using Artificial Ecosystem-based Optimisation (AEO) consumption operator2022A modified Grey Wolf-based Chameleon Swarm Algorithm (CSA) and Mayfly Optimization (MO) known as CSMO2023A Multi-Objective Chameleon Swarm Optimization Algorithm using advanced feature selection method2023Refraction Mirror Learning (RML) using S-type weight-based Chameleon Swarm Algorithm (RMSCSA)2023Enhanced Chameleon Swarm Algorithm (ECSA)2023A hybridization of CSA and Crisscross Optimization (CCECSA Algorithm)2023An Improved Chameleon Swarm Algorithm (RMSCSA)2023Used existing Chameleon Swarm Algorithm (CLCSA-LSTM) using Manta Ray Foraging Optimization algorithm (MRFO)Somersault Foraging Technique

Table 1. Modifications suggested for the CSA algorithm.

....

by Abed-alguni et al. boosts the SSA's optimization capabilities with Gaussian Perturbation, highly disruptive polynomial mutation, Laplace crossover, and Mixed Opposition-based Learning, outperforming other SSA variants and 18 top optimization algorithms in solving single-objective continuous optimization problems.

From the above table, it can be deduced that a few studies have modified the standard CSA algorithm by introducing various techniques to solve some engineering problems, but it still has scope to improve further. Therefore, to improve the original algorithm's flaws, we proposed an improved Chameleon Swarm Algorithm using Morlet wavelet mutation and Lévy flight, named mCSAMWL.

The primary contributions of this paper are as follows:

- A modified CSA (Chameleon Swarm Algorithm) is proposed, developed and applied that combines the features of the Morlet Wavelet mutation and Lévy flight methods to keep the balance between searching capabilities by preventing the local optimal solution and slow convergence problems.
- The performance of the proposed mCSAMWL algorithm is established by evaluating it using 68 unimodal and multimodal benchmark test functions, CEC 2017 test suite functions and three real-world engineering design problems.
- A Clustering technique is implemented using the above metaheuristic algorithm, proving its efficiency.

The remainder of this paper is organized as follows: Sect. 2 reviews related work; Sect. 3 describes the materials and methods; Sect. 4 presents an empirical evaluation using 97 benchmark functions; Sect. 5 discusses a real-world engineering design problem; Sect. 6 presents results of the proposed mCSAMWL algorithm for balanced clustering in WSNs; and Sect. 7 concludes the paper.

Materials and methods

In 2021, Braik²⁵ introduced a meta-heuristic algorithm, the Chameleon Swarm Algorithm (CSA). This algorithm is based on the way a chameleon hunts and searches for food. Chameleons are a distinct species of animal due to their ability to adapt to their environment. Chameleons eat insects and can survive in alpine, lowland, desert, and semi-arid environments. Chameleons search for food through a series of processes, including locating their target, tracking it with their eyes, and finally attacking it. This section explains how to model this algorithm mathematically.

Initialization and function assessment

CSA begins the optimization process with the initial population as a population-based algorithm. In a d-dimensional search space, a population of n chameleons, where each chameleon represents a potential solution to a problem, can be represented by a z-matrix of size $n \times d$. As demonstrated below, a vector can be used to describe where chameleon h is in the search domain at each iteration itr.

$$z_{itr}^{h} = \left[z_{itr,1}^{h}, z_{itr,2}^{h}, z_{itr,3}^{h}, \dots, z_{itr,d}^{h} \right]$$
(1)

where, $h = 1, 2, 3 \dots .n.itr$ denotes the count of iterations. d denotes the problem dimension and $z_{itr,d}^{h}$ denotes the h^{th} chameleon's location. Using a uniform random initialization method, the search space's initial population is generated while considering the problem's dimensions and the number of chameleons, which is shown in Eq. (2).

$$z^{h} = lb + rnd\left(ub_{m} - lb_{m}\right) \tag{2}$$

where, z^h denotes h^{th} chameleon initial vector, rnd is a random value between 0 and 1 and ub and lb denotes search area's upper and lower boundaries in m^{th} dimension. At each stage, the effectiveness of the solution is evaluated with the help of the objective function.

Search of the prey

The position update approach put forth below can be used to represent the chameleon's movement while foraging mathematically as in Eq. (3).

$$z_{itr+1}^{h,m} = z_{itr}^{h,m} + B_1 \left(B_{itr}^{h,m} - G_{itr}^m \right) rnd_1 + B_2 \left(G_{itr}^m - z_{itr}^{h,m} \right) rnd_2, rnd^{itr} \ge B_t$$
(3)

where, $z_{itr+1}^{h,m}$ is the h^{th} chameleon's new position in the m^{th} dimension in the $(itr+1)^{th}$ iteration, itr and (itr+1) represent the itr^{th} iteration count and $itr+1^{th}$ iteration count respectively. h and d are the d^{th} dimension of h^{th} chameleon. $z_i^{h,m}$ represents the current position. The best and global best are $B_{itr}^{h,m}$ and $G_{itr}^{h,m}$. B_1 and B_2 govern the ability of exploration. rnd_1, rnd_2 and rnd_3 denotes random uniform numbers between 0 and 1. rnd^{itr} is an index-based random number and B_t is the chameleon's prey-recognition probability.

Chameleon's eyes rotation

Chameleons have a characteristic in their eyes that allows them to rotate at 360°, allowing them to see in all directions, and monitor their prey's presence. As a result, the position of each chameleon is adjusted so that it corresponds with this function as shown below:

$$z_{itr+1}^h = zrc_{itr}^h + \overline{z}_{itr}^h \tag{4}$$

where, z_{itr+1}^{h} the position after rotation, and z_{itr}^{h} is the current location prior to rotation. zrc_{i}^{h} denotes the chameleon's search space rotational coordinates, as illustrated in Eq. (5).

$$zrc_{itr}^{h} = rm \times zc_{itr}^{h} \tag{5}$$

where, rm represents the rotational matrix which shows the rotation of chameleons, zrc_{itr}^{h} denotes centering coordinates at iteration *itr*.

Hunting prey

Chameleons complete their hunts by ambushing their prey when the target predator gets too close to them. The chameleon that can approach its prey the most successfully is considered the best of the group, and optimal. This chameleon attacks prey using its tongue. As a result of being capable of extending its tongue twice as much, its position has been revised slightly. This permits chameleons to take advantage of the search space and catch their prey, which is mathematically described as follows:

$$V_{itr+1}^{h,m} = \omega V_{itr}^{h,m} + c_1 (G_{itr}^m - z_{itr}^{h,m}) rnd_1 + c_2 \left(B_{itr}^{h,m} - z_{itr}^{h,m} \right) rnd_2$$
(6)

where, $V_{itr+1}^{h,m}$ is the h^{th} chameleon's new speed in the m^{th} dimension of iteration, $V_{itr}^{h,m}$ is h^{th} chameleon's current speed in the d^{th} dimension. The i^{th} chameleon's current location is denoted by $pop_i^{h,m}$ and the effects of $z_{itr}^{h,m}$ and G_{itr}^m on its tongue are regulated by two positive constant integers, c_1 and c_2 . Here, rnd_1 and rnd_2 are two arbitrary numbers chosen from the range 0-1, and the inertia weight, denoted by ω , decreases linearly with every successive generation, as shown in the below formula.

$$\omega = \left(1 - \frac{itr}{\max_{itr}}\right)^{\left(\rho \sqrt{itr/\max_{itr}}\right)}$$
(7)

where, *itr* denotes the present iteration, \max_itr denotes the total number of iterations and positive variable ρ controls the exploitation capacity. The CSA algorithm demonstrates how the chameleon's initial positions in the search space are created at random as an integral component of the optimization process. Equation (3) is used to update the chameleons' positions in each iteration cycle. If a chameleon escapes the search region, the simulated procedures specified for CSA will be used to bring it back to the boundary. Next, a fitness function is used to determine which chameleon is the most fit after each iteration. The best position of a chameleon in its pursuit of prey is known as the fittest solution. Following the initialization step, Algorithm 1 iterates through the remaining steps until the maximum criteria is reached. According to a swarm behavior model created by the CSA, chameleons constantly hunt for and take advantage of both fixed and moving prey in their environment before moving in to capture it. The optimization potential of the CSA should be displayed via its mathematical models.

Chameleon swarm optimization

The swarm-based metaheuristic Chameleon swarm algorithm (CSA)²⁵ was proposed by Braik in 2021.CSA mimic chameleon hunting and food finding. This method is based on how the chameleon hunts and looks for food. Chameleon food hunting involves several processes, including prey tracking, chasing the prey with their sight, and quickly attacking the prey with their long, sticky tongue. The fact that it is easy to operate and has a limited number of adjustment parameters are two of its positives; nonetheless, it is not very effective in resolving high-mode or multi-mode issues. The conventional CSA algorithm also suffers from insufficient population diversity, a sluggish convergence rate, and a low degree of precision. For this reason, a new modified Chameleon Swarm Algorithm incorporating the Morlet Wavelett mutation and Lévy Flight factor (mCSAMWL) is proposed. Finally, a modified Chameleon Swarm Algorithm is employed to tackle global optimization problems. The effectiveness of the algorithm has been measured against 68 benchmark test functions and three real world engineering design problems.

Concept of Morlet wavelet mutation

A physicist, Morlet, came up with the term "Morlet Wavelet" when he examined a seismic signal that had been transformed by a cosine function²⁶. Wavelet mutation is used to improve algorithm stability. In addition, wavelet mutation operations exhibit a fine-tuning ability. The CSA is vulnerable to becoming ensnared in local optima, preventing the algorithm from exploring the complete search space. In this work, Morlet wavelet mutation is used to enhance the exploration stage, the accuracy of the search, and the stability of solutions. The straightforward mutation approach does not easily solve the stagnation phenomenon. The key to this advancement is figuring out how to enhance the conventional mutation approach so that it can overcome the local optimum. Wavelet mutation uses the wavelet function's translation and expansion capabilities to look for other solutions in a feasible space that are close to the ones already known to be correct for a set of persons. To further fine-tune the mutation range with each iteration change, the wavelet mutation is used in place of the traditional mutation algorithm. A mutation probability, $mp \in [0,1]$, is determined for each particle in the swarm at each iteration. If mp is positive (mp > 0) and getting close to 1, the mutated particle elements will tend toward the maximum value of $z_{itr+1}^{h,m}$.

. If mp is negative (mp < 0) and getting close to -1, the mutated particle element will tend toward the lowest

value of $z_{itr+1}^{h,m}$. When |mp| is big, the search space for fine-tuning is big, and vice versa, when |mp| is small, the search space for fine-tuning is small. The formula for mutation is:

$$z_{itr+1}^{h} = \begin{cases} z_{itr}^{h,m} + mp \times \left(ub - z_{itr}^{h,m}\right), mp > 0\\ z_{itr}^{h,m} + mp \times \left(z_{itr}^{h,m} - lb\right), mp < 0 \end{cases}$$

$$\tag{8}$$

where, $z_{itr+1}^{h,m}$ (h = 1, 2, ..., N) denotes the h^{th} individual location in itr^{th} iteration, lb denotes the lower bound, ub denotes the upper bounds of the present search space. Similarly, mp represents mutating wavelet coefficient as given in Eq. (9).

$$mp = \left(1/\sqrt{(aa)}\right) \times mw \tag{9}$$

where, aa is the stretching parameter, which increases with the change of iterations. Its expression is given in Eq. (10).

$$aa = ss \times (1/ss)^{(1-(itr/max_{itr}))} \tag{10}$$

where, ss indicates a given constant value. itr denotes the present iteration and max_{itr} denotes the total number of iterations.

Morlet Wavelet function mw is expressed as in Eq. (11).

$$mw = exp\left(-\left(\left(numb^2\right)/2\right)\right) \times \cos\left(5 \times numb\right)$$
(11)

where, numb denotes a random number between -2.5 aa and 2.5 aa.

This strategy ensures that an individual with superior fitness will enter the next iteration, thereby enhancing the algorithm's convergence speed and optimization capability.

Lévy flight distribution

The Levy Flight is an example of a stochastic search algorithm introduced by Paul Pierre Levy in the year 1930^{26,27} which uses a random walk to revise its results. Step walks are characterized as random walks with a certain probability distribution. The step sizes of Lévy flights are too ornery, by altering the step size, they can be used for both exploration and exploitation. proposed strategy generates the step sizes using Lévy distribution to exploit the search area. While exploring new solutions, controlling the Lévy flight random walks is necessary, to avoid large moves that causing the solutions to jump outside of the search space. For this reason, a step size factor that is determined by the size of the relevant problem should be used step size controller with a default value of 0.005 has been put in place to minimize the impact of Lévy flight on the beginning positions and enable searching around the produced positions. To generate numbers that are random with a Lévy Flight distribution, Eq. (12) has been examined as follows:

$$L = \gamma \times \frac{\mu}{|v|^{\frac{1}{\beta}}} \tag{12}$$

where, μ and v have a Gaussian distribution, γ is step reducer factor having fixed value of 0.005.

$$\mu \sim \left(0, \sigma_{\mu}^{2}\right), \ v \sim \left(0, \sigma_{v}^{2}\right) \tag{13}$$

$$\sigma_{\mu} = \left[\frac{\Gamma\left(1+\beta\right) \times \sin(\pi\beta/2)}{\Gamma\left[(1+\beta)/2\right]\beta \times 2^{\beta-1/2}} \right]^{1/\beta}$$
(14)

where, $\beta~=1.5, \sigma_{v}=$ 1, and a classic gamma function is denoted by the symbol \varGamma .

In Eq. (15), the Lévy flight procedure is presented which is used to update the chameleon positions:

$$z_{itr+1}^{h} = z_{itr+1}^{h} + L \times z_{itr+1}^{h}$$
(15)

where, L represents the Lévy flight distribution.

1: $B_t \leftarrow 0.1$ (probability to update position) 2. rnd_1 , rnd_2 , rnd_3 , rnd^{itr} defines random numbers in range of 0 and 1 3: *u*b and *lb* are search area's upper bound and lower bound 4: $d \leftarrow$ problem dimension's 5: z_{itr}^h is chameleon h current position at *itr* iteration 6: zrc_{itr}^{h} is h^{th} chameleon rotating centred coordinates at *itr* iteration, as shown in equation (5) 7: Initialize n chameleons random position in search space using equation (2) 8: Initialize chameleons' dropping tongue velocity using equation (6) 9: B_1 and B_2 two positive number that govern ability of exploration 10: while ($itr < \max_{itr}$) do 11: Define ω using equation (7) 12: for h = 1 to n do 13: for m = 1 to d do if $rnd^{itr} \ge P_{up}$ then $z_{itr+1}^{h,m} = z_{itr}^{h,m} + B_1 (B_{itr}^{h,m} - G_{itr}^m) rnd_1 + B_2 (G_{itr}^m - z_{itr}^{h,m}) rnd_2 rnd_{itr} \ge B_t$ 14: 15: 16: Compute mp using equation (11) $z_{itr+1}^{h,m} = \begin{cases} z_{itr}^{h,m} + mp \times (ub - z_{itr}^{h,m}), mp > 0 \\ z_{itr}^{h,m} + mp \times (z_{itr}^{h,m} - lb), mp < 0 \end{cases}$ 17: 18: 19. endfor 20: 21. endfor 22: Compute L for Chameleon velocity update using equation (12) 23. for h = 1 to n do $z_{itr+1}^{h} = z_{itr+1}^{h} + L \times z_{itr+1}^{h}$ 24. 25: endfor 26: Rearrange positions of chameleons' with the help of ub and lb 27: Update the positions of the chameleons 28: itr = itr + 129: endwhile

Algorithm 1. Pseudo-code of proposed mCSAMWL algorithm.

Computational complexity analysis of the proposed algorithm

The operational efficiency of the proposed mCSAMWL algorithm, with respect to time and space complexity, is discussed in this section.

Time complexity

The time complexity of the algorithm is influenced by the population size (n), the variable dimension (d), and the number of iterations (itr). For the original Chameleon Swarm Algorithm (CSA), the primary factors contributing to time complexity are the initialization and update processes of chameleon positions (including prey searching, tracking, and capturing). This can be expressed as:

$$O(CSA) = O(O(initialization) + itrO(update))$$
$$= O(n \times d + itr \times n \times d)$$

The proposed mCSAMWL extends the CSA by incorporating parameter adjustment, Morlet Wavelet Mutation and Levy Flight with step reducer strategy in each iteration. However, only the Levy Flight Distribution strategy affects the algorithm's time complexity. Therefore, the time complexity of proposed mCSAMWL algorithm is

$$O(mCSAMWL) = O(O(initialization) + itr \times (O(update) + O(Levy)))$$
$$= O((n * d) + irt \times ((n \times d) + (n \times d)))$$
$$= O(n \times d + itr \times n \times d)$$

Thus, the proposed MCSA achieves different performance compared to CSA without increasing time complexity.

Empirical evaluation

MATLAB R2018b is used to examine the efficiency and capabilities of the proposed modified Chameleon Swarm Algorithm using Morlet Wavelet and Lévy Flight (mCSAMWL) algorithm. The "Intel(R), Core i7-4790 CPU@3.60GHz with 8 GB RAM" was used in all experiments used to determine the results. This research evaluates the effectiveness of the suggested algorithm against 68 standard benchmark functions. There are four distinct types of benchmark functions: unimodal with fixed dimensions, multimodal with fixed dimensions, unimodal with variable dimensions, and multimodal with variable-dimensions. An algorithm's exploitative and exploratory abilities are commonly evaluated using unimodal or multimodal functions. In this research, the proposed algorithm was evaluated using multiple benchmark functions. The functions utilized in this research are outlined in Annex A. The reference is drawn from²⁸ for these benchmark functions. In addition, the proposed CSAMWL's algorithm performance has been compared to ten commonly used algorithms, the Chameleon Swarm Algorithm (CSA)²⁵, the Elephant Herding Optimization (EHO)²⁹, the Gravitational Search Algorithm (GSA)³⁰, the Ant Colony Optimization (ACO)³¹, the Earthworm Optimization Algorithm (EWA)³², the Particle Swarm Optimization (PSO)³³, the Sine Cosine Algorithm (SCA)³⁴, the Krill Herd Algorithm (KHA)³⁵, the Artificial Bee Colony (ABC)³⁶, and the Monarch Butterfly Optimization (MBO)³⁷. Table 2 displays the parameters of the contrasting algorithms as they were initially specified in the aforementioned published research articles. The 'NFEs' column in Table 2 indicates how many times a given function was evaluated. For each benchmark function, 30 separate runs for each algorithm are executed to generate the results.

Unimodal functions performance evaluation and statistical analysis

The exploitative potential of an algorithm can be measured with the help of unimodal functions. As a result, two tests were conducted using unimodal benchmark functions as part of this research. Table 3 depicts and compares all of the results from the first experiment for unimodal fixed-dimension functions. In the second experiment, the unimodal variable-dimension functions outcomes of 10 algorithms are compared. Table 4 summarizes the findings.

Tables 3 and 4 show that the mCSAMWL algorithm yielded the optimum results for the test functions F1-F3, F5, F6 as well as F8, F9, and F11 globally. It delivered excellent results for the benchmark functions F11, F18, and F21, and F15. It displays the effective exploitation capabilities of the proposed mCSAMWL method. To demonstrate the statistical distinction between the proposed mCSAMWL and other commonly used algorithms, the Friedman mean rank test is used. The statistical findings from the test are presented graphically in Fig. 1. The proposed algorithms and additional cutting-edge ones are represented on the X-axis. The Friedman mean ranks are displayed on the Y-axis.

The graph above illustrates that the best mean rank is the one with the smallest number. As can be seen in Fig. 1, the suggested mCSAMWL algorithm outperforms other popular metaheuristic algorithms when it comes to solving unimodal functions. The proposed algorithm mCSAMWL scores in first place, followed by GSA and CSA in second and third place, respectively. The results demonstrate that the mCSAMWL algorithm outperforms conventional metaheuristic algorithms in exploitative behaviour.

Multimodal function performance evaluation and statistical result analysis

Exploratory behaviour in algorithms is measured with the help of multimodal functions. Within the scope of this research, we conducted two experiments on multimodal benchmark functions. Table 5 shows the first experiment's results, which compare the performance of 10 commonly used metaheuristic algorithms against 27 multimodal fixed-dimension functions. The performance of 10 commonly used metaheuristic algorithms to the results of 17 multimodal variable-dimension functions is shown in Table 6.

After evaluating the statistics, we concluded that the proposed mCSAMWL algorithm can find global optimal solutions for the benchmark functions, F26-F35, F38-F39, F42, F43, F48-F50and comparable result for function F40 which are shown in Tables 5 and 6. The proposed mCSAMWL algorithm also outperforms the F46, F54, F61, F63 and gives competitive results for F50, F58, F67 function when compared to alternative algorithms. It demonstrates how the suggested mCSAMWL algorithm efficiently explores it's given search space. The Friedman's mean rank test demonstrates the statistical distinction between mCSAMWL and other commonly used algorithms. The graphical representation of Friedman's mean rank outcomes from the test can be seen in Fig. 2.

In Fig. 2, the performance of the proposed mCSAMWL algorithm is superior to existing, widely used metaheuristic algorithms for multimodal benchmark functions. In light of the findings, the mCSAMWL achieved a top ranking, followed by the CSA and the GSA in the stipulated order. It shows that the suggested mCSAMWL algorithm has statistically superior exploratory behaviour compared to the other commonly used metaheuristic algorithms. It can be seen in Fig. 2, the proposed mCSAMWL algorithm outshines when applied to multimodal functions compared to the other commonly used metaheuristic algorithms. The findings showed that mCSAMWL was the winner, with CSA and GSA coming in second and third place, respectively. Finally, it can be concluded that the proposed mCSAMWL algorithm performs better in exploratory behavior than other

Algorithms	Parameters	NFE's
	Population size = 50, Iteration = 1000	
CSA ²⁵	$p_1 = 0.25, p_2 = 1.50, p_3 = 1, c_1 = 1.75, c_2 = 1.75$	50,000
ACO ³¹	N=50, Q=20, τ_0 =1e-06, q_0 =1, ρ_g =0.9, ρ_l =0.5, s=1, β =5	50,000
ABC ³⁶	$N = 50, Limit = 0.5 \times N \times D$	50,000
EHO ²⁹	$N = 25, \ \alpha = 0.5, \ \beta = 0.1$	50,000
EWA ³²	$N = 50, \ \alpha = 0.98, \ \beta = 1, \ \gamma = 0.9$	50,000
GSA ³⁰	N=50, α =20, G_0 =100, k =[$N \to 1$]	50,000
KHA ³⁵	$N = 50, N^{max} = 0.01, V_f = 0.02, D^{max} = 0.005$	50,000
MBO ³⁷	$N = 50, \ S_{max} = 1.0, \ BAR = 5/12, \ p = 5/12$	50,000
PSO ³³	$N=50, c_1=2, c_2=2, w=[0.2 \rightarrow 0.9]$	50,000
SCA ³⁴	$N = 50, \ a = 2$	50,000

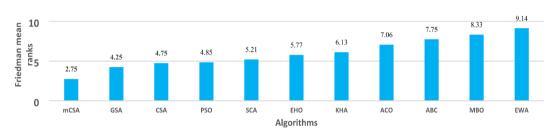
Table 2. Algorithm's parameter settings.

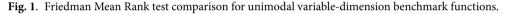
F. No.	F1		F2						F	3			
Metrics	Median	Mean	Std. dev.	M	edian	M	ean	Ste	d. dev.	N	ledian	Mean	Std. dev.
Proposed	0	0	0	0		0		0		1.	38E-87	1.38E-87	6.81E-103
CSA	0	0	0	0		0		0		1.	38E-87	1.38E-87	6.81E-103
ABC	5.98E-05	9.43E-05	0.000112	1.8	37E-05	3.3	86E-05	3.6	54E-05	1.	38E-87	1.38E-87	6.80E-103
ACO	0	4.19E-27	2.29E-26	0		0		0		1.	38E-87	1.38E-87	6.80E-103
ЕНО	0.0032	0.004055	0.003694	0.0	018358	0.0	023039	0.0	018387	0.	024692	0.039861	0.041087
EWA	0.145742	0.265849	0.360356	1.1	46993	2.0	06107	2.6	551282	4.	516292	5.77657	3.933894
GSA	1.07E-20	1.58E-20	1.49E-20	8.5	59E-21	1.3	32E-20	1.3	32E20	2.	73E-06	3.34E-05	6.68E-05
KHA	1.52E-11	0.026154	0.143252	2.8	88E-11	3.6	67E-11	3.9	99E-11	1.	.38E-87	1.38E-87	6.80E-103
MBO	0.026759	0.118279	0.285487	0.0	0014	0.0	003748	0.0	006119	1.	.38E-87	1.38E-87	6.80E-103
PSO	0	0.025402	0.139134	0		0		0		1.	.38E-87	1.38E-87	6.81E-103
SCA	4.80E-05	9.60E-05	1.51E-04	2.3	39E-04	3.3	34E-04	2.8	85E-04	1.	38E-87	1.38E-87	6.81E-103
F. No.	F4				F5						F6		
Metrics	Median	Mean	Std. dev		Mediar	ı	Mean		Std. dev.		Median	Mean	Std. dev.
Proposed	4.68E-36	1.78E-35	3.46E-3	5	0.29252	79	0.2925	79	8.48E-1	1	19.10588	3 19.10588	3 1.12E-06
CSA	4.65E-65	1.62E-64	2.86E-6	4	0.29252	79	0.2925	79	8.87E-1	7	19.10588	3 19.10588	1.33E-14
ABC	2.40E-05	3.67E-05	3.51E-0	5	0.29258	88	0.29259	95	1.92E-0	5	19.10589	19.10591	3.03E-05
ACO	8.40E-176	2.04E-78	1.12E-7	7	0.29252	79	0.2925	79	7.46E-0	7	19.10588	3 19.10588	1.54E-14
EHO	1.93E-09	2.25E-09	1.75E-0	9	0.29258	34	0.29259)	1.42E-0	5	19.20103	19.2239	0.116325
EWA	4.95E-07	1.83E-06	3.40E-0	6	0.29381	.3	0.29456	5	0.002437	7	31.3169	105.956	236.8043
GSA	3.63E-22	5.72E-22	5.30E-2	2	0.30328	3	0.30602	2	0.011648	3	19.10588	3 19.10588	8 8.16E-15
KHA	1.55E-12	2.15E-12	1.85E-1	2	0.29252	79	0.2925	79	3.83E-0	7	19.10588	3 19.10589	1.10E-05
MBO	8.63E-12	1.78E-11	2.92E-1	1	0.29259	6	0.29267	74	0.000159)	19.10731	19.11448	0.020192
PSO	4.78E-221	1.31E-21	1 0		0.29252	79	0.2925	79	9.94E-1	7	19.10588	3 19.10588	9.17E-15
SCA	1.92E-132	8.64E-12	2 4.72E-1	21	0.29257	79	0.2925	79	2.70E-0	7	19.11437	19.11842	1.05E-02
F. No.	F7			F8						F	9		
Metrics	Median	Mean	Std. dev.		edian	M	ean	St	d. dev.	M	ledian	Mean	Std. dev.
Proposed	1.74E-08	2.14E-08	1.76E-08	0		0		0		-0	0.00379	-0.00379	3.97E-14
CSA	0	0	0	0		0		0			0.00379	-0.00379	1.76E-18
ABC	0.000582	0.001055	0.001004	0.0	001171	0.0	00151	0.0	001425	-0	0.00379	-0.00379	2.90E-08
ACO	0.015208	0.015547	0.010022		011239		012175		008807		0.00379	-0.00379	1.76E-18
EHO	0.001531	0.001736	0.001328	0		0		0		-0	0.00379	-0.00379	2.23E-06
EWA	0.183569	0.24004	0.242151	-	314836		377297		35672		125618	0.180528	0.177383
GSA	0.001838	0.002423	0.0026	0		0		0			0.00379	-0.00379	1.42E-18
KHA	0.00433	0.007633	0.008756	-	35E-09		92E-09		93E-09		0.00379	-0.00379	2.75E-10
MBO	3.34E-09	6.39E-09	8.14E-09	0		0		0		-0	0.00379	-0.00379	3.09E-10
PSO	7.87E-22	1.68E-19	5.10E-19	0		0		0			0.00379	-0.00379	1.76E-18
SCA	9.88E-05	1.76E-04	1.75E-04	0		0		0		-0	0.00379	-0.00379	1.09E-10

Table 3. Performance analysis for unimodal fixed-dimension benchmark functions.

.....

popular metaheuristic algorithms. Friedman's mean rank test is performed for the complete statistical evaluation of unimodal and multimodal benchmark functions. Figure 3 depicts the outcomes of a Friedman mean rank test. Friedman's mean rank test results reveal that the proposed mCSAMWL algorithm is the finest among other algorithms, followed by the CSA and the GSA algorithms. Finally, the proposed mCSAMWL algorithm has proven its perfection and significant potential for handling a wide range of optimization challenges across various situations.


Comparison of proposed mCSAMWL algorithm with other algorithms on CEC2017 benchmark functions


Table 7 presents a comparative analysis of ten optimization algorithms evaluated on the CEC 2017 benchmark functions (F69-F97). Performance is assessed using mean and standard deviation. The proposed algorithm outperformed the Chameleon Search Algorithm (CSA) specifically on benchmark functions F82, F84, F88, F95, and F97, while maintaining comparable performance levels across all other test functions. For other optimization algorithms, the proposed algorithm, mCSAMWL, achieved the lowest mean value for function F70 and also demonstrated superior performance by obtaining the lowest mean values among functions F75, F79-F82, and F84-F86. Furthermore, mCSAMWL exhibited relatively low standard deviations for functions F69-F75, indicating good stability. Notably, mCSAMWL significantly outperformed other algorithms on functions F79-F85, demonstrating exceptional stability in this range. While both mCSAMWL and ABC frequently

F. No.	F10				F11					F12						
Metrics	Median	Mean	Std. de	v.	Media	in 1	Mean	Std	. dev.	Med	ian	Mean		Std. dev.		
Proposed	6.19E-06	1.32E-05	2.51E-	05	5.52E-	-21	2.40E-20	4.3	4E-20	0.00	533168	0.00640	6178	0.003757		
CSA	6.60E-02	0.11517009	0.14964	1953	1.79E-	-07	2.47E-07	2.0	1E-07	48.0	4349124	50.5452	23542	17.34103		
ABC	1241.975	1402.788	750.598	32	0.0001	24	0.000247	0.0	00282	128.	3663	134.13	16	29.39484		
ACO	13.0063	13.7159	5.10303		7.39E-		1.24E-03		6E-03	2.63		2.70499		4.43E-01		
EHO	0.006492	0.00651	0.00044		8.73E-		1.28E-10		6E-10		3929	0.35448	-	0.014399		
EWA	2.517293	11.39267	23.5685		8.94E-		2.18E-06		9E-06		5396	14.3580		14.94444		
GSA	2.07E-17	2.12E-17	6.08E-		2.13E-		3.38E-17	-	7E-17		E-08	2.21E-		3.49E-09		
KHA	0.020362	0.026725	0.02001		2.13E		6.97E-08	-	0E-07		5143	0.05202		0.061898		
MBO	4596.25	14744.9	22191.3		1.71E-		5.32E-13	-	0E-07		5722	455.683		379.9961		
								-								
PSO	3.21E-04	1.44E-02	6.22E-		1.13E-		1.75E-09	-	2E-09	2.37		7.49E-0		9.73E-05		
SCA	2.63E-04	1.13E-01	0.61208	31	4.96E-	14	1.35E-09	6.4	5E-09	6.59		4.71E-0	05	7.98E-05		
F. No.	F13				F14		1				F15	Maar		Maan		
Metrics	Median	Mean	Std. d		Medi		Mean		Std. dev	_	Median			d. dev.		
Proposed	0.18304515			2462		10503			2.36E-0		-155	-155	0			
CSA	11.8880527	_		88966		23997	-		0.02958	289	-145	-144.1	-	2.8716475		
ABC	61.09136	61.24847	3.794	662	1102.	435	1285.90	5	580.021	1	-132	-131.9	5.	510804		
ACO	79.6819	80.3156	4.350	88	12.73	69	13.5783		5.8264		-155	-155	0			
EHO	0.02531	0.025286	0.001	971	2.904	072	2.87642	5	0.28267	1	-42	-42.16	67 4.	000718		
EWA	0.985505	1.344147	1.023	447	10.87	574	29.1376	4	36.8273	6	-29.5	-31.1667 9.0		-31.1667 9.0		089909
GSA	3.22E-09	0.00784	0.031	6	2.60E	-17	2.46E-1	7	6.72E-1	8	-118	-118.0	67 2.	58554		
KHA	0.672508	0.707143	0.251	597	0.018	918	0.02587	4	0.02496	1	-69.5	-69.7	8.	847949		
МВО	29.15408	31.31096	25.76	838	5374.	206	18974.3	2	25001.7	6	-155	-141.6	33 23	3.68978		
PSO	11.62564	15.29934	10.26	808	4.251	723	4.17188		0.30036	6	-106.5	-107.033		635377		
SCA	1.20E+01	1.27E+0	8.59E	+00	4.380	958	4.33936	2	4.13E-0	1	-108	-108.5	67 3.	88E+00		
F. No.	F16				F17		1			1	F18					
Metrics	Median	Mean	Std. d	lev.	Medi	an	Mean		Std. dev.	1	Median	Mean	n	Std. dev		
Proposed	0.01837619	0.033520	73 0.044	73552	6.55E	-35	1.12E-30		3.20E-30	().1931209	2.639	902853	7.45892		
CSA	285.490459		47.44	62996	9.06E	-06	0.000723	76 ().003600	32 8	32.996705	140.3	372557	155.406		
ABC	194.1793	14811.07	71275		553.2		4650.138		14193.3		93181.6	2613		222116.		
ACO	1.79E+20	2.23E+22			2.45E		3.99E + 0		3.98E+0	_	4.14E+04	-	E+04	2.50E+0		
EHO	0.36319	0.357741	0.031		3.92E		4.52E-26	-	3.18E-26	_	28.87013	28.86		0.02415		
EWA	16.71175	25.38461	23.04		5.95E		0.013327		0.047334	_	256.4014	1538		3501.00		
LWA	10.71175	25.56401	38.31		2.54E		4.47E-88	_	5.25E-88	_	26.0875	28.24		11.7991		
	54 204	57 2279		80	2.34E	-00	4.4/E-00		5.23E-00					54.4797		
GSA	54.294	57.2278		. 12	1.01E	11	5 70E 11		1 40E 10			61.43647 5				
GSA KHA	593.1884	2.47E+12	1.28E		1.01E		5.78E-11	_	1.49E-10	_	33.72902					
GSA KHA MBO	593.1884 3.94E+28	2.47E + 12 1.81E + 38	2 1.28E 6.85E	+ 38	44412	2.16	4.74E+0	8 1	1.86E + 0	9 1	.59E+07	3.60E	E+07	7.10E+0		
GSA KHA MBO PSO	593.1884 3.94E+28 8.84E-06	2.47E + 12 1.81E + 38 1.63E-05	2 1.28E 3 6.85E 2.13E	2+38 2-05	44412 0.019	2.16 961	4.74E+03 11.86305	8 1	1.86E + 0 37.93097	9 1 3	.59E + 07 35.98856	3.60E	E + 07 1065	7.10E+0 554.296		
GSA KHA MBO PSO SCA	593.1884 3.94E+28 8.84E-06 4.39E-06	2.47E + 12 1.81E + 38	2 1.28E 6.85E	-05 -04	44412	2.16 961	4.74E+0	8 1	1.86E + 0 37.93097 548.8833	9 1 3	.59E+07	3.60E	E + 07 1065	7.10E+0		
GSA KHA MBO PSO SCA F. No.	593.1884 3.94E+28 8.84E-06 4.39E-06 F19	2.47E + 12 1.81E + 38 1.63E-05 5.41E-05	2 1.28E 6.85E 2.13E 1.11E	-05 -04 F20	44412 0.019 0.004	2.16 961 608	4.74E + 03 11.86305 144.4601	8 1	1.86E + 0 37.93097 548.8833 F21	9 1 3	1.59E + 07 35.98856 30.98788	3.60E 239.1 148.2	E + 07 1065 2003	7.10E+0 554.296		
GSA KHA MBO PSO SCA F. No. Metrics	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median	2.47E + 12 1.81E + 38 1.63E-05 5.41E-05	2 1.28E 3 6.85E 2.13E 1.11E Std. dev.	-05 -04 F20 Medi	44412 0.019 0.004 an	2.16 961 608 Mean	4.74E + 03 11.86305 144.4601 Std.	8 1 2 2 4	1.86E + 0 37.93097 548.8833 F21 Medi	9 1 2 ian	59E + 07 35.98856 30.98788 Mean	3.60E 239.1 148.2 Sto	E + 07 1065 2003 1. dev.	7.10E+0 554.296		
GSA KHA MBO PSO SCA F. No. Metrics Proposed	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median 3.23E-09	2.47E + 12 1.81E + 32 1.63E-05 5.41E-05 Mean 3.99E-09	 1.28F 6.85F 2.13F 1.11F Std. dev. 3.20E-09	-05 -04 F20 Medi 0.039	44412 0.019 0.004 an 781	2.16 961 608 Mean 0.1256	4.74E + 03 11.86305 144.4601 59 0.21	8 1 2 4 624	1.86E + 09 37.93097 548.8833 F21 Medi 1.291	9 1 2 ian E-05	59E + 07 35.98856 30.98788 Mean 2.18E-0	3.60E 239.1 148.2 5 2.6	E + 07 1065 2003 d. dev. 56E-05	7.10E+0 554.296 4.83E+0		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290	2.47E + 12 1.81E + 38 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507	2 1.28F 3 6.85F 2.13F 1.11F Std. dev. 3.20E-09 0.000947	2+38 2-05 2-04 F20 Medi 0.039 3.921	44412 0.019 0.004 an 781 985	2.16 961 608 Mean 0.1256 6.1104	4.74E + 03 11.86305 144.4601 Std. 39 0.21 33 6.44	8 1 2 4 624 5442	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.479	9 1 2 3 ian E- 05 9590	59E + 07 35.98856 30.98788 Mean 2.18E-0 12.3628	3.60F 239.1 148.2 5 2.6 4 10.	E + 07 1065 2003 d. dev. 56E-05 195504	7.10E+0 554.296 4.83E+0 4		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290 1.835381	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576	 1.28E 6.85E 2.13E 1.11E 5td. dev. 3.20E-09 0.000947 0.913245 	-05 -04 F20 Medi 0.039 3.921 1803.	44412 0.019 0.004 an 781 985	2.16 961 608 Mean 0.1256 6.1104 2367.8	4.74E + 00 11.86305 144.4601 Std. 59 0.21 13 6.44 185	8 1 4 624 5442 6.635	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4	9 1 3 3 4 5 6 7 5 9 5 9 0 5 9 0 1 2 2 7	 .59E + 07 .98856 .98788 Mean 2.18E-0 12.3628 120.606 	3.60E 239.1 148.2 5 2.6 4 10. 37.	E + 07 1065 2003 1. dev. 56E-05 .195504 .40893	7.10E + 0 554.296 4.83E + 0 4		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576	2 1.28F 3 6.85F 2.13F 1.11F Std. dev. 3.20E-09 0.000947	2+38 -05 -04 F20 Medi 0.039 3.921	44412 0.019 0.004 an 781 985	2.16 961 608 Mean 0.1256 6.1104	4.74E + 00 11.86305 144.4601 Std. 59 0.21 13 6.44 185	8 1 2 4 624 5442	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2	9 1 ian E-05 9590 4227 E+02	59E + 07 35.98856 30.98788 Mean 2.18E-0 12.3628	3.60E 239.1 148.2 5 2.6 4 10. 37.	E + 07 1065 2003 d. dev. 56E-05 195504	7.10E + 0 554.296 4.83E + 0 4		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290 1.835381	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03	 1.28E 6.85E 2.13E 1.11E 5td. dev. 3.20E-09 0.000947 0.913245 	-05 -04 F20 Medi 0.039 3.921 1803.	44412 0.019 0.004 an 781 985 107 +02	2.16 961 608 Mean 0.1256 6.1104 2367.8	4.74E + 03 11.86305 144.4601 Std. i9 0.21 i3 6.44 i9 185 +02 1.19	8 1 4 624 5442 6.635	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4	9 1 ian E-05 9590 4227 E+02	 .59E + 07 .98856 .98788 Mean 2.18E-0 12.3628 120.606 	3.60F 239.1 148.2 5 2.66 4 10. 37. 02	E + 07 1065 2003 1. dev. 56E-05 .195504 .40893	7.10E + 0 554.296 4.83E + 0 4		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC ACO	593.1884 3.94E+28 8.84E-06 4.39E-08 F19 Median 3.23E-09 0.000290 1.835381 5.26E-03	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 5.99E-05	1.28E 1.28E 6.85E 2.13E 1.11E 5td. dev. 3.20E-09 0.000947 0.913245 2.72E-03	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E	44412 0.019 0.004 an 781 985 107 +02 557	2.16 961 608 Mean 0.1256 6.1104 2367.8 2.17E -	4.74E + 00 11.86305 144.4601 Std. i9 0.21 i3 6.44 i9 1855 + 02 1.15 i91 0.01	8 1 4 624 6.635 9E + 0.	1.86E + 0 37.93097 548.8833 F21 Media 1.291 9.475 109.4 2 1.79E 0.000	9 1 ian E-05 9590 4227 E+02 9292		3.60F 239.1 148.2 5 2.6 4 10. 37. 02 1.1 9 4.2	E + 07 1065 2003 d. dev. 56E-05 195504 40893 7E + 02	7.10E + 0 554.296 4.83E + 0 4		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC ABC ACO EHO EWA	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 3.99E-09 0.000507 1.840576 6.02E-03 5.99E-05 28.5366	1.28E 1.28E 6.85E 2.13E 1.11F 3.20E-09 0.000947 0.913245 2.72E-03 3.21E-06	2+38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909	44412 0.019 0.004 an 781 985 107 +02 557 677	2.16 961 608 0.1256 6.1104 2.367.8 2.17E - 0.9068	4.74E + 0: 11.86305 144.4601 59 0.21 13 6.44 19 185: +02 1.191 0.01 1.2	8 1 4 624 65442 6.635 9E+0 413	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.79F 0.000 133.3	9 1 2 2 ian 2 E-05 25590 12227 2 2+02 2 36671		3.60F 239.1 148.2 5 2.6 4 10. 37. 02 1.1 9 4.2 5 2.6	E + 07 1065 2003 d. dev. 56E-05 195504 40893 7E + 02 27E-05	7.10E + 0 554.296 4.83E + 0 4		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC ACO EHO EHO EWA GSA	593.1884 3.94E + 263 8.84E-064 4.39E-064 F19 Median 3.23E-094 0.0002904 1.835381 5.26E-034 6.01E-054 275.0024	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Wean 3.99E-09 0.000507 1.8405766 6.02E-03 5.99E-05 280.53666 3.75E-17	1.288 1.288 6.858 2.138 1.111 Std. dev. 3.20E-09 0.000947 0.913245 2.72E-03 3.21E-06 109.2263	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663	44412 0.019 0.004 an 781 985 107 +02 557 667	2.16 961 608 0.1256 6.1104 2367.8 2.17E - 0.9068 13.782	4.74E + 0: 11.86305 144.4601 59 0.21 13 6.44 19 185 +02 1.189 191 0.01 122 34.0 123 0.00	8 1 4 4 6 4 6 24 5 5 4 4 2 6 6 6 3 5 E + 0 4 1 3 5 5 6 9 2	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.79F 0.000 133.3	9 1 2 2 2 2 2 2 2 2 2 2 2 2 2		3.60F 239.1 148.2 5 2.66 4 10. 37. 02 1.1 9 4.2 9	E + 07 1065 2003 d. dev. 66E-05 195504 40893 7E + 02 27E-05 .75407	7.10E+() 554.296 4.83E+() 4.83E+() 4 4 2 2		
GSA KHA MBO PSO SCA E No. Metrics Proposed CSA ABC ACO EHO EHO EWA GSA KHA	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05 275.002 3.71E-17	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 5.99E-05 280.5366 3.75E-17 9.023223	1.288 1.288 6.858 2.138 1.118 3.20E-09 0.000947 0.913245 2.72E-03 3.21E-06 109.2263 1.28E-17	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666	44412 0.019 0.004 an 781 985 107 4+02 557 667 851	2.16 961 608 0.1256 6.1104 2367.8 2.17E - 0.9068 13.782 0.6679	4.74E + 0: 11.86305 144.4601 5 14.4601 5 13 6.44 59 1.15 6.44 59 1.15 90 1.19 10 10.11 10.21 34.0 10.22 34.0 10.23 0.043	8 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.33.3 0.000 133.3 0.011 0.586	9 1 ian E-05 5590 i227 2+02 292 i671 159 6635		3.60F 239.1 148.2 5 2.6 4 10. 37. 02 1.1 9 4.2 5 29. 9 0.4	E + 07 1065 2003 d. dev. 195504 40893 7E + 02 27E-05 75407 016491	7.10E+() 554.296 4.83E+() 4.83E+() 4 4 2 2		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC ACO EHO EHO EWA GSA KHA MBO	593.1884 3.94E + 28 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05 275.002 3.71E-17 5.400354	2.47E + 12 1.81E + 32 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 5.99E-05 280.5366 3.75E-17 9.023223 347.1522	! 1.28E : 1.28E : 6.85E : 1.11E : 1.11E : 3.20E-09 : 0.000947 : 1.22E-03 : 2.72E-03 : 2.12E-06 : 1.28E-17 : 1.28E-17	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666 0.827	44412 0.019 0.0044 an 781 985 107 557 677 667 851 +05	2.16 961 608 Mean 0.1256 6.1104 2367.8 2.17E - 0.9068 13.782 0.6679 0.9716	4.74E + 0: 11.86305 144.4601 Std. 9 0.21 33 6.44 99 185 +02 1.19 191 0.01 32 34.0 192 0.43 +05 6.85	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.79E 0.000 133.3 0.011 0.586 5	9 1 2 2 3 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		3.60F 239.1 148.2 5 2.6 4 10. 37. 02 1.1 9 4.2 5 29. 9 0.0 1 322	E + 07 1065 2003 1. dev. 36E-05 1195504 40893 7E + 02 27E-05 75407 116491 108763	7.10E+() 554.296 4.83E+() 4.83E+() 4 4 2 2		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC ACO EHO EHO EHO EWA GSA KHA MBO PSO	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05 275.002 3.71E-17 5.400354 14.16177	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 5.99E-05 280.5366 3.75E-17 9.023223 347.1522 3.38E-06	1.288 1.288 6.85E 2.13E 1.11E 3.20E-09 0.000947 0.913245 2.72E-03 3.21E-06 109.2263 1.28E-17 10.98069 516.0515	05 04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666 0.827 8.73E	44412 0.019 0.004 an 781 985 107 557 667 667 667 851 405 241	2.16 961 608 Mean 0.1256 6.1104 2367.8 2.17E - 0.9068 13.782 0.6679 0.9716	4.74E + 0: 11.86305 144.4601 Std. 69 0.21 33 6.44 99 185 +02 1.19 91 0.01 22 34.0 123 0.00 92 0.43 +05 6.85 557 1.48	8 4 6 6 6 6 6 6 6 6	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.79E 0.000 133.3 0.011 0.586 5 1991	9 1 2 2 3 3 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5		3.60F 239.1 148.2 5 2.66 4 10. 37. 02 1.1 9 4.2 5 29. 9 0.0 0.4 1 322 1 322 1	E + 07 1065 2003 1. dev. 106E-05 195504 40893 7E + 02 7E-05 75407 016491 108763 26.672	7.10E+() 554.296 4.83E+() 4.83E+() 4 4 2 2		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC ACO EHO EHO EHO EWA GSA KHA MBO PSO	593.1884 3.94E+28 8.84E-06 4.39E-07 F19 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05 275.002 3.71E-17 5.400354 14.16177 1.02E-07	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 5.99E-05 280.5366 3.75E-17 9.023223 347.1522 3.38E-06	1.288 1.288 6.85E 2.13E 1.11E 564. dev. 3.20E-09 0.000947 0.913245 2.72E-03 3.21E-06 109.2263 1.28E-17 10.98069 516.0515 1.38E-05	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666 0.827 8.73E 0.698	44412 0.019 0.004 an 781 985 107 557 667 667 667 851 405 241	2.16 961 608	4.74E + 0: 11.86305 144.4601 Std. 69 0.21 33 6.44 99 185 +02 1.19 91 0.01 22 34.0 123 0.00 92 0.43 +05 6.85 557 1.48	8 1 2 2 4 2 624 5442 55442 6.635 E + 0 413 55692 66882 00777 E + 0 44248 6424	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.79E 0.000 133.3 0.011 0.586 5 1991	9 1 2 2 3 3 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5		3.60F 239.1 148.2 5 2.66 4 10. 37. 02 1.1 9 4.2 5 29. 9 0.0 0.4 1 322 1 322 1	E + 07 1065 2003 I. dev. 1.95504 4.40893 7E + 02 7F + 02 7F + 02 7F + 02 75407 106491 108763 26.672 16E - 01	7.10E+() 554.296 4.83E+() 4.83E+() 4 4 2 2		
GSA KHA MBO PSO SCA F. No. Metrics Proposed CSA ABC CSA ABC EHO EWA EHO EWA GSA KHA MBO PSO SCA	593.1884 3.94E+28 8.84E-06 4.39E-07 F19 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05 275.002 3.71E-17 5.400354 14.16177 1.02E-07 1.02E-07	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 5.99E-05 280.5366 3.75E-17 9.023223 347.1522 3.38E-06	1.288 1.288 6.85E 2.13E 1.11E 564. dev. 3.20E-09 0.000947 0.913245 2.72E-03 3.21E-06 109.2263 1.28E-17 10.98069 516.0515 1.38E-05	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666 0.827 8.73E 0.698 0.710	44412 0.019 0.004 an a 781 985 107 5557 6677 6667 667 2241 6611	2.16 961 608 Mean 0.1256 6.1104 2367.8 2.17E - 0.9068 113.782 0.6679 0.9716 0.9716 1.2954 0.9013	4.74E + 0: 11.86305 144.4601 Std. 69 0.21 33 6.44 99 185 +02 1.19 91 0.01 22 34.0 123 0.00 92 0.43 +05 6.85 557 1.48	8 1 2 2 4 2 624 5442 55442 6.635 E + 0 413 55692 66882 00777 E + 0 44248 6424	1.86E + 0 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.79E 0.000 133.3 0.011 0.586 5 1991	9 1 2 2 3 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5		3.60F 239.1 148.2 5 2.66 4 10. 37. 02 1.1 9 4.2 5 29. 9 0.0 0.4 1 322 1 322 1	E + 07 1005 2003 1. dev. 19550 40893 7E + 02 7E	7.10E+() 554.296 4.83E+() 4.83E+() 4 4 2 2		
GSA KHA MBO PSO SCA F.No. Metrics Proposed CSA ABC ABC ABC EHO EWA GSA GSA KHA MBO PSO SCA F.No.	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05 275.002 3.71E-17 1.4.16177 1.02E-07 1.29E-07 F22	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 280.5366 3.75E-17 9.023223 3.47.1522 3.38E-06 4.98E-06 Mean	1.28E 1.28E 6.85F 2.13E 1.11E std. dev. 3.20E-09 0.000947 0.913245 2.72E-03 3.21E-06 109.2263 1.28E-17 10.98069 516.0515 1.38E-05 1.29E-05 Std. d	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666 0.827 8.73E 0.698 0.710 -04	44412 0.019 0.004 an 781 985 107 5557 6677 6667 851 405 241 6611 F23	2.16 961 608 Mean 0.1256 6.1104 2367.8 2.17E - 0.9068 13.782 0.90716 0.9716 1.2954 0.9013 m	4.74E + 0: 11.86305 144.4601 Std. i9 0.21 i3 6.44 i9 185 +02 1.19 i90 0.01 i22 34.0 i23 0.00 i392 0.43 +05 6.85 i57 1.48 i3 0.49	8 1 4 4 624 5442 55442 6.635 E + 0 413 55692 66882 6077 E + 0 44248 99484	1.86E + 00 37.93097 548.8833 F21 Medi 1.291 9.475 109.4 2 1.79F 0.000 133.3 0.011 0.586 5 1991 2.46F 0.006	9 1 2 2 2 2 5590 2227 3227 3+02 3671 159 6635 6609 3-03 3219 7,		3.60F 239.1 148.2 239.1 148.2 Stec 5 2.6 4 10. 37. 55 2.6 4 10. 37. 55 2.6 9. 0.0 4.2 9. 0.0 0.4 1.1 32: 1.1 4.7: 5. 0.0	E + 07 1005 2003 1. dev. 19550 40893 7E + 02 7E	7.10E+(554.296 4.83E+(4.83E+(2 2 		
GSA KHA MBO PSO SCA E No. Metrics Proposed CSA ABC ACO EHO EWA GSA CSA GSA KHA MBO PSO SCA F. No. Metrics	593.1884 3.94E+28 8.84E-06 4.39E-06 F19 J000290 1.835381 6.01E-05 6.01E-07 7.5.002 1.416177 1.02E-07 1.02E-07 1.02E-07 F22	2.47E + 12 1.81E + 33 1.63E-05 5.41E-05 Mean 3.99E-09 0.000507 1.840576 6.02E-03 280.5366 3.75E-17 9.023223 3.47.1522 3.38E-06 4.98E-06 Mean	1.288 1.288 6.852 2.132 1.111 $3.20E-09$ 0.000947 $3.21E-06$ $0.9 \cdot 2263$ $3.21E-06$ $0.9 \cdot 2263$ $1.28E-17$ $0.9 \cdot 8069$ $516 \cdot 0515$ $1.38E-05$ $1.29E-05$ Std. d 5 0.4301	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666 0.827 8.73E 0.698 0.710 -04	44412 0.019 0.004 an a 781 985 107 5557 6677 6667 4851 611 F23 Media	2.16 9961 608 Mean 0.1256 6.1104 2367.8 2.17E 0.9068 13.782 0.6679 0.9716 7.72E 1.2954 0.9013 nn 99999	4.74E + 0: 11.86305 144.4601 59 0.21 33 6.44 99 185 +02 1.19 991 0.01 122 34.0 992 0.43 +05 6.85 577 1.48 33 0.49	8 1 624 5442 6.635 E+0 413 5692 06882 0077 E+0 44248 99484 545	1.86E + 00 37.93097 548.8833 F21 Media 1.291 9.475 109.4 2 1.79F 0.000 133.3 0.011 0.586 5 1991 2.46E 0.000 Std. dev	9 1 2 2 2 2 5590 2227 3227 3+02 3671 159 6635 6609 3-03 3219 7,		3.60F 239.1 148.2 5 2.64 10. 37. 52 2.64 10. 37. 22 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 1.1 32. 32. 32. 32. 32. 32.	E + 07 1005 2003 1. dev. 19550 40893 7E + 02 7E + 02 7E + 02 19550 40893 26.672 26.672 26.672 26.672 104167	7.10E+0 554.296 4.83E+0 4 2 4 2 3 5 5 5 5 5 5 5 5 4 1 1		
GSA KHA MBO PSO SCA ENO. Metrics Proposed CSA ABC ACO EHO EHO EWA GSA CSA KHA MBO PSO SCA F. NO. ENO. Proposed	593.1884 3.94E + 2.8 8.84E-06 4.39E-06 F19 Median 3.23E-09 0.000290 1.835381 5.26E-03 6.01E-05 3.71E-17 5.400354 1.416177 1.02E-07 1.29E-07 F22 Median	2.47E + 12 1.81E + 32 1.63E-05 5.41E-05 3.99E-09 0.000507 1.840576 6.02E-03 280.5366 3.75E-17 9.023223 3.47.1522 3.38E-06 4.98E-06 9.023253	1.288 1.288 6.852 2.132 1.111 $3.20E-09$ 0.000947 $3.21E-06$ $0.9 \cdot 2263$ $3.21E-06$ $0.9 \cdot 2263$ $1.28E-17$ $0.9 \cdot 8069$ $516 \cdot 0515$ $1.38E-05$ $1.29E-05$ Std. d 5 0.4301	+ 38 -05 -04 F20 Medi 0.039 3.921 1803. 1.85E 0.909 2.663 0.666 0.827 8.73E 0.698 0.710 EV 8239	44412 0.019 0.004 an a 781 985 107 2 557 667 667 44012 667 44012 667 4667 410 577 667 400 410 410 410 410 410 410 410 410 410 411 <td>2.16 9961 608 0.1256 6.1104 2367.8 2.17E 0.9068 13.782 0.6679 0.9716 7.72E 1.2954 0.9013 1.2954 0.9013 1.2954 0.9013</td> <td>4.74E + 03 11.86305 144.4601 59 0.21 3 6.44 9 185 + 02 1.19 99 0.01 2 34.0 23 0.00 92 0.43 + 05 6.85 1.48 3 0.49 Mean -0.76666</td> <td>8 1 624 5442 5442 6.635 92 + 0 413 95692 66882 9077 62 + 0 44248 99484 5545 2</td> <td>1.86E + 00 37.93097 548.8833 F21 Media 1.291 9.475 109.4 2 1.79E 0.000 133.3 0.011 0.586 5 1991 2.46E 0.000 Std. dev 0.43018</td> <td>9 1 2 2 6590 2227 2292 2292 6671 159 6635 609 3-03 2219 7. 239 7. 239</td> <td></td> <td>3.60F 239.1 148.2 5 2.39.1 148.2 5 2.66 7 7.72 1.1 322 1.2 9 4.2 9 4.2 9 0.04 1.322 9 0.44 1.322 9 0.44 4.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>E + 07 (1065 (2003 (2003 (2003 (2003 (2003 (2005 (2005) (2005</td> <td>7.10E+0 554.296 4.83E+0 4 2 4 2 3 9.16E-07</td>	2.16 9961 608 0.1256 6.1104 2367.8 2.17E 0.9068 13.782 0.6679 0.9716 7.72E 1.2954 0.9013 1.2954 0.9013 1.2954 0.9013	4.74E + 03 11.86305 144.4601 59 0.21 3 6.44 9 185 + 02 1.19 99 0.01 2 34.0 23 0.00 92 0.43 + 05 6.85 1.48 3 0.49 Mean -0.76666	8 1 624 5442 5442 6.635 92 + 0 413 95692 66882 9077 62 + 0 44248 99484 5545 2	1.86E + 00 37.93097 548.8833 F21 Media 1.291 9.475 109.4 2 1.79E 0.000 133.3 0.011 0.586 5 1991 2.46E 0.000 Std. dev 0.43018	9 1 2 2 6590 2227 2292 2292 6671 159 6635 609 3-03 2219 7. 239 7. 239		3.60F 239.1 148.2 5 2.39.1 148.2 5 2.66 7 7.72 1.1 322 1.2 9 4.2 9 4.2 9 0.04 1.322 9 0.44 1.322 9 0.44 4.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	E + 07 (1065 (2003 (2003 (2003 (2003 (2003 (2005 (2005) (2005	7.10E+0 554.296 4.83E+0 4 2 4 2 3 9.16E-07		

F. No.	F22			F23			F24				
Metrics	Median	Mean	Std. dev.	Median	Mean	Std. dev.	Median	Mean	Std. dev.		
ACO	6.30E-216	3.00E-206	1.70E-209	6.30E-216	3.00E-206	1.70E-209	8.90E-01	1.00E+00	4.82E-01		
EHO	1.92E-74	7.76E-70	3.53E-69	1.92E-74	7.76E-70	3.53E-69	1.03E-03	9.96E-04	1.06E-04		
EWA	7.00E-42	1.69E-37	7.70E-37	7.00E-42	1.69E-37	7.70E-37	3.05E-01	2.87E+00	6.13E+00		
GSA	7.63E-43	3.27E-37	1.04E-36	7.63E-43	3.27E-37	1.04E-36	1.53E-16	1.81E-16	1.01E-16		
KHA	9.10E-228	2.71E-45	1.48E-44	9.10E-228	2.71E-45	1.48E-44	4752.622	4874.505	3272.272		
MBO	4.30E-232	1.50E-210	1.80E-222	4.30E-232	1.50E-210	1.80E-222	1.39E-02	3.28E-02	4.96E-02		
PSO	7.73E-199	1.77E-191	0	7.73E-199	1.77E-191	0	4.84E-06	3.39E-05	8.33E-05		
SCA	6.49E-199	1.87E-193	0	6.49E-199	1.87E-193	0	1.81E-05	3.56E-04	1.06E-03		

 Table 4. Performance analysis for unimodal variable dimension benchmark functions.

achieved the lowest mean values for functions F88-F92, mCSAMWL maintained competitive performance across the remaining functions F86-F97, consistently yielding results close to the optimal values, even when not achieving the absolute lowest mean.

In contrast, EWA and EHO generally exhibited higher variability and less optimal performance compared to the other evaluated algorithms. Overall, mCSAMWL demonstrated strong performance, with particular excellence observed in functions F79-F85. This suggests balanced optimization capabilities, effectively combining exploration and exploitation, as evidenced by its consistent performance across diverse function types. The low standard deviations associated with mCSAMWL further underscore its reliable and stable performance, positioning it as a robust choice for a variety of optimization problems.

Ablation study of the proposed mCSAMWL algorithm

To overcome the defects in the original algorithm, this paper proposes a modified version of Chameleon Search Algorithm. First, the exploration phase of CSA is modified using Morlet Wavelet Mutation to achieve better convergence performance. Then, we introduce the Lévy Flight distribution with step reducer feature in the exploitation part to help search agents escape from the local optima. To evaluate the effectiveness of each component, two mCSAMWL-derived variants are designed individually for comparison study in this subsection, which are listed below:

- CSAMW (modification of CSA with Morlet Wavelet Mutation only).
- CSALF (modification of CSA with Lévy Flight distribution only).
- Proposed mCSAMWL (modified CSA using Morlet Wavelet mutation and Lévy Flight Distribution).

Under the same experimental setting original CSA, CSAMW, CSALF, and mCSAMWL are tested on 23 different types of benchmark functions concurrently. The obtained median, mean fitness (mean) and standard deviation (Std) results are listed in Table 8.

A preliminary analysis on the simple functions F1-F3 reveals comparable performance across all methods, with the proposed method and CSA achieving near-optimal results. CSAMW and CSALF exhibit marginally weaker performance on F1. While CSA and CSALF demonstrate advantages on specific functions (F4 and F7 for CSA; F4 for CSALF), the proposed method maintains competitive and comparable or equivalent performance across the majority of other functions.

The proposed algorithm demonstrates a distinct advantage on functions F10-F15, significantly outperforming CSA and CSAMW across most of this range (F10-F14) and achieving superior results on F15. Furthermore, it exhibits improved performance compared to CSALF on F11-F14. Regarding functions F16-F24, the proposed algorithm continues to perform strongly, exhibiting substantial improvements over CSA and generally achieving superior results compared to CSAMW. The comparison with CSALF is more complex, with CSALF demonstrating better performance on F22 and F24; however, the proposed algorithm demonstrates greater overall consistency across this function set. Overall, the proposed algorithm performs well, particularly on more complex functions, demonstrating significant improvements over CSA and frequently outperforming CSAMW.

F. No.	F25			F26					F27			
Metrics	Median	Mean	Std. dev.	Median	Mean	S	Std. dev	v.	Median		Mean	Std. dev.
Proposed	2.11E-34	2.11E-32	5.94E-32	-195.62903	-195.629	03 3	8.41E-0	9	-2.021806	58	-2.0218068	0.15915470
CSA	3.36E-63	2.24E-62	5.60E-62	-195.629	-195.629	5	5.78E-1	4	-2.02181		-2.02181	1.36E-15
ABC	1.29E-13	3.03E-13	3.53E-13	-195.629	-195.629	7	7.83E-1	0	-2.02181		-2.02181	9.40E-16
ACO	0	0	0	-195.629	-195.629	5	5.78E-1	4	-2.02181		-2.02181	1.36E-15
EHO	1.14E-06	1.19E-06	4.57E-07	-195.617	-195.616		0.00769	-	-2.02181		-2.02181	7.83E-06
EWA	7.33E-05	8.33E-04	2.29E-03	-195.598	-195.539		0.17379		-1.87048		-1.82072	0.14998
GSA	8.50E-20	1.08E-19	1.07E-19	-195.629	-195.629		5.78E-1	-	-2.02114		-2.02087	0.00099
KHA			7.74E-11		-195.629			-	-2.02114			_
	2.15E-11	4.36E-11		-195.629	-	-	1.67E-0	-			-2.02181	6.04E-11
MBO	2.82E-12	8.20E-12	1.37E-11	-195.629	-195.629		0.00032	\rightarrow	-2.02166		-2.02134	0.000756
PSO	1.90E-157	1.44E-148	7.86E-148	-195.629	-195.629	-	5.14E-0		-2.02181		-2.02181	1.59E-09
SCA	2.88E-158	6.95E-152	3.79E-151	-195.629	-195.629	8	3.44E-0	-	-2.02181		-2.02181	1.05E-09
F. No.	F28			F29					F30			
Metrics	Median	Mean	Std. dev.	Median	Mean	S	Std. dev	v.	Median		Mean	Std. dev.
Proposed	-106.765	-106.765	2.71E-06	-1.03163	-1.03163	7	7.25E-1	0	0.3978874	4	0.3978874	2.81E-08
CSA	-106.765	-106.765	3.82E-14	-1.03163	-1.03163	6	6.65E-1	6	0.397887		0.397887	0
ABC	-106.765	-106.765	8.81E-05	-1.03163	-1.03163	1	.29E-1	0	0.397887		0.397887	3.09E-11
ACO	-106.765	-106.765	4.05E-14	-1.03163	-1.03163	6	6.78E-1	6	0.397887		0.397887	0
ЕНО	-106.557	-106.524	0.208396	-1.02369	-1.01918	0	0.01238	6	0.403988		0.405804	0.007404
EWA	-99.6773	-95.3087	11.65851	-0.97467	-0.88761	0	0.20459	95	0.519468		0.631437	0.299147
GSA	-106.765	-106.687	0.333367	-1.03163	-1.03163		5.61E-1	+	0.397887		0.397887	0
KHA	-106.765	-106.765	4.31E-09	-1.03163	-1.03163		.59E-1		0.397887		0.397887	9.52E-10
мво	-106.762	-106.754	0.023937	-1.03159	-1.0314		0.00050		0.397905		0.397922	5.48E-05
PSO	-106.747		0.029937		-1.0314		.26E-0	-		_	0.398307	0.000391
		-106.738		-1.03162	_	-		-				
SCA	-106.745	-106.737	0.028856	-1.03162	-1.03162	1	.38E-0	_	_		0.398302	3.90E-04
F. No.	F31			F32				F33				
Metrics	Median	Mean	Std. dev.	Median	Mean	s	otd. dev	v.	Median		Mean	Std. dev.
Proposed	3	3	2.81E-09	-3.862782	-3.86278	2 7	7.72E-0	18	-3.322		- 3.26650591	0.06032942
CSA	3	3	6.12E-16	-3.86278	-3.86278	2	2.68E-1	5 -3.322			-3.28214	0.057338
ABC	3.00005	3.00021	0.000453	-3.86278	-3.86278	3	3.78E-1	0	-3.32195		-3.32194	3.70E-05
ACO	3	3	1.25E-15	-3.86278	-3.86278	2	2.71E-1	5	-3.32199		-3.27443	0.05924
EHO	3.135808	3.192015	0.173313	-3.83639	-3.83114	0	0.01995	51	-2.83397		-2.81893	0.143102
EWA	20.88954	20.48409	13.54759	-3.75671	-3.74107	0	0.10039	6	-2.49959		-2.39237	0.519278
GSA	3	3	2.36E-15	-3.86278	-3.86278	2	2.44E-1	5	-3.322		-3.322	1.39E-15
KHA	3	3	6.79E-09	-3.86278	-3.86278	9	9.17E-1	0	-3.322		-3.27422	0.059526
мво	3.004415	5.721823	14.78531	-3.86218	-3.86172	0	0.00130)6	-3.20289		-3.25594	0.060095
PSO	3	3	9.84E-06	-3.85482	-3.85683	_	0.00322	-	-3.01043		-3.0077	0.160297
SCA	3	3	6.99E-06	-3.85474	-3.85641		0.00311	-	-3.01438		-3.03234	9.49E-02
F. No.	F34	-		F35	1	-		F36				
Metrics	Median	Mean	Std. dev.		Mean	Std. d		Med	ian	Me	ean	Std. dev.
Proposed	-2.0626119	-2.062611			1	2.26E			6391828		.73547588	4.461266533
CSA	-2.06261	-2.06261	9.03E-16		1	2.20E			3276		0.3276	0
	-2.00201	-2.00201	9.05E-10	1								
ABC	2 04261	2 06261	5 00E 12	1 000146		0.000	14]	100.	2127	18.	1.39	1.575748
	-2.06261	-2.06261	5.09E-12		1.000167			100	021	10	1 422	1 66114
ABC ACO	-2.06261	-2.06261	9.03E-16	1	1	0	1	180.			1.432	1.66114
ACO EHO	-2.06261 -2.06257	-2.06261 -2.06255	9.03E-16 6.94E-05	1 1.001608	1 1.001698	0	1 707 1	180.	3276	18	0.3276	0
ACO EHO EWA	-2.06261 -2.06257 -2.06207	-2.06261 -2.06255 -2.05512	9.03E-16 6.94E-05 0.021859	1 1.001608 1.067353	1 1.001698 1.177343	0 0.000 0.298	1 707 1 134 1	1 80. 180.2	3276 7353	18	0.3276 0.8577	0 0.48185
ACO EHO EWA GSA	-2.06261 -2.06257	-2.06261 -2.06255	9.03E-16 6.94E-05	1 1.001608 1.067353	1 1.001698	0	1 707 1 134 1	1 80. 180.2	3276	18	0.3276	0
ACO EHO EWA GSA	-2.06261 -2.06257 -2.06207	-2.06261 -2.06255 -2.05512	9.03E-16 6.94E-05 0.021859	1 1.001608 1.067353 1	1 1.001698 1.177343	0 0.000 0.298	1 707 1 134 1 -05 1	180. 180.2 180.2	3276 7353	180 180 180	0.3276 0.8577	0 0.48185
ACO EHO EWA GSA KHA	-2.06261 -2.06257 -2.06207 -2.06261	-2.06261 -2.06255 -2.05512 -2.06261	9.03E-16 6.94E-05 0.021859 9.03E-16	1 1.001608 1.067353 1 1.000001	1 1.001698 1.177343 1	0 0.000 0.298 1.05E	1 707 1 134 1 2-05 1 2-05 1	180. 180. 180.	3276 7353 3276	180 180 180 182	0.3276 0.8577 0.3277	0 0.48185 0.000182
	-2.06261 -2.06257 -2.06207 -2.06261 -2.06261	-2.06261 -2.06255 -2.05512 -2.06261 -2.06261	9.03E-16 6.94E-05 0.021859 9.03E-16 2.64E-11	1 1.001608 1.067353 1 1.000001 1	1 1.001698 1.177343 1 1.000007	0 0.000 0.298 1.05E 1.15E	1 707 1 134 1 -05 1 -05 1 -07 1	180. 180. 180. 180. 180.	3276 7353 3276 9794	180 180 182 182	0.3276 0.8577 0.3277 2.3246	0 0.48185 0.000182 1.11834
ACO EHO EWA GSA KHA MBO PSO	-2.06261 -2.06257 -2.06207 -2.06261 -2.06261 -2.06261	-2.06261 -2.06255 -2.05512 -2.06261 -2.06261 -2.06261	9.03E-16 6.94E-05 0.021859 9.03E-16 2.64E-11 2.31E-13	1 1.001608 1.067353 1 1.000001 1 1	1 1.001698 1.177343 1 1.000007 1	0 0.000 0.298 1.05E 1.15E 3.69E	1707 1 134 1 -05 1 -05 1 -07 1 1	180. 180. 180. 180. 180.	3276 7353 3276 9794 3276	180 180 182 182 180 180	0.3276 0.8577 0.3277 2.3246 0.3276	0 0.48185 0.000182 1.11834 0
ACO EHO EWA GSA KHA MBO PSO SCA	-2.06261 -2.06257 -2.06207 -2.06261 -2.06261 -2.06261 -2.06261	-2.06261 -2.06255 -2.05512 -2.06261 -2.06261 -2.06261 -2.06261	9.03E-16 6.94E-05 0.021859 9.03E-16 2.64E-11 2.31E-13 4.68E-06	1 1.001608 1.067353 1 1.000001 1 1	1 1.001698 1.177343 1 1.000007 1 1	0 0.000 0.298 1.05E 1.15E 3.69E 0	1707 1 134 1 -05 1 -05 1 -07 1 1	180. 180. 180. 180. 180.	3276 7353 3276 9794 3276 3276	180 180 182 182 180 180	0.3276 0.8577 0.3277 2.3246 0.3276 0.3276	0 0.48185 0.000182 1.11834 0 0
ACO EHO EWA GSA KHA MBO PSO SCA F. No.	-2.06261 -2.06257 -2.06207 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261	-2.06261 -2.06255 -2.05512 -2.06261 -2.06261 -2.06261 -2.06261	9.03E-16 6.94E-05 0.021859 9.03E-16 2.64E-11 2.31E-13 4.68E-06	1.001608 1.067353 1 1.000001 1 1 1 1 1 1	1 1.001698 1.177343 1 1.000007 1 1	0 0.000 0.298 1.05E 1.15E 3.69E 0	1707 1 134 1 -05 1 -05 1 -07 1 1	180. 180. 180. 180. 180.	3276 7353 3276 9794 3276 3276 3276 3276	180 180 182 182 180 180	0.3276 0.8577 0.3277 2.3246 0.3276 0.3276 0.3276	0 0.48185 0.000182 1.11834 0 0
ACO EHO EWA GSA KHA MBO PSO SCA F. No. Metrics	-2.06261 -2.06257 -2.06207 -2.06261 -2.06261 -2.06261 -2.06261 F37	-2.06261 -2.06255 -2.05512 -2.06261 -2.06261 -2.06261 -2.06261	9.03E-16 6.94E-05 0.021859 9.03E-16 2.64E-11 2.31E-13 4.68E-06 6.70E-06	1 1.001608 1.067353 1 1.000001 1 1 5 F38 Median	1.001698 1.177343 1 1.000007 1 1 0 <	0 0.000 0.298 1.05E 1.15E 3.69E 0 0	1707 1 134 1 1-05 1 1-05 1 1-07 1 1 1 1 1	180. 180. 180. 180. 180. 180. 180.	3276 7353 3276 9794 3276 3276 3276 3276 3276 3276 3276 3276	180 180 182 182 180 180	0.3276 0.8577 0.3277 2.3246 0.3276 0.3276 0.3276 0.3276 0.3276	0 0.48185 0.000182 1.11834 0 0 0 0
ACO EHO EWA GSA KHA MBO PSO SCA F. No.	-2.06261 -2.06257 -2.06207 -2.06261 -2.06261 -2.06261 -2.06261 F37 Median	-2.06261 -2.06255 -2.05512 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 Mean	9.03E-16 6.94E-05 0.021859 9.03E-16 2.64E-11 2.31E-13 4.68E-06 6.70E-06 Std. dev.	1 1.001608 1.067353 1 1.000001 1 1 5 F38 Median	1.001698 1.177343 1 1.000007 1 1 0 <	0 0.000 0.298 1.05E 1.15E 3.69E 0 0	1 707 1 134 1 :-05 1 :-07 1 :-07 1 : 1 : 1 : 1	180. 180. 180. 180. 180. 180. 180. 180. 180. -08	3276 7353 3276 9794 3276 3276 3276 3276 539 Median	180 182 182 180 180 180 5	0.3276 0.8577 0.3277 2.3246 0.3276 0.3276 0.3276 0.3276 Mean 4.85E-05	0 0.48185 0.000182 1.11834 0 0 0 0 Std. dev.

F. No.	F37				F38							F39						
Metrics	Median	Mean	Std. de	v.	Medi	an	M	ean		Std	. dev.	Medi	an	Mean		Std. d	ev.	
ABC	-24.1568	-24.1568			-42.9			2.94	44)E-12	4.851		4.85E-	05	6.14E-	_	
ACO	-24.1568	-24.1549		8	-42.9		_	2.94		-	IE-14			4.85E-		1.38E-	_	
EHO	-24.0661	-24.0457			-42.8		_	2.830		-	98118	-		4.85E-		1.52E-	_	
EWA	-11.3453	-13.1553			-42.4		_	0.252			15068	_		4.86E-		2.36E-		
GSA	-24.1568	-24.148	0.0430		-42.9		_	2.844		-	55228	-		4.84E-		1.37E-	_	
KHA	-24.1568	-24.1568			-42.7		_	2.720			27429	-		4.85E-		2.49E-		
MBO	-24.1568	-24.1568			-42.9		_	2.94		-)4484	-		4.85E-		5.45E-	_	
PSO	-24.1366	-24.1300	0.0134		-42.9			2.943		-	0925	-		4.85E-		1.56E-	_	
SCA	-24.1404	-24.142			-42.9		_	2.94		-)1581	-		4.85E-		1.91E-	_	
F. No.	F40	-24.1308	0.0205	52	-42.9		-4	2.94.	52	0.00	1501	4.051	-03 F4		-05	1.911.	10	_
Metrics	Median	Mean	Std. d	ev		dian		Me	an		Std.	dev	-	edian	Me	an	Std.	dev
Proposed	-0.0004414					25177	603		36948	535		2175916		culali	-1		2.95	
CSA	-0.08478	-0.08478			_	0118	005		0118	555	0.072	2175710	-1		-1		0	L-00
					_							2614	_	2742		20552	-	104
ABC	-0.00135	-0.00147			_	85066)		86875		0.01		-	2743		38552	0.35	1841
ACO	-0.00023	-0.00308			-	0729			4216		0.193		-1	07574	-1	06021	0	22/1
EHO	-0.00033	-0.00033			_	99955			19105		0.06		-	97574		96931	0.02	
EWA	-0.00018	-0.00019			_	18583			38881		0.16		-	0821		28969	0.36	0464
GSA	-0.00721	-0.00734			_	12586	•		12677		0.00		-1		-1	02222	0	270-
KHA	-0.00032	-0.00033			_	1831			30702		0.06		-1			93333		3707
MBO	-0.00147	-0.00153			_	71294			73001		0.010		-1	00017	-1	0000-	2.79	
PSO	-0.05622	-0.47053			_	79077			75878		0.219		-	99968		99928	0.00	
SCA	-0.00023	-0.26699	0.449	-		15254		0.3	05494		0.21		-0.	99969	-0.	99958	0.00	0406
F. No.	F43				F44							F45						
Metrics	Median	Mean	Std. de		Media		Mea			Std. d		Media		Mean			. dev	
Proposed	0.06447	0.06447	2.89E-1		6.33E-0		1.02			1.11E		1.42E-0)7	2.33E			8E-07	
CSA	0.06447	0.06447	5.65E-1	7	5.19E-6	52	2.09E-61		51 3.16E-		-61	0		1.58E	-31		1E-31	
ABC	0.06447	0.06447	6.35E-1	7	0.00539) 2	0.00	68 0		0.005	005398 6.5)9	3.16E	-08	7.2	3E-08	3
ACO	0.06447	0.06447	4.82E-1	7	1.22E-0)5	1.75	E-03	3	4.97E	-03	0		0		0	0	
EHO	0.064678	0.064827	0.00036	1	2.36028	36	2.95	2881	L	1.908	784	0.0156	26	0.0276	524	0.0	23508	3
EWA	0.067695	0.070012	0.00702	3	1.32824	46	2.23	2653	3	2.055	741	0.42412	27	0.9720	563	1.9	38851	1
GSA	0.06447	0.06447	5.04E-1	7	0.00163	35	0.01	0816	5	0.031	779	7.12E-2	20	1.17E	-19	1.1	5E-19	¢
KHA	0.06447	0.06447	1.13E-1	2	5.27E-0)9	0.00	0189)	0.001	033	1.73E-	1	5.40E	-11	7.2	0E-11	Ĺ
MBO	0.06447	0.06447	1.18E-1	2	0.07493	33	0.25	1114	1	0.424	296	0.0007	58	0.0073	305	0.0	13659)
PSO	0.064473	0.064476	4.85E-0	6	0.00060)2	0.00	1295	5	0.001	885	0.0042		0.0062	728	0.0	07226	5
SCA	0.064475	0.064478	7.28E-0	6	0.00043	34	0.00	0853	3	0.001	007	0.0034	51	0.0048	311	0.0	03892	2
F. No.	F46				F47						F48							
Metrics	Median	Mean	Std. dev.		Media	n N	Aean		Std.	dev.	Mee	lian	Mear	L	Std	l. dev.		
Proposed	-19.2085	-19.2085	31070.343	351	-0.9999	- 99	0.999	99	5.821	E-06	-10.	8723	10.8	68999	0.0	075080	46	
CSA	-19.2085	-19.2085	4.57E-15		-0.963	53 -	0.963	53	0		-10.	8723	10.8	69	0.0	07508		
ABC	-19.2085	-19.2085	3.72E-10		-0.963	53 -	0.963	53	3.921	E-13	-10.	8723	-10.8	723	7.0	6E-11		
ACO	-19.2085	-19.2084	2.74E-04		-0.963	53 -	0.963	53	0		-10.	8723	10.8	723	2.2	1E-09		
EHO	-19.1904	-19.176	0.035102		-0.9634		0.963	46	7.701	E-05	-10.	8692	-10.8	595	0.0	0184		
EWA	-17.0841	-15.965	3.548643	+	-0.9590)1 -	0.954	25	0.01	1804	-10.	8147	-10.7	569	0.1	13016		
GSA		-19.1985	0.014989	+	-0.9633		0.963		0.000				-10.8			10089		
KHA		-19.2085	5.87E-10		-0.963		0.963		1.081				-10.8			0987		
МВО		-19.2074	0.001899		-0.963	_	0.963		2.16				-10.8		0.0	01805		
PSO		-19.2004	0.008389		-0.9635	_	0.963	_	1.56				-10.8			4E-07		
SCA		-19.2009	0.007262		-0.9635	_	0.963		2.071				-10.8			2E-07		
F. No.	F49			F50		-			,			51	- 5.5			_ 0/		
Metrics		Mean	Std. dev.	-	, dian	Mea	n		Std.	lev		Median	N	lean		Std. de	v.	
						_	n 27833:	32		1856					_	3.19E-3		
Proposed		-186.731	9.47E-05		.5364			55			_	.97E-35		.41E-34				
CSA	-186.731	-186.731	3.81E-14	-	.5364	-9.02			2.579			2.29E-64		.22E-64	_	1.82E-6		
ABC	-186.731	-186.731	6.01E-05	-	.5305	-10.5			0.010			78E-12		.06E-11	-	3.48E-1		
ACO	-186.652	-186.561	0.189325		.5364	-9.56			2.561			.4e-315		.4e-311	-	1.4e-31		
EHO	-186.201	-186.085	0.478853	-4.9	95503	-5.32	281-		1.178	23	4	.77E-08	4	.94E-08		2.27E-0	8	
Continued																		

F. No.	F49			F50			F51					
Metrics	Median	Mean	Std. dev.	Median	Mean	Std. dev.	Median	Mean	Std. dev.			
EWA	-163.845	-152.86	32.1348	-2.26778	-2.37761	1.178693	1.55E-06	3.40E-05	9.46E-05			
GSA	-185.427	-185.171	1.287655	-10.5364	-10.5364	1.86E-15	2.92E-21	4.85E-21	5.40E-21			
KHA	-186.731	-186.731	7.49E-07	-10.5364	-7.78394	3.709944	1.78E-12	2.54E-12	2.93E-12			
МВО	-186.729	-186.718	0.020366	-2.87114	-4.47229	2.898341	3.01E-13	1.81E-12	3.85E-12			
PSO	-186.647	-186.592	0.137766	-5.01782	-5.17974	1.641081	1.63E-155	4.87E-145	2.66E-144			
SCA	-186.638	-186.513	0.274842	-4.95368	-4.99818	0.417868	1.94E-154	2.35E-146	9.10E-146			

Table 5. Performance analysis on multimodal fixed-

dimension benchmark test functions.

.....

The Proposed algorithm demonstrates superior overall performance, especially in complex functions, while maintaining good stability. CSAMW shows excellent performance in specific cases but lacks consistency. CSALF excels in simpler functions and maintains good precision but may struggle with more complex optimization problems. Therefore, it can be concluded that the modifications implemented have a demonstrable and positive impact on the algorithm's capabilities.

Real-world engineering design problems

In this section, the proposed mCSAMWL algorithm is tested on three real world engineering design problems: the design of welded beams, tension/compression springs, the pressure vessel problem, and their performances are evaluated. In the real world, meta-heuristic algorithms are frequently used to solve engineering design problems. These engineering design problems from the actual world may involve up to 15,000 function evaluations. The parameter values are identical to those in Table 6. Thirty independent runs were conducted to determine the best, average, standard deviation, and worst outcomes. The MATLAB platform was used to evaluate the proposed mCSAMWL algorithm results, while the other algorithm's findings were obtained from the main research publications.

Welded beam design

It serves as a crucial benchmark for evaluating various optimization techniques. This problem aims to bring down the costs of setting up, welder jobs, and material expenses associated with constructing the welded beam. Shear stress, bending stress, buckling load, end deflection, and side constraints are among the property constraints. The design variables include the length of the welded part (l), the thickness of the welding (h), width (b) and height (t). The problem's mathematical representation can be expressed in the following Eqs. (16–25).

Consider

$$\vec{x} = [x_1, x_2, x_3, x_4] = [h, l, t, b]$$
(16)

Minimize

$$f(\vec{x}) = 1.10471x_1^2x_2 + 0.04811x_3x_4(14.0 + x_2), \qquad (17)$$

Subject to

$$z_1(\overrightarrow{x}) = \tau (\overrightarrow{x}) - \tau_{max} \le 0, \tag{18}$$

$$z_2\left(\overrightarrow{x}\right) = \sigma\left(\overrightarrow{x}\right) - \sigma_{max} \le 0,\tag{19}$$

$$z_3\left(\overrightarrow{x}\right) = \delta\left(\overrightarrow{x}\right) - \delta_{max} \le 0,$$
(20)

$$z_{4}\left(\overrightarrow{x}\right) = x_{1} - x_{2} \le 0 \tag{21}$$

$$\sum_{n=1}^{\infty} \left(\overrightarrow{a}_{n} \right) = P - P \left(\overrightarrow{a}_{n} \right) < 0 \tag{22}$$

$$z_5(x) = 1 - 1_c(x) \le 0, \tag{22}$$

$$z_6(x') = 0.125 - x_1 \le 0, \tag{23}$$

$$z_7(\overrightarrow{x}) = 1.10471x_1^2 + 0.04811x_3x_4(14.0 + x_2) - 5.0 \le 0$$
(24)

where,

$$\tau \ (\overrightarrow{x}) = \sqrt{\tau'^2 + 2\tau' \tau'' \frac{x_2}{2R} + \tau''^2}, \\ \tau' = \frac{P}{\sqrt{2}x_1x_2}, \\ \tau'' = \frac{MR}{J}, \\ M = P\left(L + \frac{x_2}{2}\right), \\ R = \sqrt{\frac{x_2^2}{4} + \left(\frac{x_1 + x_3}{2}\right)^2}, \\ J = 2\left\{\sqrt{2}x_1x_2\left[\frac{x_2^2}{12} + \left(\frac{x_1 + x_3}{2}\right)^2\right]\right\}, \\ \sigma \ (\overrightarrow{x}) = \frac{6PL}{x_4x_3^2},$$

F. No.	F52			F53				F54	L					
Metrics	Median	Mean	Std. dev.	Median	Mean	Std	. dev.	Me	dian	Me	an	Std.	dev.	
Proposed	8.796635	37.33597	46.83735	16.6103	15.79659	10.	26487	0.9		0.9	08184	0.03	1144	
CSA	238.3937	236.7943	5.995471	33.82992	34.46036	11.0	69824	1.00	00004	1.00	00005	5.43	E-06	
ABC	141.4293	142.5645	12.27796	101.5629	102.9385	9.3	94156	2.13	30489	2.08	83757	0.19	9241	
ACO	268.1623	269.0643	7.641825	261.5707	258.3739	11.4	41031	7.44	4305	7.42	2176	0.28	933	
EHO	282.9957	283.2481	10.05296	0.004174	0.004197	0.0	00297	0.90	00089	0.90	00088	7.01	E-06	
EWA	308.6437	307.3129	20.38896	9.749386	17.30806	20.3	31796	1.23	38955	1.53	33064	0.68	2945	
KHA	192.3084	189.6491	30.76055	14.45001	14.44976	5.0	87514	1.00	02005	1.62	70184	1.63	9661	
GSA	334.164	329.096	18.884	13.929	14.725	3.84	437	1		1		4.12	E-17	
MBO	120.3378	138.4848	95.70285	153.1993	182.8509	147	7.503	1.1	1029	1.98	34482		5243	
PSO	284.885	283.941	10.731	2.403	22.051		595	5.35		5.18			2939	
SCA	284.328	283.5439	9.383524	4.347903	23.4144		67129	5.80	0416	5.25	50232	1.54	4437	
F. No.	F55			F56					F57					
Metrics	Median	Mean	Std. dev		n Mean	<u> </u>	Std. dev		Mediar		Mean		Std. d	lev
Proposed	2.975284	82.41973	220.016				0.52757		0.00019	_	0.0202	01	0.059	
<u>`</u>														
CSA	7261.82	15884.43	26610.79			-	2.15435	_	1.49460	-	7.1572		16.25	
ABC	2.02E+08	2.57E+08	-				1.51242		1.43E+		5.90E		9.06E	
ACO	5.45E+07	6.22E+07			_		2.51507	_	3.31385		4.9670		5.238	
EHO	3185.183	3115.875	348.5288		_		0.00021		8.76E-0		9.38E-		6.00E	
EWA	8966.783	729977.8	2,427,10				0.57891		0.00048		0.0024		0.004	
KHA	62.0103	84.86197	79.8948				0.01026		39.0573		671.10		1634.	
GSA	1.30E+06	3.19E+06	5 5.46E+0	06 2.33E-0	09 2.41E-	09	4.29E-1	.0	9.63E-0)7	0.0001	17	0.000	61
MBO	1.11E+10	4.49E+10) 5.77E+1	10 5.90364	44 16.865	73	21.0566	51	9.62E+	09	2.31E	+11	4.71E	+ 1
PSO	5648.34	24108.2	74191.49	9 0.00263	3 0.3688	3	1.91746	;	1.61E-0)5	0.0683	83	0.235	971
SCA	5467.49	155527.1	663171.	5 0.01290	07 0.2607		1.02709	¥6 [2.92E-0)6	0.0004	4	0.001	596
F. No.	F58			F59				F60)					
Metrics	Median	Mean	Std. dev.	Median	Mean	Std	. dev.	Me	dian	Me	an	Std.	dev.	
Proposed	0.00053	0.426366	0.796014	167.3204	187.7189	101	.2445	0.64	49873	0.78	89873	0.43	0997	
CSA	19.96677	19.96677	2.50E-13	559.5002	551.3081	126	5.7834	2.19	99873	2.22	29873	0.45	3454	
ABC	11.37484	11.44861	1.135508	34930.49	37092.29	174	430.46	10.5	55882	10.4	48822	1.53	5124	
ACO	20.1862	17.82319	6.144791	537.5839	544.264	115	5.8048	2.43	37575	2.43	30375	0.16	2851	
EHO	0.020634	0.020484	0.000879	91.22564	89.54167	7.9	77985	0.00	03621	0.00)3589	0.00	068	
EWA	2.143827	2.272101	1.256036	240.376	642.5243	941	.1934	0.70	03339	0.70	08207	0.40	3842	
KHA	0.015684	0.593088	0.773717	26.23202	28.17637	11.	21959	0.39	99873	0.32	7654	0.06	7891	
GSA	3.60E-09	3.63E-09	5.96E-10	6938.763	7228.061		51.526		0053		3176	0.37		
MBO	18.79768	14.48087	6.868299	320131.8	523060.6)796.7		55212		37401	9.48		
PSO	20.03872	11.22343	9.946171	98.94225	108.0212		63604		9989		57741		7403	
SCA	18.40507	12.60029	8.840296	98.17692	106.4712		18569		99893		34155		0015	
F. No.	F61	12.00029	0.010290	F62	100.1712	22.	10507	F63		0.2.	1155	0.05	0015	
Metrics	Median	Mean	Std. dev.	Median	Mean	Std	l. dev.		, dian	Me		Std	dev.	
	-1174.94								09962		an 99963		_	
Proposed		-1174.94	0.005321	9.81E-07	0.008174		11995 36005						0156 E 15	
CSA	-1033.61	-1029.02	38.97252	0.063872	0.072718		36005		DE-16		9E-15		E-15	
ABC	-1017.71	-1021.8	22.05166	1.485707	1.470638		94775		2E-12		BE-12		E-13	
ACO	-671.582	-668.226	49.94495	0.825488	0.802076		81675		5E-10		IE-10		E-11	
EHO	-684.502	-688.633	23.95882	0.000323	0.000314		5E-05		89712		2138		8902	
EWA	-697.45	-689.519	40.91739	0.241972	0.373633		71149		1E-11		4825		6594	
KHA	-1017.27	-1006.15	31.37359	0.010242	0.012663		11143		0E-14)E-13		E-12	
GSA	-1111.37	-1109.95	26.92511	0	0	0			2E-30		3E-30		E-30	
MBO	-1076.01	-944.27	260.2547	4.011049	7.176058	6.3	25458	9.28	8E-12	1.40	5E-08	3.57	E-08	
PSO	-619.056	-613.96	43.5838	0.000387	0.103111	0.12	78225	1.52	2E-10	1.80	DE-10	1.31	E-10	
SCA	-623.941	-626.155	52.84877	0.003898	0.092368	0.1	57481	1.16	5E-10	1.56	5E-10	1.11	E-10	
F. No.	F64			F65					F66					
Metrics	Median	Mean	Std. dev.	Median	Mean	5	Std. dev.	:	Media	n	Mean		Std.	dev
	2 52E 12	3.52E-12	9.53E-16	8.70E-05	0.021863	3 (0.055795	5	3.96E-0)6	0.0076	519	0.02	897
Proposed	3.52E-12	01012 11												
Proposed CSA	1.76E-11	1.76E-11	3.69E-18	45.57699	41.77412	2 2	25.13016	6	6.2805		5.9358	362	2.32	552
•				45.57699 53026.77	41.77412 102341.9		25.13016 125225.6	-	6.2805 9.1730		5.9358 5612.8		2.32 2941	

F. No.	F64			F65					F66		4 5.32E+04 7 0.45868 0 2.078248 0 0.467207 0 0.035409 0 66,255,921 1 1.258365 1			
Metrics	Median	Mean	Std. dev.	Median	Mean	S	Std. dev	r.	Media	n	Mean	L	Std.	dev.
ACO	3.12E-10	3.15E-10	1.67E-10	1.34E+05	1.91E+0	5 2	2.14E+0	05	2.29E+	-04	5.32E	+04	7.41	E+04
EHO	3.87E-07	4.23E-07	2.03E-07	2.473693	2.46669	0	0.13222	5	0.4608	23	0.458	68	0.04	4851
EWA	9.86E-08	4.95E-07	1.09E-06	4.878637	5.158461	. 1	.26094	7	1.8291	7	2.078	248	0.96	3983
KHA	1.25E-10	2.32E-07	7.78E-07	0.000167	0.002012	2 0	0.00488	9	0.2789	9	0.4672	207	0.56	7746
GSA	3.65E-12	3.64E-12	5.52E-14	2.16E-18	2.26E-18	6	5.19E-19	9	1.47E-	19	0.035	409	0.10	3724
МВО	1.71E-11	1.50E-11	4.94E-12	1,410,627	1.72E+0	8 3	3.03E+	08	65.107	21	66,25	5,921	1.56	E + 08
PSO	2.93E-10	3.30E-10	2.02E-10	2.438557	5.188774	1	1.1514	4	0.6815	27	1.258	365	1.43	5293
SCA	4.15E-10	4.08E-10	1.79E-10	2.687764	3.719848	3 3	8.36116	1	0.6694	08	0.865	804	0.52	0371
F. No.	F67			F68										
Metrics	Median	Mean	Std. dev.	Median	Mean	Std	. dev.							
Proposed	-24.2097	-23.9244	1.192935	0.555545	0.55615	0.25	58694							
CSA	-18.4328	-18.5526	1.970272	0.576142	0.646125	0.26	68376							
ABC	-19.5097	-19.6271	1.195944	2.051203	2.155658	0.6	18281							
ACO	-9.60851	-9.58506	0.368916	0.212721	0.219866	0.05	53785							
EHO	-11.6481	-11.5874	0.593605	2.91E- 05	3.09E- 05	2.3 05	1E-							
EWA	-11.0755	-11.3069	0.87826	0.037217	0.044023	0.03	31715							
KHA	-22.3215	-22.3038	1.537473	0.037357	0.040049	0.0	16935							1
GSA	-27.4414	-27.4173	0.739022	0.018441	0.020708	0.00	09074							
МВО	-16.5023	-15.9714	3.072747	82.25565	64.20257	42.8	81425							1
PSO	-7.79848	-7.8029	0.748354	0.0117	0.015809	0.0	16752							
SCA	-7.5375	-7.60054	0.845505	0.01594	0.026684	0.03	3207							

 Table 6.
 Performance analysis on multimodal

variable-dimension benchmark test functions.

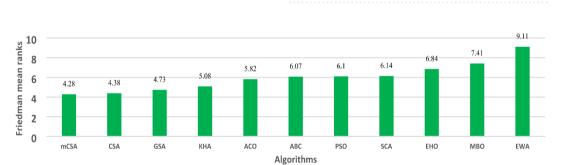


Fig. 2. Friedman mean rank test comparison for multi modal variable-dimension benchmark functions.

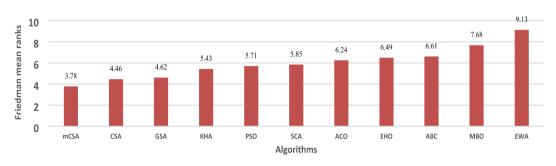


Fig. 3. Overall Friedman mean rank test comparison for 68-benchmark functions.

IM Stake Constraint Stake Stake <	F. No.	Metrics	Proposed	CSA	ABC	ACO	EHO	EWA	GSA	KHA	МВО	PSO	SCA
111	E60	Mean	2.71E+04	2.14E+03	1.51e+07	3473.399	3.91e+09	9.11e+09	275.9256	1231.884	2.69e+09	6.84e+08	7.63e+08
Pieton Solution Solution Isseade	F69	Std. dev	1.15E+04	2.39E+03	1.10e+07	3912.219	9.35e+08	3.23e+09	233.972	1535.154	1.44e+09	2.18e+08	2.99e+08
1000 1000 10000 10000 1		Mean	3.00E+02	3.00E+02	11870.86	429.3429	8551.457	13011.73	10930.07	2447.185	26292.06	1907.703	1667.599
<table-container> 111<td>F70</td><td>Std. dev.</td><td>8.66E-01</td><td>1.62E-04</td><td>2601.034</td><td>100.7011</td><td>2534.666</td><td>3215.011</td><td>2476.143</td><td>2029.243</td><td>15858.02</td><td>1613.804</td><td>1068.301</td></table-container>	F70	Std. dev.	8.66E-01	1.62E-04	2601.034	100.7011	2534.666	3215.011	2476.143	2029.243	15858.02	1613.804	1068.301
Netw 1.111 (a) 2.701 (b) 2.701 (c) 2.114 (c) 2.		Mean	4.05E+02	4.04E+02	410.8322	403.9510	652.5524	1166.998	406.132	406.0538	570.7414	449.6804	442.3137
Phat Sult w Sult w </td <td>F71</td> <td>Std. dev.</td> <td>1.21E+01</td> <td>2.70E+00</td> <td>2.67069</td> <td>0.168421</td> <td>72.50278</td> <td>321.4921</td> <td>1.31166</td> <td>2.621986</td> <td>161.6766</td> <td>28.83612</td> <td>22.11951</td>	F71	Std. dev.	1.21E+01	2.70E+00	2.67069	0.168421	72.50278	321.4921	1.31166	2.621986	161.6766	28.83612	22.11951
Netw Netw <t< td=""><td></td><td>Mean</td><td>5.24E+02</td><td>5.09E+02</td><td>522.2496</td><td>529.6379</td><td>568.2867</td><td>593.2093</td><td>557.1713</td><td>528.6551</td><td>551.0986</td><td>548.0846</td><td>546.8131</td></t<>		Mean	5.24E+02	5.09E+02	522.2496	529.6379	568.2867	593.2093	557.1713	528.6551	551.0986	548.0846	546.8131
1210 5.81.4.0 5.81.4.0 1.82.4.0 8.04.9.4 1.11.0 1.0.2.5.0 5.8.4.9.4 1.21.7.0 8.31.9.8 1.21.2.0 1.21.9.0 <th1.21.9.0< th=""> 1.21.9.0 <th< td=""><td>F72</td><td>Std. dev.</td><td>9.82E+00</td><td>3.51E+00</td><td>3.519481</td><td>4.499739</td><td>8.934784</td><td>17.42522</td><td>9.202492</td><td>9.015167</td><td>15.73492</td><td>7.398523</td><td>5.74464</td></th<></th1.21.9.0<>	F72	Std. dev.	9.82E+00	3.51E+00	3.519481	4.499739	8.934784	17.42522	9.202492	9.015167	15.73492	7.398523	5.74464
19 19 10 10.261 /1 10		Mean	6.06E+02	6.02E+02	602.8508	600	635.7782	652.2342	624.9813	609.1646	628.8333	619.3922	618.1006
<table-container> 12100000000000000000000000000000000000</table-container>	F73	Std. dev.	5.56E+00	1.26E+00	0.860507	4.22e-14	4.67684	12.12105	10.25628	5.834042	12.43779	3.409804	3.228987
10 10	_	Mean	7.37E+02	7.21E+02	741.9019	742.8243	827.7705	828.1968	715.2126	721.3522	784.1267	773.5919	775.7746
12100 13140000 4.061-00 0.014-00 0.014-00 0.015-00 0.010-0 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 0.015-00 <t< td=""><td>F74</td><td>Std. dev.</td><td>1.48E+01</td><td>5.61E+00</td><td>6.306468</td><td>4.737585</td><td>12.13333</td><td>25.76585</td><td>2.990161</td><td>6.346181</td><td>31.40896</td><td>10.22259</td><td>11.7603</td></t<>	F74	Std. dev.	1.48E+01	5.61E+00	6.306468	4.737585	12.13333	25.76585	2.990161	6.346181	31.40896	10.22259	11.7603
<table-container> 1 1 2 4 5 7 3 4 8 3 8 3 8 3</table-container>		Mean	8.15E+02	8.09E+02	821.5658	830.0375	855.5772	864.5029	822.1544	818.7726	858.7612	839.6358	838.8361
<table-container> Herm 9.4.6.ml 9.4.6.ml 9.4.8.ml <t< td=""><td>F75</td><td>Std. dev.</td><td>6.65E+00</td><td>4.60E+00</td><td>5.143925</td><td>4.060205</td><td>5.797003</td><td>10.65639</td><td>4.887784</td><td>8.482399</td><td>20.30692</td><td>7.819929</td><td>7.597678</td></t<></table-container>	F75	Std. dev.	6.65E+00	4.60E+00	5.143925	4.060205	5.797003	10.65639	4.887784	8.482399	20.30692	7.819929	7.597678
<table-container> Her Same Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thline<></table-container>													
Ham 1.871-00 1.814-00 1.858-00 2.973-00 <th< td=""><td>F76</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	F76												
Her Section Se						2129.827			2765.49				
Ham Lise+0 Lise+0 <thlise+0< th=""> <thlise+0< th=""> <thlise+0< th=""></thlise+0<></thlise+0<></thlise+0<>	F77												
Final Section 1.0.5.1.00 1.0.2.97500 <td></td>													
Ham Sile + 4 Sile + 4 Sile + 4 Sile + 5 Sile + 4 Sile + 5 Sile + 4 Sile + 5 Sile + 4 Sile + 4 <thsile +="" 4<="" th=""> Sile + 4 S</thsile>	F78												
Phy Number Suberie Sub													
Ham 199E+03 175E+03 1297.00 962.0418 620.737 4.87±07 1266.40 1141.41 266+06 1942.10 3333.14 14 1.45E+02 7.0F±02 6548.88 270.099 5444.56 6.26±77 1145.719 577.62 1.35±-00 1754.57 1864.50 15 1.72E+01 1.72E+01 1.72E+01 321.840 378.127 322.337 6.60.128 280.870 270.324.6 296.540	F79												
Photo Number of the state state of the state of the stat													
Ham Isker.ov Isker.ov <thisker.ov< th=""> Isker.ov I</thisker.ov<>	F80												
Her Sta.et Sta.et <td></td>													
Hear 158E+03 159E+04 199952 4073.524 6461.42 1882+06 1946.29 983.937 2733.44 296.541 209.543 161.4.0 5.75E+01 6.01E+01 32.14302 484.1921 288.962 6.80e+06 548.757 902.432 1.171.09 664.8275 58.072 173 1.46e+03 1.62E+03 1.62E+03 165.988 1612.132 190.9021 146.908 103.300 176.302 129.158 81.0390 176.302 129.158 81.0390 176.302 129.158 81.0490 103.999 189.305 176.302 129.158 179.169 80.0403 158.013 167.902 125.913 163.913 167.910 163.913 163.913 167.912 129.913 163.913 163.913 167.913 163.91	F81												
Pertention Stat.ev													
Amplian Interval	F82												
Feat Std.ev 9.47E+00 3.65E+00 46.79145 0.79781a 88.9502 146.908 103.706 11.65D 13.2591a 84.0399a 69.70736 FAH Man 1.74E+03 1.74E+03 1738.019 174.7528 1801.469 1903.499 1893.805 1763.023 179.124 175.685 179.924 FAB Man 1.48E+01 1.44E+03 2.40E+03 2.658452 2.07347 87.1427 190.628 2.26105 5.7866 13.3892 185.730 FAB Mean 1.94E+03 1.74E+03 939.951 1497.630 12.7049 2.52e+08 4681.325 81.0640 583.48 640.313 422.837 FA Man 2.94E+03 2.94E+03 2.03E+03 20.7529 600.427 275.84 81.0407 101.44 1.942.94 121.056 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25 600.25													
Hear Interval Interval <thinterval< th=""> Interval <thi< td=""><td>F83</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thinterval<>	F83												
FAM Std. dw. 1.48 E+01 1.94E+01 9.408983 2.658455 20.7347 87.11427 109.6289 2.2.2611 65.79866 1.3.8982 1.8.5573 FAB Mean 2.80E+03 2.01E+03 15416.37 25677.209 1.531,451 1.74e+08 980.403 1680.13 3.03e+06 12725.2 11050.23 FAB Mean 1.94E+03 1.74E+02 903.951 1476.508 275.288 8.68e+06 4681.325 812.074 5554.52 6002.25 425.699 FAB Mean 1.94E+03 2.03E+03 2037.820 675.270 671.444 1.39e+07 1016.287 619.683 211.015 524.854 201.983 201.683 201.983 201.683 213.030 211.055 209.633 201.683 213.043 211.055 209.633 201.683 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 201.894 </td <td></td>													
Hean 2.80E+03 2.01E+03 1541.637 2567.200 1,51,451 1.74e+08 980.403 1686.13 3.03e+06 12725.2 1050.3 54. dev 1.71E+03 1.76E+02 903.951 14976.34 1270.965 252e+08 4763.055 9106.03 653e+06 1360.59 8703.33 76 Man 1.94E+03 1.93E+03 2514.381 6709.087 972.88 6.86e+06 4681.32 812.074 5548.52 6002.57 425.699 761 2.94E+01 2.86E+01 959.768 677.5270 6721.444 1.39e+07 1916.28 619.810 2118.05 2406.391 2405.491 245.812 245.813 2405.491 251.825 2408.491 214.541 251.825 2408.491 245.641 231.653 236.492 236.812 236.812 246.541 231.653 256.483 240.545 230.011 230.450 251.842 245.843 76.144 1.470 10 2.671.40 1.7955 2.946.48 250.940 251.842 251.842	F84												
F85Sd. dev.1.71E + 0.1.76E + 0.09039.5514976.3401.270.0902.52e + 0.8476.3059106.066.53e + 0.011360.598.703.33F86Mean1.94E + 0.01.93E + 0.02.514.3817690.08579278.288.68e + 0.04681.328120.7495554.526002.254925.699F87Mean2.05E + 0.02.03E + 0.02.													
Hean I.94E + 03 I.93E + 03 S151.81 7690.0857 927.828 8.68e + 06 4681.325 812.0749 5554.8.2 6002.25 4925.699 Std. dev 2.94E + 01 2.86E + 01 959.7638 677.2704 6721.444 1.39e + 07 1916.287 621.981 23108.68 543.183 4423.837 F87 Mean 2.05E + 03 2.03E + 03 2037.829 2004.4208 214.1217 228.040 2275.684 214.03 2112.056 293.246 2996.93 F88 Mean 2.02E + 03 3.04E + 00 10.0148 219.0407 204.973 263.828 2358.121 2256.811 2346.541 2251.825 2343.573 F89 Mean 2.30E + 03 2.881.61 2304.688 289.488 245.56 2300.011 2302.17 235.675 255.94 237.148 F01 Mean 2.30E + 03 2.61E + 03 289.626 267.075 275.671 263.1141 264.930 265.93 265.93 265.93 265.93 265.93 <td< td=""><td>F85</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	F85												
F86 Std. de 2.94E +0i 2.86E +0i 959.763 677.2704 671.444 1.39e +07 1916.287 619.813 210.805 643.183 442.3837 P37 Maa 2.05E +03 2.03E +03 2.03E +03 203.829 204.428 214.217 228.004 275.684 214.03 211.056 203.242 209.934 P37 Maa 2.02E +03 2.04E +03 2.01408 240.974 104.647 10.174 67.2754 49.9781 19.8185 2.50184 P38 Maa 2.02E +03 2.02E +03 2.01E +03 2.01741 2.03021 2.031073 2.031053 2.01973 2.03011 2.02063 3.09171 2.51.921 2.51.931 5.5094 2.51.931 5.5094 2.51.913 <													
Mean2.05E+032.03E+032037.2292004.42082141.2172282.042275.6842134.032112.0562093.2462096.934F87Mean2.20E+019.34E+0010.0148621.90407829.4097410.46475100.173467.2715549.9781719.881852.501844F88Mean2.29E+032.30E+032217.4312331.05332261.9782368.2852358.121225.811234.6512251.825243.573F89Mean2.30E+032.30E+032285.162304.6892589.4882945.562300.0112302.172735.6752355.9442371.848F90Mean2.63E+032.61E+032589.262626.79052705.6332791.7752756.7712631.1412648.309265.992654.836F10Mean2.63E+032.61E+032.662.8882706.6242897.3372653.7072655.1012793.877275.7732755.7732	F86												
P87Std. dev.3.02E+019.34E+0010.0148621.90407829.4097410.4647510.0173467.2715549.9781719.8818525.01844P88Mean2.29E+032.30E+032217.4312331.05332261.9782368.2852358.1212256.8112346.5412251.8252243.573P88Mean2.30E+032.82E+0112.556233.36027720.3981247.7979327.337761.2806843.0696162.5391456.49253P89Mean2.30E+032.30E+032285.162304.6892589.4882945.562300.112302.172735.6752355.9942371.848P30Mean2.63E+032.61E+032589.8262626.79052705.6632791.775275.7712631.1412648.3092657.902654.83P41Mean2.73E+032.73E+032.73E+032.73E+032.73E+032.73E+032.73E+032.75E-7722.75E-7712.631.1412648.3092657.902.654.83P51Mean2.73E+032.73E+032.73E+032.73E+032.73E+032.73E+032.73E+032.73E+032.75E-7722.75E-7712.651.102.793.872.75E-7732.75E-7752.75E-7732.75E-7732.75E-7732.75E													
Mean2.29E+032.30E+032.217.4312.31.05332.261.9782.368.2852.358.1212.256.8112.346.5412.251.8252.243.573F88Mean2.30E+032.30E+032.30E+032.285.162.304.6892.589.4882.945.562.300.112.302.172.735.6752.355.9942.371.848F89Mean2.30E+032.30E+032.285.162.304.6892.589.4882.945.562.300.112.302.172.735.6752.355.9942.371.848F90Mean2.63E+032.61E+032.589.8262.626.7902.705.6632.791.7752.757.712.631.1412.648.3092.655.992.654.83F91Mean2.73E+032.73E+032.565.882.760.58115.319153.751453.207063.5229417.837218.90931611.34653F91Mean2.73E+032.73E+032.565.882.760.5812.706.6242.897.3372655.1012.97.8372.755.7322.755.772F91Mean2.92E+032.91E+032.918.7832.942.6732.80119168.35212.95.813.43.79244.380237.307.032.755.773F92Mean2.92E+032.91E+032.918.7832.942.7453.115.5283.460.2442.942.622.927.833.017.392.962.332.962.3432.957.63F93Mean3.01E+032.92E+032.918.732.918.732.942.7453.115.283.460.242.942.622.927.833.017.393.081.6133.069.63<	F87												
F88Maa5.72E+013.28E+0112.556233.360277420.3981247.7979327.3374761.2806843.0696162.5391456.49233F89Mean2.30E+032.30E+032285.162304.68892589.4882945.562300.0112302.172735.6752355.9942371.848F90Mean2.63E+032.61E+032589.8262626.79052705.6632791.7752756.7712631.1412648.39265.992654.386F91Mean2.73E+032.73E+032.55E.882760.05815.702442897.3372653.7072651.012793.872793.772756.772651.012793.872775.0732755.772755.77F91Mean2.73E+032.73E+032.55E.882760.05812.706.6242897.3372653.7072651.012793.872775.0732755.772755.77F91Mean2.92E+032.91E+03291E.733291E.733291E.733292E.7332453.732653.7072653.102793.872775.0732755.772755.77F92Mean2.92E+032.91E+03291E.7332942.0753115.5283460.2442942.622927.8363019.7332962.3432957.563F93Mean3.01E+032.92E+032.91E+03291E.733241.7453115.5283460.2442942.622927.863301.973368.103308.1633069.668F93Mean3.01E+032.92E+032.91E+032.91E+032.91E+032.91E+0													
Mean2.30E+032.30E+032285.16230.468892589.4882945.562300.0112302.172735.6752355.9942371.848F89Mean2.63E+012.76E+0117.936550.946940891.07898224.1530.062971.620206307.917125.2914335.03303F90Mean2.63E+032.61E+032589.8262626.79052705.6632791.7752756.7712631.1412648.3092655.902654.836F91Mean2.73E+032.73E+03255.8852760.058115.319153.753153.207063.522417.837218.90931611.34653F91Mean2.73E+032.73E+032565.8852760.05812706.6242897.3372653.7072655.1012793.872775.0732755.772F91Mean2.92E+032.91E+032918.7832942.07453115.5283460.2442942.622927.8363019.7392962.3432957.563F92Mean3.01E+032.92E+03281.0213551.18793440.2614140.455546.3633073.743358.307308.16133069.668F93Mean3.01E+033.09E+033102.1743090.29513174.783330.827710.2253278.468462.658552.7696228.39842F94Mean3.00E+033.07E+033102.1743090.29513174.7833308.3973260.3653139.024312.0473103.2873103.287F95Mean3.00E+033.07E+03319	F88												
F89indexi													
Hean2.63E + 032.61E + 032589.8262626.7902705.6632791.7752756.7712631.1412648.3092655.912654.836F90Mean2.63E + 034.05E + 0082.600154.312863115.319153.7531453.2070763.5224417.837218.90931611.34653F91Mean2.73E + 032.73E + 032565.8852760.05812706.6242897.3372653.7072651.0102793.872775.0732755.772F01Mean2.92E + 032.91E + 032918.7832942.07453115.5283460.2442942.622927.8363019.7392962.3432957.563F92Mean3.01E + 032.92E + 03281.0213551.1873440.2614140.4953698.633073.7433583.0373081.6133069.668F93Mean3.01E + 033.09E + 033102.1743090.29513174.7833308.3973260.3553139.024312.0473103.2873102.828F94Mean3.01E + 033.09E + 033102.1743090.29513174.7833308.3973260.3553139.024312.0473103.2873102.828F94Mean3.01E + 033.09E + 033102.1743090.29513174.7833308.3973260.3553139.024312.0473103.2873102.828F95Mean3.01E + 033.09E + 033102.1743090.29513174.7833308.3973260.3553139.024312.0473103.2873103.287F96Mean <td>F89</td> <td></td>	F89												
F90Std. dev.1.80E + 014.05E + 0082.600154.31286115.319153.7531453.207063.522417.837218.90931611.34653F91Mean2.73E + 032.73E + 032.565.8852760.05812706.6242897.3372653.7072651.012793.872775.0732755.772Std. dev.8.18E + 014.43E + 0119.144223.88189455.7209492.80119168.3652129.538143.3792443.8002373.90712F92Mean2.92E + 032.91E + 032918.7832942.07453115.5283460.2442942.622927.8363019.7392962.3432957.563F93Mean3.01E + 032.92E + 032821.0213551.18793440.2614140.4953698.633073.7433583.0373081.6133069.668F93Mean3.01E + 033.09E + 033102.174390.29513174.7833308.3973260.3653139.024312.0473103.2873103.287F94Mean3.01E + 033.09E + 033102.174390.29513174.7833308.3973260.3653139.024312.0473103.2873103.287F95Mean3.01E + 033.09E + 033102.1743990.29513174.7833308.3973260.3653139.024312.0473103.2873103.287F96Mean3.01E + 033.09E + 033191.3063411.82183466.4763806.7993456.981327.27823435.8443275.6763253.551F97 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Hean $2.73E+03$ $2.73E+03$ $2.73E+03$ 2565.885 2760.0581 2706.624 2897.337 2653.707 2655.101 2793.87 2775.073 2755.772 $Std. dev.$ $8.18E+01$ $4.43E+01$ 19.14422 3.818984 55.72094 92.80119 168.3652 129.5381 43.37924 43.80023 73.90712 $F92$ Mean $2.92E+03$ $2.91E+03$ $291E+03$ 2918.783 2942.075 3115.528 3460.244 2942.62 2927.836 3019.739 2962.343 2957.563 $F93$ Mean $3.01E+03$ $2.92E+01$ 14.63454 15.009559 48.11038 207.4497 5.16036 2.26533 74.62458 12.74057 14.70874 $F93$ Mean $3.01E+03$ $2.92E+03$ 2821.021 3551.1879 3440.261 4140.495 3698.63 3073.743 358.3037 3081.613 3096.668 $F93$ Mean $3.01E+03$ $2.92E+03$ 3102.174 3990.2951 3174.783 3308.397 3260.365 3139.024 3122.047 3103.287 3102.828 $F94$ Mean $3.01E+03$ $3.99E+03$ 3102.174 3990.2951 3174.783 3308.397 3260.365 319.024 3122.047 3103.287 3102.828 $F94$ Mean $3.01E+03$ $3.99E+03$ 3102.174 13990.4951 19.0431 69.83134 38.8466 44.11037 26.0317 1.492919 1.780704 $F95$ Mean $3.30E+03$ $3.37E+03$	F90												
F91Std. dev.8.18E + 014.43E + 0119.144223.88189455.7209492.80119168.365129.538143.3792443.8002373.90712F92Mean2.92E + 032.91E + 032918.7832942.0753115.5283460.2442942.622927.8363019.7392962.3432957.563F93Mean3.01E + 032.92E + 0314.6345415.00955948.11038207.44975.16033622.2635374.6245812.7405714.70874F93Mean3.01E + 032.92E + 032821.0213551.18793440.2614140.4953698.633073.743358.3073081.6133069.668F94Mean3.01E + 033.09E + 033102.1743090.2951317.84485108.0022403.2259710.2253278.4648462.658552.7696228.39842F94Mean3.01E + 033.09E + 033102.1743090.2951317.47833308.3973260.3553139.024312.0473103.2873102.828F95Mean3.30E + 033.37E + 033191.3063411.82183466.4763806.799345.981327.782343.5844327.576323.557F96Mean3.19E + 033195.0173174.7203330.833352.554342.7183249.6543327.52328.3573223.557F97Mean3.19E + 033195.0173174.7203330.833352.554342.7183249.654327.52328.357323.3573229.173F96Mean													
Hean2.92E + 032.91E + 032918.7832942.07453115.5283460.2442942.622927.8363019.7392962.3432957.563F92Mean3.01E + 032.52E + 0114.6345415.00955948.11038207.44975.16033622.2635374.6245812.7405714.70874 $F93$ Mean3.01E + 032.92E + 032821.0213551.18793440.2614140.4953698.633073.7433583.0373081.6133069.668 $F94$ Mean3.00E + 033.09E + 033102.1743090.29513174.7833308.3973260.3653139.024312.0473103.2873102.828 $F94$ Mean3.00E + 033.09E + 03302.1741.398047319.0043169.8313438.848644.1103726.03171.4921911.780704 $F95$ Mean3.30E + 033.37E + 033191.3063411.82183466.4763806.799345.981272.7823435.8443275.676325.3551 $F95$ Mean3.19E + 033.15E + 033195.0173174.7203330.833352.5543427.1183249.654327.52328.357322.9173 $F96$ Mean3.19E + 033.15E + 033195.0173174.7203330.833352.2553427.183249.654327.52328.357322.9173 $F96$ Mean3.19E + 03315.1673195.0173174.7203330.833352.2553427.183249.654327.52328.357322.9173 $F96$ Mean <td>F91</td> <td></td>	F91												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Std. dev.					55.72094	92.80119	168.3652			43.80023	73.90712
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F92												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
Std. dev. 1.39E+02 5.36E+01 83.7193 517.84485 108.0022 403.2259 710.2253 278.4648 462.6585 52.76962 28.39842 $P94$ Mean 3.00E+03 3.09E+03 3102.174 3090.2951 3174.783 3308.397 3260.365 3139.024 3122.047 3103.287 3102.828 $F94$ Mean 3.30E+03 2.85E+00 2.774271 1.3980473 19.00431 69.83134 38.8486 44.11037 26.0317 1.492919 1.780704 $F95$ Mean 3.30E+03 3.37E+03 3191.306 3411.8218 3466.476 3806.799 3456.981 272.782 3435.844 3275.676 3253.551 $F95$ Mean 3.19E+03 3.15E+03 3195.017 3174.720 330.083 3522.554 3427.118 3249.654 3237.52 328.357 3229.173 $F96$ Mean 3.19E+03 3.15E+03 3195.017 3174.720 3330.083 3522.554 3427.118 3249.654 327.52 328.357	F93			2.92E+03							3583.037		
F94 Std. dev. 1.38E + 01 2.85E + 00 2.774271 1.3980473 19.00431 69.83134 38.8486 44.11037 26.0317 1.492919 1.780704 F95 Mean 3.30E + 03 3.37E + 03 3191.306 3411.8218 3466.476 3806.799 3456.981 3272.782 3435.844 3275.676 3253.551 F96 Mean 3.19E + 03 3.15E + 03 3195.017 3174.7205 3330.083 3522.554 3427.118 3249.654 3327.52 3238.357 3229.173 F96 Mean 3.19E + 03 3195.017 3174.7205 3330.083 3522.554 3427.118 3249.654 3327.52 3238.357 3229.173 F96 Mean 3.19E + 03 3195.017 13.52327 48.34743 159.3801 138.046 58.46674 104.0239 40.04224 39.4367	-	Std. dev.							710.2253			52.76962	28.39842
Std. dev. 1.38E+01 2.85E+00 2.774271 1.3980473 19.00431 69.83134 38.84866 44.11037 26.0317 1.492919 1.780704 P59 Mean 3.30E+03 3.37E+03 3191.306 3411.8218 3466.476 3806.799 3456.981 3272.782 3435.844 3275.676 3253.551 Std. dev. 2.17E-01 1.43E+02 46.93048 1.85e-12 78.28678 142.6995 35.92788 141.697 103.3833 68.47646 35.62172 F96 Mean 3.19E+03 3.15E+03 3195.017 3174.7205 3330.083 3522.554 3427.118 3249.654 3327.52 3238.357 3229.173 F96 Mean 3.49E+01 1.51E+01 28.17671 13.52327 48.34743 159.3801 138.0466 58.46674 104.0239 40.04224 39.4367	F94	Mean	3.10E+03	3.09E+03	3102.174	3090.2951	3174.783	3308.397	3260.365	3139.024	3122.047	3103.287	3102.828
F95 Std. dev. 2.17E-01 1.43E+02 46.93048 1.85e-12 78.28678 142.6995 35.92788 141.697 103.3833 68.47646 35.62172 F96 Mean 3.19E+03 3.15E+03 3195.017 3174.7205 3330.083 3522.554 3427.118 3249.654 3327.52 3238.357 3229.173 Std. dev. 3.84E+01 1.51E+01 28.17671 13.523257 48.34743 159.3801 138.0466 58.46674 104.0239 40.04224 39.43467		Std. dev.	1.38E+01	2.85E+00	2.774271	1.3980473	19.00431	69.83134	38.84866	44.11037	26.0317	1.492919	1.780704
Std. dev. 2.17E-01 1.43E+02 46.93048 1.85e-12 78.28678 142.6995 35.92788 141.697 103.3833 68.47646 35.62172 F96 Mean 3.19E+03 3.15E+03 3195.017 3174.7205 3330.083 3522.554 3427.118 3249.654 3327.52 3238.357 3229.173 Std. dev. 3.84E+01 1.51E+01 28.17671 13.52327 48.34743 159.3801 138.0466 58.46674 104.0239 40.04224 39.43467	F95	Mean	3.30E+03	3.37E+03	3191.306	3411.8218	3466.476	3806.799	3456.981	3272.782	3435.844	3275.676	3253.551
F96 Std. dev. 3.84E + 01 1.51E + 01 28.17671 13.523257 48.34743 159.3801 138.0466 58.46674 104.0239 40.04224 39.43467		Std. dev.	2.17E-01	1.43E+02	46.93048	1.85e-12	78.28678	142.6995	35.92788	141.697	103.3833	68.47646	35.62172
Std. dev. 3.84E+01 1.51E+01 28.17671 13.523257 48.34743 159.3801 138.0466 58.46674 104.0239 40.04224 39.43467	F96	Mean	3.19E+03	3.15E+03	3195.017	3174.7205	3330.083	3522.554	3427.118	3249.654	3327.52	3238.357	3229.173
Continued		Std. dev.	3.84E+01	1.51E+01	28.17671	13.523257	48.34743	159.3801	138.0466	58.46674	104.0239	40.04224	39.43467
	Contin	ued											

F. No.	Metrics	Proposed	CSA	ABC	ACO	EHO	EWA	GSA	KHA	MBO	PSO	SCA
F97	Mean	1.49E+05	1.57E+05	46151.02	393629.20	6,033,642	3.90e+07	963721.7	1.23e+06	4.56e+06	832719.8	768822.3
1.97	Std. dev.	3.63E+05	2.75E+05	50420.62	533225.08	3,387,805	3.27e + 07	273350.8	1.47e+06	4.09e+06	636666.3	655289.3

 Table 7. Comparison of proposed algorithm and other algorithms on CEC-2017 benchmark functions.

F. No.	F1			F2				F	3					
Metrics	Median	Mean	Std. dev.	Median	Mean	S	Std. dev	7. N	/ledian	Mea	an	Std.	dev.	
Proposed	0	0	0	0	0	0)	1	.38E-87	1.38	8E-87	6.81	E-103	
CSA	0	0	0	0	0	0)	1	.38E-87	1.38	8E-87	6.811	E-103	
CSAMW	0	5.75E-33	1.42E-32	0	0	0)	1	.38E-87	1.38	8E-87	6.80	E-103	
CSALF	1.28E-09	2.30E-09	2.52E-09	5.51E-09	7.65E-	09 5	.96E-0	9 1	.38E-87	1.38	3E-87	6.80	E-103	
F. No.	F4			F5]	F6					
Metrics	Median	Mean	Std. dev.	Median	Mean		Std. do	ev. i	Median	M	ean	Std	. dev.	
Proposed	4.68E-36	1.78E-35	3.46E-35	0.292579	0.292	579	8.48E-	11	19.1058	8 19	.10588	3 1.1	2E-06	
CSA	4.65E-65	1.62E-64	2.86E-64	0.292579	0.292	579	8.87E-	17	19.1058	8 19	.10588	3 1.3	3E-14	
CSAMW	9.50E-36	3.52E-35	7.42E-35	0.292588	2.93E-	-01	6.84E-	17	19.10589) 19	.10591	5.3	2E-15	
CSALF	1.52E-65	9.28E-65	2.00E-64	0.292579	0.292	579	1.12E-	11	19.1058	8 19	.10588	3 2.8	5E-07	
F. No.	F7			F8				F9						
Metrics	Median	Mean	Std. dev.	Median	Mean	Std.	dev.	Med	ian M	lean	St	d. dev.		
Proposed	1.74E-08	2.14E-08	1.76E-08	0	0	0		-0.00)379 -().0037	9 3.9	97E-14		
CSA	0	0	0	0	0	0		-0.00)379 -().0037	9 1.2	76E-18		
CSAMW	0	0	0	0	0	0		-0.00)379 -().0037	9 1.2	75E-18		
CSALF	5.65E-09	1.27E-08	1.34E-08	0	0	0		-0.00)379 -().0037	9 6.5	53E-15		
F. No.	F10			F11					F12					
Metrics	Median	Mean	Std. dev.	Median	Mean	ı :	Std. de	ev. 1	Median	M	lean	St	d. dev.	
Proposed	6.19E-06	1.32E-05	2.51E-05	5.52E-21	2.40E	-20	4.34E-	20	5.33E-03	3 6.	46E-0	3 3.	76E-03	1
CSA	6.60E-02	1.15E-01	1.50E-01	1.79E-07	2.47E	-07	2.01E-	07	4.80E+0	01 5.	05E+0	01 1.	73E+01	
CSAMW	6.93E-06	3.08E-03	9.60E-03	8.96E-14	1.36E	-10	3.76E-	10	5.72E-02	2 2.	70E-0	1 4.	21E-01	
CSALF	8.44E-14	2.36E-13	5.15E-13	6.93E-44	2.56E	-42	5.77E-	42	1.78E-0	5 1.	76E-0	6 9.	61E-07	
F. No.	F13			F14		, in the second s			F15					
Metrics	Median	Mean	Std. dev	. Media	n Me	ean	Std.	dev.	Media	an N	lean	Std.	dev.	
Proposed	1.83E-01	2.21E-01	1.88E-01	1.05E-	04 1.0	7E-04	2.36	5E-05	-155	-]	155	0		
CSA	1.19E + 01	1.22E+01	2.31E+0	00 4.92E-	02 4.7	'8E-02	2.96	5E-02	-145	- 3	144.1	1.29H	E + 01	
CSAMW	3.78E-02	8.60E-02	9.95E-02	2 1.26E-	05 1.2	3E-03	4.06	6E-03	-155	-	155	0		
CSALF	1.68E+00	1.72E+00	9.37E-0	6.55E-	05 6.7	'0E-05	8.92	2E-06	-155	-1	154.8	9.131	E-01	
F. No.	F16			F17					F18					
Metrics	Median	Mean	Std. dev	v. Media	n Mo	ean	Std	dan	Medi	an	Mear	n	Std. de	ev.
Proposed	1.84E-02						Joiu	. dev.	Intean					
	1.04L-02	3.35E-02	4.47E-0	2 6.55E-	35 1.1	12E-30		. dev. 0E-30		E-01		E + 00	7.46E +	+00
CSA	2.85E+02) 3.20) 1.93		2.641		7.46E + 1.55E +	
CSA CSAMW			2 4.74E+	01 9.06E-	06 7.2	12E-30) 3.20 1 3.60	0E-30	0 1.93	+01	2.641	E + 00 E + 02		+ 02
	2.85E+02	2.88E+0	2 4.74E+ 1 5.23E+	01 9.06E- 01 4.94E-	06 7.2 43 1.5	12E-30 24E-04) 3.20 4 3.60 3 8.61	0E-30 0E-03	1.931 8 8 8 8 2.16E	+01 -05	2.641 1.40F 1.54F	E + 00 E + 02	1.55E +	+ 02 03
CSAMW	2.85E+02 1.28E-01	2.88E+0 1.68E+0	2 4.74E+ 1 5.23E+ 7.51E-0	01 9.06E- 01 4.94E- 5 3.10E- F20	06 7.2 43 1.5 45 3.5	12E-30 24E-04 58E-23 54E-39) 3.20 4 3.60 3 8.61	0E-30 0E-03 1E-23	1.931 8 8 8 8 2.16E	+01 -05	2.641 1.40F 1.54F	E + 00 E + 02 E-03 E + 01	1.55E + 5.45E- 1.75E +	+ 02 03 + 01
CSAMW CSALF	2.85E+02 1.28E-01 1.71E-05	2.88E+0 1.68E+0 4.41E-05	2 4.74E+ 1 5.23E+	01 9.06E- 01 4.94E- 5 3.10E-	06 7.2 43 1.5 45 3.5	12E-30 24E-04 58E-23 54E-39) 3.20 4 3.60 3 8.61	0E-30 0E-03 1E-23 8E-38	 1.931 8.30E 2.16E 2.51E 	2+01 -05 +01	2.641 1.40F 1.54F	E + 00 E + 02 E-03 E + 01	1.55E+ 5.45E-	+ 02 03 + 01
CSAMW CSALF F. No.	2.85E+02 1.28E-01 1.71E-05 F19	2.88E+0 1.68E+0 4.41E-05	2 4.74E+ 1 5.23E+ 7.51E-0	01 9.06E- 01 4.94E- 5 3.10E- F20	06 7.2 43 1.5 45 3.5	12E-30 24E-04 58E-23 54E-39 n) 3.20 4 3.60 3 8.61 9 1.58	0E-30 0E-03 1E-23 8E-38 dev.	 1.931 8.30E 2.16E 2.51E F21 	2+01 2-05 2+01 an	2.641 1.40F 1.54F 3.08F	E + 00 E + 02 E - 03 E + 01	1.55E + 5.45E- 1.75E +	+ 02 03 + 01 v.
CSAMW CSALF F. No. Metrics	2.85E+02 1.28E-01 1.71E-05 F19 Median	2.88E+0 1.68E+0 4.41E-05 Mean	 2 4.74E+ 1 5.23E+ 7.51E-0 Std. dev. 	01 9.06E- 01 4.94E- 5 3.10E- F20 Median	06 7.2 43 1.5 45 3.5 Mean 1.26F	12E-30 24E-04 58E-23 54E-39 n) 3.20 4 3.60 3 8.6. 9 1.58 Std. 0 2.161	0E-30 0E-03 1E-23 8E-38 dev.	 1.93H 8.30H 2.16H 2.51H F21 Medi 1.29H 	2+01 2-05 2+01 an 2-05	2.641 1.40E 1.54E 3.08E	E + 00 E + 02 E - 03 E + 01 h E - 05	1.55E + 5.45E- 1.75E + Std. dev	+ 02 03 + 01 v. 05
CSAMW CSALF F. No. Metrics Proposed	2.85E+02 1.28E-01 1.71E-05 F19 Median 3.23E-09	2.88E + 0 1.68E + 0 4.41E-05 Mean 3.99E-09	2 4.74E+ 1 5.23E+ 7.51E-0 Std. dev. 3.20E-09	01 9.06E- 01 4.94E- 5 3.10E- F20 Median 3.98E-02	06 7.2 43 1.5 45 3.5 Mean 1.26F	12E-30 24E-04 58E-23 54E-39 n E-01 E+00) 3.20 4 3.60 3 8.6. 9 1.58 Std. 0 2.161	0E-30 0E-03 1E-23 8E-38 dev. E-01 E+00	 1.93H 8.30H 2.16H 2.51H F21 Medi 1.29H 	2+01 2-05 2+01 2-05 2-05 2+00	2.641 1.40E 1.54E 3.08E Mear 2.18I	E + 00 E + 02 E - 03 E + 01 E - 05 E + 01	1.55E + 5.45E-0 1.75E + Std. dev 2.66E-0	+ 02 03 + 01 v. 05 - 01
CSAMW CSALF F.No. Metrics Proposed CSA	2.85E+02 1.28E-01 1.71E-05 F19 Median 3.23E-09 2.90E-04	2.88E+0 1.68E+0 4.41E-05 Mean 3.99E-09 5.03E-04	2 4.74E+ 1 5.23E+ 7.51E-0 Std. dev. 3.20E-09 9.48E-04	01 9.06E- 01 4.94E- 5 3.10E- F20 Median $3.9 \times E-02$ $3.9 \times E+00$	06 7.2 43 1.5 45 3.5 Mean 1.26F 6.11F	12E-30 24E-04 58E-23 54E-39 n E-01 E+00 E-01	3.20 4 3.60 3 8.63 9 1.58 2 58 6.451 6.451 1.371	0E-30 0E-03 1E-23 8E-38 dev. E-01 E+00	1.93H 1.93H 8.30F 2.16F 2.51F F21 Medi 1.29H 9.48F	2+01 05 2+01 an 2-05 2+00 2-07	2.641 1.40F 1.54F 3.08F Mear 2.18I 1.24F	E + 00 E + 02 E - 03 E + 01 E - 05 E + 01 E - 04	1.55E + 5.45E - 1.75E + Std. dev 2.66E - 1.02E +	+ 02 03 + 01 v. 05 - 01 04
CSAMW CSALF F. No. Metrics Proposed CSA	2.85E+02 1.28E-01 1.71E-05 F19 Median 3.23E-09 2.90E-04 1.68E-08	2.88E+0 1.68E+0 4.41E-05 Mean 3.99E-09 5.03E-04 7.54E-07	2 4.74E+ 1 5.23E+ 7.51E-0 Std. dev. 3.20E-09 9.48E-04 2.03E-06	01 9.06E- 01 4.94E- 5 3.10E- F20 M-dian 3.9×E-02 3.9∠E+00 2.49E-01	06 7.2 43 1.5 45 3.5 Mean 1.26F 6.11F 2.74F	12E-30 24E-04 58E-23 54E-39 n E-01 E+00 E-01	3.20 4 3.60 3 8.63 9 1.58 2 58 6.451 6.451 1.371	0E-30 0E-03 1E-23 8E-38 dev. E-01 E-01 E-01	1.93H 1.93H 8.30E 2.16E 2.51E F21 Medi 1.29H 9.48E 2.07E 2.79E	2+01 05 2+01 an 2-05 2+00 2-07	2.641 1.40E 1.54E 3.08E Mear 2.18I 1.24E 1.05E	E + 00 E + 02 E - 03 E + 01 E - 05 E + 01 E - 04	1.55E + 5.45E - 1.75E + Std. dev 2.66E - 1.02E + 2.95E -	+ 02 03 + 01 v. 05 - 01 04
CSAMW CSALF F.No. Metrics Proposed CSA CSALF	2.85E+02 1.28E-01 1.71E-05 F19 Median 3.23E-09 2.90E-04 1.68E-08 2.04E-15	2.88E+0 1.68E+0 4.41E-05 Mean 3.99E-09 5.03E-04 7.54E-07	2 4.74E+ 1 5.23E+ 7.51E-0 Std. dev. 3.20E-09 9.48E-04 2.03E-06	01 9.06E- 01 4.94E- 5 3.10E- F2 → T = 0 3.9×E-02 3.9×E+00 2.4→E-01 6.6→T=01 F23	06 7.2 43 1.5 45 3.5 Mean 1.26F 6.11F 2.74F 6.67F	12E-30 24E-04 58E-23 54E-39 n E-01 E+00 E-01	3.20 4 3.60 3 8.6 9 1.58 2 1.51 6.451 1.371 7.601 3.20	0E-30 0E-03 1E-23 8E-38 dev. E-01 E-01 E-01	1.93 I 8.30 I I	2+01 05 2+01 an 2-05 2+00 2-07 2-04	2.64J 1.40F 1.54F 3.08F Mear 2.18I 1.24F 1.05F 2.80F	E + 00 E + 02 E - 03 E + 01 E - 05 E + 01 E - 04	1.55E 4 5.45E-0 1.75E 4 Std. det 2.66E-0 1.02E + 2.95E-0 1.21E-0	+ 02 03 + 01 v. 05 - 01 04
CSAMW CSALF F. No. Metrics Proposed CSA CSAMW CSALF F. No.	2.85E+02 1.28E-01 1.71E-05 F19 Median 3.23E-09 2.90E-04 1.68E-08 2.04E-15 F22	2.88E + 0 1.68E + 0 4.41E-05 Wean 3.99E-09 5.03E-04 7.54E-07 2.69E-15 Wean	2 4.74E+ 3.23E+ 5.23E+ 7.51E-0 3.2∪E-09 9.48E-04 2. \vee E-04 2. \vee E-05 3.2 \vee E-05	01 9.06E- 01 4.94E- 5 3.10E- F2 M = -12 3.9×E-02 3.9×E-02 3.9×E-02 3.9×E-01 5.7 F23 V. Media	06 7.2 43 1.5 45 3.5 Mean 1.26H 6.11H 2.74H 6.67H	12E-30 24E-04 58E-23 54E-39 n E-01 E-01 E-01 E-01	0 3.20 4 3.60 3 8.6 9 1.58 2 1.61 6.451 1.371 7.601 5	0E-30 0E-03 1E-23 8E-38 dev. E-01 E-01 E-01 E-04	1.93 I 8.30 I 8.30 I 2.16E 2.51E F21 Medi 1.29I 9.48E 2.07E 2.79E	2+01 05 +-01 an 2-05 07 04 24	2.64] 1.40E 1.54E 3.08E Mean 2.18I 1.24E 1.05E 2.80E	E + 00 E + 02 E - 03 E + 01 E - 05 E + 01 E - 04 E - 04	1.55E 4 5.45E-0 1.75E 4 2.66E-0 1.02E + 2.95E-0 1.21E-0 Std	+ 02 03 + 01 v.)5 - 01 04 04
CSAMW CSALF F. No. Metrics Proposed CSAMW CSALF F. No. Metrics	2.85E+02 1.28E-01 1.71E-05 F19 Median 3.23E-09 2.90E-04 1.68E-08 2.04E-15 F22 Median	2.88E + 0 1.68E + 0 4.41E-05 Wean 3.99E-09 5.03E-04 7.54E-07 2.69E-15 Wean	2 4.74E + 1 5.23E + 7.51E-0 3.∠0E-09 9.48E-04 2.√3E-06 2.87E-15 Std. de 4.30E-0	01 9.06E- 01 4.94E- 5 3.10E- F20 3.9≥E-02 3.9≥E+00 2.4∋E-01 6.6⊤E-01 F23 V Mediation 1 1.73E	06 7.2 43 1.5 45 3.5 Mean 1.26F 6.11F 2.74F 6.67F un N +00 4	12E-30 24E-04 58E-23 54E-39 n E-01 E-01 E-01 E-01 E-01 Mean	3.20 4 3.60 3 8.6 9 1.58 2 1.61 6.451 1.371 7.601 1.371 9 1.61 1 1.371 1 1.371 1 1.61	DE-30 DE-03 DE-03 IE-23 BE-38 BE-38 BE-38 dev. E-01 E-01 E-04 E-04 Std. d	0 1.93 I 0 1.93 I 3 8.30 E 4 2.16 E 3 2.51 E 5 2.51 E 6 1.29 I 0 9.48 E 2.07 E 2.79 E 10 2.79 E 10 1.29 I 10 1.29 I 10 9.48 E 10 2.79 E 10 1.29 I 11 1.29 I 12 1.29 I 13 1.29 I 14 1.29 I 15 1.29 I 16 1.29 I	2+01 05 + 01 an 05 05 07 04 24 1ediar	2.641 1.40E 1.54E 3.08E Mear 2.18I 1.24E 1.05E 2.80E 3.08E 3.0	E + 00 E + 02 E - 03 E + 01 E - 05 E + 01 E - 04 E - 04 E - 04	1.55E 4 5.45E-0 1.75E 4 Std. dee 2.66E-0 1.21E-0 1.21E-0 Std. 7	+ 02 03 + 01 v. 05 - 01 04 04 04
CSAMW CSALF F.No. Metrics Proposed CSAMW CSALF CSALF F.No. Metrics Proposed	2.85E + 02 1.28E-01 1.71E-05 F19 Median 3.23E-09 2.90E-04 1.68E-08 2.04E-15 F22 Median -1.00E + 00	2.88E + 0 1.68E + 0 1.68E + 0 4.41E-05 Mean 3.99E-09 5.03E-04 7.54E-07 2.69E-15 Wan -7.67E-0 4.34E-23	2 4.74E + 3.23E + 7.51E-0 3.20E-09 9.48E-04 2.03E-06 2.87E-15 Std. de 1 4.30E-0 2 0.00E +	01 9.06E- 01 4.94E- 5 3.10E- F20 3.9 ≥ E-02 3.9 ≥ E-02 3.9 ≥ E-02 3.9 ≥ E-01 6.5 ⊂ E-01 6.5 ⊂ E-01 F23 v. Mediat 1 1.73E 00 8.55E	06 7.2 43 1.5 45 3.5 M∈ar 1.26F 6.11F 2.74F 6.67F m N +00 4 02 2	12E-30 24E-04 58E-23 54E-39 n E-01 E-01 E-01 E-01 Mean 4.40E +) 3.2(2) 4 3.6(2) 3 8.6 3 8.6 4 1.5(2) 5 1.5(2) 6.45) 1.37(2) 7.60) 6 6 0 6 0 6 0	DE-30 DE-03 DE-03 BE-38 BE-38 BE-38 dev. E-01 E-01 E-01 E-04 Std. d	0 1.93 8.30 8.30 3 2.16 3 2.51 4 2.51 5 2.51 6 3.23 7 2.74 7 2.74 8 2.51 8 2.51 8 2.51 8 2.74 9 4.83 8 2.74 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.83 9 4.93 9 4.93 9 4.93 9 4.93 9 4.93 9 4.93 9 4.93 9 4.93 9 4.93 9	2+01 05 ++01 an 05 05 07 04 24 1ediar -20E-0	2.641 1.40E 1.54H 3.08E Mear 2.181 1.24H 1.05E 2.80E N N N N N N N N	E + 00 E + 02 E - 03 E + 01 E - 05 E + 01 E - 04 E - 04 E - 04 M ean a.84E - 0	1.55E + 1 $5.45E - 1$ $1.75E + 1$ Std. dec $2.66E - 1$ $1.21E - 1$ $1.21E - 1$ Std. 7 9.1 00 2.9	+ 02 03 + 01 vv. 05 01 04 04 dev. 6E-07

 Table 8.
 Analysis of derived variants of proposed mCSAMWL algorithm for 24 benchmark functions.

Algorithm		Proposed	ABC	ACO	CSA	EWA	GSA	MBO	KHA	PSO	SCA
	h	0.1994	0.2093828	0.205735	0.20573	0.3756133	0.1471	0.1981115	0.205899	0.19741	0.2047
Optimal values for variables	1	3.2639	3.5463679	3.2530202	3.47049	2.2838984	5.49074	3.2881733	3.3844076	3.31506	3.53629
Optimal values for variables	t	7.0541	9.0481796	9.0366232	9.03662	6.5632029	10	9.4315589	8.8912834	10	9.00429
b		0.20382	0.2211365	0.205729	0.20573	0.4560403	0.21773	0.2039614	0.2126729	0.2014	0.21003
Optimum cost		1.69702	1.860814	1.695245	1.72485	2.7008027	2.17286	1.7254857	1.7425535	1.8204	1.75917

Table 9. Comparative analysis for the welded beam design problem.

	Proposed	ABC	ACO	CSA	EHO	EWA	GSA	MBO	KHA	PSO	SCA
Best	1.69702	1.860814	1.695245	1.72485	1.7434	2.7008027	2.17286	1.7425535	1.7400148	1.8204	1.75917
Mean	1.7409	2.089541	1.781379	1.72485	2.0042	4.0255967	2.54424	2.455537	2.33025	2.23031	1.81766
Worst	1.7307	2.494788	2.009871	1.72485	2.48355	5.6322353	3.00366	3.284443	3.023209	3.04823	1.87341
Std.	0.40149	0.15017	0.097678	2.2352E-05	0.16505	0.8006264	0.25586	0.403898	0.367012	0.32453	0.02754

Table 10. Comparative statistical analysis for the welded beam design problem.

$$\delta(\vec{x}) = \frac{4PL^3}{Ex_3^3 x_4}, P_c(\vec{x}) = \frac{4.013E\sqrt{\frac{x_3^2 x_4^6}{36}}}{L^2} \left(1 - \frac{x_3}{2L}\sqrt{\frac{E}{4G}}\right), P = 6000lb,$$
$$L = 14 \in E = 30 \times 10^6 psi, G = 12 \times 10^6 psi$$

Range of design variables

$$0.1 \le x_1 \le 2.00, 0.1 \le x_2 \le 10.0, 0.1 \le x_3 \le 10.0, 0.1 \le x_4 \le 2.00$$
(25)

The mCSAMWL algorithm optimizes the welding beam problem's parameters, and the outcome is 1.69702. It is evident from Tables 9 and 10 that the mCSAMWL algorithm has generated the best solution, which is superior to other algorithms except the ACO algorithm. In conclusion, the proposed algorithm is reliable for getting good results for the welded beam design problem.

Tension/compression spring design

Tension/compression spring design is another popular mechanical problem. The weight of the spring needs to be reduced as much as possible to accomplish the goal of this problem's. It can be achieved by managing the coil mean diameter D, the wire diameter d, and the active coil count N. When designing a compression spring, the predetermined restrictions on shear stress, minimum deflection and surge frequency must be adhered to, all while maintaining as little weight as is feasible. The following is the way to define an individual of the goal variables:

Consider

$$\vec{x} = [x_1, x_2, x_3] = [d, D, N]$$
 (26)

Minimize

$$f(\vec{x}) = (2+x_3) x_2 x_1^2,$$
(27)

Subject to

$$z_1(\vec{x}) = 1 - \frac{x_2^3 x_3}{71785 x_1^4} \le 0,$$
(28)

$$z_2\left(\overrightarrow{x}\right) = \frac{4x_2^2 - x_1x_2}{12566\left(x_2x_1^3 - x_1^4\right)} + \frac{1}{5108x_1^2} - 1 \le 0,$$
(29)

$$z_3(\overrightarrow{x}) = 1 - \frac{140.45x_1}{x_2^2 x_3} \le 0,$$
(30)

$$z_4(\overrightarrow{x}) = \frac{x_1 + x_2}{1.5} - 1 \le 0, \tag{31}$$

Design variables range

Algorithms	Proposed	ABC	ACO	CSA	EWA	GSA	KHA	МВО	PSO	SCA
$d(x_1)$	0.051899	0.05	0.0506762	0.05178	0.0576993	0.05	0.0500053	0.3104684	0.051728	0.05078
$D(x_2)$	0.321778	0.3155046	0.3328353	0.35885	0.5148301	0.31731	0.3174998	14.993803	0.357644	0.33478
$N(x_3)$	11.0644	14.454456	12.840343	11.165	10.408336	14.2287	14.024663	0.0131901	11.244543	12.7227
$f\left(\overrightarrow{x}\right)$	0.012668	0.0129786	0.0126847	0.0127	0.0212676	0.01287	0.0126744	0.3104684	0.012674	0.01271

Table 11. Comparative analysis for tension/compression spring design problem.

Algorithms	Proposed	ABC	ACO	CSA	EWA	GSA	KHA	МВО	PSO	SCA
Best	0.0126681	0.0129786	0.0126847	0.01267	0.0212676	0.01287	0.0126744	0.0131901	0.012674	0.01271
Mean	0.0126717	0.0141119	0.0135736	0.01267	9.66E+04	0.01344	0.0129385	0.0185521	0.01273	0.01284
Worst	0.0126708	0.0193867	0.0160979	0.01267	8.19E+05	0.01421	0.0141048	0.0260374	0.012924	0.013
Std. dev	1.2193E-05	1.40E-03	7.59E-04	1.23E-03	1.87E+05	0.00029	4.17E-04	3.57E-03	5.19E-05	7.8E-05

Table 12. Comparative statistical analysis for tension/compression spring design problem.

Algorithms	Proposed	CSA	ABC	ACO	EWA	GSA	KHA	МВО	PSO	SCA
$T_{s}\left(x_{1} ight)$	0.778186	12.4507	0.8881	0.7841	2.007	1.0858	0.7917	0.7944	0.77896	0.81758
$T_h(x_2)$	0.38466	6.15439	0.4313	0.3874	5.3999	0.94961	0.3961	0.4233	0.38468	0.41793
$R(x_3)$	40.3103	40.3196	45.930349	40.808465	59.0617	49.3452	41.033723	41.345423	40.3209	41.7494
$L(x_4)$	199.9898	200	139.73094	193.30955	166.76476	169.487	190.68425	194.39631	200	183.573
$f\left(\overrightarrow{x}\right)$	5885.228	5885.3	6280.4471	5886.9648	52642.982	11550.3	5930.2521	6179.5732	5891.39	6137.37

Table 13. Comparative analysis for pressure vessel design problem.

$$0.05 \le x_1 \le 2.00.0.25 \le x_2 \le 1.3.2 \le x_3 \le 15 \tag{32}$$

The tension/compression spring design results from mCSAMWL and other algorithms are shown in Table 11. The results illustrate that the mCSAMWL algorithm works better than the other state-of-the-art algorithms. Table 12 shows that the suggested mCSAMWL algorithm for the tension/compression spring design problem got similar results after a very small number of function evaluations.

Pressure vessel design

By optimizing four variables, the pressure vessel design problem's objective is to reduce the cost of fabrication by satisfying four constraints. The design variables consist of the thickness of the head (T_h), the length of the section without a head (L), thickness of the shell (T_s), and the inner radius (R). The problem can be modeled mathematically as in following Eqs. (33–39).

Consider

$$\vec{x} = [x_1, x_2, x_3, x_4] = [T_s, T_h, R, L]$$
(33)

Minimize

$$f(\vec{x}) = 0.6224x_1x_3x_4 + 1.7881x_2x_3^2 + 3.1661x_1^2x_4 + 19.84x_1^2x_3 \tag{34}$$

Subject to

$$z_1(\vec{x}) = -x_1 + 0.0193x_3 \le 0 \tag{35}$$

$$z_2(\vec{x}) = -x_2 + 0.0193x_3 \le 0 \tag{36}$$

$$z_3(\overrightarrow{x}) = -\pi x_3^2 x_4 - \frac{4}{3}\pi x_3^3 + 1,296,000 \le 0$$
(37)

 $z_4\left(\overrightarrow{x}\right) = x_4 - 240 \le 0 \tag{38}$

Design variables range

$$0 \le x_1, x_2 \le 99, 10 \le x_2, x_4 \le 200 \tag{39}$$

Algorithms	Proposed	CSA	ABC	ACO	EWA	GSA	KHA	MBO	PSO	SCA
Best	5885.228	5885.33	6280.4471	5886.9648	52642.982	11550.3	5930.2521	52642.982	5891.39	6137.37
Mean	5887.867	5886.7	7595.104	6235.0563	377087.01	23342.3	6370.5053	377087.01	6531.5	6326.76
Worst	6645.244	5887.01	8984.3704	7264.8084	824178.13	33226.3	7451.2312	824178.13	7394.59	6512.35
Std. dev.	2.4009	2.2501	664.42143	345.23833	209370.59	5790.63	277.87154	209370.59	534.12	126.609

Table 14. Comparative statistical analysis for pressure vessel design problem.

Table 13 presents a summary of the best results that the mCSAMWL algorithm and the other commonly used metaheuristic algorithms delivered when solving the problem of designing pressure vessels. Table 13 illustrates that the proposed mCSAMWL algorithm delivered superior outcomes compared to the rest of the algorithms. Table 14 illustrates the results of a statistical analysis carried out on the algorithms used to address the pressure vessel design problem. In summary, the mCSAMWL algorithm delivered the most accurate solutions to the pressure vessel design problem while exhibiting the smallest degree of standard deviation.

Application using mCSAMWL algorithm for balance clustering in WSN

Let $T = \{t_1, t_2, \ldots, t_z\}$ be the set of z sensors in the region of interest. by $t_z = (x_i, y_i) \in \mathbb{R}^2$ indicates the location of the sensor T_z . In order to save energy, sensor nodes are organised into clusters³⁸, with one node in each cluster acting as the cluster head. It is the job of the cluster head to gather data from the other nodes in the cluster and send it on to the base station $bstCL = \{cl_1, cl_2, \ldots, cl_y\} \subset S$. denotes the subset of sensors chosen as cluster heads³⁸. Sensor t_i i is a member of cluster $cl(t_i)$, which is given by Eq. (40).

$$cl\left(t_{i}\right) = \arg_{cl_{i}} min \tag{40}$$

where indicates the Euclidean distance between sensors t_i and cl_j . For a cluster, the sensor subset Q_j , Cluster head h_j is defined as Eq. (41).

$$Q_{j} = \{t_{i} | t_{i} \in T, cl(t_{i}) = cl_{j}\}$$
(41)

This research optimizes the three most recurrent functions. First, the objective function is the average intra cluster distance. If the sensor nodes and cluster head are closer, less energy is needed to transmit data between them. It is represented in Eq. (42).

$$P_{DsCH} = \sum_{i=1}^{N} D_{s_i}^{ch^k} \tag{42}$$

where, $D_{s_i}^{ch^k}$ denotes the Euclidean distance between sensor nodes and cluster heads

Balance cluster formation is the second objective function to consider, as it depends on the node degree, i.e. number of nodes that are associated with the CHs. It can be achieved by considering the average distance between the CHs. The distance between cluster heads should be maximum to attain disbursement of the clusters throughout the network. It is represented below in Eq. (43).

$$P_{DCH} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{K} D_{ch_j}^{ch_i}}{K}$$
(43)

where, $D_{ch_i}^{ch_i}$ denotes the distance between cluster heads.

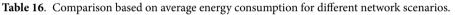
The average cluster head-to-base station distance is the third objective function. The shorter the distance between CHs and BS, the more likely it is that a node closer to BS will be chosen as a CH because it will take less energy to send all the data to BS as given in Eq. (44).

$$P_{CHBS} = \frac{\sum_{i=1}^{M} dis \left(CH_i, BS \right)}{K} \tag{44}$$

where, the distance from the cluster head to the base station is denoted by $dis (CH_i, BS)$, K represents number of cluster heads. So, P_{CHBS} is expressed as in Eq. (45).

$$f = \phi_1 P_{DsCH} + \phi_2 P_{DCH} + \phi_3 P_{CHBS} \tag{45}$$

where, $\phi_1, \phi_{12} \land \phi_3$ are the weighted coefficients such that, $\phi_1 + \phi_2 + \phi_3 = 1$


Results and discussion

In this research, we present an efficient method for selecting CHs using the modified Chameleon Swarm Optimization Algorithm (mCSAMWL) and a fitness function that considers average intra-cluster distance, average cluster head to base station distance. Based on the area the WSN network covers, the algorithm comprises three distinct groups: WSN ~ 1 for 100×100 , WSN ~ 2 for 200×200 m,

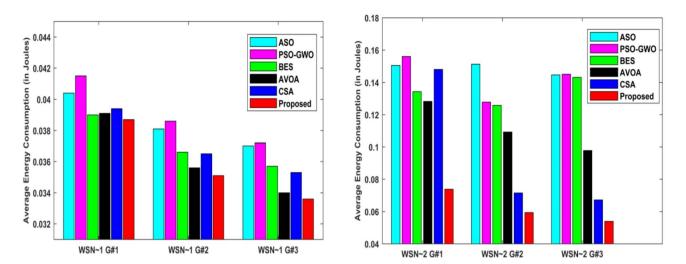
Parameter	Value
Nodes in the network area	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Number of rounds	20,000
Number of cluster heads	10% of the network's total nodes
Number of nodes	G1# 100, G2 # 200, G#3 300
Base station position	Centre
Initial energy (E_0)	1 Joules
Receiving power (E_{Rx})	50×0.00000001 nJ/bit/ m^2
Transmission power (E_{Tx})	50×0.00000001 nJ/bit/ m^2
Data aggregation energy (E_{DA})	5×0.00000001 nJ/bit/ m^2

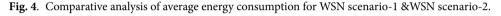
Table 15. Parameter setting.

		100×100			WSN ~ 2 200 × 200			WSN~3 300×300			
Name of technique	G#1	G#2	G#3	G#1	G#2	G#3	G#1	G#2	G#3		
ASO	0.0404	0.0381	0.0370	0.1505	0.1513	0.1446	0.3171	0.2835	0.3174		
PSO-GWO	0.0415	0.0386	0.0372	0.1560	0.1278	0.1451	0.4532	0.3855	0.4099		
BES	0.0390	0.0366	0.0357	0.1343	0.1258	0.1431	0.3800	0.3203	0.3291		
AVOA	0.0388	0.0356	0.0340	0.1282	0.1093	0.0978	0.3678	0.3164	0.3029		
CSA	0.0394	0.0365	0.0353	0.1480	0.0715	0.0672	0.1969	0.1249	0.1937		
Proposed	0.0387	0.0351	0.0336	0.0738	0.0594	0.0539	0.1340	0.1015	0.0925		

.....

and WSN ~3 for 300×300 m. Each of these groups corresponds to a different size by varying the number of sensor nodes. G#1 consists of 100 nodes, G#2 consists of 200 nodes, and G#3 consists of 300 nodes, respectively. The parameter setting for the WSN network is shown in Table 15. In this section, the performance of six commonly used techniques, the Atom Search Optimization (ASO)³⁹, the Hybrid Particle Swarm Optimization and Grey Wolf Optimization (PSO-GWO)⁴⁰, the African Vulture Optimization Algorithm (AVOA)⁴¹, the Bald Eagle Search Algorithm (BES)^{42,43}, and the Chameleon Swarm Algorithm (CSA)²⁵, are assessed in light of simulation parameters, average energy consumption, residual energy of the network, total energy consumption, dead nodes, and cluster head frequency. The simulation was run 20,000 times to determine which nodes were alive and which were deceased, while 1,000 rounds of execution were performed to assess the metrics for the performance of the algorithms mentioned above.


Simulation parameters


The effectiveness of the proposed clustering technique has been determined using the simulated parameters listed below:

- (a) Average Energy Consumption: It determines the mean gap between every sensor node's starting and ending energy levels. To put it another way, it's the amount of energy that each node in a WSN network uses every round to send and receive packets of data.
- (b) Total Energy Consumption: The energy dissipation of a network over a single round is the total amount of power consumed by the network's nodes during that round.
- (c) Total Residual Energy: The total amount of residual energy is equal to the sum of the energies currently present in each sensor node.
- (d) Dead Node: It is defined as the number of nodes that died over time during the simulation.
- (e) CH Frequency: The frequency at which the sensor nodes performed the duties of CH during a certain time frame. High frequency suggests a sensor node is regularly selected as a CH, while low frequency means it is not.

Average energy consumption evaluation

Table 16 illustrates the average energy consumption performance of metaheuristic algorithms for a range of network sizes as well as node densities. Clustering techniques using the mCSAMWL algorithm consume less energy on average than other algorithms. Table 14 clearly shows the clustering technique using the mCSAMWL algorithm has the lowest average energy consumption in all network scenarios. The performance of different algorithms based on average energy consumption is depicted in Figs. 4 and 5. This technique outperforms its rivals' algorithms in each of the nine scenarios. The PSO-GWO algorithm performs the worst, followed by the ASO algorithm. The standard CSA algorithm has also demonstrated subpar performance compared to the mCSAMWL-based clustering method.

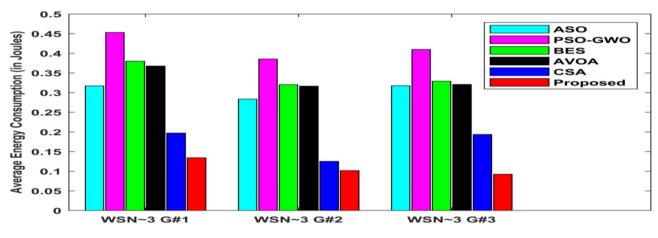


Fig. 5. Comparison based on average energy consumption for WSN scenario-3.

For WSN ~ 1, the average energy consumption of clustering techniques based on the mCSAMWL algorithm is 0.0387, 0.0351, and 0.0336 joules which is 1.77%, 3.83% and 4.81% lesser than CSA technique. Also, the respective values for WSN ~ 2 are 0.0738, 0.0594, and 0.0539 joules which are 50.1%, 59.8% and 19.7% better than CSA technique. Moreover, with values of 0.1340, 0.1015, and 0.0925 joules proposed technique consumes lesser average energy than CSA technique by 31.9%, 18.7%, and 52.2% respectively. These results reveal minimal energy consumption variance across all the mCSAMWL algorithm-based clustering scenarios. It is not the case for ASO³⁹, PSO-GWO AVOA⁴¹, BES^{42,43}, CSA²⁵ techniques.

Total energy consumption evaluation

Figures 6, 7, 8, 9 and 10 depicts the total energy consumption of the clustering technique using the mCSAMWL algorithm in comparison to the remaining techniques ASO³⁹, PSO-GWO AVOA⁴¹, BES^{42,43}, CSA²⁵ for 1000 iterations. Based on Table 17, PSO-GWO and ASO are the worst performers in terms of total energy consumption, followed by the BES technique. In all the scenarios considered, the mCSAMWL algorithm for the clustering technique performs optimally, followed by the CSA and AVOA techniques. Compared to the mCSAMWL algorithm-based clustering technique, the total amount of energy consumed by other techniques is significantly higher. The faster the sensor node depletes its energy, the sooner the WSN network will collapse. Whereas, in the case of the mCSAMWL algorithm-based clustering technique, the total energy consumption due to its low energy consumption compared to the other techniques.

In the WSN ~1 scenario, the total energy consumption of the clustering technique based on the mCSAMWL algorithm is 7.7373, 6.9473, and 6.6526 joules which is lesser than 1.62% in G#1, 6.25% in G#3 scenario of CSA technique but in case of G#2 scenario, it is 5.64% higher as compared to CSA technique. For the WSN ~2 scenario, the respective values are 14.7756, 12.0804, and 11.6942 joules which are 50.7%, 15.7% and 16.2% better than CSA technique. Furthermore, with values of 26.8223, 20.4252, and 17.6456 joules, mCSAMWL gives more efficient results in WSN ~3 than CSA technique by 44.3%, 31.9%, and 1%. Compared with the other

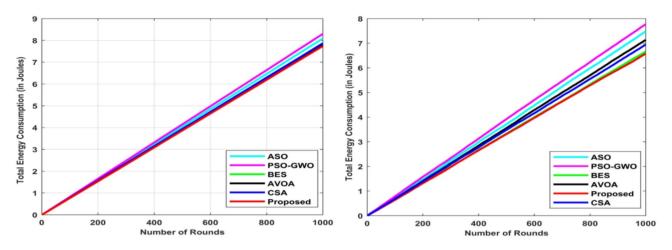


Fig. 6. Comparison based on Total Energy Consumption for WSN ~1 G#1 and WSN ~1 G#2.

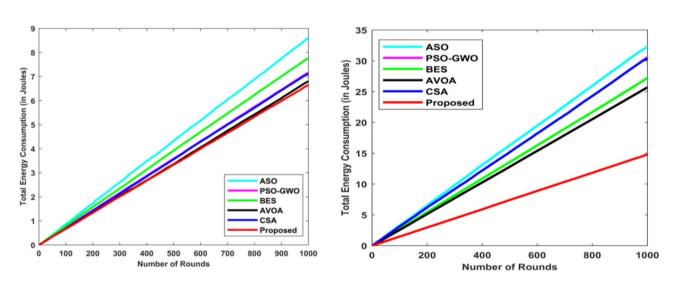


Fig. 7. Comparison based on total energy consumption for WSN ~ 1 G#3 and WSN ~ 2 G#1.

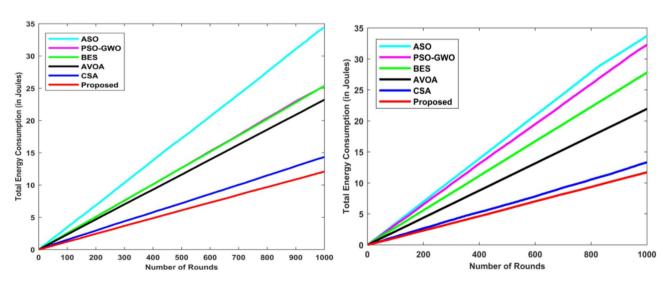
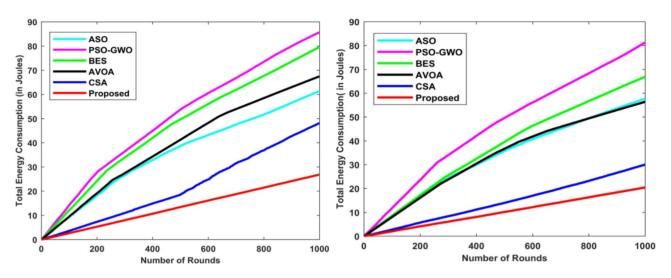



Fig. 8. Comparison based on total energy consumption for WSN 2 G#2 and WSN ~ 2 G#3.

techniques, the clustering technique based on the mCSAMWL algorithm demonstrated the least variation in energy consumption across all scenarios.

Total residual energy

Table 18 depicts residual network energy after 1000 iterations for various scenarios. The mCSAMWL algorithmbased clustering technique outperforms the others in terms of residual energy, as shown in Table 18 The more energy that remains in the network, the longer it will last. Table 18 shows that the mCSAMWL algorithm-based clustering technique has the most residual energy left for all WSN scenarios.

As a result, the lifespan of the WSN network is prolonged. The PSO-GWO technique is the worst performer, followed by the ASO technique. The AVOA technique excelled in BES, ASO, and PSO-GWO, but it was unable to compete with the CSA and mCSAMWL algorithm-based clustering techniques.

Dead nodes

Table 19 presents the details of dead nodes in six algorithms based on the number of rounds. It represents the number of nodes that have some amount of energy that correlates with the number of rounds that have been completed. At the end of 4000 rounds, the mCSAMWL algorithm-based clustering method had no dead nodes, while other techniques did. ASO has the highest number of dead nodes, followed by PSO-GWO, BES, and CSA. It has been noted that the node lifespan has been extended in the clustering technique employing the mCSAMWL algorithm when compared to the ASO³⁹, PSO-GWO AVOA⁴¹, BES^{42,43}, CSA²⁵ techniques.

Similarly, after 18,000 rounds, the CSA technique has 56 dead nodes, followed by AVOA, PSO-GWO, CSA, BES, and ASO. With only 30 dead nodes after 18,000 iterations, the mCSAMWL algorithm-based clustering technique clearly stands well ahead of other techniques.

Cluster head frequency

To ensure that each sensor node draws on a comparable amount of energy, the cluster head's responsibility must be equally divided among sensor nodes. The frequency with which a node in a given network size and density becomes the cluster head throughout the duration of the first 1000 simulation iterations is depicted in Figs. 11, 12, 13, 14, 15, 16, 17 and 18, and 19. It is clear that the behavior of many techniques changes as network size or density changes. The mCSAMWL-based clustering technique has demonstrated remarkable consistency in selecting sensor nodes to serve as cluster heads. It has been accomplished by distributing the responsibility of cluster head throughout the WSN network and maintaining small oscillations around the average cluster head frequency for all network densities. PSO-GWO, ASO, and BES techniques are the worst performers in terms of cluster head frequency parameters.

The proposed modified metaheuristic mCSAMWL algorithm applies Morlet wavelet mutation and Lévy Flight distribution as a different approach to solving optimization challenges. These modifications have made the standard CSA algorithm more effective and assisted in achieving a better equilibrium between the exploitation and exploration phases. The proposed mCSAMWL algorithm's performance has been assessed using 97 benchmark functions and three real-world engineering design problems. Based on the encouraging outcomes, the proposed mCSAMWL method has been implemented for clustering in WSN. The clustering technique using the proposed mCSAMWL algorithm excels over the original CSA and other clustering techniques in terms of average energy consumption, residual energy of the network, total energy consumption, dead nodes, and cluster head frequency. This technique performs extremely well in all network scenarios with variable node densities. The incorporation of Morlet wavelet and Lévy Flight into the existing standard CSA algorithm has improved the capabilities of the original CSA Algorithm.

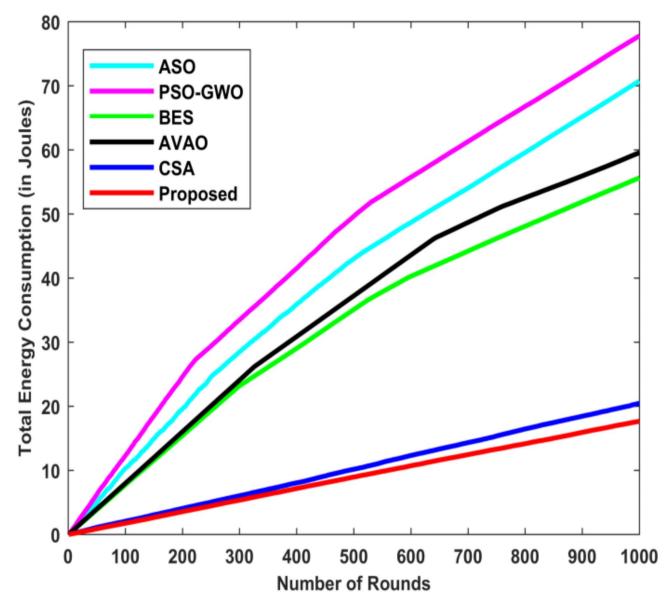
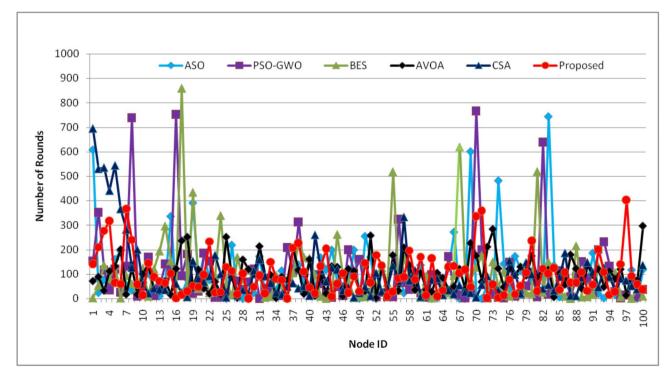


Fig. 10. Comparison based on total energy consumption for WSN ~ 3 G#3.

	WSN~1 100×100			WSN ~ 2 200 × 200)		WSN~3 300×300			
Name of Technique	G#1	G#2	G#3	G#1	G#2	G#3	G#1	G#2	G#3	
ASO	8.0839	7.4727	8.6137	30.4609	34.4287	33.6945	61.3471	57.6814	70.7377	
PSO-GWO	8.2962	7.7676	7.1644	31.7030	25.3171	32.2717	85.6833	78.0320	77.7704	
BES	7.7904	6.6607	7.0981	27.1928	25.3527	22.8524	73.0381	66.8577	55.6158	
AVOA	7.7757	7.1381	6.8028	25.6898	23.2069	21.9429	67.4622	56.3751	59.5466	
CSA	7.8654	6.5761	7.0950	30.0110	14.3342	13.9598	48.1628	30.0099	17.8225	
Proposed	7.7372	6.9473	6.6526	14.7756	12.0804	11.6942	26.8223	20.4252	17.6456	

Table 17. Comparison based on total energy consumption for different network scenarios.

Conclusions and recommendations


Metaheuristic algorithms have gained popularity as a fast and effective way to solve optimization problems. To overcome the limitations of the existing studies in this area, this work proposes, develops, and applies a modified, better performing Chameleon Swarm Algorithm incorporating Morlet wavelet and Lévy Flight distribution to enhance the efficacy of the standard CSA algorithm. The Morlet wavelet mutation is used to enhance the

	WSN~1 100×100			WSN ~ 2 200 × 200)		WSN ~ 3 300 × 300			
Name of technique	G#1	G#2	G#3	G#1	G#2	G#3	G#1	G#2	G#3	
ASO	82.8148	169.0419	250.9480	63.9322	130.4940	201.6039	45.5858	104.7615	139.9848	
PSO-GWO	84.1456	168.5606	254.6063	66.4208	141.2798	201.8322	24.1213	77.4302	103.0415	
BES	83.8614	169.9365	251.4467	68.2203	142.0272	226.6893	30.3246	88.9584	133.9864	
AVOA	83.1846	167.8084	251.9390	69.8836	146.2063	228.9982	36.7370	90.0454	141.4964	
CSA	83.6342	167.6406	252.6286	67.2867	157.6655	238.8621	55.3708	142.4404	219.7570	
Proposed	83.6283	167.7664	252.1614	77.1133	159.0475	241.9464	66.2082	144.8714	220.7759	

 Table 18.
 Comparison based on residual energy of network for different network scenarios.

Rounds	ASO	PSO-GWO	AVOA	BES	CSA	Proposed
2000	0	1	0	0	0	0
4000	5	4	1	4	4	0
6000	7	6	3	5	7	3
8000	10	8	5	8	9	7
10,000	13	11	9	9	11	9
12,000	16	14	16	13	19	13
14,000	20	17	24	17	29	15
16,000	29	23	36	28	39	22
18,000	45	49	50	48	56	30
20,000	63	79	80	66	69	52

Table 19. Comparative analysis in terms of dead nodes.

exploration phase of the CSA algorithm by exploring the entire search space and dividing it into two distinct regions. To improve the exploitation phase, the Lévy Flight distribution strategy with a step reducer factor is added to the normal CSA algorithm. So, the proposed algorithm applies changes to achieve an appropriate equilibrium between the exploration and exploitation phases. The proposed algorithm's efficacy is tested on 68

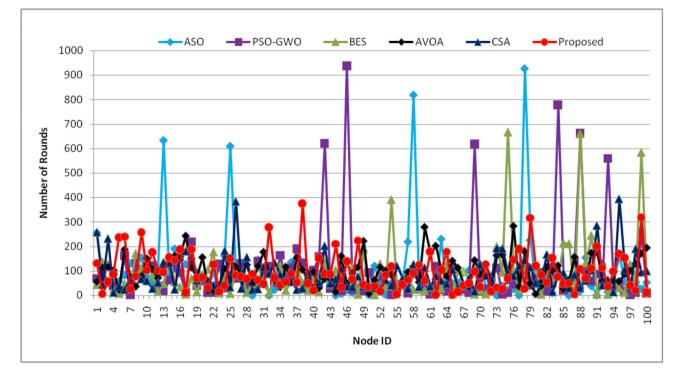


Fig. 12. Comparative analysis of cluster head frequency WSN ~ 1 G#2.

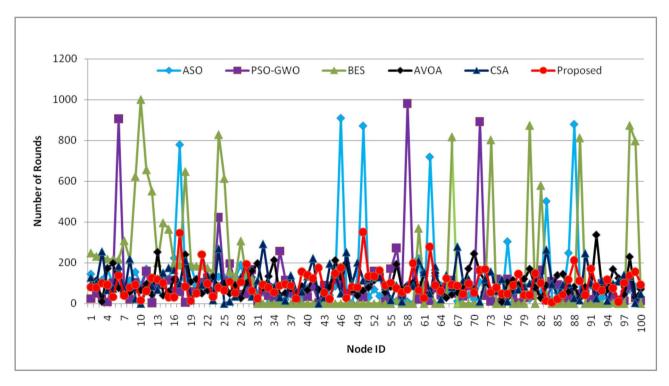


Fig. 13. Comparative analysis of cluster head frequency WSN ~ 1 G#3.

unimodal and multimodal benchmark functions and CEC 2017 test suite functions, and results are compared with 10 commonly used metaheuristic algorithms. The proposed mCSAMWL algorithm obtains the lowest Friedman mean rank, demonstrating its superiority over the other state-of-the-art algorithms.

Furthermore, the proposed algorithm has been used to effectively address three real-world engineering design problems. Finally, the proposed mCSAMWL algorithm has been applied for clustering in WSN to find

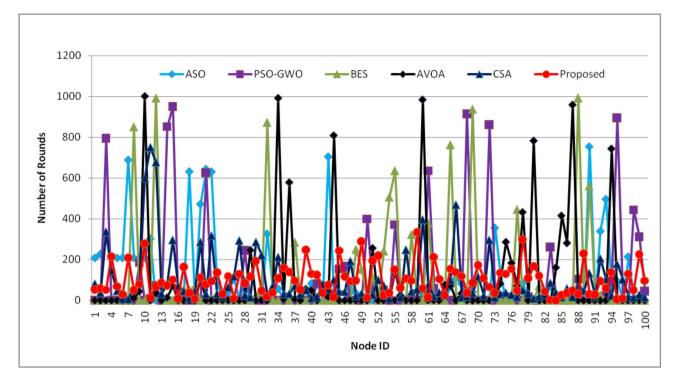


Fig. 14. Comparative analysis of cluster head frequency WSN ~2 G#1.

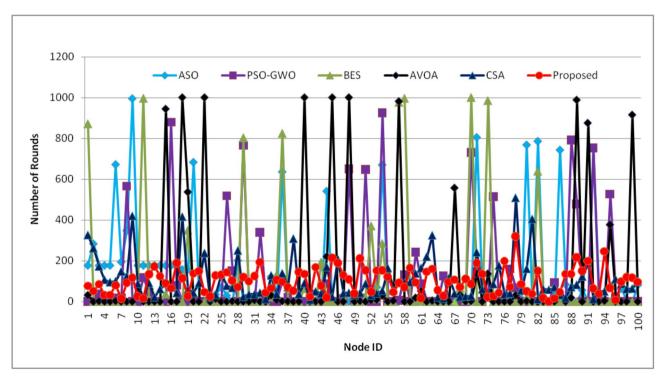


Fig. 15. Comparative analysis of cluster head frequency WSN ~ 2 G#2.

the optimal cluster head set and balance out the clustering process. The fitness function for this clustering technique uses average intra-cluster distance, average inter-cluster distance, and distance between cluster heads and the base station. This clustering technique has been thoroughly tested with three different WSN scenarios under varying node densities. The simulation performance of this technique has been computed against six commonly used metaheuristic techniques. From the experimental results, the clustering technique using the

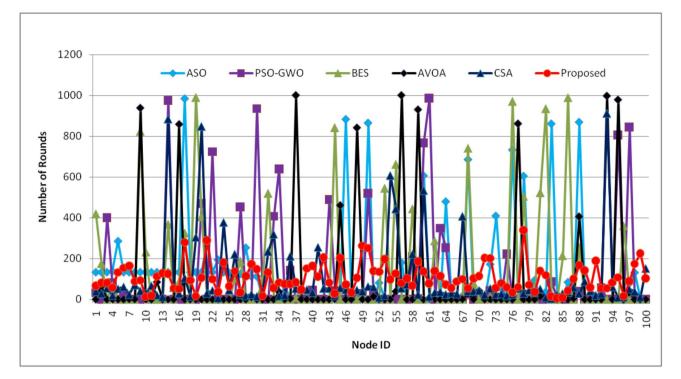


Fig. 16. Comparative analysis of cluster head frequency WSN ~ 2 G#3.

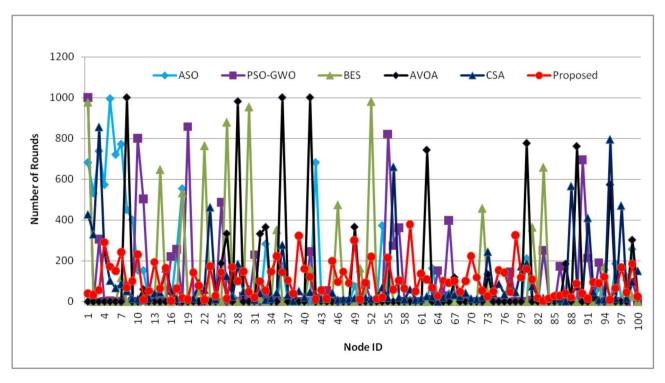


Fig. 17. Comparative analysis of cluster head frequency WSN ~ 3 G#1.

mCSAMWL algorithm outperforms the other technique in terms of average energy consumption, total energy consumption, residual energy, dead nodes and cluster head frequency. Significantly, the clustering technique using the mCSAMWL algorithm has resulted in increasing the lifetime of the WSN network by balancing out the cluster formation process and the average energy consumption of the sensor nodes. Further, the proposed improved algorithm can have applications to address various clustering, medical imaging, image segmentation,

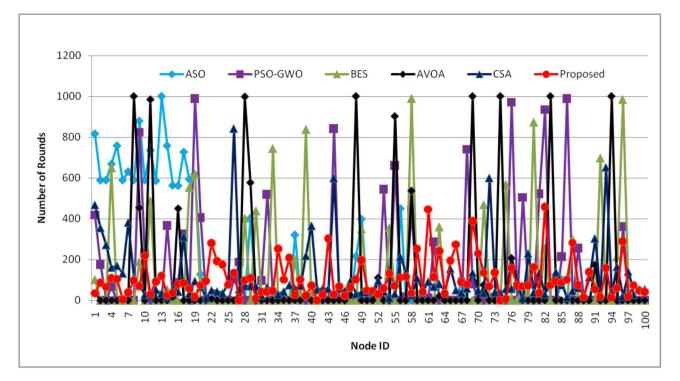


Fig. 18. Comparative analysis of cluster head frequency WSN ~ 3 G#2.

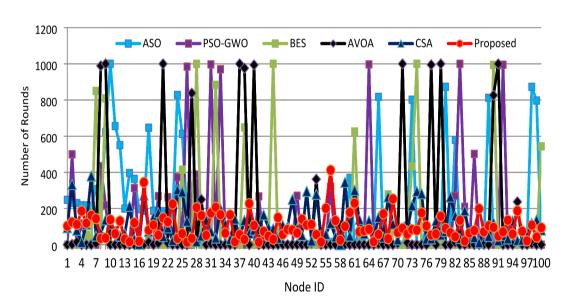


Fig. 19. Comparative analysis of cluster head frequency WSN ~ 3 G#3.

engineering design, data forecasting, classification, feature selection, and other real-world problems. As a future work, a variant of the mCSAMWL is being worked on to handle multi-objectives problems.

Data availability

The benchmark functions used in this research are publicly available and can be accessed from the CEC-BC-2017 dataset, referenced in^{28,29}. https://www.kaggle.com/code/kooaslansefat/cec-2017-benchmark.

Appendix 1

In the following table, f. no. represents the function number, function name defines the name of the function, dim represents the number of dimensions (design variables) of the function, range defines the lower and upper bound of search space for the function, global value defines the global optimum value of the function.

F. no.	Function name	Dim	Range	Global value			
Unimo	dal functions with fixed dimension						
F1	Beale	2	[-4.5, 4.5]	0			
F2	Booth	2	[-10, 10]	0			
F3	Brent	2	[-10, 10]	0			
F4	Matyas	2	[-10, 10]	0			
F5	Schaffer N. 4	2	[-100, 100]	0.292579			
F6	Wayburn Seader 3	2	[-500, 500]	19.10588			
F7	Leon	2	[-1.2, 1.2]	0			
F8	Cube	2	[-10, 10]	0			
F9	Zettl	2	[-5, 10]	-0.00379			
Unimodal functions with variable dimensions							
F10	Sphere	30	[-100, 100]	0			
F11	Power Sum	30	[-1, 1]	0			
F12	Schwefel's 2.20	30	[-100, 100]	0			
F13	Schwefel's 2.21	30	[-100, 100]	0			
F14	Step	30	[-100, 100]	0			
F15	Stepint	30	[-5.12, 5.12]	-155			
F16	Schwefel's 2.22	30	[-100, 100]	0			
F17	Schwefel's 2.23	30	[-10, 10]	0			
F18	Rosenbrock	30	[-30, 30]	0			
F19	Brown	30	[-1, 4]	0			
F20	Dixon and Price	30	[-10, 10]	0			
F21	Powell Singular	30	[-4, 5]	0			
F22	Xin-She Yang	30	[-20, 20]	-1			
F23	Perm 0, D, Beta	5	[-Dim, Dim]	0			
F24	Sum Sugares	30	[-10, 10]	0			
	nodal functions with fixed- dimension		[,]				
F25	Egg Crate	2	[-5, 5]	0			
F26	Ackley N.3	2	[-32, 32]	-195.629			
F27	Adjiman	2	[-1, 2]	-2.02181			
F28	Bird	2	$[-2\pi, 2\pi]$	-106.765			
F29	Camel 6 Hump	2	[-5, 5]	-1.0316			
F30	Branin RCOS	2	[-5, 5]	0.397887			
F31	Goldstien Price	2	[-2, 2]	3			
F31	Hartman 3	3		-3.86278			
			[0, 1]				
F33	Hartman 6	6	[0, 1]	-3.32236			
F34	Cross-in-tray	2	[-10, 10]	-2.06261			
F35	Bartels Conn Bukin 6	2	[-500, 500]	1			
F36				180.3276			
F37	Carrom Table	2	[-10, 10]	-24.1568			
F38	Chichinadze	2	[-30, 30]	-43.3159			
F39	Cross function	2	[-10, 10]	0			
F40	Cross leg table	2	[-10, 10]	-1			
F41	Crowned Cross	2	[-10, 10]	0.0001			
F42	Easom	2	[-100, 100]	-1			
F43	Giunta	2	[-1, 1]	0.060447			
F44	Helical Valley	3	[-10, 10]	0			
F45	Himmelblau	2	[-5, 5]	0			
F46	Holder	2	[-10, 10]	-19.2085			
F47	Pen Holder	2	[-11, 11]	-0.96354			
F48	Test Tube Holder	2	[-10, 10]	-10.8723			
F49	Shubert	2	[-10, 10]	-186.731			
	Shekel	4	[0, 10]	-10.5364			
F50							
	Three-Hump Camel	2	[-5, 5]	0			
F51	Three-Hump Camel nodal function with variable dimension	2	[-5, 5]	0			
F50 F51 <i>Multin</i> F52	*	2	[-5, 5]	-418.983			

F. no.	Function name	Dim	Range	Global value
F54	Periodic	30	[-10, 10]	0.9
F55	Qing	30	[-500, 500]	0
F56	Alpine N. 1	30	[-10, 10]	0
F57	Xin-She Yang	30	[-5, 5]	0
F58	Ackley	30	[-32, 32]	0
F59	Trignometric 2	30	[-500, 500]	0
F60	Salomon	30	[-100, 100]	0
F61	Styblinski-Tang	30	[-5, 5]	-1174.98
F62	Griewank	30	[-100, 100]	0
F63	Xin-She Yang N. 4	30	[-10, 10]	-1
F64	Xin-She Yang N. 2	30	[-2 <i>π</i> , 2 <i>π</i>]	0
F65	Gen. Penalized	30	[-50, 50]	0
F66	Penalized	30	[-50, 50]	0
F67	Michalewics	30	[0, π]	-29.6309
F68	Quartic Noise	30	[-1.28, 1.28]	0
CEC-B	C-2017 Functions	1	<u> </u>	
F69	Shifted and Rotated Bent Cigar Function	10	[-100, 100]	100
F70	Shifted and Rotated Rosenbrock Function	10	[-100, 100]	300
F71	Shifted and Rotated Rastrigin Function	10	[-100, 100]	400
F72	Shifted and Rotated Expanded Scaffer's F6 Function	10	[-100, 100]	500
F73	Shifted and Rotated Lunacek Bi Rastrigin Function	10	[-100, 100]	600
F74	Shifted and Rotated Non-Continuous Rastrigin's Function	10	[-100, 100]	700
F75	Shifted and Rotated Levy Function	10	[-100, 100]	800
F76	Shifted and Rotated Schwefel's Function	10	[-100, 100]	900
F77	Hybrid Function 1 (<i>N</i> =3)	10	[-100, 100]	1000
F78	Hybrid Function 2 (N=3)	10	[-100, 100]	1100
F79	Hybrid Function 3 (<i>N</i> =3)	10	[-100, 100]	1200
F80	Hybrid Function 4 (N=4)	10	[-100, 100]	1300
F81	Hybrid Function 5 (N=4)	10	[-100, 100]	1400
F82	Hybrid Function 6 ($N=4$)	10	[-100, 100]	1500
F83	Hybrid Function 6 (<i>N</i> =5)	10	[-100, 100]	1600
F84	Hybrid Function 6 (<i>N</i> =5)	10	[-100, 100]	1700
F85	Hybrid Function 6 (N=5)	10	[-100, 100]	1800
F86	Hybrid Function 6 (<i>N</i> =6)	10	[-100, 100]	1900
F87	Composite Function 1 (N=3)	10	[-100, 100]	2000
F88	Composite Function 2 (N=3)	10	[-100, 100]	2100
F89	Composite Function 3 (N=4)	10	[-100, 100]	2200
F90	Composite Function 4 (N=4)	10	[-100, 100]	2300
F91	Composite Function 5 (N=5)	10	[-100, 100]	2400
F92	Composite Function 6 (N=5)	10	[-100, 100]	2500
F93	Composite Function 7 (N=6)	10	[-100, 100]	2600
F94	Composite Function 8 (N=6)	10	[-100, 100]	2700
F95	Composite Function 9 (N=6)	10	[-100, 100]	2800
F96	Composite Function 10 (N=3)	10	[-100, 100]	2900
			[-100, 100]	

Received: 18 October 2024; Accepted: 1 April 2025 Published online: 22 April 2025

References

- 1. Iwendi, C. et al. A metaheuristic optimization approach for energy efficiency in the IoT networks. Software: Pract. Experience. 51(12), 2558-2571 (2021).
- 2. Vennila, H. et al. Static and dynamic environmental economic dispatch using tournament selection based ant Lion optimization
- Wang, C. A distributed particle-swarm-optimization-based fuzzy clustering protocol for wireless sensor networks. *Sensors* 23(15), 6699. https://doi.org/10.3390/s23156699 (2023).
- 4. Adegboye, O. R. et al. Refinement of dynamic hunting leadership algorithm for enhanced numerical optimization. IEEE Access. https://doi.org/10.1109/access.2024.3427812 (2024).

- Adegboye, O. R. et al. DGS-SCSO: enhancing sand Cat swarm optimization with dynamic pinhole imaging and golden sine algorithm for improved numerical optimization performance. *Sci. Rep.* 14(1), 1491. https://doi.org/10.1038/s41598-023-50910-x (2024).
- Adegboye, O. R. & Deniz Ülker, E. Hybrid artificial electric field employing cuckoo search algorithm with refraction learning for engineering optimization problems. *Sci. Rep.* 13(1), 4098. https://doi.org/10.1038/s41598-023-31081-1 (2023).
- 7. Sridharan, A. Chameleon swarm optimisation with machine learning based sentiment analysis on sarcasmdetection and classification model. Int. Res. J. Eng. Technol. 8(10), 821–828 (2021).
- Umamageswari, A., Bharathiraja, N. & Irene, D. S. A novel fuzzy C-means based chameleon swarm algorithm for segmentation and progressive neural architecture search for plant disease classification. *ICT Express*. https://doi.org/10.1016/j.icte.2021.08.019 (2021).
- Rizk-Allah, R. M., El-Hameed, M. A. & El-Fergany, A. A. Model parameters extraction of solid oxide fuel cells based on semiempirical and memory-based chameleon swarm algorithm. *Int. J. Energy Res.* 45(15), 21435–21450. https://doi.org/10.1002/er.71 92 (2021).
- Anitha, S., Saravanan, S. & Chandrasekar, A. A modified Gray wolf-based chameleon swarm algorithm for minimizing energy consumption and enabling secure communication in wireless sensor network. *Concurrency Computation: Pract. Experience.* 34(26), e7295. https://doi.org/10.1002/cpe.7295 (2022).
- Rizk-Allah, R. M., Hassanien, A. E. & Snášel, V. A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem. *Energy* 254, 124340. https://doi.org/10.1016/j.energy.2022.124340 (2022).
- Mostafa, R. R., Ewees, A. A., Ghoniem, R. M., Abualigah, L. & Hashim, F. A. Boosting chameleon swarm algorithm with consumption AEO operator for global optimization and feature selection. *Knowl. Based Syst.* 246, 108743. https://doi.org/10.1016 /j.knosys.2022.108743 (2022).
- Wang, J., Lv, M., Li, Z. & Zeng, B. Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective chameleon swarm algorithm. *Expert Syst. Appl.* 214, 119129. https://doi.org/1 0.1016/j.eswa.2022.119129 (2023).
- Hu, G., Yang, R., Qin, X. & Wei, G. MCSA: Multi-strategy boosted chameleon-inspired optimization algorithm for engineering applications. *Comput. Methods Appl. Mech. Eng.* 403, 115676. https://doi.org/10.1016/j.cma.2022.115676 (2023).
- Damin, Z., Yi, W. & Linna, Z. Chameleon swarm algorithm for segmental variation learning of population and S-type weight. J. Syst. Simul. 35(1), 11. https://doi.org/10.16182/j.issn1004731x.joss.21-0968 (2023).
- Braik, M. S., Awadallah, M. A., Al-Betar, M. A., Hammouri, A. I. & Zitar, R. A. A non-convex economic load dispatch problem using chameleon swarm algorithm with roulette wheel and levy flight methods. *Appl. Intell.* 1–40. https://doi.org/10.1007/s1048 9-022-04363-w (2023).
- Hu, G., Yang, R. & Wei, G. Hybrid chameleon swarm algorithm with multi-strategy: A case study of degree reduction for disk Wang–Ball curves. *Math. Comput. Simul.* 206, 709–769. https://doi.org/10.1016/j.matcom.2022.12.001 (2023).
- Sun, Y. et al. Research on signal detection of OFDM systems based on the LSTM network optimized by the improved chameleon swarm algorithm. *Mathematics* 11(9), 1989. https://doi.org/10.3390/math11091989 (2023).
- Zhou, J. & Xu, Z. Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China. *Renew. Energy.* 202, 1110–1137 (2023).
- Dinh, P-H. Medical image fusion based on enhanced three-layer image decomposition and chameleon swarm algorithm. *Biomed. Signal Process. Control.* 84, 104740 (2023).
- Abed-alguni, B. H. Island-based cuckoo search with highly disruptive polynomial mutation. Int. J. Artif. Intell. 17(1), 57–82. https://doi.org/10.1007/s13369-020-05141-x (2019).
- Abed-alguni, B. H. & Paul, D. Island-based cuckoo search with elite opposition-based learning and multiple mutation methods for solving discrete and continuous optimization problems. https://doi.org/10.1007/s00500-021-06665-6 (2021).
- Abed-alguni, B. H., Alawad, N. A., Barhoush, M. & Hammad, R. Exploratory cuckoo search for solving single-objective optimization problems. Soft. Comput. 25(15), 10167–10180. https://doi.org/10.1007/s00500-021-05939-3 (2021).
- Abed-Alguni, B. H., Paul, D. & Hammad, R. Improved salp swarm algorithm for solving single-objective continuous optimization problems. *Appl. Intell.* 52(15), 17217–17236. https://doi.org/10.1007/s10489-022-03269-x (2022).
- Braik, M. S. Chameleon swarm algorithm: A bio-inspired optimizer for solving engineering design problems. *Expert Syst. Appl.* 174, 114685. https://doi.org/10.1016/j.eswa.2021.114685 (2021).
- Gao, Y., Zhang, H., Duan, Y. & Zhang, H. A novel hybrid PSO based on levy flight and wavelet mutation for global optimization. Plos One. 18(1), e0279572. https://doi.org/10.1371/journal.pone.0279572 (2023).
- Jagadeesh, S. & Muthulakshmi, I. Dynamic clustering and routing using multi-objective particle swarm optimization with levy distribution for wireless sensor networks. Int. J. Commun Syst. 34(13). https://doi.org/10.1002/dac.4902 (2021).
- 28. Isiet, M. & Gadala, M. Sensitivity analysis of control parameters in particle swarm optimization. J. Comput. Sci. 41, 101086 (2020).
- Singh, H., Singh, B. & Kaur, M. An improved elephant herding optimization for global optimization problems. *Eng. Comput.* 1–33. https://doi.org/10.1007/s00366-021-01471-y (2021).
- Mittal, H., Tripathi, A., Pandey, A. C. & Pal, R. Gravitational search algorithm: a comprehensive analysis of recent variants. *Multimedia Tools Appl.* 80, 7581–7608. https://doi.org/10.1007/s11042-020-09831-4 (2021).
- Fidanova, S. & Fidanova, S. Ant colony optimization. Ant Colony Optim. Appl. 3–8. https://doi.org/10.1007/978-3-030-67380-2_2 (2021).
- 32. Pasupuleti, V. & Balaswamy, C. Performance analysis of fractional earthworm optimization algorithm for optimal routing in wireless sensor networks. *EAI Endorsed Trans. Scalable Inform. Syst.* **8**, 32. https://doi.org/10.4108/eai.21-4-2021.169419 (2021).
- 33. Tian, Y. & Chang, Y. Application of the particle swarm optimization algorithm-back propagation neural network algorithm introducing new parameter terms in the application field of industrial design. *Results Eng.* https://doi.org/10.1016/j.rineng.2023.1 01728 (2023).
- 34. Gabis, A. B., Meraihi, Y., Mirjalili, S. & Ramdane-Cherif, A. A comprehensive survey of sine cosine algorithm: variants and applications. *Artif. Intell. Rev.* 54(7), 5469–5540. https://doi.org/10.1007/s10462-021-10026-y (2021).
- Sadrishojaei, M., Navimipour, N. J., Reshadi, M. & Hosseinzadeh, M. A new clustering-based routing method in the mobile internet of things using a Krill herd algorithm. *Cluster Comput.* 1–11 https://doi.org/10.1007/s10586-021-03394-1 (2022).
- Kaya, E., Gorkemli, B., Akay, B. & Karaboga, D. A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems. *Eng. Appl. Artif. Intell.* 115, 105311. https://doi.org/10.1016/j.engappai.2022.105311 (2022).
- Ghetas, M. Learning-based monarch butterfly optimization algorithm for solving numerical optimization problems. Neural Comput. Appl. 1-19. https://doi.org/10.1007/s00521-021-06654-8 (2022).
- Wohwe Sambo, D., Yenke, B. O., Förster, A. & Dayang, P. Optimized clustering algorithms for large wireless sensor networks: A review. Sensors 19(2), 322. https://doi.org/10.3390/s19020322 (2019).
- Bi, J. & Zhang, Y. An improved atom search optimization for optimization tasks. *Multimedia Tools Appl.* 82(5), 6375–6429. https://doi.org/10.1007/s11042-022-13171-w (2023).
- Gul, F. et al. Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient Intell. Humaniz. Comput. 12, 7873–7890. https://doi.org/10.1 007/s12652-020-02514-w (2021).

- 41. Abdollahzadeh, B., Gharehchopogh, F. S. & Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. *Comput. Ind. Eng.* **158**, 107408. https://doi.org/10.1016/j.cie.2021.1074 08 (2021).
- Kapileswar, N. & Phani Kumar, P. Energy efficient routing in IOT based UWSN using bald eagle search algorithm. *Trans. Emerg. Telecommunications Technol.* 33(1), e4399. https://doi.org/10.1002/ett.4399 (2022).
- Kusla, V. & Brar, G. S. MOBES: a modified bald eagle search based technique for optimal clustering in wireless sensor network. Univ. Politehnica Buchar. Sci. Bull. Ser. C 86(1), 207–224 (2024).

Acknowledgements

The authors would like to acknowledge Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R197), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors would like to thank the Automated Systems and Soft Computing Lab (ASSCL) at Prince Sultan University, Riyadh, Saudi Arabia, for their support to this work.

Author contributions

All authors reviewed the manuscript.V. Kusla: Conceptualization, Methodology, Formal analysis, Validation, Writing-original draft. GS. Brar: Formal analysis, Validation. Harpreet Kaur: Methodology, Formal analysis, Investigation, Data curation, Writing-review and editing. Ramandeep Sandhu: Conceptualization, Resources, Visualization, Supervision. Chander Prabha: Methodology, Validation. Md Rittique Alam: Writing-review and editing, Md. Mehedi Hassan: Supervision, Investigation, Writing-review and editing. Shahab Abdullah: Writing-review and editing. Samah Alshathri: Conceptualization, Resources, Funding, Supervision. Walid El-Shafai: Methodology, Validation, Visualization.

Funding

The authors would like to acknowledge Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R197), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to G.S.B., M.M.H. or W.E.-S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025