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ABSTRACT 

 

The broad spectrum of dynamic creep tests developed over the last decade around the 

world is one of the more significant innovations in the prediction and analysis of the 

behaviour of asphalt pavements. Although current laboratory creep test methods have 

good potential for evaluating permanent plastic deformation of asphalt mixtures, there 

are serious concerns about their abilities to provide any precise prediction of asphalt 

susceptibility to permanent plastic deformation. These concerns have arisen when 

creep test outcomes have been unsuccessfully compared with data from field 

assessments.  

 

In response to the critical questions about the adequacy of the various unconfined creep 

tests to predict permanent plastic deformation of asphalt, many researchers have been 

attempting to develop methods to improve laboratory test methods. It has been 

hypothesised that by providing a lateral pressure around the laboratory specimens, it 

would be possible to better simulate field conditions and obtain more relevant creep 

test outcomes.  

 

In this study, a new methodology is explored to provide effective confinement for 

asphalt creep specimens. The proposed methodology is founded on the current 

Australian test, adapted to provide simulated field conditions. Finite Element Method 

(FEM) modelling is employed in the study to provide a formative view about the 

overall study. It is used to develop a correlation between the new confined test and in 

situ pavement conditions.  

 

It has been established that the new confined dynamic creep test method (CDCT) is a 

superior test for duplicating in-situ conditions than the existing test methods. 

Outcomes of the study indicate that the CDCT will significantly decrease existing 

shortcomings associated with the existing Australian creep test. It is concluded that the 

CDCT is a much improved test method that better represents in-situ conditions and it 
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can be used as a methodology for evaluating permanent deformation of asphaltic 

pavements. 
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1 CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Australia has 1,690,000 kilometres of public accessible roads, which is one of the 

largest networks in the world, especially on a per capita head basis. Governments 

spend significant amounts of funding (in present values more than $4.7 billion) for 

maintaining  road networks (Shrapnel 2011). Asphalt is used widely in the urban 

environment parts of the network and for example over 10 million tonnes of asphalt 

has been produced yearly at a price of over $1 billion (Huang & Zhang 2010). A 

decrease in asphalt maintenance costs will provide significant saving to the country. 

 

The continuing growth in the quantity and magnitude of vehicle axle loads on road 

pavements has resulted in increased stresses in pavements. One of the major modes of 

pavement distress is creep deformation as illustrated in figure 1.1. Creep deformation 

of a flexible pavement is the time-dependent accumulation of strain generated by 

repeated traffic loads, especially when heavy and slow vehicular loads occur (Öztürk 

2007). After a load is removed from a pavement, some portion of the deformation may 

be recovered while another portion accumulates in the asphalt as creep. 

 

The development of creep in asphalt is associated with a range of factors including 

ambient temperature, load duration, stress levels, material properties and mix design. 

To adequately cater for asphalt deformation in the mix design process potential, field 

performance of a mix must be able to be evaluated within the laboratory and predictive 

relationships established. The laboratory test conditions need to comply as closely as 

possible with the conditions of the pavement in the field. 

 

The broad spectrum of dynamic creep tests developed over the last decade around the 

world is one of the more recent significant innovations in the prediction and analysis 

of behaviour of asphalt pavements.  For any creep test to be widely attractive and 
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accepted it must be reasonably simple to execute and also incorporate repeated loading 

that simulates traffic effects.  

 

 
Figure:  1.1 Permanent deformation of asphalt mixture (Building-Science 2016) 

 

However, several questions have been raised around the world about the capability of 

existing creep tests to effectively predict asphalt susceptibility to permanent 

deformation in-situ. The source of such questioning emanates from the different 

estimations of dynamic creep from laboratory tests compared to the collected data from 

in-situ pavement monitoring (Butcher & Lindsell 1996). One problem with using 

existing dynamic creep tests is that they do not accurately simulate the conditions of 

the pavement in the field (Aksoy & Iskender 2008; Huang & Zhang 2010). The main 

cause of a dynamic creep test’s inability to adequately predict asphalt in-situ behaviour 

is attributed to its use of an unconfined sample condition compared to an in-situ asphalt 

mixture being confined by the surrounding asphalt that provides lateral restraint 

(Butcher & Lindsell 1996). 

 

It is considered that by providing a measure of confinement around dynamic creep 

samples it would be possible to provide improved results, which will correlate better 

with field tests, permitting better prediction of rut resistance. Several ways of 

providing lateral resistance have been tried in previous studies. For example, triaxial 

cells have been used to provide a pulsed (cyclic) vertical stress with either a static or 

pulsed lateral pressure. However, these tests often have proved either too difficult and 

time consuming to run, or did not yield results that differed significantly from the 

standard unconfined test (Butcher & Lindsell 1996). 
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This research aims to improve the suite of existing dynamic creep test methodologies 

by providing an appropriate confining pressure. Confining pressure will be provided 

by applying a hoop stress via a ring arrangement around the sample, augmented by 

using smaller loading platen sizes (figure 1.2), which create a restraint annulus of 

asphalt. These conditions will provide a much improved simulation of field conditions. 

 

 

 
Figure:  1.2 Different platen sizes 

 

Creep deformation is one prevalent failure of asphalt pavements. It has very 

undesirable effects on road performance, such as safety of road users (e.g. loss of 

control of vehicles) and riding comfort (Sohm et al. 2012). This type of pavement 

distress has necessitated the expenditure of millions of dollars on repairing and 

maintaining roads. While there is an existing range of techniques to evaluate and 

analyse permanent deformation of an asphalt mixture, all have their own 

disadvantages. The lack of precise methods to evaluate rut potential and design asphalt 

mixtures has created a challenge for road designers and researchers. Hence, new 

research to advance and redesign laboratory permanent deformation assessment of 

asphalt mixture is required. 

 

1.2 Research hypothesis 

The overarching research hypothesis is: “The existing Australian dynamic creep test 

can be redesigned to more accurately predict in-situ permanent deformation of 

asphalt”. 
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The hypothesis is first examined through an exhaustive stand alone, international 

literature summary that is also embedded throughout the thesis to provide context and 

relevance. The literature review was scrutinised to identify the deficiencies within the 

current creep testing methodologies and a new innovative stress responsive 

confinement system conceived. The system’s authenticity was validated through finite 

element modelling and an extensive series of laboratory testing followed which 

involved the development of new criteria for evaluating creep potential. 

 

1.3 The research 

The study investigated the permanent deformation of asphalt mixtures by redesigning 

the existing Australian dynamic creep test procedure. In order to increase the accuracy 

of the test, this study was intended to replicate field conditions (confining pressure) in 

the laboratory. The research introduced a new method of applying lateral pressure for 

the dynamic creep test by employing a stress responsive confining ring around the 

sample, and different platen and sample sizes to provide a confining annulus of asphalt. 

The research would provide a new and improved laboratory evaluative procedure for 

industry to investigate and design creep resistant asphalt mixes. 

 

The research extended the use of the existing Australian standard by the use of a full 

or quasi confining stress to better replicate field conditions.  Quasi-confinement by use 

of smaller platen on an oversize asphalt sample has been explored with mixed success 

previously by Bullen and Preston (Bullen & Preston 1992) and Austroads (Oliver et 

al. 1995). Later Nunn (Nunn et al. 1998) proposed the extension of the Nottingham 

Asphalt Tester using a similar approach. That work has been encapsulated in the 

current European standard EN12697-25A using a 96 mm diameter platen with 150 mm 

diameter specimens. It is worth noting that Austroads (Oliver et al. 1995) found that 

radial splitting (bursting) occurred for the arrangement recommended in EN 12697-

25A due to the lack of an adequate confining annulus of asphalt. 

 

The intent of this research was to extend the earlier research by exploring the platen to 

sample diameter effects through modelling and experimental work. This work was 

augmented by the use of a hoop stress applied through a confining ring, similar in 

geometry to that used in Geomechanics for odometer testing (soil consolidation). 
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Similar to asphalt fatigue modelling, the complex stress distributions within the small 

laboratory specimens, and the different loading types and magnitudes in the field make 

it difficult to replicate field rutting in the laboratory. With appropriate numerical 

modelling it was considered that it would be possible to develop a calibrated model 

that would assist with field rutting prediction similar to that now widely used in fatigue 

analysis and mechanistic design. 

 

 The study also involved modelling of laboratory and in-situ conditions using Abaqus 

modelling software. This part modelled in-situ and laboratory test situations, including 

the effects of variable factors such as loads, confining conditions and boundary 

conditions. 

 

1.4 Format of the thesis 

The research is presented as follows: 

▪ Chapter one: The chapter introduces the study topic and scope of the study. 

This includes the problem statement and motivations for the study, and the 

main aims of the study are presented.  

 

▪ Chapter two: This chapter is an overview on the performance of asphalt as a 

structural layer, while including terminology, asphalt composition, factors 

affecting pavement service life, asphalt failures modes and mix design. 

 

▪ Chapter three: The related literature on the permanent deformation of asphalt 

is discussed with emphasis on creep parameters. Here, several mathematical 

and mechanical models for explaining viscoelastic behaviour of asphalt are 

presented. 

 

▪ Chapter four: In this chapter, a new methodology is explored to provide 

confinement for asphalt specimens. The chapter first considers key relevant 

previous research related to the adopted methodology and then progresses to  a 

more detailed explanation of laboratory testing methods for aggregates, 
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bitumen, and developing a new prototype for providing a stress responsive 

confinement are discussed. 

 

▪ Chapter five: Here the author discusses the FEM models employed for the 

study. A brief review on FEM and Abaqus modelling software has provided 

for the processes employed to create the models required for the research. 

Finally, outcomes of the models are discussed compared to each other and to 

those outcomes of experimental tests. 

 

▪ Chapter six: This chapter provides details of the experimental work undertaken 

including the effects of test parameters such as air voids, sample/platen 

diameter ratios, asphalt mix type and confining conditions on creep. 

 

▪ Chapter seven: This chapter considers the modelling and laboratory 

relationships. Stress distribution on the confined laboratory specimens were 

evaluated and stresses compared with the stresses in the geometrically 

corresponding point of the models. 

 

▪ Chapter eight: In this chapter, an overarching discussion is provided on the 

outcomes. Some of the more significant modelling and laboratory outcomes 

have been effectively discussed in this chapter. 

 

▪ Chapter nine: In this chapter the main findings of the study have been 

presented.  A summary of study outcomes with some recommendations for 

further work are presented. 
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2 CHAPTER 2 

    ASPHALT AS A STRUCTURAL PAVEMENT ELEMENT 

 

 

2.1 Introduction 

The optimal performance of an asphaltic concrete (asphalt) as a structural pavement 

layer is a function of its components, the operating environment and its functional 

design within the pavement structure. A precise selection of materials and accurate 

design of the asphalt mixture, with due consideration of environmental conditions, is 

essential to maximise service life of the mixture.  

 

Asphalt is a manufactured engineering composite material consisting of aggregate, 

fillers, bituminous binder, air voids and some specific additives. It is manufactured by 

a range of methods dependent on it being a “hot” or “cold” mix. Hot mixed asphalt is 

produced in batch or continuous mixing plants and placed and compacted in a hot 

plastic state. Cold mixed products are typically manufactured using emulsion and used 

for maintenance activities, although materials such as Grave are used in structural 

layers. In-situ recycling can also be undertaken to produce a form of asphalt. This 

thesis is concerned with hot mix asphalt. 

 

2.2 Terminology 

A wide spectrum of terms and definitions is used within road engineering science 

around the world and it is worth setting out same key definitions here. In this thesis, 

the terms normally used in Australia are depicted in figure 2.1 (Sharp 2009). 

Definitions and roles of some important pavement elements are discussed below (AS-

1348.1 1986; Stephenson 2002): 

- Road. A way trafficable by motor-powered vehicles, including footpaths and the 

public right-of-way between abutting property boundaries. 
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- Pavement. That section of a roadway located above the subgrade level for the support 

of, and to form a running surface for, vehicular traffic. 

- Course. Any single layer within pavement structure. 

- Layer.  The portion of one pavement material placed and compacted as a unit. 

- Wearing course (or surface course). The uppermost section of the road pavement 

structure which directly accommodates the traffic.  

- Binder course or (intermediate course). A course between the surface course and 

basecourse. 

- Basecourse (or base or roadbase). The structural course of a pavement composed of 

one or more layers of materials. Basecourse typically consists of natural gravel, 

stabilized materials, crushed stone, fine broken rock, and for heavy duty pavements, 

Portland cement or asphalt concrete.  

- Sub-base. The materials between the subgrade and the basecourse that enables 

efficient and effective load transfer. 

-Subgrade (or basement or roadbed or substrate). The prepared and trimmed 

formation on which the pavement is built. 

- Formation. The finished earthworks surface, without cutting or filling batters. 

-Asphalt. The mixture of aggregate and bituminous binder, with or without additives, 

blended through heating. Some other names for the same product around the globe are 

“hot mix asphalt (HMA)”, “asphalt concrete (AC)”, and  “asphalt mix”, “asphalt 

paving mix” “bituminous mixture (BC)”, “bituminous concrete”, “bituminous paving 

mix”. 

-Binder (or asphaltic binder, or asphalt cement). A coherent material used for holding 

solid particles together in the asphalt mixture.  It is usually straight run bitumen, 

polymer modified bitumen (PMB), or multigrade bitumen. 

- Bitumen. Defined as a black sticky liquid or solid material that is both viscoelastic 

and non-corrosive. It essentially consists of hydrocarbons and their derivatives and 

softens steadily while heated. Bitumen is extracted from natural asphalt or by refinery 

processes of crude oil. 
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Figure:  2.1 Pavement elements (Sharp 2009) 

 

2.3 Road pavements 

A road pavement should be a strong and durable structure, designed for bearing high 

vehicular loads. Road pavements are categorized into the main groups of flexible and 

rigid. A flexible pavement consists of aggregate, and bitumen/asphalt and its total 

structure deflects under loading. A rigid pavement usually contains a Portland cement 

concrete slab. Flexible pavements are more widely employed throughout the globe as 

they have good riding quality and are usually cheaper to construct in comparison to 

concrete pavements for low to medium design traffic.  

 

Flexible pavements, with thin surfacing, transfer vehicular loads to the lower layers by 

particle-to-particle load transfer within the pavement granular structure. Traffic 

stresses are then distributed over a wider area, which result in a pressure decrease with 

depth in flexible pavements. Conventional granular layered flexible pavement, and 

full-depth asphalt pavement are both types of flexible pavements albeit that the load 

transfer mechanisms vary. 
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In a rigid pavement, axle loads are transmitted by a concrete slab action. The concrete’s 

high modulus of elasticity, flexural strength and rigidity enables it to distribute traffic 

loads over a wider area of subgrade. Figure 2.2 shows the axle load distribution for 

flexible and rigid pavements. Some of the main types of rigid pavements are; jointed 

plain concrete pavement, jointed reinforced concrete pavement, and pre-stressed 

concrete pavement. 

 

As outlined above the main difference between flexible and rigid pavements is in their 

method of stress redistribution. Wheel stresses are transmitted based on a layered 

system in flexible pavements, while maximum portion of loads in rigid pavements are 

carried by slab action (Mathew & Rao 2007). The use of stabilised road pavements 

and full depth composite asphalt has led to the application of new terms such as semi-

rigid or semi-flexible pavements (Transport engineering  2013). 

 

 

Figure:  2.2 Load distribution in layers of flexible (right) and rigid pavement (left) 
(Smith et al. 2001) 

  

2.4 Asphalt composition 

Asphalt component materials in a flexible pavement may either be mixed in hot or cold 

state. In hot mix (HMA) aggregates and bitumen binder are mixed through heating and 

then placed and compacted while the mixture is in a plastic state (elevated 

temperature).  
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Hot mix asphalt typically consists of 95% aggregate by weight, while bitumen binder 

makes up around 5% of the mixture. By volume, a typical asphalt mixture contains 

approximately 85% mineral aggregate, 10% bitumen binder and around 5% air voids 

(NCHRP 2011).  Figure 2.3 shows a compacted asphalt mixture proportion by weight 

and volume.  

 

 

Figure:  2.3 Volume/ Weight relationships in an asphalt mixture (Vazquez et al. 
2010) 

 

2.4.1 Aggregate 

As previously mentioned, aggregates constitute up to 95% of the mass of an asphalt 

mixture, therefore its quality and characteristics exert considerable influence on 

performance of the mixture. Primary functions of the aggregate are; ensuring stability 

to the asphalt mixture via interlocking between its particles, providing an appropriate 

surface texture with suitable polish and skid resistance, appropriate spreading of traffic 

loads to the lower layers of the pavement, and providing a durable pavement without 

degradation and failure under wheel loads (Rebbechi 2014). The quality control of 

aggregate for asphalt mixture can generally be specified by the particle grading, 

particle size and shape, surface texture, angularity, absorption, particle density, 

abrasion resistance, resistance to polishing, toughness and durability, and cleanliness 

(Rebbechi 2014). 
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Aggregate are categorised into the two main groups of coarse aggregate and fine 

aggregate. The portion of aggregate remaining on the sieve 4.75 mm (sieve no 4) is 

defined as coarse aggregate, and the portion passing the sieve 4.75 mm and remaining 

on the sieve 0.075 mm (sieve no 200) is defined as fine aggregate. The main roles of 

the coarse aggregate are to carry and transmit traffic loads to other layers, and provide 

a deformation-resistance in the mixture, while fine aggregates particles complete the 

overall aggregate structure by generating a support structure for void spaces in the 

mixture. Without inclusion of fine aggregate, many air voids would remain in the 

asphalt mixture (Vavrik 2000). 

 

The most common source for providing aggregate is igneous rocks that include 

dolerite, granite, basalt, andesite, rhyolite, diorite, and porphyry. Metamorphic rocks 

such as, schists, hornfels, gneisses, and quartzites are also employed as asphalt mixture 

aggregates. Aggregate can be gained through some recycling of materials, and by-

products of some industrial processes, such as calcined bauxite, and industrial slag.  

Reclaimed asphalt pavement (RAP), crushed recycled concrete, crumb rubber, and 

crushed glass are some examples of recycled materials used as asphalt mixture 

aggregate (Rebbechi 2014). 

 

2.4.2 Bitumen 

Bitumen is a visco-elastic material produced from crude oil distillation in the 

petroleum refinement process. Adhesive, impermeable, modifiable, recyclable, and 

durable, are some interesting properties of bitumen that make it a capable engineering 

material. As appraised by Eurobitumen and Asphalt Institute, the recent production of 

bitumen in the world is around 87 million tonnes yearly (Asphalt-Institute 2015). As 

depicted in the figure 2.4 around 85% percent of the produced bitumen in the world is 

used for paving the surfaces of roads. The features that have made bitumen such an 

ideal material in the road engineering sector are waterproofing, ductility, flexibility, 

weathering resistance and good adhesion for bonding materials in the asphalt mixture 

(Rebbechi 2014; Asphalt-Institute 2015). Bitumen needs to be temporarily altered to a 

liquid form to be mixed, placed and compacted. 
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There are many types of bitumens used in asphalt. Whilst conventional unmodified 

bitumen is the most common type of binder, multigrade bitumen, polymer modified 

bitumen (PMBs), cutback bitumen and bituminous emulsions are also important types 

of bituminous binders. Multigrade bitumen is less sensitive to temperature fluctuations 

and classified based on a range of features expected at both low and high service 

temperatures.  In PMBs, various types of polymers can be added in the bitumen for 

enhancing pavement performance under traffic loads. In cutback bitumen, cutter and 

flux oils are employed for extending available time between manufacturing and 

compacting the asphalt (Rebbechi 2014). Asphalt manufactured with emulsion can be 

placed cold. 

 

In the United States and Europe, bitumen specifications were primarily based on 

hardness and viscosity tests until the 1990s. After that, the performance grade (PG) 

system for grading bitumen was introduced as an outcome of the Strategic Highway 

Research Program (SHRP) (Monographs 2013). Penetration grading system still 

applies in Europe and in some other nations such as New Zealand, bitumen is graded 

by a penetration test at 25 °C. In Australia, bitumen is classified based on its viscosity 

at 60 °C as shown in Table 2.1. 

 

Table:  2.1 Bitumen classes (AS 2008) 
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Figure:  2.4 Bitumen use in the world (Asphalt-Institute 2015) 

  

2.4.3 Fillers 

Filler refers to the portion of aggregate particles passing the 0.075mm sieve (sieve no 

200) and retain on pan (Zulkati et al. 2012; Rebbechi 2014). Fillers are primary 

employed for reducing voids in the mixture. Small particles of the filler blend with the 

bitumen and provide a stiff mastic that can improve the stiffness of the mixture.  The 

greater portion of the filler works as aggregate and fills voids in the mixture (Mahan 

2013).  

 

There is a range of reasons for adding fillers. Some of the most significant effects of 

filler are: reducing optimum binder content, increasing final mixture stability, 

increasing resilient modulus of mixture, improving bond between aggregate and 

binder, increasing the resistance of the binder mortar to flow and meeting aggregate 

gradation (Zulkati et al. 2012; Mahan 2013; Rebbechi 2014). However, the excessive 

use of filler can be a negative as it increases the proportion of binder required for 

coating aggregates, resulting in a too stiff mixture and decreasing workability of the 

mixture (Zulkati et al. 2012). 

 

Typically fillers are mineral aggregate powders, waste material powders and 

industrials material powders.  The most common available fillers are hydrated lime, 

rock flour, cement kiln dust, limestone powder, Portland cement, mineral sludge, 

ground slag, fly ash, recycled brick powder, and baghouse dust (Zulkati et al. 2012; 

Rebbechi 2014). 
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2.4.4 Additives 

In many environments an unmodified bituminous binder does not offer the required 

performance for asphalt pavements that are subjected to heavy wheel loads and 

extreme climatic conditions. In order to enable asphalt mixtures to gain specific 

engineering characteristics, additives can be either added to the bitumen binder or the 

asphalt mixture. Bitumen modification commenced in Europe in the early 1930s, and 

was first employed in America in the 1950s (Ahmadinia 2012).  

 

The main reasons for using modified bitumen in asphalt are to obtain a softer mixture 

(less brittle) at low ambient temperatures for minimising cracking and improving 

fatigue life of the pavements, and for providing a stiffer mixture at high ambient 

temperatures to resist rutting. Increasing stiffness and strength can also enable a 

reduction in the thickness of the pavement and is another important reason to consider 

the use of additives in the mixture.   

 

Additives can be categorised according to their compositions, such as polymers 

(elastomeric and plastomeric), anti-stripping agents and hydrocarbons. Table 2.2 

provides a list of common asphalt modifiers and their purposes. 

 

2.4.5 Air voids 

Air voids in an asphalt mixture are very small air spaces trapped between coated 

aggregate particles in the mixture. The optimal amount of air voids in an asphalt 

mixture is vital to certify that a durable mixture is constructed. Too low a quantity of 

air voids can lead to asphalt mixture deterioration such as rutting, flushing or shoving. 

Too high an amount of air voids can result in water damage, air damage, ravelling, 

rutting and cracking in the mixture. The percentage of air voids for dense- graded 

asphalt mixture should not be less than 3% and also should not be more than 8% 

(Brown et al. 2004). 
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Table:  2.2 Types of additives (after (Roque et al. 2005) 

 

Type of 

Modifier 

 

Purpose 

 

Example 

 

 
Elastomers  

 
- Increase stiffness at higher 
temperatures.  
-Increase elasticity at medium 
range temperatures to resist fatigue 
cracking.  
- Decrease stiffness at lower 
temperatures to resist thermal 
cracking.  
 

 
-Natural rubber  
-Styrene-butadiene-
styrene (SBS)  
-Styrene-butadiene 
rubber (SBR).  

 
Fiber  

 
-Improves tensile strength  
-Improve cohesion  
-Allow for higher asphalt content 
without drain down  
 

  
- Polyester  
-Fiber glass  

 
Plastomers  
(Thermoplast)  

 
-Increase high temperature 
performance  
-Increase structural strength  
-Increase resistance to rutting  

 
-Polyvinyl chloride 
(PVC)  
-Ethyl-vinyl-
acetate(EVA)  
-Ethylene propylene 
(EPDM) 
  

 
Oxidant  
 

 
Increased stiffness after placement  

 
- Manganese salts  

 
Hydrocarbons 
(Natural 
Asphalts)  

 
- Restore aged asphalts  
- Increase stiffness  

 
- Oils  
- Natural asphalts (Lake 
Asphalt)  
- Gilsonite  

Anti-strippers  - Minimize binder stripping  - Lime  
- Amines  

Antioxidant  - Increase durability by retarding 
oxidation  

- Carbons  
- Calcium salts  

Extender  - Decreases the amount of asphalt 
cement needed (typically 20 - 35% 
of total asphalt binder)  

- Sulphur  
- Lignin  

 

Figures 2-5 to 2-7 show the effects of air void contents on fatigue life (or mixture 

resistance to cracking under traffic loads), rutting resistance and structural strength of 

asphalt mixture. As shown in figure 2.5, fatigue life is a function of air content of the 
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mixture and may be reduced by 50% by increasing air voids from 5% to 8%.  Figure 

2.6, shows that low and high air void content may greatly impact on the permanent 

deformation of asphalt. As shown in figure 2.7, the structural strength of a mixture, as 

measured by its modulus (an indication of stiffness) has a direct relationship with air 

content of the mixture and a 20% reduction in asphalt stiffness (or load-carrying 

capacity) may occur by increasing air voids from 5% to 8% (Austroads 2013). 

 

 

Figure:  2.5 Relative Fatigue Life vs. Air Voids (Austroads 2013) 

  

 

 

Figure:  2.6 Relative Rutting Rate vs. Air Voids (Austroads 2013) 
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Figure: 2.7 Relative Modulus vs. Air Voids (Austroads 2013) 

 

2.5 Asphalt pavement deterioration and failure modes 

Deterioration in asphalt mixtures is very common and all asphalt pavements 

experience some type of distress during their service life. Asphalt failures can start 

immediately after paving a road, and even with ideal construction conditions, failures 

can arise after the first months. Many various reasons exist for pavement deterioration 

where the most significant are; temperature fluctuations, high axle/wheel loads, 

weather conditions, construction deficiencies and using improper materials. The 

common types of asphalt pavement failure are described below: 

 

Fatigue cracking (or crocodile cracking); appears at the asphalt pavement caused by 

fatigue cracking as a result of heavy and repeated wheel loads. It manifested as a series 

of interconnected cracks (like the skin of a crocodile). 

 

Edge cracking; is a longitudinal crack that take place typically within 0.5m of the edge 

of a pavement. Insufficient lateral support from the shoulder, inadequate drainage, and 

growing vegetation around the edge of pavement are the main reasons for edge 

cracking in the pavement. 

 

Block cracking; is a series of large interconnected rectangular shape cracks on the 

surface of the asphalt pavement. The spacing of block cracks range in size typically 
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from under 0.5m up to 3m.  Shrinkage due to temperature fluctuations and stiff 

pavement surface is the most important reason of block cracking. 

 

Longitudinal and Transverse cracking; Longitudinal cracking is a linear crack parallel 

to the centreline axis of the pavement, while transverse cracks are predominantly 

perpendicular to the centreline axis. Harsh climates, shrinkage in asphalt mixes, poor 

constructions and underlying layer cracks are causes of these types of pavement 

distresses. 

 

Slippage cracking; this type of crack has a crescent shape and develops  on the part of 

the pavement that is subjected to more automobile stopping or turning. This distress is 

caused mostly by poor bonding between pavement layers and materials. 

 

Ravelling; appears as a wearing away of the asphalt pavement surface. Losing bitumen 

binder in the asphalt mixture can lead to separation between mixture particles and 

consequently dislodging of aggregate. Poor quality of the mixture and excessively stiff 

bitumen binder are said to be the main reasons for ravelling. 

 

Potholes; pothole failure is a bowl shaped hole appearing in the surface of the 

pavement.  Potholes can be a continuation of other deterioration of the pavement such 

as fatigue cracks and ravelling over a long period of time. 

 

Stripping; is attributed to breaking of the bond and a loss of adhesion between the 

bitumen binder and aggregate due to moisture in the asphalt mixture. 

 

Bleeding or Flushing; is an accumulation of a thin film of bitumen binder on the 

surface of the road pavement. Excessive binder content in the mixture is the main 

reason for bleeding. 

Rutting; it is discussed in detail later. 
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2.6 Fatigue 

Fatigue cracking is one of the primary failure modes in asphaltic mixtures that is 

basically caused by repeated traffic loads. Over more than 40 years of asphalt 

technology, it was assumed that because of the bending function of the asphalt layer 

while developing flexural stresses,  fatigue cracking merely commences at the bottom 

of the asphalt layer and then spreads up the layer (bottom-up fatigue cracking). Recent 

studies (NCHRP 2004; Chiangmai 2010; Behiry 2012), have determined  that fatigue 

cracking could also be initiated from the top of the surface and transfer down (top-

down fatigue cracking). This model of fatigue cracking could be due to critical tensile 

and/ or shear stresses established at the top of asphalt layer and caused by significantly 

greater contact pressures at the tyre edge-pavement interface. Fatigue cracking may 

also result from a greatly aged (stiff) thin asphalt layer that has become oxidized 

(NCHRP 2004). 

 

 

2.6.1 Fatigue models for asphalt 

Commonly experimental approaches are applied for evaluating fatigue performance of 

asphalt mixes. The phenomenological method, the energy-based method, and the 

fracture mechanics method are the most appropriate approaches for evaluating fatigue 

properties of asphalt mixes.  

 

The phenomenological method investigates the correlation between repeated stress or 

strain in asphalt specimens and the number of cycling loads to cause failure. This 

method is based on the theory of Miner’s linear law linked with accumulated 

deterioration of the asphalt pavement. According to standard methods such as  

AASHTO T321-03 (AASHTO 2003) and the European Standard (EN12697-24 2004), 

failure is defined as the number of load cycles to produce 50% reduction in  mix 

stiffness. According to this relationship, many fatigue models have been developed for 

predicting fatigue cracking. Studies have indicated that there is a correlation between 

the number of applied loads on asphalt and strain at the bottom of the asphalt layer as 

follows (Chiangmai 2010):  
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 𝑁𝑓 = 𝐾(
1

ɛ
)𝑎                                                     Equation 2.1 

 

Where; 

𝑁𝑓= number of load repetitions to cracking, 
ɛ = predicted asphalt strain (mm/mm), 
K and a = factors depending on the composition and properties of the asphalt mixture. 
 
 
 
The energy-based method for assessing fatigue is based on the theory of dissipated 

energy. This approach assumes that fatigue damage is a depletion of dissipated energy 

from one load cycle to the next (Carpenter & Jansen 1997). The concept of this method 

is that by applying cyclic loading to a material, damage will accumulate in the material. 

Hence, this approach involves evaluating deterioration that takes place in the material 

before failure. The dissipated energy in a viscoelastic material, such as an asphalt 

mixture in a flexural fatigue test, can calculated from  the following equation 

(Chiangmai 2010);  

 

 

𝑊𝑖 = 𝜋 𝜎𝑖 ɛ𝑖 𝑆𝑖𝑛 𝜙𝑖                                          Equation 2.2 

 
Where;  
 
𝑊𝑖 = dissipated energy at load cycle i, 
𝜎𝑖 = stress amplitude at load cycle i, 
ɛ𝑖 = strain amplitude at load cycle i, 
𝜙𝑖= phase angle between the stress and strain wave signals, 
 
 
 
The constant amount of dissipated energy which generates deterioration in the material 

under cycles is defined as the Plateau Value (PV). The PV is a function of stress, strain, 

initial load and dissipated energy. The fatigue performance of an asphalt mixture based 

on the energy-based method can be predicted as follows (Chiangmai 2010);  

 

 𝑁𝑓 = 𝐶(𝑃𝑉)𝑏                                                         Equation 2.3 
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Where;  

𝑁𝑓= number of load repetitions to cracking, 
PV= plateau value of dissipated ratio (ΔDE/DE), 
C and b = factors depending on the composition and properties of the asphalt mixture. 

 
 
The fracture mechanics method is based on the theory of fracture mechanics and, 

investigates the occurrence and propagation of fatigue cracks. The growth of a crack 

in asphalt usually has three stages of, crack initiation, a propagation stage, and an 

unstable fracture. This method uses a relationship between crack propagation 

characteristics in asphalt and fracture elements such as the stress intensity factor (KIC). 

Paris’ law can be applied to  determine  crack growth rate in asphalt as follows 

(Chiangmai 2010);  

 

 

 𝑁𝑓 =  ∫
1

𝐴𝐾𝑛  𝑑𝑐
𝐶𝑓

𝐶𝑜
                                              Equation 2.4 

 

Where; 

 𝑁𝑓 = the number of cycles to failure, 
𝐶𝑜 = the starter flaw, 
𝐶𝑓 = the final crack length 
A, n = material parameters, 
K = stress intensity factor (in N/𝑚𝑚1.5). 
 
 
The Shell Oil Company has introduced a model for predicting fatigue in asphalt which 

is based on the relation between stress conditions and damage mechanisms. The 

following are the equations for predicting fatigue performance of asphalt mixes. 

Constant stress and constant strain are the two common approaches used for 

controlling the applied load in the laboratory for the fatigue test (NCHRP 2004).  

 

Constant Strain;  

𝑁𝑓 = 𝐴𝑓[0.17 𝑃𝐼 − 0.0085 𝑃𝐼 (𝑉𝑏) + 0.0454 𝑉𝑏 − 0.112]5 ɛ𝑡
−5 𝐸−1.8 

  Equation 2.5 
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Constant Stress;  

𝑁𝑓 = 𝐴𝑓[0.0252 𝑃𝐼 − 0.00126 𝑃𝐼 (𝑉𝑏) + 0.0673 𝑉𝑏 − 0.0167]5 ɛ𝑡
−5 𝐸−1.4 

Equation 2.6 

Where PI is the penetration index and is calculated as follows; 

𝑃𝐼 =
20 − 500 𝐴

1 + 50 𝐴
 

Equation 2.7 

 

‘A’ is the temperature susceptibility i.e. logarithm slope of penetration plotted versus 
temperature. A is calculated as following;  

 

𝐴 =  
log(𝑝𝑒𝑛 𝑎𝑡 𝑇1) − log ( 𝑝𝑒𝑛 𝑎𝑡 𝑇2)

𝑇1 −  𝑇2
 

Equation 2.8 

 

𝑤ℎ𝑒𝑟𝑒 𝑇1 𝑎𝑛𝑑 𝑇2  are centigrade temperatures at which penetrations are measured. 

 

The Asphalt Institute has introduced a fatigue equation for asphalt. This model is based 

on modifying the constant stress of the laboratory fatigue test  developed by Witczak 

and Shook (NCHRP 2004). The equations for evaluating fatigue performance of 

asphalt mixes is as follows:  

 

𝑁𝑓 = 0.00432 𝐶 (
1

ɛ𝑡
)3.291 (

1

𝐸
)0.854  

Equation 2.9 

 

𝐶 =  10𝑀 

𝑀 = 4.84 (
𝑉𝑏

𝑉𝑎 −  𝑉𝑏
− 0.69) 

Equation 2.10 

Where;  

𝑉𝑏 = effective binder content (%) 
𝑉𝑎 = air voids (%) 
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2.7 Rutting 

The accumulation of permanent deformation in the form of longitudinal depressions is 

termed rutting. This mode of failure, which usually appears in the wheel path is caused 

by densification and/ or shear deformation phenomena (Xu & Huang 2012). Based on 

the strength of layers and also the magnitude of traffic loads, rutting can take place in 

any asphalt or unbound layers within the pavement (White et al. 2002). Severe rutting 

can result in pavement structural failure and have significant effects on road safety (Xu 

& Huang 2012).  

 

Current pavement design systems, such as the mechanistic-empirical methods have 

been developed and include fatigue and rutting criteria for designing pavements to 

minimise the potential of fatigue cracking and rutting in the pavement. It is often 

considered that there is a conflict between addressing fatigue and rutting susceptibility 

of asphalt. For example, increasing the binder content can result in increased fatigue 

life and decreased rutting resistance. It is essential to have a desirable balance in the 

design stage between rutting and fatigue modes of distress. Applying traffic loads on 

the surface of the pavement induces strains which are used for designing rutting and 

fatigue. The vertical compressive strain (ɛ𝑣) on top of the subgrade, and horizontal 

tensile strain (ɛ𝑡) at the bottom of asphalt layer as shown in the figure 2.8 are the two 

critical strains for designing for rutting and fatigue. High values of ɛ𝑡, results in fatigue 

cracking occurring in the asphalt. High values of ɛ𝑣 produces rutting of the pavement. 

It should be noted here that this model refers to rutting within the subgrade rather than 

the asphalt. Various models have been developed around the world for presenting the 

relationship among modulus of asphalt, strain and number of load cycles to pavement 

failure. Two forms of models are as below (Behiry 2012):  

 

Fatigue model: 

𝑁𝑓 =  𝑓1 ɛ𝑡
−𝑓2  𝐸1

−𝑓3                                           Equation 2.11 
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Rutting model: 

𝑁𝑟 =  𝑓4 (ɛ𝑣)−𝑓5                                                Equation 2.12 

 

Where; 

𝑁𝑓; is the permissible load cycles number for preventing fatigue cracking; 
𝑁𝑟; is the permissible load cycles number for preventing rutting; 
ɛ𝑡: is the tensile strain at the bottom of the asphalt layer; 
ɛ𝑣; is the compressive vertical strain on the surface of the subgrade; 
𝐸1;  𝑖𝑠 𝑡ℎ𝑒 asphalt elastic modulus;  
𝑓1 , 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5  ; are regression coefficients.  
 

Additionally, Oglesby and Hicks have presented a relationship between compressive 

strain at the top of subgrade and rutting failure in the asphalt as follows (Behiry 2012): 

 

𝑁𝑟 = 1.365 ×  10−9 (1/ɛ𝑣)4.477                      Equation 2.13 

Where; 

𝑁𝑟; denotes the load applications number to prevent rutting  

ɛ𝑣; is the compressive vertical strain on the surface of subgrade.  

 

 

Figure: 2.8 vertical and horizontal strains in the pavement layers (White et al. 2002) 

Only a brief description of the available models for rutting is presented here. A more 

comprehensive review is provided in the chapter 3. 
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2.8 Asphalt mixture design overview 

Designing an asphalt mixture includes the careful proportioning and selection of the 

mixture component substances in a way that the final product has optimal fatigue and 

creep properties. For example, optimising fatigue performance by increasing bitumen 

content and filler with decreased air voids may reduce its creep resistance. However, 

the principal aim of the design process is to achieve a mixture with the following 

characteristics (Abdelaziz 2008): 

1. Adequate volume of bitumen binder in the mixture, that ensures a stable and durable 

pavement. 

2. An adequate quantity of air voids in the compacted mixture that allows for a 

minimised further compaction beneath heavy wheel loads without vulnerability to 

damage caused by flushing and bleeding. The air voids must be minimised to avoid 

exposure to any damaging moisture and air, which can affect the bitumen film. 

3. Adequate stability to protect the asphalt mixture from movement and distortion in 

the case of heavy loads. 

4. Sufficient workability permitting efficient mixture paving without separation. 

 

Numerous systems and methods for designing asphalt have been used around the 

world. Some of the most popular methods are as follow. 

 

2.8.1 Marshall method 

The Marshall Method is one of the oldest conventional systems utilised for designing 

trial asphalt mixtures to find the optimum bitumen content (OBC). It  was initially 

proposed by Bruce Marshall, a pavement engineer cooperating with the Mississippi 

State Highway Department (Tarakji 1992). The modus operandi for heating, blending, 

and compacting the combination of aggregates and bitumen is  determined by the 

Marshall Method, that is afterwards subjected to a Marshal stability-flow test (Garber 

& Hoel 1997; Ahmadinia 2012). 
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2.8.2 Superpave mix design 

Superpave mix design was introduced by the Strategic Highway Research Program 

(SHRP). Superpave stands for Superior Performing Pavements, and describes features 

of the material in relation to  the traffic loads and ambient climatic considerations 

(Huang 2004). Primary elements employed in Superpave are as follows: 

- A specification for bitumen according to climate (with a suitable database for 

climactic factors) and vehicular loadings. 

- A special way for analysing volumetric properties of mixes. 

- Environment and performance models. 

 

 However, one of the most innovative elements of Superpave could be its novel system 

for grading bitumen. Bitumen grading is connected with performance of the asphalt 

pavement (Huang 2004). Accordingly, Superpave is a mixture design method based 

on performance.  

 

Superpave allows pavement engineers to design a finely-tuned asphalt pavement and 

adjust it to traffic stresses and different climates. Asphalt pavement built in this way 

has  been shown to have superior durability and a lower probability of rutting in hot 

climates or cracking in cold climates (Ahmadinia 2012). 

 

2.8.3 Australian asphalt mix design  

In the late 1990’s, Austroads, the Australian Road Research Board (ARRB) and the 

Australian Asphalt Pavement Association (AAPA), commenced work on a project to 

develop a performance-based mix design. The new approach measured fundamental 

mix properties, used newly-developed test equipment, and largely replaced the 

Marshall and the Hubbard Field procedures. The new mix design was intended to 

design affordable asphalt mixes for all sets of performance requirements and also 

provide more precise data for mechanistic pavement design. The purpose of the 

Australian method is a mix design procedure  (Rebbechi & Liddle 2006) that: 

➢ is performance-related 
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➢ enables the in-service performance of mixes to be predicted 

➢ is relatively affordable (in terms of new equipment cost) 

➢  is rapid and easy to use 

 

Figure 2.9 details the Australian mix design procedure for dense graded mixes. As 

shown in the figure, a mix can be designed at three levels. In the first level, the type of 

mix and materials are selected and the mix is compacted by a gyratory compactor, and 

volumetric properties and optimum binder content determined. Some performance 

tests are undertaken in order to define structural performance properties of the mix in 

the second level. The rutting resistance of the mix is determined in the third level by 

the wheel tracking test. 

 

Mixes are designed for different traffic situations. Gyratory compaction is applied at a 

rate of 50 cycles for light traffic; 80 cycles for medium and 120 cycles for very heavy 

traffic situations. For a light traffic situation, the mix design ends once the volumetric 

properties have been satisfactory achieved. For medium and heavy traffic situations, 

volumetric properties and performance testing are considered. For a very heavy traffic 

situations, the asphalt specimen is subjected to compaction to refusal density (350 

gyratory compactor cycles) and further performance tests (Stephenson 2002). 
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Figure:  2.9 Australian mix design procedure (Rebbechi & Liddle 2006) 

 

2.8.4 Mechanistic pavement design 

Mechanistic pavement design is a method to evaluate responses of the pavement to 

traffic loads.  The method is based on a mathematical model to calculate stresses and 

strains in the pavement when exposed to traffic loads. By calculating stresses and 

strains, the method is theoretically able to predict and analyse pavement failures under 

vehicular loads. 

 

A flow chart of the mechanistic design procedure is shown in figure 2.10. The 

mechanistic design includes two important parts, i.e. response and performance 
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models. The response model calculates the stresses and strains when the pavement is 

subjected to loads. The most common response models are: elastic and visco-elastic 

response models. Essential input items for response models are: thickness of the layers, 

properties of materials in the layers and load conditions. The performance model 

considers the pavement’s response under stress over time such as estimating start and 

development time of cracks and rutting (as discussed in the sections 2.6 and 2.7). The 

required input parameters for the response model are; accurate stresses, rate of 

vehicular load, and  strains as obtained in the response model part (Transport 

engineering  2013). 

 

 

Figure:  2.10 Procedure of mechanistic pavement design (Transport engineering  
2013) 

 

2.9 Operating environment of road pavements 

External loads and environmental conditions are two critical factors which 

significantly affect the service life of road pavements. The main environmental 
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elements affecting pavements are; ambient temperature gradient, rainfall, wind and 

solar radiation (Ongel & Harvey 2004). Figure 2.11 depicts the balance of energy on 

the pavement surface. 

 

 
Figure:  2.11 Energy balance on the surface of the pavement (Matić et al. 2013) 

 

2.9.1 Temperature 

High temperature results in a loss of stiffness for the asphalt due to the bitumen’s 

viscoelastic properties. Asphalt similarly becomes stiffer, relatively more  brittle and 

tends to shrink at lower temperatures (below 10ºC), while at higher temperatures a mix 

becomes softer and susceptible to creep deformation (Ongel & Harvey 2004; Merbouh 

2012). The principal thermal related failures in a flexible pavement are; fatigue 

cracking, thermal cracking, reflection cracking and rutting (Ongel & Harvey 2004). 

 

Asphalt pavement performance is temperature dependent and thus a function of 

ambient temperature. In a section of a pavement, different depths can have different 

temperatures on different days and even hours during a day. In a hot climate, the 

surface of a pavement is much hotter than lower depths and thermal gradients are 

positive in the daytime. At night-time, the surface  is cooler  and thermal gradients are 

negative (Ongel & Harvey 2004). Figures 2.12 and 2.13 illustrate temperature 

distributions at different depths of a pavement. As the graphs show, in the winter by 

increasing depth of the pavement, temperatures inside the pavement increase. The 
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summer situation is a bit more complex with surface temperatures mostly higher than 

lower depths. The main ways that heat transfer occurs are solar radiation, thermal 

radiation between sky and surface of the pavement, convection between air and surface 

of the pavement, and also conduction inside the pavement. Generally, temperature in 

a pavement is controlled by three main elements: thermal conductivity, specific heat 

capacity, and convection (Xu & Solaimanian 2010). 

 

Conventional flexible pavement design typically uses an average temperature 

equivalent. Repeated temperature fluctuation during daytimes and night-times 

produces   many defects in asphalt pavement. Therefore, inclusion of  a temperature 

fluctuation variable for designing flexible pavements is preferred (Merbouh 2012).  

Some approaches for estimation of temperature gradients inside  flexible pavements 

based on numerical and presumptive techniques have been established based on 

collected climate and pavement data , however, many concerns remain about their 

accuracy and validity (Matić et al. 2013). 

 

 
Figure:  2.12 temperature distribution in a pavement at different depth in winter (Ma 

et al. 2012) 
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Figure:  2.13 Temperature distribution in a pavement at different depth in summer 

(Ma et al. 2012) 

 

 

2.9.2 Moisture 

As shown in the figure 2.14, water is another important environmental factor that has 

significant impacts on pavements. Water or moisture damage in the asphalt mixture 

can reduce pavement strength and durability. Penetrating moisture in the asphalt 

mixture affects cohesion (strength) by stripping which is a loss of internal adhesion 

(bond) between aggregate particles and bitumen binder. This can result in serious 

asphalt mixture deterioration such as degradation of aggregate particles, permanent 

deformation and fatigue cracking (Scholz & Rajendran 2009; Pavement-Interactive 

2011).  

 

Figure:  2.14 Moisture movement in the road pavement (Austroads 2012) 
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Moisture susceptibility of an asphalt mixture is a complex phenomenon and depends 

on mechanisms affecting aggregate-bitumen adhesion such as mechanical properties, 

chemical composition, adhesion and tension characteristics, and molecular orientation 

features. The interaction of these factors   complicates   any precise prediction about 

the role of each factor when specifying the moisture susceptibility of a pavement.  In 

fact, each variable affects the moisture susceptibility of the pavement to some degree, 

but no single factor provides a sure approach to predict pavement moisture 

susceptibility. Generally, moisture susceptibility of an asphalt pavement is increased 

by any element which causes increasing moisture content in the pavement, or a 

decrease  in the bond between the aggregate and bitumen binder (Pavement-Interactive 

2011). Table 2.3 summarizes the various  elements affecting susceptibility of asphalt 

mixture to water damage (Scholz & Rajendran 2009). 

 

In order to avoid and minimise permeability effects, a number  of actions can be taken 

that range from initial pavement design and materials selection to construction of the 

pavement  Moisture susceptibility of the asphalt pavements can be decreased by, the 

use of anti- striping agents -a is very common and popular solution. Some types of 

anti- striping additives are; hydrated lime, amines, Portland cement, sodium 

aluminosilicate, liquid antistripping agents, and polymers (Scholz & Rajendran 2009). 

 

2.10 Traffic loads 

The very obvious reason for the existence of a road pavement is to carry traffic loads. 

The imposed axle/wheel loads from heavy vehicles are the primary reason for road 

pavement deterioration, i.e. fatigue damage and creep deformation (Shuiyou 2003; 

Chatti et al. 2004).  

 

Recent decades have seen a dramatic increase in the number and weight of large-sized 

heavy vehicles and containers with higher wheel pressures and axle loads that have 

high impact  on  pavements (Ahmadinia 2012). Research by Austroads has confirmed  

that since 1950 onwards, permissible gross loads have increased at the rate of around 

0.45 tonnes per annum (Pearson & Foley 2001). The current design tyre pressure for 

designing and analysing asphalt pavement adopted by Austroads is 750 kPa, although 
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it can be vary between 500 and 1000 kPa (Youdale 1996; Gribble & Patrick 2008; 

Austroads 2012).  

 

 

Table:  2.3 Elements effecting moisture damage (Scholz & Rajendran 2009) 

 

 

The distribution of stress at the tyre/pavement interface can considerably change as a 

function of tyre inflation pressure, type and configuration of tyre, wheel load and also 

tread patterns of tyres (figure 2.15 and 2.16). Moreover, the distribution of interfacial 

pressure between asphalt pavement and tyre is non-uniform, noncircular, and 

discontinuous. Many pavement design producers adopt the simplistic approach of 
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using a circular uniform pressure for analysing the response of pavements to axle loads 

(Shuiyou 2003).  

 

 

 

Figure:  2.15 Different contact zone pattern for dual tyre, unit: cm (Shuiyou 2003) 

 

 

 

 

Figure:  2.16 Streamlined tyre contact zone and pressure (by 25 KN load), unit: cm 
(Shuiyou 2003) 

 

2.11 Summary 

This chapter has provided an overarching introduction to the thesis. It considered 

asphalt mix components including aggregates, bitumens, and fillers, outlining how mix 
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design can optimise in-situ performance by addressing the mix parameters that impact 

on performance, and subsequent pavement life. 

 

The two key failure modes of asphalt fatigue and creep were explored and it was noted 

how designing for each is addressed through different processes. For example very 

high tyre pressure on hot days can result in severe asphalt surfacing rutting, but may 

have no impact on fatigue life. 

 

The research literature suggests that the fatigue design of asphalt uses well established 

testing regimes and the application of proven predicative relaxations. The literature 

also suggests that designing for creep however, largely remains unaddressed in 

mechanistic design. Many pavement design methods adopt a subgrade deformation 

model, accompanied by a mix design approach for the asphalt.  
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3 CHAPTER 3 

A  LITERATURE REVIEW OF ASPHALT PERMANENT DEFORMATION: 

CREEP 

 

 

3.1 Introduction  

As outlined in the previous chapter, asphalt can exhibit structural failure in the form 

of creep deformation and/or fatigue cracking. Fatigue models  such as those related to 

the Shell criteria, are well established (Austroads 2012) and are used in mechanistic 

pavement design. However, there has been little progress with the development of 

predictive creep correlations for incorporation in the mechanistic pavement design 

process. This chapter provides an overview on permanent deformation of asphalt with 

emphasis on creep parameters. 

 

3.2 Permanent deformation or rutting 

Failure types such as permanent deformation (rutting) are more serious and acute in 

hot climates, where increases in asphalt pavement temperatures significantly reduce 

the stiffness of asphalt, leading to permanent deformation. Rutting accrues mostly 

within the wheel paths resulting from high axle loads on the roads (Yang et al. 2005). 

This deformation is typically the earliest distress exhibited and can sometimes 

manifest itself after only a few days postdating construction. Subgrade rutting can be 

covered by an effective pavement design, while surface rutting can usually be covered 

by a precise selection of asphalt materials. 

 

Permanent deformations are generated by two main mechanisms, which are 

densification and shear deformation. Densification (volume decrease, and /or density 

increase) can be due to poor specifications and /or inadequate compaction of 

pavements during the construction and usually happens early in the life of a pavement. 

In this process, aggregates tend to pack more closely under traffic pressures (post 

construction compaction) and a reduction of air voids in the mixture occurs. Shear 
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deformation (or lateral movement of materials) can be the more important factor for 

permanent deformation in asphalt mixtures. In this process, materials are compressed 

under tyre pressure, displaced laterally and pressed up into upheavals on either side of 

the tyre path (figure 3.1) (Aksoy & Iskender 2008; Cai 2013). Research undertaken by 

Eisenmann and Hilmar (1987) to evaluate mechanisms of permanent deformation, 

concluded that although in the initial stages densification or traffic compaction is the 

primary factor for developing rutting, shear deformation is considered as the main 

factor to develop permanent deformation during the pavement’s lifetime. It should be 

also noted that the densification process may cause initial ruts that can result in 

accelerated deformation.  

 

 

Figure:  3.1 Densification and shear deformation 

 

 The permanent deformation of asphalt mixtures depicted in figure 3.2 has three stages 

termed the primary stage, secondary stage and tertiary stage (Oscarsson 2011). This 

behaviour can be observed in any type of permanent deformation repeated load test. 

In the primary stage, permanent strain develops quickly due to initial densification. 

The majority of asphalt pavement life is often considered to be in the secondary stage, 

where there is an almost constant rate for developing rutting. There may be accelerated 

rutting in the tertiary stage. 
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Figure:  3.2 Schematic permanent deformation curve (Oscarsson 2011) 

 

The permanent deformation behaviour of asphalt mixtures can be affected by several 

factors such as: type and gradation of aggregate, type and content of binder in the 

mixture, degree and method of compaction (the air voids), temperature, and the 

frequency and magnitude of traffic loading. 

 

 

3.3 Permanent deformation models 

Permanent deformation of asphalt is most often modelled through three methods, being 

empirical models, mechanistic-empirical (M-E) models, and fully mechanistic models. 

Empirical models are based on observation and recorded distress data, while site 

factors and related materials properties are not considered. Empirical models have 

serious limitations and typically only used in some particular areas such as pavement 

management systems. In M-E models, an association of a mechanistic prediction 

technique (such as elasticity concept), and an empirical distress model is employed for 

predicting the permanent deformation of the asphalt. M-E models are said to be able 

to include repeated traffic loads and environmental conditions for predicting rutting 

and fatigue performance of asphalt. Fully mechanistic models include more complex 

constitutive techniques to incorporate various aspects of loading conditions (such as 

frequency, magnitude, and duration), environmental conditions and also material 

behaviour, into the predicting model. Fully mechanistic models are able to analyse 

imposed stresses and subsequent strains, by external loads without needing empirical 

transfer functions. Fully mechanistic models are typically complicated and can also be 

expensive to implement and calibrate (Carvalho 2012). 
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Table 3.1 is a brief summary of some existing M-E models based on power-laws for 

describing asphalt behaviour under frequency loading tests such as the creep test. 

These models are derived from repeated load permanent deformation (RLPD) tests 

with different forms to involve different parameters and fitting with experimental data. 

Figure 3.3 is an illustration of the comparative accuracy of these models with an 

accepted repeated load tests. As is evident from the figure, the second stage of 

permanent deformation is typically well predicted by the models, while most are 

inaccurate in the primary stage (Choi 2013). 

 

Several structural analysis programs exist for assessing and predicting behaviour of 

pavements. For instant, BISAR (Bitumen Stress Analysis in Road) and ELSYM5 

(Elastic Layered System computer program), introduced by Shell and the Federal 

Highway Administration (FHWA) respectively, for analysing pavements based on the 

elastic layer theory. VESYS (viscoelastic layered-pavement analysis program) has 

been developed by the FHWA based on viscoelastic layer theory, and CAMA 

(Computer Aided Mixture Design) has been developed by the Asphalt Institute to 

predict pavement behaviour based on in-situ stresses. CIRCLY is the most popular and 

widely pavement design tool used in Australia. The CAMA and VESYS models are 

discussed in greater detail as they represent contemporary computer modelling 

(Uzarowski et al. 2007). 

 

CAMA is reported to be able to predict cracking and permanent deformation of asphalt 

under traffic loads. In this program, stresses are determined according to the elastic 

response of the pavement under wheel loads and also from asphalt mixture stiffness. 

In order to predict permanent deformation, equation 3.1 is utilized by CAMA 

(Uzarowski et al. 2007) as follows:  
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Table:  3.1 A brief summary of some existing M-E models based on power-law 
(reference to specific models included within (Choi 2013)) 

 
Model 

 

 
Model Form 

 
Variables 

 
Classical 

Power 
 

 
𝜀𝑝 = 𝑎𝑁𝑏 

 
N = load cycle numbers 
a, b = regression coefficients 

 
 

Monismith 
et al. 

 
 

𝜀𝑝 = 𝛿(𝑇)𝑁𝛼𝜎𝑛−1[𝜎𝑧

− 0.5 × (𝜎𝑥

+ 𝜎𝑦)] 

 
𝛿(𝑇)= temperature function  
α = coefficient  
N = load cycles numbers 
T = load time 
σ = equivalent stress defined as a 
function of principal stress  
 

Incremental 
𝜀𝑣𝑝 =  

𝐴 + 𝐵𝑁

(𝐶 + 𝑁)𝛼
 α = hardening evolution parameter 

A =  
εvp,ini

0

(IH(tl, tr, σd))α
 

 

B =  
Ivp(tl, tr, σd)

(IH(tl, tr, σd))α
 

 

C =  
Hini

IH(tl, tr, σd)
 

 
Ivp(tl, tr, σd) = incremental 
permanent strain due to one load 
cycle  
 
IH(tl, tr, σd) = incremental 
hardening due to one load cycle  
 
tl = load time 
tr = rest period 
σd = deviatoric stress  
Hini = the initial hardening of a 
specimen  
εvp,ini

0 = the initial permanent strain  
 

 
Brown and 

Bell 
 

 
𝜀𝑝 = (𝑞/𝑎)𝑏𝑁 

𝜀𝑝= permanent shear strain  
q = deviatoric stress 
a, b = coefficient 
N = load cycle numbers 
 



 

 

43 
 

 
Model 

 

 
Model Form 

 
Variables 

 
Khedr 

(Ohio State 
Univ.) 

 

 
𝜀𝑝/𝑁 = 𝐴𝑎𝑁−𝑚 

 
𝐴𝑎= material property, function of 
resilient modulus and applied stress 
m = material parameter 
N = load cycle numbers 
 

 
 

Wilshire 
and Evans 

 
𝜀𝑝 = 𝜃1(1 − 𝑒𝜃2𝑁)

+ 𝜃3(𝑒−𝜃4𝑁 

− 1) 

 
𝜀𝑝= creep strain  
𝜃1 𝑎𝑛𝑑 𝜃3= primary and tertiary 
strain  
𝜃1 𝑎𝑛𝑑 𝜃4= rate parameters 
quantifying the curvature of the 
primary and tertiary stages  
 

 
Francken 

 

 
𝜀𝑝 = 𝐴𝑁𝐵 + 𝐶(𝑒𝐷𝑁 − 1) 

 
A, B, C, and D = coefficients 
N = load cycle numbers 
 

 
MEPDG 

(Mechanica
l-Empirical 
Pavement 

Design 
Guide) 

 
𝜀𝑝

𝜀𝑟
=  10𝑘1𝑇𝑘2𝑁𝑘3 

 
 

 
𝜀𝑟 = resilient strain  
N = load cycle numbers 
T = temperature 
𝑘1, 𝑘2, 𝑘3  = regression coefficients 
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Figure:  3.3 Comparing permanent deformation models with a repeated load test at 

different stress ( a] 90 psi, b] 150 psi) (Choi 2013) 

  

 

log εp = -14.97 + 0.408 log (N) + 6.85 log (T) + 1.107 log (σd) − 0.117 log(Vis) +

1.908 log(Peff) + 0.971 log(Vv) 

      (Equation 3.1) 

 

εp    = permanent strain 

Peff  = effective asphalt volume 

Vv   = volume of air voids 

σd   = deviator stress (psi) determined at the middle layer depth 

N    = load applications number 

Vis = viscosity at 21ᴼC (in poises ×106) 

T   = temperature of pavement 
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In the VESYS model, it is assumed that plastic strain of the asphalt is proportional to 

its resilient strain. Then equation 3.2 is used in the VESYS model as follows (Öztürk 

2007);  

 

 

𝜀𝑝𝑛 =  µ 𝜀𝑟 𝑛−𝛼                                       (Equation 3.2) 

 

𝜀𝑝𝑛 = permanent strain due to single load application 

µ = a plastic deformation factor representing the constant of proportionally between 

plastic strain and elastic strain 

𝜀𝑟 = resilient strain 

n = load applications 

α = a plastic deformation factor representing the rate of reduction in the incremental 

plastic deformation as the number of load repetitions increases. 

 

3.4 Mechanical models for simulating viscoelastic behaviour of asphalt 

The behaviour of asphalt as a type of viscoelastic material can be simulated and 

predicted by some mechanical models. These models are able to determine 

relationships between stress and strain or load and deformation with their time 

dependencies in the viscoelastic materials. In the mechanical models, a combination 

of springs and dashpots (dampers) are employed to model material responses under 

loading conditions. Springs are able to be fitted in the elastic phase (as equation 3.3), 

and the viscous phase is simulated by dashpots (equation 3.4). A combination of 

springs and dashpots are able to simulate a material’s linear viscoelastic behaviour 

(figure 3.4 and 3.5) (Abbas 2004; Liao 2007; Öztürk 2007). 

 

σ = E ε                                                      (Equation 3.3) 

            

σ =stress 
E = spring constant or elastic modulus 
ε = strain 
 
                                                 σ = η 𝑑ɛ

𝑑𝑡
                                                    (Equation 3.4)                                                                                       
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σ =stress 
η =coefficient of viscosity 
𝑑ɛ

𝑑𝑡
  = time derivative of strain 

 
Figure:  3.4 Spring as an elastic element (Öztürk 2007) 

  
 

 

 
Figure:  3.5 Dashpot as an element (Öztürk 2007) 

 
Based on these fundamental elements (spring and dashpot), various viscoelastic 

models have been introduced for evaluating the response of asphalt under traffic loads 

and for inclusion in  mechanistic models (Liao 2007) . The number and arrangement 

of springs and dashpots are varied for each model. All models can also  be equally 

modelled as electrical circuits wherein stress can be indicated by voltage, rate of strain 

by current, spring’s elastic modulus by the circuit's capacitance, and dashpot viscosity 

by the circuit's resistance (McCrum et al. 1997; Vliet & Ortiz 2006). 
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3.4.1 Maxwell model 

The Maxwell model is a plane viscoelastic model (i.e. diagram 3.6), as a Hookean 

spring and a Newtonian dashpot connected in series. In this figure, E is assigned for 

elastic modulus and η is the viscosity coefficient of the material. This model does not 

provide a good prediction for creep. Total stress (𝜎𝑇𝑜𝑡𝑎𝑙) and total strain(𝜀𝑇𝑜𝑡𝑎𝑙) are 

as per the following equations (3.5 and 3.6), and the Maxwell model can be expressed 

as equation 3.7 (McCrum et al. 1997; Vliet & Ortiz 2006). 

 

 
𝜎𝑇𝑜𝑡𝑎𝑙 =  𝜎𝐷 =  𝜎𝑠                                 (Equation 3.5) 

 
 

𝜀𝑇𝑜𝑡𝑎𝑙 = 𝜀𝐷 + 𝜀𝑆                                    (Equation 3.6) 
 
 
where, 

D indicates stress/ strain in the damper and the subscript S indicates the stress/strain in 

the spring. By taking derivation of strain with respect to time, the following equation 

is obtained (McCrum et al. 1997; Vliet & Ortiz 2006). 

 

 
𝑑𝜀𝑇𝑜𝑡𝑎𝑙

𝑑𝑡
=  

𝑑𝜀𝐷

𝑑𝑡
+  

𝑑𝜀𝑆

𝑑𝑡
=  

𝜎

𝜂
+  

1

𝐸

𝑑𝜎

𝑑𝑡
                  (Equation 3.7) 

 
 
where; 
E: elastic modulus  
η: viscosity coefficient of the material.  
 
 

 
 

Figure:  3.6 Maxwell Model 

 

 
3.4.2 Kelvin/ Voigt model 

The Kelvin or Voigt model is another plain viscoelastic model combining a Hookean 

spring and a Newtonian dashpot in a parallel connection.  Figure 3.7 depicts a Kelvin 
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model where E is assigned for elastic modulus and η is the viscosity coefficient of the 

material. The Kelvin model is able to provide a proper creep model for viscoelastic 

materials ,however, it does not produce an acceptable relaxation model (Liao 2007; 

Viscoelasticity 2016). In the Kelvin model, total stress (𝜎𝑇𝑜𝑡𝑎𝑙) and total strain (𝜀𝑇𝑜𝑡𝑎𝑙) 

are expressed in the following equations (equation 3.8, and 3.9),  while  the Kelvin 

model itself is given by equation 3.10 (McCrum et al. 1997; Vliet & Ortiz 2006).  

 

 
𝜀𝑇𝑜𝑡𝑎𝑙 = 𝜀𝐷 = 𝜀𝑆                                               (Equation 3.8) 

 
 

𝜎𝑇𝑜𝑡𝑎𝑙 =  𝜎𝐷 +  𝜎𝑠                                           (Equation 3.9) 
 

 
where, 
D indicates stress/ strain in the damper and S indicates the stress/strain in the spring 
(Viscoelasticity 2016). 
 
 
 

𝜎 (𝑡) = 𝐸𝜀(𝑡) + 𝜂 
𝑑𝜀(𝑡)

𝑑𝑡
                                     (Equation 3.10) 

 
 
where; 
E: elastic modulus  
η: viscosity  
σ (t) ; stress and its changing rates by time  
ɛ (t) : strain and its changing rates by time 
t : time 
 
 

 
 

Figure:  3.7 Kelvin/ Voigt Model 

 
 

3.4.3 Burgers model  

As indicated previously the Maxwell and Kelvin models are often considered to be 

overly simple in providing a precise prediction of a materials’ viscoelastic behaviour 

(Liao 2007; Öztürk 2007). Therefore, some more advanced viscoelastic models have 
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been built by combinations of these two basic models such as, the Burgers model, the 

Generalized Maxwell model, and the Generalized Kelvin model (Abbas 2004).  

The Burgers model is one of the favourite rheological models for predicting and 

evaluating deformations in viscoelastic materials under a constant loading (creep) 

phase and also in the recovery phase (unloading).  Figure 3.8 substantiates this that it 

is a combination of Maxwell and Kelvin models. The Burgers equations for the creep 

and recovery phases are presented in the equation 3.11, and 3.12 respectively (Geber 

et al. 2014).  

 

 
Creep (loading) phase; 

𝜀𝑠𝑢𝑚(𝑡) =  
𝜎0

𝐸1
+

𝜎0

𝜂 1
. 𝑡 +   

𝜎0

𝐸2
 . (1 − 𝑒

−
𝐸2
𝜂 2

.𝑡
)                     (Equation 3.11) 

 
where: 
 
𝜀𝑠𝑢𝑚:  is the elastic deformations summation 
𝜎0: the constant shear stress  
𝐸1 , 𝐸2: elastic moduli of two spring parts in the Burgers model 
𝜂 1, 𝜂 2: viscosity of two dashpot parts in the Burgers model  
t: loading time  
 
 
 
Recovery phase; 

ɛ𝑠𝑢𝑚 = ɛ0 + ɛ̇ . 𝑡2 + ɛ1 . (1 − 𝑒
−𝑡2
𝜆2 )                     (Equation 3.12) 

 
 
Where:  
 
𝜀𝑠𝑢𝑚: represents the elastic deformations summation 
ɛ0     : is the instantaneous deformation at recovery phase 
ɛ1     : delayed deformation at recovery phase 
 ɛ̇      : shear rate  
𝑡2     : the time at the end of recovery phase 
𝜆2      : the retardation time  
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Figure:  3.8 Schematic of Burgers model (Öztürk 2007; Geber et al. 2014) 

 

3.4.4 Generalized Maxwell model 

The Generalized Maxwell model, also known as the Wiechert model, is one of the 

most promising existing models for modelling asphalt. The model assumes that the 

relaxation phase happens at a distribution of times, but not at a particular single time. 

The model is represented in this feature by including a spring and as many as required 

Maxwell elements for a precise response indication (Liao 2007).  The Generalized 

Maxwell model is represented in figure 3.9 below: 

 

 
Figure:  3.9 Schematic of Maxwell–Wiechert model  (Liao 2007) 

 
 

 

3.5 Existing test methods to evaluate permanent deformation of asphalt 

mixtures 

 

In order to evaluate permanent deformations of asphalt mixtures, many test methods 

have been used around the world. These methods can be classified into the three main 

groups of: Empirical tests, Fundamental tests and Simulative or Wheel track tests 

(Brown et al. 2001; Liao et al. 2013). More information and a comparison of the 

various test methods employed for evaluating the permanent deformation of asphalt 

mixtures is provided in Table 1 in the Appendix. 
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3.5.1 Empirical tests 

Empirical tests are the oldest test methods used to evaluate permanent deformation of 

asphalt mixtures. Nowadays, empirical tests are considered to provide only a poor 

assessment of the performance of asphalt mixtures. The main reason is that test results 

do not correlate well with results from observed field situations. Consequently, the use 

of such methods to assess the permanent deformation of asphalt mixtures has 

decreased sharply. Some of the more well-known empirical tests are the Marshall Test, 

and the Hveem Test. 

 

 

3.5.2 Fundamental tests 

Fundamental tests to evaluate permanent deformation of asphalt mixtures are more 

theoretical and newer than empirical tests. The test outcomes provide better 

correlations between laboratory assessments and real field situations than empirical 

testing. This feature has made fundamental tests popular for performance evaluations 

of asphalt mixtures. In general, fundamental tests can be divided into the three main 

groups as follows (Brown et al. 2001; Liao et al. 2013): 

 

➢ Uniaxial and Triaxial tests: unconfined (uniaxial) and confined (triaxial) 

cylindrical specimens in repeated loading test, strength test, and creep test. 

➢ Shear loading tests 

➢ Diametric tests: cylindrical specimens in creep tests, repeated loading test, and 

strength test. 

 

However, these tests have their own inherent disadvantages. The most significant 

disadvantage of these tests is the lack of a confining pressure, or a uniform pressure 

applied to specimens, which thereby does not replicate in-situ tyre pressures. 

Moreover, a small laboratory sample (without proper confining pressure) cannot 

duplicate the field conditions of a pavement. Another disadvantage, which is related 

to diametric tests in the fundamental test group, is that indirect tensile tests are used to 

predict permanent deformation of asphalt pavements (Liao et al. 2013). The creep test, 

which is one of the fundamental tests, is explained in detail in the next section. 
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3.5.3 Simulative or wheel track tests 

Wheel tracking tests attempt to simulate traffic conditions on a road in the laboratory 

in order to evaluate permanent deformation of asphalt mixtures. These tests mainly 

measure rut depth created by repeated passing of a wheel over an asphalt mixture 

sample over time. The generated rut depth is used as an indicator to evaluate the 

susceptibility of the asphalt mixture to permanent deformation. Wheel tracking tests 

do not calculate stress, and they cannot be used to determine asphalt mixture modulus; 

therefore these tests cannot be used in mechanistic pavement analysis (Aksoy & 

Iskender 2008).  However, wheel tracking tests are popular around the world and 

experimental procedures are available to evaluate rutting properties of asphalt 

mixtures. Some of the more well-known simulative methods include the Hamburg 

Wheel-Tracking Device, the Nottingham Pavement wheel tracker, the French Rutting 

Tester (LCPC Wheel tracker) and the Asphalt Pavement Analyser. 

 

3.6 Classical creep 

When a solid material is subjected to mechanical stress, especially at elevated 

temperatures, it tends to move slowly and begins to irreversibly deform. This 

phenomenon is known as “creep” in materials science. Creep of a material is 

distinguished as the consequence of long-term exposure to high levels of stress below 

the material’s yield stress. The creep rate is always increased by increased load 

duration and increased temperature (figure 3.10). The creep deformation rate is also a 

function of material properties, duration and magnitude of applied loads, and the 

duration and magnitude of temperature changes. Creep is a time-dependent 

phenomenon and it does not occur abruptly when a load is applied. 

 

 
Figure:  3.10 Effect of temperature & stress 
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3.6.1 Classical creep curve 

Creep behaviour in a material is divisible  into three stages, namely primary creep, 

secondary creep and tertiary creep (Brown et al. 2001). Figure 3.11 shows a classical 

creep curve of a material, where strain is plotted against time (or log time). The primary 

creep occurs in the early stage of loading, and starts at a high rate, which slows with 

time. For metals in this stage, microstructural changes take place in the material and 

make it gradually harder to deform. Secondary creep is the steady state region where 

strain has a comparatively even rate. The secondary creep state (which is sometimes 

called steady state creep) is the most important part of creep, because primary and 

tertiary creep stages do not contribute significantly to total strain and service life of 

the material. In tertiary creep, strain has an accelerated rate, flaws increase quickly in 

the microstructure, and continue until the material ruptures. Tertiary creep may be only 

less than 1% of the total life time, but typically include a high percentage of the 

deformation life. Creep in metals and asphalt occurs through entirely different 

mechanisms. 

 

 

Figure:  3.11 Classical Creep Curve 

 

3.6.2 Creep in asphalt  

 Asphalt undergoes intermittent traffic loads and temperature fluctuations during its 

service life, and this makes it susceptible to creep deformation. Creep deformation in 

asphalt is the continuous time-dependent accumulation of strain produced by repeated 
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traffic loads, especially when heavy  slow vehicular loads exist (Brown & Foo 1994; 

Öztürk 2007). 

 

According to many researchers (Lai & Hufferd 1976; Abdulshafi 1983; Perl et al. 

1983), the creep deformation of an asphalt mixture can be resolved into four 

components which are: elastic strain (recoverable and time-independent), plastic strain 

(irrecoverable and time-independent), viscoelastic strain (recoverable and time-

dependent), and viscoplastic strain (irrecoverable and time-dependent). 

 Typical asphalt mixture creep behaviour for a load cycle is depicted in Figure 3.12. 

The 𝜀𝑜 is elastic and plastic strain, which occurs immediately by applying load (at t= 

t0), viscoelastic and viscoplastic strains happen during loading (t0 until t1), elastic 

strain is recovered as soon as the load is removed (t= t1), and viscoelastic strain is 

recovered during rebound or rest time (during t1 to t2). Therefore, as shown in the 

equation 3.13, total permanent creep deformation is the sum of plastic and viscoelastic 

strain. 

 

 

Figure:  3.12 Creep behaviour of an asphalt mixture (Perl et al. 1983) 
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𝜀𝑜 =  𝜀𝑒 +  𝜀𝑝 + 𝜀𝑣𝑒 +  𝜀𝑣𝑝                                       (Equation 3.13) 

 

where: 

𝜀𝑜 = is the creep strain 

𝜀𝑒 = elastic strain (recoverable and time-independent) 

𝜀𝑝= is the plastic strain (irrecoverable and time-independent) 

𝜀𝑣𝑒 = viscoelastic strain (recoverable and time-dependent) 

𝜀𝑣𝑝= viscoelastic strain (irrecoverable and time-dependent) 

 

 
3.6.3 Creep test method (static and dynamic) 

Laboratory creep testing is one of the most common methods for predicting and 

evaluating the rutting potential of asphalt. The creep test is performed by applying 

either a static load, or dynamic cyclic loads. In a static creep test, the specimen is 

exposed to an axial compressive static load. This test is performed at low stress and 

moderate temperature (Sousa et al. 1991), and where the magnitude of the load is 

around 100 kPa, with loading time  around 1 hour and test temperature  around 40°C. 

After unloading, the deformation is plotted as a function of time to obtain an indication 

of the rutting potential of the asphalt mixture. As shown in figure 3.13, a repeated load 

is applied in the dynamic creep test to simulate traffic loads and provide recovery time 

for the asphalt mixture. The dynamic creep test can be performed at higher stresses 

and temperatures than the static creep test (Brown et al. 2001; Aksoy & Iskender 

2008). 

 

Both static and dynamic creep tests can be performed in confined and unconfined test 

situations. In the unconfined or uniaxial creep test, there is no confining pressure 

around the sample and the specimen is only subjected to compressive axial load. 

However, for better field simulation, sometimes a confining pressure (usually 130 to 

140 kPa) is applied to the specimens.  In general, the results of  confined dynamic 

creep tests (or the triaxial dynamic creep test) exhibit better correlation with field 

performance than the results from the static or unconfined tests (Brown et al. 2001). 
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Figure:  3.13 Accumulation of permanent deformation under repeated loading 
(Khanzada 2000) 

 

 
Typically, the linear part (secondary phase) of the creep curve is considered for 

analysing outcomes of a static creep test. The linear part can be modelled by the power-

law model as per the following (equation 3.14) (Ebrahimi 2015); 

 

 

Dʹ = D(t) – Do = atm                                 (Equation 3.14)                               

 

where, 

 Dʹ     = Viscoelastic compliance component at any time 
 D(t)  =  Total compliance component at any time 
 Do    = Instantaneous compliance 
 t       = Loading time 
 a, m = Materials regression coefficients 
 
  

Similarly to the static creep test, the linear zone of the creep diagram is used for 

evaluating a dynamic creep test. The Power-law is able to provide permanent 

deformation parameters including intercept (a) and slope (b), as in equation 3.15 

(Ebrahimi 2015); 
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ɛ𝑝 = 𝑎𝑁𝑏                                       (Equation 3.15) 

 

Alternatively, a mathematical model is obtained by employing permanent strain per 

load repetition as expressed in equation 3.16 (Ebrahimi 2015);  

 
𝛿𝜀𝑝

𝛿𝑁
=  𝜀𝑝𝑛 =  

𝛿(𝑎𝑁𝑏)

𝛿𝑁
    𝑜𝑟    𝜀𝑝𝑛 = 𝑎𝑏𝑁𝑏−1               (Equation 3.16) 

 

 

3.6.4 Creep models used to explain laboratory phenomena 

The Cross Model is a non-linear rheological model that has been developed by 

Cheung, Cebon and Deshpande (2005), and later extended by Ossa et al (2010). To 

characterize the asphalt monotonic behaviour at both creep test conditions i.e. constant 

stress and constant strain creep tests. The developed Cross Model defines stress (𝜎) 

and the strain rate (𝜀̇) relationship as presented in the equation 3.17 (Bai et al. 2014); 

                      
𝜎

 𝜎0
=  

𝜀̇

𝜀0̇(𝜀,𝑇)
 

1

1+(
𝜀̇

𝜀̇0(𝜀,𝑇)
)

𝑚                     (Equation 3.17) 

where: 

 𝜎0; is the Basis stress  

𝜀0̇; the Basis strain rate.  

𝜀 ; Total strain  

T; temperature, and  

m; the strain rate sensitivity exponent 

 

Lai (1973) performed an unconfined creep test (uniaxial) on asphalt under a variety of 

loading conditions, i.e. constant loading system, multiple-step loading system and 

repeated loading system, to explore the plastic strain of an asphalt mixture. It was 

concluded that the total irrecoverable creep strain can be expressed as per the  

following equation (3.18) (Uzarowski et al. 2007);  

 

εp(t) = (b1σ + b2σ2) tn𝑝                                (Equation 3.18) 
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where; 

εp= total plastic strain 

 

and the plastic strain rate is as below (equation 3.19); 

 

εp(t) = 𝑛𝑝(b1σ + b2σ2) tn𝑝−1                      (Equation 3.19) 

where; 

εp              = total plastic strain rate 

σ               = loading stress 

t                 = time 

n𝑝             = slope of the creep compliance curve 

b1and b2  = parameters of the stress-strain curve 

 

As the creep behaviour of the asphalt includes various phases i.e. consolidation, 

deformation and plastic failure, Beckedahl et al. (1992) in (Öztürk 2007) have 

developed a mathematical model to fit these stages of the creep curve. The model is 

presented in equation 3.20 below: 

 

𝜀(𝑛) = 𝐸0 + 𝐴𝑛𝑘 + 𝐵(𝑒𝑚𝐶 + 1)                                (Equation 3.20) 

where;  

𝜀(𝑛) = Strain after n loading application  

n       = number of applied loading 

E0, A, B, C, k = model constant parameters which are obtained by regression analysis. 

 

 In this model, E0 represents the consolidation, 𝐴𝑛𝑘 is the creep deformation, and 

𝐵(𝑒𝑚𝐶 + 1) is the plastic failure part of the mixture. These parameters have been 

plotted in the figure 3.14 (Öztürk 2007). 
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Figure:  3.14  Bechedahl model parts (Öztürk 2007) 

  

3.6.5 Evaluating and measuring creep in Australia 

The Australian creep test was issued as the Australian Standard, AS 2891.12.1995 in 

November 1995. The test procedure was improved in 2008 in accordance with the 

Austroads mix design procedures. The Australian creep test procedure uses two 

specimen sizes, i.e. 100 mm diameter for mixtures with a maximum particle size of 20 

mm and 150 mm diameter for mixtures with a maximum particle size of 40 mm. 

According to the test procedure the cyclic loading stress is 200 kPa, termination strain 

is 3,000 microstrain, and/or a termination pulse count of 40,000. The main parameter 

derived from the creep test curve in this procedure is the minimum slope of the 

accumulative strain versus number of load cycles (figure 3.15). The minimum slope is 

the point of inflection of the curve. The Austroads mix design procedure was published 

by Austroads (Alderson, Allan & Hubner, David 2008) and also as Australian Standard 

(AS-2891.12.1 1995). 
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Figure:  3.15 Dynamic creep diagram (Alderson, Allan & Hubner, David 2008) 

 

3.7 Summary 

The literature review undertaken outlines the numerous tests and models that are 

available to be applied to explain the visco-elastic behaviour of asphalt under applied 

traffic loading. Behaviour of an asphalt mixture as a viscoelastic material can be 

modelled under vehicular loads by various mechanical techniques. Moreover, it is 

possible to model creep deformation of asphalt and to describe asphalt behaviour when 

it is subjected to repeated loads. The approaches vary from the simplistic elastic and 

mechanical models to the more complex ones employed in many of the computer 

programs used to predict the viscoelastic behaviour of asphalt. The models developed 

are normally based on laboratory data, which is dependent upon the actual testing 

procedure and replication of field in-situ stress conditions. 

 

The review has indicated that there is much scope for improving laboratory testing 

methodologies that will generate superior models that can be used to evaluate in-situ 

behaviour. The key factor appears to be the use of a confining stress that is generated 

in response to the load cycle, thereby better simulating in-situ conditions. This is 

therefore the focus of this research. 
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4 CHAPTER 4 

         RESEARCH METHODOLOGY 

 

 

4.1 Introduction 

Many countries around the world, including the United States of America (USA), the 

United Kingdom (UK), and Australia, employ failure criteria as key input parameters 

for the mechanistic design of asphaltic pavements. While fatigue is a very commonly 

used criterion, creep is also an important factor, but not commonly considered due to 

a lack of well accepted and proven laboratory test methodologies. A laboratory creep 

test should replicate field stress and strain conditions in the test asphalt specimens to 

ensure that it is an appropriate option for including as a permanent deformation 

indicator in mechanistic pavement design. 

 

 A laboratory creep test should be able to be employed for predicting the resistance of 

an asphalt pavement to permanent deformation under repetitive trafficking.  Although 

current laboratory creep test methods have good potential for evaluating permanent 

deformation of asphalt mixtures, there are serious concerns about their abilities to 

provide any precise prediction of asphalt susceptibility to permanent deformation. 

These concerns have arisen when creep test outcomes have been compared with data 

from field assessments. One reason for poor correlation appears to be a lack of an 

appropriate lateral confinement around the laboratory creep specimens. In other words 

a true 3D stress field is not generated. In an unconfined creep test, resistance to 

permanent deformation of the specimen is mainly dependent on the binder flow 

(rheology), while the role of the aggregate skeleton and its internal friction is 

minimised. 

 

In this chapter, a new methodology is explored which will provide effective 

confinement for asphalt creep specimens. The proposed methodology is founded on 

the current Australian test, adapted to provide simulated field conditions. Sample 
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confinement is provided by a resin/ PVC composite ring that provides lateral support 

while operating within its elastic range under the generated hoop stresses. The chapter 

first considers key relevant previous research related to the adapted methodology 

before providing a detailed description of the new methodology. The following 

diagram (figure 4.1) provides an indication of the parameters that needed to be 

considered in establishing a testing regime for this investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure:  4.1 Chart flow for the research methodology 
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4.2 Limitation of existing creep tests 

The creep test is one of the most common techniques for evaluating asphalt 

susceptibility to plastic deformation and several standard test methods have been 

developed around the world. Specimens for the creep test are either cored from a road 

pavement or fabricated in a laboratory. In most tests an asphalt specimen is then 

exposed to axial, compressive, static or dynamic loads. The Australian dynamic creep 

test standard was published in November 1995 as the Australian Standard AS 

2891.12.1995, and was reissued in 2008 in accordance with the asphalt mix design 

procedure of Austroads. However, many concerns have been reported (Oliver et al. 

1995; Butcher & Lindsell 1996) concerning the ability of the current creep test to 

provide a precise prediction of plastic behaviour of asphaltic mixtures in the field. 

These concerns have been confirmed by comparing collected data from field studies 

with outcomes of laboratory creep tests (Oliver et al. 1995; Butcher & Lindsell 1996). 

 

In Australia, a comprehensive study was undertaken by the ARRB Group to assess 

deformation resistance of various asphalt mixtures, and also to assess the relevancy of 

the creep test for predicting permanent deformation of asphalt. The experimental part 

was performed in conjunction with the Beerburrum Accelerated Loading Facilities 

(ALF) asphalt deformation trial (Oliver et al. 1995). By analysing field and 

experimental outcomes, it was found that the dynamic creep test had shortcomings for 

providing a precise prediction of asphalt rut-resistance. The study found that (Oliver 

et al. 1995):  

1)  The creep test ranked asphalt mixes with different aggregate gradations in a 

different order when compared to ALF rutting results. 

2) The creep test indicated greater sensitivity to air voids content than was the 

case for field rutting. 

3) The creep test indicated that by decreasing air void content to less than 3%, the 

rut-resistance of asphalt mixes continued to rise, which conflicted with field 

experience. 

 

The Transport Research Laboratory (TRL) in the UK performed a comparison study 

(Smith 1996) on various techniques of analysing dynamic creep test outcomes. The 



 

 

64 
 

test was performed according to the “Draft for Development”, published by the British 

Standards Institution named “Method for determination of creep stiffness of bitumen 

aggregate mixtures subject to unconfined uniaxial loading” (BS-DD-185 1990; Smith 

1996)”. In the study, specimens were cored from two motorways (M53 and M56). The 

study stated that a poor relationship was found between asphalt variables and creep 

test outcomes and it was concluded that it could be impractical for road agencies to 

use the creep test as a reliable test to indicate field performance (Smith 1996).  

 

As mentioned previously, it has been hypothesised that the main reason of the creep 

test incapacity to duplicate field behaviour is a lack of an effective confinement around 

the laboratory specimens. As shown in figures 4.2, and 4.3 asphalt under a wheel load 

is surrounded by an asphalt mix that provides a confinement, while a (current) creep 

laboratory specimen does not have this condition. In many existing creep tests, 

specimens are unconfined. The stresses in a laboratory specimen are different to those 

in a field setting, leading to a failure to replicate in-situ asphalt behaviour (Oliver et 

al. 1995; Butcher & Lindsell 1996).  

 

 
Figure 4.2 Pavement in the field 

surrounded by lateral asphalt 

 

 
Figure 4.3 Existing Creep test without 

any confinement 

 

The lack of an effective confining stress allows the aggregate skeleton to deform 

laterally. The “rut-resistance” of the asphalt in the current laboratory creep test is 

mainly attributed to flow resistance of the binder (or rheology of the binder). In the 

field, due to the confined state of the asphalt, the aggregate skeleton is constrained. 



 

 

65 
 

Hence, in addition to binder resistance to flow, plastic deformation of the asphalt is 

connected to internal frictional effects of aggregates (Oliver et al. 1995).  

 

In summary, in an unconfined laboratory creep test, resistance to permanent 

deformation of the asphalt is mainly related to the binder properties, while in the field 

both binder and aggregate friction play significant roles.  

 

4.3 Confining creep test 

In response to the critical questions about the perceived inadequacy of the unconfined 

creep test to predict permanent deformation of asphalt, many researchers have been 

trying to develop new methods to improve laboratory test methods. It is expected that 

by providing a lateral pressure around the laboratory specimens, it will be possible to 

better simulate field conditions and obtain more relevant creep test outcomes. In this 

regard, different techniques such as repeat load triaxial cells have been developed. 

 

4.3.1 Previous studies for developing confinement test 

Liao Gong et al. (Liao et al. 2013) used an asphalt mix confinement for repeated load 

test as shown in the figure 4.4. In this process, an annulus of asphalt was provided as 

a confinement by using smaller top and bottom platens on a larger diameter specimen 

size. They used 75 mm diameter loading platens on a 150 mm diameter specimen size 

that provided a confinement annulus with 75 mm internal and 150 mm external 

diameters. The study reported that of four mix response factors, only one of them 

provided an acceptable relationship with rut depths of the asphalt pavement (𝑅2 greater 

than 0.7) 
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Figure:  4.4 Specimen confinement for the repeated load test: (a) section of a 
specimen: Core A, and confined ring B (schematic); (b) Test setup (Liao et al. 2013) 

 

Young Doh et. al (Doh et al. 2007) developed a static strength test method for assessing 

permanent deformation of asphalt. The study stated that the asphalt underneath a tyre 

is surrounded by a portion of asphalt that acts as a barrier  restricting shear deformation 

(Doh et al. 2007). In the test, a static load was applied through different loading head 

sizes. Specimen diameters were 100 and 150 mm, and the diameters of rounded 

heading loads were 30 mm (5 and 7.5 mm radius of round cut) and 40 mm (5 and 10 

mm radius of round cut) (see figure 4.5). Failure modes of specimens under loading 

heads are shown in figure 4.6. In this test, deformation strength was measured and 

compared with other permanent deformation tests (wheel tracking and repeated –load 

creep). The authors concluded that the new test method would provide a good 

correlation with other rut parameters of asphalt. 

 

 
Figure 4.5 Test equipment for 150 mm 

specimens (left) and 100 mm (right) 
with replaceable loading-head holders 

(Doh et al. 2007) 

 

 
 

Figure 4.6 Failure mode of specimens 
by heading load (Doh et al. 2007)  
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Huang and Zhang (Huang & Zhang 2010) introduced a new confined creep test 

procedure named the Partial Triaxial Test (PTT), for assessing the rut resistance of 

asphalt. They used top and bottom smaller platen size (75 mm in diameter) on the 

bigger specimen size (150 mm in diameter) thereby providing a confinement for 

asphalt. Figure 4.7 show configurations of the PTT compared to other confined tests. 

The outcomes of the PTT test were compared with outcomes of the triaxial repeated 

load permanent deformation tests (TRTs). The study confirmed similar permanent 

deformation outcomes for PTT and TRT tests. 

 

 

Figure: 4.7 Configuration of, a) In-situ condition of Pavement, b) TRT, c) Uniaxial 
Penetration Test, d) PTT, e) Cross Section of PTT (Huang & Zhang 2010). 

  

4.3.2 Development of a new Confined Creep Test 

To provide a suitable confinement and increase laboratory creep test relevancy, various 

methods have been evaluated from around the world. Triaxial cells and an asphalt 

annulus as confinement methods have been the most promising methods to date. 

However, these methods have their own specific disadvantages. Triaxial cells are able 

to produce either static or cyclic pulses as lateral pressure, nevertheless, they are 

complicated and time-consuming tests. Additionally, they are expensive techniques 
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and such equipment is not readily available in most asphalt production laboratories. 

Also some studies have describe  test outcomes for triaxial testing that do not provide 

a good correlation with field assessments (Butcher & Lindsell 1996). 

 

Providing a lateral restraint barrier with an asphalt annulus has been very popular as 

outlined earlier. The European standard uses the same technique for laboratory creep 

test and a 100mm diameter platen on a 150mm diameter specimen size for the 

European standard (BS-EN12697-25 2005). Although using an asphalt annulus for the 

creep test is simple to apply and provides a partial confinement for the specimen, it 

has its serious disadvantages in simulating in-situ rutting.  Failure in the laboratory 

creep specimen and its condition post-test, indicate a different pattern to rutting 

mechanisms in the field pavement. Extensive cracking occurs in the specimens during 

the laboratory test (Figure 4.8). These cracks are mostly as result of tensile failure of 

the mix (bursting) and they do not replicate failure (rutting flow) in the field (Oliver et 

al. 1995). 

 

Figure: 4.8  Crack development in the unconfined creep test 

 

When a realistic stress is applied to simulate real traffic loads (around 750 kPa) in the 

laboratory, punching occurs in the specimen as shown in the figure 4.9. To resolve this 

problem and provide  better confinement, a stress responsive elastic confinement is 

proposed (Oliver et al. 1995). 
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The research reported here developed a new method for providing confinement in a 

dynamic laboratory creep test. An annulus of asphalt was used with additional 

confinement provided by a PVC ring with a flowable epoxy resin infill. The rings were 

obtained by cutting a section from a PVC pipe, and the gap between ring and asphalt 

specimen was infilled with a flowable epoxy resin. The annulus of asphalt employed 

as part of the confinement was obtained by using 50 mm, 75 mm, and 100 mm diameter 

top platens on the 100 mm and 150 mm diameter asphalt specimens.  

 

 

Figure: 4.9  Laboratory specimen punching when a simulated real traffic load was 
applied 

 

It was anticipated that by providing such a stress-responsive confinement, it would be 

possible to change the failure pattern of the specimens to a more realistic deformation. 

It was expected that crack initiation and growth would be restricted and that some flow 

deformation would occur in the specimen, with the overall deformation in the 

laboratory specimen being closer to the flow deformation observed in the field.  

 

In the new method, the magnitude and duration of lateral pressure (confinement) is 

generated as a function of applied load. It is possible to perform the new confined 

dynamic creep test with an existing Universal Testing Machine (UTS) and software 

without any changes allowing current users to easily employ the new method.  
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4.4 Material selection 

The main goal of the mix material selections was to help to ensure realistic data from 

laboratory testing which would be able to more closely model in-situ asphalt 

performance. Asphalt mixes from an asphalt production plant correlate better with 

asphalt used in road pavements than laboratory produced mixes. Therefore, all 

materials, mixes, and asphalt samples were obtained from the Brisbane City Council 

(BCC) asphalt plant. 

 

The properties and gradings of the aggregates, and details of the binders and fillers 

used in the production of the asphalt are provided below:  

 

4.4.1 Aggregate 

A crushed hornfels aggregate from the Mt Cootha Quarry in South-east Queensland, 

Australia was used as an aggregate and filler for fabricating asphalt specimens. 

Aggregate with maximum 13.2 mm particle size complying with a BCC as Type 2 

aggregate gradation (dense graded mix) was chosen for all samples. Table 4.1 and 

figure 4.10 show the aggregate gradation.  

Table:  4.1 BCC Type 2 aggregate gradation 

Sieve Grading Upper Limit Lower Limit 

13.2 100 100 100 

9.5 93 100 90 

6.7 77 86 74 

4.75 64 68 56 

2.36 48 49 39 

1.18 35 38 30 

0.6 27 29 21 
0.3 18 21 15 
0.15 10.1 12 8 

0.075 7.7 8 6 
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Figure:  4.10 BCC Type 2 aggregate gradation plot 

 

Routine quality check were undertaken on the aggregates in line with relevant 

Australian standards (AS) and Queensland Department of Transport and Main Roads 

(Q) specifications as summarised in Table 4.2 and 4.3. 

Table:  4.2 A ggregate characteristics 

   7 mm 9 mm 14 mm 

Test 
Method 

Descriptio
n 

Limits Test result Test result Test result 

AS 
1141.11 Grading - Conforming Conforming Conforming 

AS 
1141.15 Flakiness <30% 9.5 13.3 7.8 

Q 214 B Water 
Absorption 

Max 2% 0.61 0.49 0.24 

Q 214 B 
Particle 
density 
(Dry) 

t/m3 2.671 2.654 2.673 

Q 215 Crushed 
Particles 

Min 80% 100 100 100 

Q 217 Weak 
Particles 

Max 1% 0.5 0.1 0.1 

Q 205 B 10% Fines Min 150 
KN 

296 272 239 

 Product 
Conforms 

(Yes/ No) Yes Yes Yes 

Note: Q refers to a Queensland Department of Transport and Main Roads test 
method 
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Table:  4.3 Filler characteristics 

   Baghouse Rockflour Combined 
BH/RF 

Test 
Method 

Description Limits Test 
result 

Test result Test result 

AS 
1141.11 

600 µm Grading 
(AS 2357 Limits) 100 100 100 100 

AS 
1141.11 

300 µm Grading 
(AS 2357 Limits) 95-100 100 100 100 

AS 
1141.11 

0.075 µm Grading 
(AS 2357 Limits) 75-100 92.8 97.1 97.1 

AS 
1141.17 

Voids in 
Compacted Filler Min 38% 48 49 46 

AS  
1141.7 

Apparent Particle 
Density 

TBR 2.706 2.756 2.729 

 Products Conforms (Yes/ No) Yes Yes Yes 

 

4.4.2 Bitumen 

The minimum bitumen content of asphalt mixes in Australia is typically lower than 

that used in the USA and European countries. The main reason for this reduction in 

bitumen is the sub-tropical/temperate climates of most Australian states. This leads 

Australian pavement designers to use relatively lower bitumen contents to minimise 

surface flushing deterioration (Stephenson 2002). The bitumen content for this study 

was designed to be 5% for all mixes. 

 

As previously mentioned, binder resistance to flow (or consistency of the binder) and 

the aggregate skeleton are two core contributors to the rut-resistance of pavements. As 

this study was investigating permanent deformation of asphalt, it was important to 

select binders with different rheologys.  One rut-resistance bitumen i.e. Multigrade 

(1000/320) and one unmodified bitumen (C170) were used to fabricate specimens. The 

properties of the two bitumens were determined using standard Australian test 

procedures as shown in Tables 4.4 and 4.5. 
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Table:  4.4 Properties of bitumen class C170 (batch bitumen) 

Property Test Method Limits Test Result 

Viscosity at 60ᵒ C (Pa.s) AS 2341.2 140 - 200 189 

Penetration at 25ᵒ C, 100g, 5s (pu) AS 2341.12 Min 62 68 

Viscosity at 135ᵒ C (Pa.s) AS 2341.2 0.25 - 0.45 0.420 

Density at 15ᵒ C (t/𝑚3) AS 2341.7 1 min 1.058 

 

 

Table:  4.5 Properties of Multigrade 1000/320 bitumen (batch bitumen) 

Property Test Method Limits Test result 

Viscosity at 60ᵒ C (Pa.s) AS 2341.2 Report value 910 

Penetration at 25ᵒ C, 100g, 5s (pu) AS 2341.12 Report value 43 

Viscosity at 135ᵒ C (Pa.s) AS 2341.4 1.5 max 0.78 

Viscosity at 60ᵒ C after RTFOT 

(Pa.s) 
AS 2341.2 3500 - 6500 5550 

Penetration at 25ᵒ C, 100g, 5s 

after RTFOT 
AS2341.12 26 min 26 

Softening Point (C) AS 2341.18 Report 58.5 

Flash Point, ᵒC AS 2341.14 250 min 348 

Density at 15ᵒ C (t/𝑚3) AS 2341.7 Report 1.031 
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4.5 Sample preparation 

4.5.1 Mix design 

BCC type 2 mix with two different binders were selected, namely BCC Type 2 Multi-

grade asphalt and BCC Type 2 C170 asphalt. The aggregate gradation, aggregate and 

binder properties of these were provided in the previous section. These mixes were 

chosen as both are popular in Queensland and many roads have been paved with these 

mixes. The rut-resistance of the two mixtures are very different, and they provide a 

good basis for this research. A wide range of mix air voids (from 2% to 9%) was 

investigated as part of the research. 

  

4.5.2 Mix fabrication 

All manufacturing of asphalt specimens was undertaken at the BCC Eagle Farm 

Asphalt Plant (figure 4.11). Materials were obtained during normal production runs. 

Bulk samples of 28 kg were placed in special containers and stored under controlled 

conditions at the asphalt plant. Around 800 kg asphalt in total was used to fabricate 

specimens for this research. 

 

 

Figure: 4.11  The control room of the Eagle Farm Asphalt Plant 
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4.5.3 Compaction 

 Shear box compaction was used for all compacted mixes.  The compaction process 

simulates in-situ pavement roller compaction by using a cyclic shear load, a constant 

compressive load, and a shear angle to the mix. Figure 4.12 shows the shear box 

compactor concept. The compactor is able to provide a thick slab (up to 190 mm), 

which can supply specimens for wheel-track, beam fatigue and cylindrical asphalt 

tests, with  superior control of density and homogeneity of the final compacted product 

(Gabrawy 2000). Material was kept in an oven at 160 ͦ C for three hours prior to 

compaction. A total of 120 cylindrical asphalt samples were manufactured in two 

different sizes, i.e. 150mm diameter × 50mm height, and 100mm diameter × 50mm 

height by coring from 30 rectangular slabs of 440mm×170mm×150mm dimensions.  

The sample fabrication process is illustrated in Figure 4.13. 

 

 
Figure: 4.12  Shear box compactor concept (Sullivan 2015) 
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Figure: 4.13  A) Placing asphalt mix in the shear box compactor.  B) Coring specimens 
from slabs. C) Cutting specimen to the required sizes.  D) Prepared specimens 

 

4.6 Confinement arrangement 

As described previously, the confining system consisted of a composite resin/ PVC 

ring. Two diameter sizes of PVC pipes of 100 mm and 150 mm were used. As the wall 

thickness of the pipes has a direct effect on the magnitude of confinement in addition 

to that provided by the infill epoxy, two different wall thicknesses of PVC of 4 mm 

and 2.5 mm were investigated. 

 

In order to place rings around the asphalt specimens, it was necessary to have a small 

space between the PVC rings and samples and a 2.5 mm space was selected for all 

specimens.  An epoxy resin was used as the gap filling material with the physical 

properties detailed in Table 4.6. 

 

A B 

C D 
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Table: 4.6  Physical properties of resin 

Property Description 

Appearance Part A:  Dense and thick fluid 
Part B:  Clear yellow colour liquid 

Mix ratio By weight: 10 to 1 for parts A and B respectively 
By volume: 4 to 1 for parts A and B respectively 

Compressive strength 120 MPa after 7 days 

Gel time 1 kg mix 

Mixed density 2.12 

Coverage 1×15 litre kit, yields 0.15 𝑚3 

Proprietary name HYCHEM PF-7 

 

The process of providing the confining system is outlined below: 

➢ Rings were cut from a section of 150mm diameter pipe for 150mm specimens 

and from 100mm diameter pipes for 100mm diameter specimens. As the height 

of the asphalt specimens was 50mm, the rings were cut to 50mm lengths. 

➢ In order to obtain rings with 4 mm wall thickness and also to retain a 2.5mm 

space for resin, the insides of rings were machined. Rings with 2.5mm wall 

thickness and again preserving  2.5mm space for resin, both the inside and the 

outside of the rings were machined. 

➢ As the resin was liquid after mixing (in the initial phase), it was necessary to 

seal the ring before filling with resin. Rings were placed on a plastic sheet and 

the bases sealed with a silicone sealant as shown in the figure 4.14. It required 

around 3 hours for the silicon sealant to be firm enough for in-filling the gap 

with resin. 

➢ Resin was prepared by mixing its two parts.  Mix ratios for the two parts were 

10 to 1 by weight or 4 to 1 by volume for resin and hardener respectively.  

➢ Finally, the space between rings and asphalt specimens was in-filled with resin. 

After 7 days resin reached its maximum compressive strength of 120 MPa. 
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Figure: 4.14  A) Ring sealant, B) Filling gap with resin 

 

4.7 Air voids content measurement 

It is well established that air void content is correlated with creep deformation, fatigue, 

and resilient modulus. In this study a wide range of air voids were investigated, which 

would also cover the specification void range for the BCC asphalt. The percentage of 

air voids in the compacted mixes was determined according to Australian Standard 

method (AS-2891.8 2005 ) as follows: 

 

 

                                   𝐴𝑉 =  
𝜌𝑚𝑎𝑥 −  𝜌𝑏𝑢𝑙𝑘

𝜌𝑚𝑎𝑥
 × 100                                Equation 4.1 

where 

AV =  is the air voids 

𝜌𝑚𝑎𝑥 = maximum density of the mix (t/𝑚3) 

𝜌𝑏𝑢𝑙𝑘 = bulk density of the compacted mix (t/𝑚3) 

 

 

The bulk density of the compacted mixes was calculated in according with Australian 

standard number (AS-2891.9.2 2005) from following equation: 

 

 

                                         𝜌𝑏𝑢𝑙𝑘 =  
𝑚1 𝜌𝑤

𝑚3−𝑚2
                                       Equation 4.2 

 

A B 
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where 

𝜌𝑏𝑢𝑙𝑘 = bulk density of the compacted mix (t/𝑚3) 

𝑚1 = mass in air of the specimen (grams) 

𝑚2 = mass in air of the saturated specimen (grams) 

𝑚3 = mass in water of the specimen (grams) 

𝜌𝑤 = water density at the test temperature. 

 

The water displacement method was used for determining maximum density of the 

mixes. Australian standard test number (AS-2891.7.1 2004) was employed as a test 

method using the following equation: 

 

 

                                    𝜌𝑚𝑎𝑥 =  
(𝑚3− 𝑚1) 𝜌𝑤

(𝑚3− 𝑚1)−(𝑚4− 𝑚2)
                      Equation 4.3 

 

where 

𝜌𝑚𝑎𝑥 = maximum density of the mix (t/𝑚3) 

𝑚1 = the mass of the pycnometer and lid (grams) 

𝑚2 = the calibrated mass of the pycnometer and lid, filled with water at 25ᵒC (grams) 

𝑚3 = the mass of the pycnometer, lid and test portion (grams) 

𝑚4 = the mass of the pycnometer, lid, test portion and water (grams) 

𝜌𝑤 = water density at 25ᵒC (0.997 t/𝑚3). 
 
 
4.8 The Marshall test results 

The Marshall test is a common empirical test for preliminary checking of some 

properties of mixtures. The Marshall test has carried out as an initial quality control of 

slabs. Parameters such as Marshall Stability, Voids in the Mix (VIM), Marshall Flow, 

Density, Voids in Mineral Aggregate (VMA), and Voids Filled with Bitumen (VFB) 

were determined. Table 4.7 provides Marshall Test results. 
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Table: 4.7 Marshall Test results (C170 mix) 

Description Result Limits 

Air Voids (%) 4.4% 2% to 5% 

VMA (%) 14.6 TBR 

Voids Filled (%) 70 TBR 

Density (t/m3) 2.37 TBR 

Flow (mm) 3.9 mm 2mm to 4mm  

Stability (kN) 11.3 Minimum 7.5 kN 

Stiffness (kN) 2.9 TBR 

TBR: To be report 

 

4.9 Dynamic creep test  

This study used the current Australian dynamic creep test method as a basis for the 

research. The Australian standard titled “Determination of the permanent compressive 

strain characteristics of asphalt - Dynamic creep test” known as (AS-2891.12.1 1995), 

and also a draft of Austroads titled “Testing Asphalt in Accordance with the Austroads 

Mix Design Procedures - Part 4- Dynamic Creep” (Alderson, Alan & Hubner, David 

2008) were used as the base method to perform all dynamic creep testing. The most 

important variations to the standard dynamic creep test procedure were different platen 

sizes, magnitude of the cyclic load, and cycle numbers for test termination.  

 

In the existing Australian standard, the magnitude of the compressive stress for the 

dynamic creep test is 200 kPa, while heavy vehicle axles and tyre pressures generate 

stresses on road pavements that are much higher. Many researchers have indicated that 

real tyre pressure is more than 500 kPa and for some special cases, it can be up to 1000 

kPa, or even higher. Austroads has adopted 750 kPa tyre as a realistic pressure on 

asphalt pavements for its pavement design procedure (Youdale 1996; Gribble & 

Patrick 2008; Austroads 2012). The application of such a tyre pressure in the existing 
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dynamic creep test using a reduced platen size will ensure that bursting will occur in 

the specimen. The new confinement system provides an opportunity to apply real tyre 

pressure in the laboratory. In this study a 750 kPa compressive stress (constant stress) 

was used for all tests, with busting being mitigated through the generated hoop stress. 

 

4.9.1 Strain gauging 

As the magnitude of the stress generated within the confining PVC, is very important 

for evaluating the effectiveness of the new confinement, two strain gauges were 

attached on selected specimens (with and without confinement) to measure the load 

induced stresses. The measured strain in the laboratory was then compared with 

models in order to better investigate the impact of the confining system variables such 

as ring thickness. Table 4.8 provides details of the strain gauges used. 

 

Table: 4.8 Strain gauge specifications 

Property Description 

Gauge type PFL-30-11 

Gauge factor 2.13 ±  1% 

Gauge resistance 119.6 ±  0.5Ω 

Transverse Sensitivity - 0.1 % 

Gauge length 30 mm 

Element Single element 

 

 

4.9.2 Platens and load cycles 

As detailed in the figure 4.15, different platen sizes of 50 mm, 75 mm, 100 mm, and 

150 mm diameter were used in testing. It is commonly understood that the diameter of 

the loading platen should be at least three times larger than maximum aggregate size. 

The 50 mm, 75 mm, 100 mm, and 150 mm platens, used in this study can be employed 
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for loading mixes with 16 mm, 25 mm, 33 mm, and 50 mm maximum aggregate sizes 

respectively. 

 

 The test standard for cycles recommends a maximum 30,000 microstrain accumulated 

strain, or a maximum 40,000 number of loading cycles as a test termination for the 

dynamic creep test. To have a more informative assessment of the new confined test, 

a maximum 100,000 microstrain accumulated strain, or 100,000 n loading cycles were 

used in the investigation. 

 

 

Figure: 4.15 Different platen sizes 

 

4.9.3 Test procedure 

A Universal Testing System (UTS) machine developed by Industrial Process Controls 

(IPC Global) was used for performing dynamic creep tests.  After applying 

confinement to specimens, the following steps accomplished the new confined creep 

test: 

➢ The ends (top and base) of the specimen were polished using an 80 grit emery 

paper to remove any surface defects. 

➢ The diameter and height of each specimen was recorded at four different 

locations around the specimen. 

➢ Strain gauges were attached (for selected specimens). 



 

 

83 
 

➢ A silicon lubricant was applied on the relevant top and bottom parts of each 

specimen to reduce end friction. 

➢  Specimens were placed in the control chamber at 50ᵒC for three hours to attain 

and preserve standard reference temperatures 

➢ Specimen and platen were centrally aligned under the actuator.  

➢ The required inputs were entered into the software of the creep machine. Table 

4.9 records some inputs for the software. 

➢ The machine was set to apply the selected number of loading cycles.  

 

Figure 4.16 illustrates the new confined creep specimen under dynamic creep loading 

cycles. 

 

Figure: 4.16 New confined creep specimen under dynamic creep loading cycles 
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Table 4.9 Inputs for dynamic creep test 

Parameter Description 

Compressive stress 750 kPa 

Seating stress 20 kPa 

Loading period 500 milliseconds (ms) 

Pulse repetition period 2000 milliseconds (ms) 

Test temperature 50ᵒ C 

Termination strain 100,000 µs 

Termination pulse count 100,000 cycles 

 

 

 

As mentioned previously, Austroads has adopted 750 kPa as a realistic tyre pressure 

on asphalt pavements and thus a 750 kPa platen pressure was used for loading all 

asphalt samples. A 20 kPa pressure was used as a seating stress to seat the specimen 

into the jig (UTS-14.Manual 2011). The Australian temperature standard of 50°C was 

adopted for the dynamic creep tests. 

 

A wide range of frequencies (from 0.1 to 12 Hertz) has been used for representing 

vehicle speed around the world (Sullivan 2015). Mollenhauer et al. (Mollenhauer et 

al. 2009) indicate that a 1.0 Hz loading frequency conformed to the frequency of 

asphalt strain induced by crossing a wheel at the speed of 7.6 km/h at the bottom of a 

34 cm asphalt layer.  NCHRP report 465 (Witzcak et al. 2002) has suggested to use 10 

Hz and 0.1 Hz as the frequency for highway speed and creep-intersection traffic 

respectively. The Australian standard for dynamic creep test suggests 0.5 Hz frequency 

(500 milliseconds loading time) which is about a 3.2 km/h speed.  Frequency concept 

of NCHRP 9-19 shown in the equation can be used to convert vehicle speed into 

designed frequency (Kumlai et al. 2014). 
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𝑡 =
2(𝑎+ ℎ𝑎𝑐)

17.6 𝑣
                                             Equation 4.4 

 

where; 

t: time of loading (second) 

a: the radius of tyre pressure (4.886 inch) 

ℎ𝑎𝑐: the thickness of the asphalt concrete layer (3.93 inch) 

v: speed of vehicle (mph) 

 

 

 

4.10 Modelling 

In order to expand the application of the new confined test, elastic and viscoelastic 

modelling have also been undertaken. The models helped to obtain useful information 

on the distribution of stresses and strains in the pavement using the existing and new 

confined creep tests. Models also assist in the design of an adequate confining ring. 

According to model outcomes and laboratory dynamic creep test results, the optimum 

sample and platen size can be determined. Models helped to analyse different materials 

for fabricating the confining ring. The finite-element method was employed for elastic 

and visco-elastic models as detailed in the next chapter. 

 

The finite-element approach is a popular technique widely used for investigating 

asphaltic pavements. It can model linear and nonlinear materials, two and three 

dimensional (2D, and 3D) geometries, elastic, plastic, viscoelastic material 

behaviours, and many complicated characteristics. Several finite-element based 

programs and software are available to model the structure of asphalt pavements such 

as Abaqus, Strand7, Adina, etc. Abaqus and Strand7 programs have been employed in 

this study.  

 

Different elastic and visco-elastic models of single and multi-layer asphalt pavements 

under real tyres and pressures (750 kPa stress, with 200mm diameters tyre pressure) 

were set up to simulate field conditions. For laboratory modelling, various specimens 

with 150mm diameter and 50mm height (as laboratory samples), under varying platen 

sizes (50mm, 100mm), exposed to static and dynamic 750 kPa axial stress with 
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different confinement situations have been modelled. Figure 4.17 shows a schematic 

elastic model of a laboratory specimen. 

 
Figure:  4.17 Schematic of the creep test model 

 
 

Some assumptions of the elastic model are as below; 

 

a) Subdivide: 40 ×40 nodes. 

b) Elements: 8 node quadrilateral elements. 

c) Axisymmetric model: (Rx=Ry=Rz=0 and Z translation= 0). 

d) Edge Restraints: (Y axial symmetric: Dy free, Dx=fixed, and, X axle: Dx free,                                                             

Dy= fixed, where in all the other places: Dx= Dy= free). 

e) Properties Input; [ a) Material; Isotropic (other options: orthotropic- rubber- 

soil- fluid), b) Type; axisymmetric. 

 

The following chapter (Chapter 5) will provide more details of the models. 

 

4.11 Summary 

The poor correlation of laboratory creep test outcomes with data collected from in-situ 

pavement assessment has raised many concerns about the adequacy of existing creep 

test methods employed to evaluate the rut-resistance of asphalt mixes. Many 

researchers believe the main reason for laboratory creep test shortcomings for 

duplicating field result is related to a lack of a realistic confinement for laboratory 

50 mm 



 

 

87 
 

specimens. As in-situ asphalt is confined by a surrounding mass, a measure of 

confinement is provided.  Most existing creep tests are unconfined. 

 

Several researchers have attempted to design better creep evaluation methodologies. 

It has been proposed that provision of confinement for the creep test might establish a 

better relationship between field and laboratory conditions. The European standard for 

creep test uses a smaller top platen size on a larger specimen size (100mm platen on 

150mm specimen) to provide some limited measure of confinement. Although many 

researchers have tried to introduce a suitable method for improving the creep test, most 

developed methods have their own specific drawbacks. 

 

In this chapter, a new confinement method for the creep test has been introduced.  A 

composite arrangement of PVC pipe and resin was developed to provide a stress 

dependent effective confinement for specimens. Additionally, different platen/ 

specimen configurations using a smaller top platen were developed. The research 

reported here combines the elements of reduced platen sizes, effective confinement, 

and representation of realistic tyre pressures to provide a cost effective new dynamic 

creep test methodology. 

 

 

 

 

 

 

 

 

 

 

 



 

 

88 
 

5 CHAPTER 5 

MODELLING 

 

 

5.1 Introduction 

Parametric modelling is widely seen as an integral part of research, allowing 

extrapolation of experimental work through validated models. Being representative of 

a system, they provide a basic reference for evaluation, and help to reduce cost and 

energy in research. Among the various types of available modelling techniques, finite 

element methods (FEM) are among the more popular in the pavement engineering 

field as they can efficiently model and predict asphalt behaviour under thermal and 

traffic loads. Abaqus is one of the most widely used computer software programs and 

is able to model a broad range of problems. 

 

FEM modelling is employed in this study to provide a formative view about the study. 

It is used to develop a correlation between the new confined test and in-situ pavement 

conditions. Additionally, it helps to assess stress distributions in the new confined 

specimens, and provide a base reference for comparing outcomes of experimental 

work. A number of Abaqus FEM models have been created including, a new confined 

test model, an existing unconfined test, and for an in-situ pavement. Outcomes of the 

models are compared to each other and to the outcomes of experimental tests. As 

outlined in Chapter 1 the modelling outcomes provides both industry and researchers 

with better confidence in the laboratory outcomes generated from the revised testing 

methodology. 

 

5.2 Modelling 

Various techniques are available to model and analyse rigid and flexible pavements. 

Some of the most common techniques for modelling flexible pavements include 

analytical methods, multilayer elastic theory (MLET), finite element methods (FEM), 

finite difference methods, discrete element method (DEM), boundary element methods 

(BEASY), and hybrid methods (Uzarowski et al. 2007). These techniques each have 



 

 

89 
 

their own advantages and disadvantages and the FEM is considered as the most 

popular technique for modelling flexible pavements worldwide. 

 

5.3 Finite Element Methods (FEM) 

FEM is widely recognised as a capable method for evaluating structures and materials 

behaviour. The first application of FEM was in 1965 (Williamson 2015). In the 

pavement engineering field, complex visco-elasto-plastic behaviour of asphalt under 

thermal and traffic loads has boosted application of FEM as a powerful technique for 

evaluating mechanistic behaviour of flexible pavements (Williamson 2015). It is able 

to analyse linear and non-linear elastic material, viscoelastic and visco-plastic 

materials, static and dynamic analysis, fracturing, reflection cracking, thermal 

cracking, hardening, large strains/deformations, and other sophisticated pavement 

phenomena (Uzarowski et al. 2007; Ebrahimi 2015).  

 

In the FEM method, the physical geometry of the structure to be analysed is divided 

into numerous finite elements. The body of a structure is represented by a collection 

of finite elements that are connected at their shared nodal points. The stiffness matrix 

for any specified finite element can be determined and the total body stiffness is 

determined by integrating the discrete stiffness matrix of elements. The outcome is a 

collection of equations that indicate nodal displacements and the loading force. 

Solving these equations can determine nodal displacements, and consequently, allow 

the calculation of stresses and strains in any individual elements (Uzarowski et al. 

2007). The stresses and strains in the body of the structure are calculated by a 

displacement function in each finite element (Uzarowski et al. 2007; Abaqus-6.13 

2013). 

 

Several FEM software programs have been successfully used to model flexible 

pavements. Some of the commercially available FEM programs for pavement 

modelling include Abaqus, ADINA (Automatic Dynamic Incremental Nonlinear 

Analysis), Strand7, ILLI-PAVE, Plaxis, MICHPAVE (Uzarowski et al. 2007; Bohagr 

2013). This study has adopted Abaqus as the main FEM program, although Strand7 

was used for some initial investigative work. 
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5.4 Abaqus  

Abaqus is a capable general purpose program able to model a broad class of structures 

and materials from comparatively plain linear analyses and linear elastic to the most 

complicated non-linear problems. Abaqus has a large library of material properties and 

also a wide-range of finite element types such as continuum, rigid, shell, beam, and 

truss elements (Uzarowski et al. 2007; Ebrahimi 2015).  

 

Abaqus program includes three analysing programs namely; Abaqus/Standard, 

Abaqus/Explicit, and Abaqus/CFD.  The function of each program is as follows 

(Abaqus-6.13 2013): 

• Abaqus/Standard is a multipurpose product which is able to solve an extensive 

range of linear and non-linear issues.  

• Abaqus/Explicit is a special-purpose product which applies an explicit 

dynamic finite element formulation.   

• Abaqus/CFD is a powerful Computational Fluid Dynamics (CFD) product. 

 

5.5 Modelling the laboratory test and in-situ pavement 

Modelling was employed to develop a theoretical analysis of the existing unconfined 

laboratory test, the new confined test, and an in-situ asphalt pavement. In this regard, 

various FEM simulations by Abaqus and Strand7 software were created.  The primary 

purposes of the modelling for this study were as follows; 

 

- To obtain a broad informed view about the study through parametric analysis 

- To compare the new confined test with the existing unconfined test and in- situ 

asphalt pavement stresses. 

- To analyse developing stresses in various specimens under a 750 kPa tyre 

pressure. 

- To assess different materials for the optimal confinement. 

- To evaluate and develop a relationship between laboratory and field conditions. 

- To compare the outcomes of the experimental research with FEM modelling. 
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In order to fulfil the research needs, several models with various load and boundary 

conditions were developed.  The new confined specimens (with 100 mm diameter and 

a 50mm height) were modelled subjected to 750 kPa pressure, applied via a 50mm 

platen. For the confined model, two concentric layers of materials encompassed the 

wall of the specimen as confinement. The first layer was a resin with 2.5 mm thickness, 

and the second layer was the PVC ring with either 2.5 mm or 4mm thickness. The two 

different thicknesses were selected for the PVC to provide different confining 

conditions. 

 

 Since a wide range of resins with different engineering properties exist, several resins 

with various elastic properties were selected and used in the models. Selecting 

different resins and PVCs enabled the design of appropriate confinement. A full depth 

asphalt pavement and a multilayer pavement were both modelled to represent real in- 

situ asphalt pavements. 

 

An elastic model was used for assessment in the study. In this model fundamental 

engineering parameters of asphalt, resin and PVC such as Poisson ration, elastic 

modulus, and density were introduced as material properties. It should be mentioned 

that a viscoelastic model was trialled for simulation in the study through Prony series 

of the generalized Maxwell model.  The unavailability of laboratory equipment for 

measuring asphalt relaxation modulus for a viscoelastic model meant that some data 

viscoelasticity parameters had to be accessed from the literature. However, modelling 

outcomes proved spurious and consequently they are not included in this study.  

 

5.6 Model creation  

Abaqus includes several modules for creating a model. These modules are as follows: 

1) geometry creation, 2) material selection, 3) specifying outputs, 4) assembling the 

Instance, 5) specifying steps in analysis, 6) introducing boundary and load conditions, 

7) defining finite element types, 8) meshing the model and 9) data submitting for 

analysing (Uzarowski et al. 2007).   

 

Abaqus does not have any built-in system of units and before starting the creation of a 

model it is necessary to choose a system of units for consistency. In this study SI-mm 
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was selected as the unit system. The following are the required steps for creating 

models in Abaqus.  

 

5.6.1 Axisymmetric model 

In the geometry of some structures, each element and also the loading position are 

symmetric around a specific line. It is known as an axisymmetric element and the line 

is named the axisymmetric axis. Cylindrical geometries are mainly considered as 

axisymmetric problems in simulations (Logan 2007; Monographs 2013). In this type 

of model only one cross-section represents all properties of a structure thus saving 

analysis time. As the specimen geometry of this study can be categorized in the 

axisymmetric group, an axisymmetric finite element model is used. Figure 5.1 

provides a schematic of the axisymmetric model used for the confined laboratory test. 

 

 

 

5.6.2 Geometric configuration 

Geometry configuration is the first step for creating a model in Abaqus. Physical 

geometry of a model is defined by a part which is the building block of a model. 

Several configurations have been used to model different conditions (laboratory and 

in-situ position). As outlined below, a 100mm diameter specimen under 50mm 

diameter platen size, confined with 2.5mm resin and 4mm (or 2.5mm) PVC wall 

thicknesses is the basic model employed.  

Figure:  5.1 Schematic of FEM axisymmetric model of the confined 
specimen 
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 A 100mm diameter platen on a 100mm diameter unconfined specimen (existing test 

configuration) was also created. In-situ pavement was also modelled with different 

configurations such as a 2000mm to 1000 mm asphalt under 200 mm tyre size, and a 

multi-layer pavement with 2000mm to 500mm subgrade, 300mm base and 200 mm 

asphalt.  These two created geometries in Abaqus are depicted in Figures 5.2 and 5.3. 

 

 

Figure:  5.2 Sketched geometry of the confined specimen 
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Figure:  5.3 Sketched geometry of a multilayered pavement 

 

5.6.3 Entering material properties 

Entering material properties is the next step after drawing the model geometry. 

Properties of asphalt, resin and PVC are introduced in this module. For elastic-static 

models, Young modulus and Poisson’s ratio, and for elastic-dynamic models, Young 

modulus, Poisson’s ratio and density of materials are used to characterise the materials. 

As the laboratory tests are performed at 50°C, properties of materials at 50°C are 

introduced in the models. To check the effects on asphalt of confinement conditions, 

a wide range of resins and PVCs with different modulus of elasticity were examined 

as documented in the table 5.1.  

 

For viscoelastic models, in addition to Young modulus, Poisson’s ratio and density, 

asphalt relaxation modulus parameters for Prony series needed to be included in the 

materials creation part. Prony series (or Prony's method) is widely used to adequately 

represent and describe viscoelastic materials’ behaviour. It represents for storage and 

loss moduli corresponding to a generalized viscoelastic Maxwell model containing 

multiple Maxwell elements (spring and dashpot) (Gibson et al. 2003; Liao 2007). 
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Equations 5.1 and 5.2 detail the equations used for the Prony series of a generalized 

Maxwell model. Table 5.2 illustrates the asphalt relaxation modulus parameters (Al-

Qadi et al. 2010). Parameters for viscoelasticity modelling were obtained from the 

literature. As indicated earlier the outcomes produced by the viscoelastic modelling 

were of little use and this line of investigation was discontinued. 

 
 

Table:  5.1 Properties for resin and PVC in models (at 50°C) 

Materials Young Modulus (Mpa) Poisson’s ratio Density (Tonne/mm3) 

Asphalt 1200 0.48 2.37 × 10−9 

Resin 

5273 0.3 2.12 × 10−9 

527 0.3 2.12 × 10−9 

150 0.3 2.12 × 10−9 

250 0.3 2.12 × 10−9 

850 0.3 2.12 × 10−9 

PVC 
2900 0.4 1.4 ×10−9 

1500 0.4 1.4 ×10−9 

 

 

G(t) = 𝐺0[1 − ∑ 𝐺𝑖
𝑛
𝑖=1 (1 − 𝑒−𝑡/𝜏𝑖)]                              Equations 5.1 

K(t) = 𝐾0[1 − ∑ 𝐾𝑖
𝑛
𝑖=1 (1 − 𝑒−𝑡/𝜏𝑖)]                              Equations 5.2 

 

where, 
 
G = shear modulus, 
K = bulk modulus, 
t = reduced relaxation time, 
G0 and K0 = instantaneous shear and volumetric modulus, respectively 
Gi, Ki, and 𝜏𝑖= Prony series parameters. 
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Table:  5.2 Asphalt Prony series parameters for viscoelasticity (obtained from 
literature (Al-Qadi et al. 2010)) 

i g_i Prony k_i Prony tau_i Prony 

1 0.631 0.631 0.0206 

2 0.251 0.251 0.173 

3 0.0847 0.0847 1.29 

4 0.0267 0.0267 5.35 

5 0.0066 0.0066 106 

 

 

5.6.4 Creating and assigning Sections  

This module is used to define specific properties of each part, such as elastic properties. 

According to the types of material in each model, several material sections were 

created i.e. asphalt section, resin section, PVC section, base section, and a subbase 

section. By creating sections it is possible to assign the relevant properties of each 

material to the related piece of the geometry i.e. the properties for the resin are assigned 

to that section in the confined laboratory model. 

 

5.6.5 Assembly and configuring analysis 

The geometry of the assembly is defined by creating parts, locating them and 

connecting to each other in a global coordinate system. The model analysis 

configuration is created by generating analysis steps as follows; an elementary step in 

which boundary conditions will be applied, and an analysis step where a 750 kPa 

pressure is applied. A Dynamic/Explicit step is created for dynamic models. The 

models were designed to provide stresses, strains, displacements, and forces/reactions 

as output. 

 

5.6.6 Boundary conditions and load creations 

Boundary conditions were applied to specific regions of the geometry to restrict 

displacements and rotations. Bases have been constrained in the vertical direction 
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while free to move in the horizontal direction. As the axisymmetric model is used in 

this study, boundary conditions also have been applied for the symmetry axis where 

movement is in the horizontal direction, and rotation about 2-direction and 3-direction 

have been fixed (XSYMM boundary condition). 

 

The Load term in Abaqus is used to apply pressure loads, temperature loads, 

concentrated forces, and nonzero boundary conditions. In the models, a uniform 750 

kPa load (pressure type) has been applied to the top surface. As a 50mm platen on 

100mm specimen was used for laboratory models, pressure was applied on the 

corresponding distance in the axisymmetric models (pressure on 25mm distance of top 

of a 50mm specimen as half of a body is modelled in an axisymmetric simulation). A 

200mm tyre size was selected (as a loading area) for the in-situ pavement and likewise 

where it is applied at the corresponding location in the axisymmetric models.  

 

5.6.7 Meshing module 

Abaqus includes a broad range of elements for meshing structures. Each element is 

classified with several factors namely; Family, Formulation, Degree of Freedom, 

Number of Nodes, and Integration.  According to these five aspects, every element has 

its specific name. For example, in the CAX4R element, the initial letter designates its 

family (C indicates Continuum family), or last letter that indicates Integration (R 

indicate it is a Reduced-integration element).  Some of the most common element 

Families in Abaqus are documented in Figure 5.4. 
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Figure:  5.4 Some of the most common element families in Abaqus (Abaqus-6.13 
2013) 

In this study, an axisymmetric stress family is used with Reduced-integration elements. 

Quadrilateral element shape is employed with the linear geometric order. Meshing size 

(or approximate global size) for laboratory models is specified to be 1mm to 1mm, 

while 10mm to 10mm is used for in-situ pavement models (because of its large body 

size (2000mm to 2000mm)). CAX4R element is used for meshing models which refers 

to; 4-node, bilinear axisymmetric quadrilateral, reduced-integration element.  Figure 

5.5 depicts a laboratory model after meshing. 

 

 

Figure:  5.5 Schematic of FEM mesh for confined specimen model 
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5.7 Modelling outcomes 

Modelling outcomes are presented in this section. A wide range of outputs have been 

obtained from each model and include Mises stresses, stress Max in-plane principal, 

stress max in-plane principal (Abs), stress Min in-plane principal, Tresca stress, 

stresses and deformations in X, Y and  Z directions. All these outputs are available in 

the Appendix. Stress distribution in the main axes of the coordinate system (X, Y and 

Z axis as identified in Figure 5.1) have been selected and analysed in this study. Stress 

distributions in the X and Y axes are discussed in this chapter, and data for the Z axis 

will be discussed and compared with laboratory outputs in chapter 7. 

 

Figures 5.6 to 5.8 show schematic models of existing unconfined test, new confined 

test, and asphalt pavement. Figures 5.9 to 5.22 shows stress conditions in the X and Y 

directions for the following models;   

1) Existing unconfined test  (with 200 kPa load) 

2) Existing unconfined test  (with 750 kPa load) 

3) New confined test (with 4mm PVC ring)   

4) New confined test (with 2.5mm PVC ring) 

5)  Full depth asphalt pavement 

6)  Multi-layer pavement 

7) Single-layer asphalt pavement. 

 

As the applied stress for the existing Australian creep test is 200 kPa, the existing test 

has been modelled with a 200 kPa pressure load. Since the real surface pressure in the 

road pavement and also for the new confined test will be in the order of 750 kPa that 

value is applied in the relevant models. 
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Figure 5.6 Schematic model of Existing unconfined test 

 

 

 

Figure 5.7 Schematic model of New confined test 
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Figure 5.8 Schematic model of asphalt pavement 

 

 

 

Figure:  5.9 Existing unconfined test for a 100/ 100mm section (200 kPa load) in the 
X axis direction 
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Figure:  5.10 Existing unconfined test for a 100/ 100mm section (200 kPa load) in 
the Y axis direction 

 

 

Figure:  5.11 Existing unconfined test for a 100/ 100mm section (750 kPa load) in 
the X axis direction 
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Figure:  5.12 Existing unconfined test for a 100/ 100mm section (750 kPa load) in 
the Y axis direction 

 

 

Figure:  5.13 New confined (4mm ring) test for a 50/100 mm section in the X axis 
direction 
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Figure:  5.14 New confined (4mm ring) test for a 50/100 mm section in the Y axis 
direction 

 

 

Figure:  5.15 New confined (2.5mm ring) test for a 50/100 mm section in the X axis 
direction 
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Figure:  5.16 New confined (2.5mm ring) test for a 50/100 mm section in the Y axis 
direction 

 

 

Figure:  5.17 Full depth asphalt pavement, 2000×1000mm section under a 200mm 
tyre in the X direction 
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Figure:  5.18 Full depth asphalt pavement, 2000×1000mm section under a 200mm 
tyre in the Y direction 

 

 

Figure:  5.19 Multi-layer pavement 2000×1000mm section under a 200mm tyre in 
the X direction 
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Figure:  5.20  Multi-layer pavement 2000×1000mm section under under 200mm tyre 
in the Y direction 

 

 

Figure:  5.21 Single asphalt layer 200×2000mm section under a 200mm tyre in the X 
direction 
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Figure:  5.22  Single asphalt layer 200×2000mm section under a 200mm tyre in the 
Y direction 

 

Stresses at different points in the models have been extracted to enable a better 

comparison across the models. The grid points of the selected axes (A, B and C in 

vertical, and 1, 2, and 3 in the horizontal directions) have been used for obtaining stress 

in each model. The geometrically corresponding points are determined using a 200mm 

diameter tyre size for in-situ models when comparing with the 50mm platen. This 

means that a 4:1 scale is used for finding equivalent points within the in-situ pavement 

models. Figure 5.23 shows the selected axes. 
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Figure:  5.23 Selected axes for checking stress distribution in the models 

 

Stress magnitudes at the selected points have been inserted in the figures 5.24 to 5.27. 

As shown in the figures, stress distribution in the existing unconfined specimens (for 

both 200 kPa and 750 kPa models) have a very different trend to those for the field 

asphalt pavement models (all single asphalt layer, full depth asphalt and multi-layer 

pavements). The stresses at the geometrically similar points for the confined creep tests 

and in-situ models are similar.  The modelling results demonstrate that stress 

conditions within the existing unconfined test do not replicate those for in-situ 

conditions. 
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Figure:  5.24 Stress distribution in the models of existing unconfined tests – X 

direction 

 

 
Figure:  5.25 Stress distribution in the models of existing unconfined tests – Y direction 
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Figure:  5.26  Stress distribution in the different models – X direction 
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Figure:  5.27 Stress distribution in the different models – Y direction 
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There is a good correlation in stress condition between the new creep test and the field 

asphalt pavement models as portrayed in figures 5.26 and 5.27. Similar and close 

trends were found together with stress magnitudes for the new confined creep test and 

field pavement models. The stress fields in the loading zone (the area between A and 

B axes) and asphalt annulus (the area between B and C axes) of the new confined test 

and the field pavement models have good agreement. As depicted in the figure 5.28, 

and 5.29 such stress action exists in the road pavement.  

 

Stress distribution in the Y direction of the models displays compressive stress under 

the loading zone (the area between A and B axes), which gradually changes to tension 

stress towards the C axis (especially in the C-3 area). The compressive stress under the 

platen (or tyre) tends to compress material underneath the loading zone (the area 

between A and B axes), and elevates the asphalt on both sides of the platen. 

Densification and shear deformation in the field (as shown in the figure 3.1) are the 

rutting mechanisms which are replicated in the new confined test models.  

 

The modelling shows the newly-designed lateral confinement of the specimen (filler 

+ PVC) is more able to provide representative conditions for the laboratory specimen 

that better approximate in-situ stress conditions.   

 

 

Figure:  5.28 Compressive and tensile stresses in the asphalt pavement structure (Al-
Rousan 2016) 
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Figure:  5.29 Stress distribution under tyre load (Mashaan et al. 2014) 

  

5.7.1 Models with various resin and PVC properties 

When designing confinement of specimens, several types of resins and PVCs have 

been modelled using different elastic properties (modulus of elasticity and poison 

ratio). Figures 5.30, and 5.31 present the stress distribution on the asphalt specimens 

as result of using different resins and PVC thickness. As the figures demonstrate, the 

different types of resin and PVC create the same basic effect with only the magnitude 

of the stress differing. This behaviour (same trend, different stress level), is indicative 

of the combination of materials.   
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Figure:  5.30 Stress distribution in the different models as result of using various resin and PVC properties – X direction 
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Figure:  5.31 Stress distribution in the different models as result of using various resin and PVC properties – Y direction 

 

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200
S

tr
es

s 
(k

P
a
)

Area

Resin 150, PVC 2900 Resin 250, PVC 2900 Resin 570, PVC 2900
Resin 850, PVC 1500 Resin 5700, PVC 2900 Full depth asphalt layer pavement
Multi layer pavement Single asphalt layer 200×1000mm

A-1              A-2              A-3            B-1              B-2              B-3              C-1 C-2              C-3



 

 

117 
 

5.8 Data analyses to peruse confined laboratory and in-situ models 

relationships and determine the best ring size 

 

As indicated by FEM models, both confined creep tests with 4mm and 2.5mm PVC 

rings appeared to have a good level of agreement with the in-situ pavement models. 

To study the relationship between confined creep tests and in-situ models, and also to 

determine the best ring size, a simple data analysis has been undertaken by using 

Standard Deviation and Regression. Stress distribution in the Y axis (as defined in 

figure 5.1) of the grid points (A, B and C in vertical, and 1, and 2 in the horizontal 

directions, as defined in figure 5.23) of the laboratory, and the geometrically 

corresponding points for in-situ model (single asphalt layer 200×1000mm model) was 

used for the analyses.  

 

The formula for calculating Standard Deviation is provided in the equations 5.3, and 

outcomes show in Table 5.3 together with Absolute Values of stresses used for 

calculating Standard Deviation. Table 5.3 shows that for the 2.5 mm ring compared to 

the 4 mm ring the average Absolute Difference is slightly less, and the Standard 

Deviation is much better (i.e. lower value). It confirms that the comparison between 

laboratory and in-situ models is reasonable. Additionally, it confirms that the 2.5mm 

ring provides a more consistent comparison between the laboratory and in-situ models 

than the 4mm ring. 

 

SD = √∑(𝑥−𝑥̅)2

𝑁
                                                                       Equation 5.3 

 

where; 

SD = standard deviation 

x = each values in the population 

𝑥̅ = the mean of values 

N = the number of values  
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Table:  5.3 Data analysis using Standard Deviation 

Area 
50/ 100 Confined 

Dynamic Creep test 
with 4mm Ring 

50/ 100 Confined 
Dynamic Creep test 

with 2.5mm Ring 

Single asphalt 
layer 

200×1000mm 

Mean  
(of 4mm and in-

situ model) 

Absolute difference 
( of 4mm and in-

situ model) 

Mean  
(of 2.5mm and 
in-situ model) 

 
Absolute difference 

(of 2.5mm and in-situ 
model) 

 

A-1 688 735 698 693 10 717 37 

A-2 441 493 563 502 122 528 70 

B-1 523 574 563 543 40 569 11 

B-2 358 252 294 326 64 273 42 

C-1 53 69 41 47 12 55 28 

C-2 53 69 26 40 27 48 43 

 
Average 46 Average 39 

Standard 

Deviation 
42 Standard 

Deviation 

19 
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Table:  5.4  Regression analysis 

 

 

Models 
 

Parameters 2.5mm Ring in comparing with in-situ pavement  4mm Ring in compare with in-situ model 

Multiple R 0.947 0.958 

R Square 0.896 0.919 

Adjusted R Square 0.881 0.907 

Standard Error 92.682 74.338 

P-value 0.00011 0.00005 
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In the regression analysis, in-situ pavement model was assigned as the reference 

models (independent variables) and laboratory models (confined test with 4mm and 

2.5mm PVC rings) were assessed with them (dependent variable).  Table 5.4 provides 

a summary of the regression analysis. Very low P-values (or Probability value) 

obtained for both cases that indicate a significant relationship between stress 

distribution in the laboratory and the in-situ models (more than 99% level of 

confidence).  

 

The correlation coefficient between laboratory and in-situ models is determined by 

Multiple R. The obtained Multiple R for all situations was higher than 0.94 indicating 

a strong correlation between both 4mm and 2.5mm confined tests and the in-situ 

models. R square for all the models were higher than 89% showing that it is possible 

to explain more than 89% of variables in the laboratory models by in-situ model. 

Standard Error represents the typical deviation between the actual results (what was 

obtained in the laboratory model) and what the mathematical model predicted. As 

shown in the Table 5.4, the Standard Errors of 2.5mm ring is lower than for 4mm. It 

confirms that 2.5mm ring has a better performance than 4mm ring. 

 

By considering both Coefficient of Variation and Regression analyses, it can be 

concluded that 2.5mm ring is a better option for confining specimens, however, the 

4mm ring also demonstrated good correlation. 

 

5.9 Summary 

A FEM model using Abaqus has been developed for evaluating the new confined test.  

Various conditions for the new confined test, the existing unconfined test, and in-situ 

field asphalt pavement have been assessed. The modelling outcomes were compared 

to identify any correlation between outcomes. 

The existing test method modelling provides very different stress distributions to that 

which occurs in a test sample compared to the stress distribution in an in-situ field 

asphalt pavement. As expected, the model using the same sized platen as the size of 
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specimen used in the existing test method, produced almost a constant level of stress 

throughout the specimen. The modelling outcomes indicated that the existing test 

method is not representative of an in-situ asphalt pavement. 

 

The new confined test provided very promising outcomes. A strong correlation was 

observed for stress levels between the new test and in-situ asphalt models at 

geometrically similar positions.  Similar stress distributions and stress magnitudes 

were found for the new confined specimens to those for field asphalt pavement models. 

The modelling shows the new test method is able to better represent the pavement 

rutting mechanism in the laboratory test specimens.  Data analyses confirm good 

correlations between the new confined test models and in-situ pavement models, with 

the best outcome being for a 2.5mm ring.  

 

In summary, the modelling indicates that the new confined creep test method has 

excellent potential for the laboratory evaluation of the creep deformation of asphalt. 

The modelling validates the use of a confining annulus of asphalt to provide lateral 

stress distribution that better replicates field conditions. The modelling also indicates 

that the hoop stresses generated within the confinement system prevent the lateral 

stresses bursting the asphalt samples. The modelling shows that the combination of the 

asphalt annulus and stress responsive confining system is better able to represent field 

conditions than any existing methodologies. 

 

The outcomes of the FEM studies undertaken underpins the methodology adopted for 

the extensive laboratory investigation undertaken described in Chapter 6.  
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6 CHAPTER 6 

LABORATORY RESULTS 

 

 

6.1 Introduction  

As outlined in earlier chapters, deformation development in asphalt is a complex 

process that depends on a broad spectrum of parameters including mix characteristics, 

loading and temperature conditions. To predict and analyse in-situ asphalt 

performance, it is important to have valid laboratory tests correlated to field conditions. 

To refine and improve the current Australian creep test, new confinement conditions 

(as described in Chapter 4) that better replicate field conditions have been designed for 

laboratory creep evaluation including the use of a more realistic 750 kPa cyclic stress. 

The finite element modelling undertaken in Chapter 5 outlined the relevance and 

authenticity of the new test methodology.  

 

This chapter reviews the laboratory test outcomes incorporating the variables of 

confining ring wall thicknesses, platen/ specimen configurations and asphalt mix 

types. 

 

6.2 Experimental work 

Although a range of laboratory creep tests are widely used around the world for 

predicting permanent deformation of asphalt, further improvement can be achieved by 

use of more realistic conditions. As shown in the figure 6.1, in-situ asphalt pavement 

is confined when wheel loads are applied. In this research confinement for laboratory 

specimens has been designed to better simulate field conditions.  

 

The focus of the study is on designing confined dynamic creep test, consequently 

laboratory testing is largely dedicated to developing the Confined Dynamic Creep Test 

method (CDCT). Generally, the experimental creep tests used in this work can be 
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categorised into three groups namely; the Existing Australian Dynamic Creep Test 

method (EDCT), Confined, and Semi-Confined tests (SCDCT). In the SCDCT various 

platen/ specimen configurations were used such as 50mm diameter platen on 100mm 

diameter specimen (50/ 100mm), and 50mm on 150mm (50/ 150mm). Here a measure 

of confinement was provided by the unloaded asphalt annulus.  

 

 
Figure:  6.1 Stress action on the asphalt pavement (Garba 2002) 

 

In the CDCT designed in this research, a confining arrangement of a PVC ring with a 

resin infill provides lateral confinement. A smaller top platen size is used on a larger 

diameter specimen size to provide an asphalt annulus around the specimen to ensure 

lateral stress distribution through the depth of the sample. A number of CDCT test 

samples were strain gauged at the PVC confining ring to measure hoop strain, as 
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described in Chapter 4. That data is not provided in this section and is discussed in 

detail in Chapter 7 to further validate the new test methodology.    

 

The Australian standard dynamic creep test procedure (AS 2891.12.1-1995), and 

Austroads dynamic creep test procedure named “Testing Asphalt in Accordance with 

the Austroads Mix Design Procedures - Part 4- Dynamic Creep”  (Alderson, Alan & 

Hubner, David 2008) were used as the base techniques. The following modifications 

were made as part of the research experimental design. A750 kPa compressive stress 

was used instead of 200 kPa, and a smaller top platen size on a larger diameter 

specimen employed instead of same platen/ specimen diameter. A maximum 100,000 

loading cycles was adopted to obtain a more representative creep curve.  

 

A number of specimens were tested in full accordance with the current Australian 

dynamic test procedure (EDCT) to produce a reference against which the new test 

method could be evaluated.  

 

For each individual dynamic creep test, the total permanent strain versus cycles was 

plotted. The test data for SCDCT and EDCT specimens is provided as power trend line 

to enable some correlation to be obtained. The test data for CDCT specimens is 

provided as linear plots, which are more appropriate for both representation and 

interpretation. The minimum creep slope, creep life and plastic deformation were 

determined as following: 

Minimum creep slope: Minimum creep slope referenced in this section is the slope of 

the linear secondary creep phase. 

Creep life: creep life is defined as the number of cycles between the end of stage 1 and 

the start of stage 3. 

Plastic deformation; Plastic deformation referenced in this section is the total 

accumulated deformation (average of LVDTs) that has occurred at the end of the 

primary creep phase (for plastic deformation of stage 1), and that has occurred at the 

end of secondary creep phase (for plastic deformation of stage 2). Figure 6.2 provides 

a typical dynamic creep curve for determining aforementioned parameters.  
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The minimum creep slope, which occurs in Stage 2 of the creep curve, is specified as 

the main parameter for evaluating creep potential in the current Australian dynamic 

creep test (Alderson, Allan & Hubner, David 2008). As recognised within the 

international literature, the minimum creep slope obtained from as unconfined creep 

test is inadequate for fully evaluating the creep potential of an asphalt mix. It was 

proposed that the plastic deformation that occurs in Stage 1 of the creep test could 

provide good useful supplementary data for evaluating creep potential, and may be 

used when analysing laboratory creep data. Review of the test data will show that few 

of the confined samples achieved the end of Stage 2 creep, and then only at very long 

large test cycles. The minimum creep slope was recorded as the deformation rate 

(µs/cycle). 

 

The ratio of creep occurring within Stage 1 and at 100,000 cycles for confined testing 

should provide an indication of potential in-situ performance.  For example, it will 

later be seen that in the case of confined creep at 5.54% air voids, the end of Stage 1 

creep occurred in the range of 40,000 to 45,000 cycles at 1.24 mm deformation. The 

total creep at 100,000 cycles was 1.35mm, indicating that Stage 1 creep may 

significantly contribute to in-situ rutting. 

 

 

Figure:  6.2 Dynamic creep curve for 50/ 150mm, Multi-grade mix 
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6.2.1 Semi-confined Dynamic Creep Test method (SCDCT) 

Although the main focus of the study is on the CDCT tests, a group of semi-confined 

tests has been undertaken without confining rings. For those specimens an annulus of 

asphalt provided confinement by using a smaller top platen size.  

 

For the SCDCT tests, two platen/ specimen configurations, and two types of mix 

(Multigrade, and C170) were investigated. A 50mm diameter platen was used on 

100mm diameter specimens for both multigrade and C170 mixes. A 50 mm diameter 

platen was used for 150mm diameter multigrade specimens. 

 

The UTS machine was adjusted to apply 750 kPa compressive pressure (as outlined in 

chapter 4), with 500 milliseconds loading and 1500 milliseconds rest time. Tests were 

undertaken at 50°C, and the test termination was adjusted to occur at an accumulated 

strain of 100,000 microstrain, or at 100,000 cycles. 

 

6.2.1.1 SCDCT Multigrade mix, 50/ 100mm  

Table 6.1, and Figures 6.3, 6.4, and 6.5 provide a summary of outcomes of SCDCT 

tests for 50/100mm multigrade specimens. The minimum creep slope, creep life and 

plastic deformation have been derived for each test.  Each specimen was assigned a 

unique code that enables tracking.  These details are available in the Appendix.  

 

In figure 6.3, the minimum creep slope is plotted versus air void content. The data 

shows a good correlation between increasing air void contents, and minimum creep 

slope. This indicates decreasing rut resistance of a mix as a function of increasing air 

voids. 
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Figure:  6.3 Minimum creep slope for the semi-confined 50/100mm multigrade 
SCDCT tests 

 

  

Table:  6.1 SCDCT outcomes for the 50/ 100mm multigrade specimens 

(NA= result not achieved) 

Air 
Voids 

Creep 
Life 

Minimum 
Creep Slope 

Plastic Deformation  
at the End of 

Specimen 
No. Stage 1 Stage 2 

(%) Cycles (µs/cycle) mm mm 

2.45 NA 0.038 0.75 NA 109 

2.68 NA 0.032 0.798 NA 112 

4.33 46400 0.339 0.68 1.81 11 

4.88 NA 0.24 0.392 NA 3 

5.18 30000 0.484 0.88 1.75 8 

5.56 17000 0.833 1.379 2.109 105 

5.72 15200 1.57 0.692 1.93 2 

7.9 2200 4.89 0.69 1.28 34 
 

 Figure 6.4 provides details of plastic deformation of specimens at the end of stages 1 

and 2 of the creep deformation. Overall, results display a very poor correlation. 

Although, there is some correlation for creep at the end of stage 2 that (illogically) 
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suggests plastic deformation is decreased by increasing air void contents from 4% to 

8% there is no relationship between primary and secondary creep deformation. It 

appears that the test arrangement (50/ 100 mm, SCDCT) does not describe the plastic 

behaviour of the mix.  

 

 
Figure:  6.4 Plastic deformation for the semi-confined 50/ 100mm multigrade 

SCDCT tests 

 

There is good correlation between creep life of specimens and their air void contents 

displayed in Figure 6.5. Furthermore, creep life decreases with increasing air void 

contents (see Figure 6.5).  

 

 
Figure:  6.5 Creep life for the semi-confined 50/ 100 mm multigrade SCDCT tests 
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As indicated in Table 6.1 most samples displayed all three stages of creep and entered 

stage 3 over a wide range from 2000 to 100,000 plus cycles. Failure was not through 

accumulation of plastic strain, but rather sample bursting due to a lack of effective 

confinement via the asphalt annulus. 

 

Figure 6.6 graphically illustrates a Semi-confined laboratory specimen (50/ 100mm, 

MG) after testing. During the test, cracks were developed gradually in the specimens 

and continued until sample collapse. This pattern is not related to rutting deformation 

mechanism in the road pavements. It was therefore necessary to investigate the 

confining mechanism in more detail. 

 

 

 
Figure:  6.6 Failure pattern for the Semi-confined 50/ 100 mm multigrade SCDCT 

tests 

 

6.2.1.2 SCDCT Multigrade mix, 50/150 mm 

The next level of confinement was via a wider asphalt annulus of 50mm. Table: 6.2, 

and Figures 6.7, 6.8 and 6.9 illustrate the test results for the 50/150mm multigrade 

specimens. As is evident in Figure 6.7, the minimum slope is increased by raising air 

void contents with a reasonable correlation but with much data scatter.  
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Figure:  6.7 Minimum creep slope for the Semi-confined 50/ 150mm multigrade 

SCDCT tests 

 

 

Table:  6.2  SCDCT outcomes for the 50/ 150mm multigrade specimens 

(NA= result not achieved) 

Air 
Voids 

Creep 
Life 

Minimum 
Creep Slope 

Plastic Deformation  
at the End  of Specimen 

No Stage 1 Stage 2 

(%) Cycles (µs/cycle) mm mm 

1.96 NA 0.034 0.807 NA 48 

2.51 27,000 0.31 1.671 2.135 58 

5.19 36000 0.813 0.89 2.56 20 

5.48 3400 7.6 0.83 2.25 24 

6.91 8000 3.42 1.1 2.6 31 

8.68 15,000 1.93 1.571 3.119 69 
 

 

Plastic deformation at the end of primary and secondary creep stages is displayed in 

Figure 6.8. A better correlation was achieved for 50/150mm configuration compared 

to 50/100mm correlation for stage 2 plastic deformation. 
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Figure:  6.8 Plastic deformation for the Semi-confined 50/ 150mm multigrade 

SCDCT tests 

 

 An absence of perceptible trends for evaluating creep life in Figure 6.9 is associated, 

with a poor correlation for results. As discussed previously, the lack of an effective 

confinement appeared to be the main cause of the short creep life. 

 

 
Figure:  6.9 Creep life for the Semi-confined 50/ 150mm multigrade SCDCT tests 
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specimens (in comparison with 50/ 100mm arrangement), the same failure mechanism 

(cracks and punching of specimens) occurred. Test results indicate that providing a 

50mm asphalt annulus (50/150mm) does not provide a realistic confining medium. 

 

 

 
Figure:  6.10 Failure pattern for the Semi-confined 50/ 150 mm multigrade SCDCT 

tests 

 

6.2.1.3 SCDCT C170 mix, 50/ 100mm 

For this part a different mix type was used to evaluate the SCDCT method. Table 6.3, 

figures 6.11, 6.12, and 6.13 document outcomes of the tests for C170 mix when a 100 

mm specimen was loaded by a 50mm platen. As a limited spectrum of air void contents 

was available for C170 mix, only limited testing was undertaken to further validate the 

previous SCDCT multigrade 50/100mm testing outcomes. Generally the plots 

followed the same trend as for the multigrade 50/100mm testing. 

 

Table: 6.3  SCDCT outcomes for the 50/ 100mm C170 specimens 

Air 
Voids 

Creep 
Life 

Minimum 
Creep Slope 

Plastic Deformation  
at the End of 

Specimen No. Stage 1 Stage 2 
(%) Cycles (µs/cycle) mm mm 

4.76 190 102.04 0.929 1.881 137 

4.88 200 95.52 1.025 2.043 130 

5.01 110 163.6 1.048 2 127 

5.42 110 157.4 1.167 2.083 132 
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Figure:  6.11 Minimum creep slope for the Semi-confined 50/ 100mm C170, SCDCT 

tests 

 

Figure 6.11 illustrates minimum creep slope versus air void contents. By raising the 

air void content, the minimum creep slope increased (similar to figure 6.3). 

Comparison of Figures 6.3 and 6.11 (as shown in Figure 6.52) indicates that the 

minimum creep slope of C170 mix was much higher than that for the multigrade mix.  

Primary and secondary creep deformations have the same trend. As shown in figure 

6.12, plastic deformation increased with increasing air voids.  

 

 
Figure:  6.12 Plastic deformation for the Semi-confined 50/ 100mm C170, SCDCT 

test 
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The creep life graph (figure 6.13) confirms a very short service life for all specimens 

(only 100 to 200 cycles).  The tests were completed in a few minutes, although they 

were expected to have a much longer lifetimes in the field. 

 

 
Figure:  6.13 Creep life for the Semi-confined 50/ 100 mm C170, SCDCT tests 

 

The failure patterns of the C170 specimens had the same problem as multigrade 

specimens. Cracks were developed and the platen continued to punch into specimens 

under load. Figure 6.14 shows a C170 specimen after testing.  Results confirmed that 

regardless of mix type (typical or rut resistance mix), semi-confined specimens did not 

exhibit the same rut mechanism as road pavements. It is evident that a single asphalt 

annulus cannot provide sufficient confinement for the specimens. Therefore, it was 

necessary to further explore more effective methods of applying a realistic confining 

medium for laboratory evaluation. 
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Figure:  6.14  Rapid collapse failure pattern for the Semi-confined 50/ 100 mm C170 

test 

 

6.2.2 Confined dynamic creep test method (CDCT) results 

Here the test outcomes of specimens confined with the flow able resin and a PVC ring 

are discussed. Various platen/specimen diameter configurations were used for loading 

i.e. 50/ 100mm, 50/ 150mm, and 75/ 150mm. Two types of asphalt mixes (multigrade, 

and C170) were used for fabricating specimens. Two different PVC wall thicknesses 

have also been used for confining asphalt samples that divided CDCT tests into two 

groups namely, 4mm thick ring, and 2mm thick ring confinement.  

 

A 750 kPa pressure was applied to simulate real commercial vehicle tyre pressure, 

with 500 milliseconds loading and 1500 milliseconds rest time. Test termination was 

adjusted to be attained at accumulated strains of 100,000 µs, or 100,000 cycles. 

 

 

6.2.2.1 CDCT tests with Multigrade mix, 4 mm PVC ring, 50/ 150mm 

Table 6.4, figures 6.15, and 6.16 summarise the outcomes of the tests. The minimum 

creep slope increased with increasing air void contents as documented in the Figure 

6.15. If compared with semi-confined specimens (figure 6.7 and 6.15), the minimum 

creep slope dropped significantly, and occurred over much greater cycle ranges.   
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Figure:  6.15 Minimum creep slope for the Confined 50/ 150mm multigrade, CDCT 

test 

 

Table:  6.4 CDCT outcomes for the 50/ 150mm Multigrade specimens with 4 mm 
PVC ring 

Air Voids Minimum 
Creep Slope 

Plastic Deformation  
at the End of Specimen No. 

 Stage 1 
(%) (µs/cycle) mm 

1.96 0.016 0.674 47 

3.92 0.019 0.94 53 

5.32 0.022 1.145 26 

5.54 0.025 1.238 28 

5.68 0.031 1.08 25 

5.94 0.03 1.381 18 

6.41 0.025 1.331 27 

6.52 0.032 1.678 32 

8.88 0.045 1.666 70 
 

 

Stage 1 plastic deformation increased with increasing air voids content in the 

specimens as is evident from Figure 6.16. Although plastic deformation had a 

reasonable trend for middle to high air void contents, its trend for specimens with low 

air voids (less than 3%) appeared to be contrary to that indicated in the literature.  
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Although 100,000 cycles with 750 kPa tyre pressure were applied in laboratory tests, 

third stage creep was not reached in any of the specimens.  

 

 

 
Figure:  6.16 Stage 1 plastic deformation for the Confined 50/ 150mm multigrade, 

CDCT tests 

 

A promising outcome occurred in the failure patterns of specimens. Figure 6.17 depicts 

the failure pattern of a confined specimen after testing.  The confinement was able to 

produce a more realistic failure pattern compared to that achieved in the SCDCT 

testing. Confinement eliminated radial cracking in the specimens and bursting and 

punching did not occur for any specimens with 750 kPa pressure being applied. The 

asphalt was pushed down under the platen, displaced sidewards and slightly raised up 

around the platen. The duplication of in-situ pavement rutting deformation in the 

laboratory is an encouraging aspect of the new confined test. 
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A) specimens after testing 

 

 
B) cut specimen from the centre 

 

 
C) a cross section of the cut specimen 

Figure:  6.17 Specimen’s failure pattern of the CDCT tests. 50/ 150 mm 

 

 
Figure:  6.18 A schematic of in field asphalt rutting deformation (Mashaan et al. 

2014) 

 

Original profile 

Rutting deformation 
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6.2.2.2 CDCT tests with Multigrade mix, 4 mm PVC ring, 50/ 100mm 

The outcomes of laboratory tests for 100mm diameter multigrade mix specimens, 

confined with a 4mm wall thickness PVC ring and loaded with 50 mm platen, are 

illustrated in Table 6.5, figures 6.19 and 6.120.  A wide range of air voids (from around 

2% to 10% air void contents) have been investigated.  

 

Figure 6.19 records that the minimum creep slope increased at a gradual rate when the 

air void content increased. The rate of minimum slope increase was less than in the 50/ 

150mm CDCT configuration. This can be explained by a lesser amount of asphalt 

around the loading area to provide the same amount of deformation as seen in the 

50/150mm specimens. 

 

 

Table:  6.5  CDCT outcomes for the 50/ 100mm Multigrade specimens with 4 mm 
PVC ring 

Air Voids 
Minimum Creep 

Slope 

Plastic Deformation  

at the End of 
Specimen No. 

Stage 1 

(%) (µs/cycle) mm 

2.3 0.006 0.276 111 

3.32 0.013 0.358 95 

4.18 0.013 0.711 85 

5.42 0.012 0.428 5 

7.39 0.013 0.99 33 

8.04 0.018 0.864 35 

8.78 0.013 1.033 39 

9.55 0.016 0.841 43 

9.93 0.013 0.874 44 

10.14 0.019 1.137 42 
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Figure:  6.19 Minimum creep slope for the Confined 50/ 100mm multigrade, CDCT 

tests 

 

Plastic deformation increased with increasing air voids in the specimens as 

documented in the Figure 6.20., Third creep stage was not attained in any of the 

specimens. 

 

 

 
Figure:  6.20 Plastic deformation for the Confined 50/ 100mm multigrade, CDCT 

test 
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The failure patterns of specimens were similar to that for 50/ 150mm specimens (as 

displayed in the figure 6.21). The deformation happened in the specimens without 

cracking, busting or punching.   

 

 
Figure:  6.21 Failure pattern for the CDCT confined 50/ 100 mm multigrade 

 

6.2.2.3 CDCT tests with multigrade mix, 4 mm PVC ring, 75/ 150mm 

A 75mm diameter platen was used to load 150mm specimens. Outcomes of tests are 

provided in Table 6.6, and Figures 6.22, and 6.23.  The minimum creep slope increased 

with increasing air voids content. The level of the minimum slope for 75/150mm 

specimens was higher than that for 50/100mm, and lower than 50/150mm 

configurations, suggesting that the rate of minimum slope was a function of the asphalt 

annulus thickness.  

 

Table:  6.6  CDCT outcomes for the 75/ 150mm Multigrade specimens with 4 mm 
PVC ring 

Air Voids Minimum 
Creep Slope 

Plastic Deformation  
at the End of 

Specimen No Stage 1 

(%) (µs/cycle) mm 

2.05 0.013 0.979 45 

3.33 0.015 0.781 62 

5.09 0.019 1.313 83 

6.02 0.025 1.598 65 

8.65 0.031 1.7 72 



 

 

142 
 

 
Figure:  6.22  Minimum creep slope for the Confined 75/ 150mm multigrade, CDCT 

tests 

 

Plastic deformation increased with increasing air void content in the specimens. Third 

stage creep did not occur for any of the specimens and no cracking or punching was 

observed in any of the specimens.  

 

 
Figure:  6.23 Plastic deformation for the Confined 75/ 150mm multigrade, CDCT 

test 
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test results for 2.5mm PVC ring produce a similar trend to that for the 4mm ring. The 

minimum creep slope and plastic deformation increased with increasing air voids (see 

Figures 6.24 and 6.25). Stage 3 creep deformation again did not occur for any of the 

specimens, and there was no evidence of cracking, busting or punching.  

 

 
Figure:  6.24  Minimum creep slope for the confined (2.5 mm) 50/ 150mm 

multigrade, CDCT tests 

 

 

Table:  6.7  CDCT outcomes for the 50/ 150mm Multigrade specimens with 2.5 mm 
PVC ring 

Air Voids Minimum Creep 
Slope 

Plastic Deformation  
at the End of Specimen No 

 Stage 1 

(%) (µs/cycle) mm 

2.23 0.013 0.338 49 

2.6 0.012 1.092 60 

3.66 0.025 0.723 61 

5.64 0.025 1.355 78 

6.12 0.031 1.157 82 

8.62 0.093 1.756 71 
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Figure:  6.25 Plastic deformation for the confined (2.5 mm) 50/ 150mm multigrade, 

CDCT test 

 

6.2.2.5 CDCT tests with C170 mix, 2.5 mm PVC ring, 50/ 150mm 

This part is related to 2.5mm PVC ring confinement for the C170 mix tests. Test results 

are presented in the following Figures 6.26, 6.27 and Table 6.8. 

 

 

 
Figure:  6.26 Minimum creep slope for the Confined (2.5 mm) 50/ 150mm C170, 

CDCT 
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Table:  6.8  CDCT outcomes for the 50/ 150mm C170 specimens with 2.5 mm PVC 
ring 

Air Voids Minimum Creep 
Slope 

Plastic Deformation  
at the End of 

Specimen No 
Stage 1 

(%) (µs/cycle) mm 

4.32 0.035 2.442 121 

5.1 0.031 2.383 118 

5.89 0.04 2.64 122 

6.47 0.05 2.948 117 
 

 

As shown in the figure 6.26, Yet again, the minimum creep slope increased with 

increasing air voids in the specimens (refer to Figure 6.26). The creep third stage did 

not occur in any specimens. Creep deformation occurred without presenting cracks or 

punching. 

 

 
Figure:  6.27 Plastic deformation for the Confined (2.5 mm) 50/ 150mm C170, 

CDCT 
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6.2.2.6 CDCT tests with C170 mix, 2.5 mm PVC ring, 50/ 100mm 

As a limited range of air voids was available for this type of mix, only limited testing 

was undertaken. Outcomes of the tests are provided in Table 6.9, and Figures 6.28, 

and 6.29.  

 

Both minimum creep slope and plastic deformation increased with increasing air voids 

with the third creep phase not reached for any specimens. 

 

Table:  6.9  CDCT outcomes for the 50/ 100mm C170 specimens with 2.5 mm PVC 
ring 

Air Voids 
Minimum Creep 

Slope 

Plastic Deformation  

at the End of 
Specimen No 

Stage 1 

(%) (µs/cycle) mm 

4.59 0.016 1.093 136 

4.97 0.016 1.452 138 

5.03 0.016 1.087 129 

5.12 0.016 1.023 134 

5.36 0.018 1.452 135 

 

 

 

 
Figure:  6.28 Minimum creep slope for the Confined (2.5 mm) 50/ 100mm C170, 

CDCT 

y = 0.0022x + 0.0053
R² = 0.4782

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5M
in

m
um

 c
re

ep
 sl

op
e 

(µ
s/

 c
yc

le
)

Air voids (%)

2.5mm Ring, C170 mix,  50/ 100 mm 



 

 

147 
 

 
Figure:  6.29 Plastic deformation for the Confined (2.5 mm) 50/ 150mm C170, 

CDCT 

 

 

 
Figure:  6.30 Failure pattern for the CDCT confined (2.5 mm) 50/ 100 mm C170 

 

 

6.2.2.7 CDCT tests with C170 mix, 2.5 mm PVC ring, 75/ 150mm 

Table 6.10, and Figures 6.31 and 6.32 demonstrate test outcomes. As seen in the 

results, the minimum creep slope and plastic deformation increased with increasing air 

voids in the specimens, while the third creep stage did not occur in any of the 

specimens.  
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Table:  6.10  CDCT outcomes for the 75/ 100mm C170 specimens with 2.5 mm PVC 
ring 

Air Voids Minimum Creep 
Slope 

Plastic Deformation  
at the End of 

Specimen No Stage 1 

(%) (µs/cycle) mm 

4.51 0.022 1.632 126 

4.81 0.022 1.79 124 

5.04 0.025 1.86 120 

5.66 0.025 1.911 123 
 

 

 

 
Figure:  6.31 Minimum creep slope for the Confined (2.5 mm) 75/ 150mm C170, 

CDCT 
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Figure:  6.32 Plastic deformation for the Confined (2.5 mm) 75/ 150mm C170, 

CDCT 

 

6.2.3 Existing Dynamic Creep Test method (EDCT) 

This data set provided the baseline data by undertaking testing in accordance with 

Australian standard for dynamic creep test (AS 2891.12.1-1995). A 200 kPa cyclic 

pressure was applied through 100 mm and 150 mm platen sizes for 100 mm and 150 

mm specimens, respectively. Tables 6.11, and Figures 6.33, and 6.34 present the test 

results and demonstrate poor correlations. 

 
Figure:  6.33  Minimum creep slope for multigrade mix, EDCT 
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Table:  6.11  EDCT outcomes for the 100/ 100mm and 150/150mm specimens 

Platen/ specimen 
size 

Air 
Voids  

Minimum 
Creep Slope 

Plastic Deformation  
at the End of 

Specimen 
No 

Stage 1 
mm (%)    (µs/cycle) mm 

100/ 100 3.64 0.044 0.352 88 

100/ 100 3.98 0.098 1.171 91 

100/ 100 5.29 0.049 0.24 107 

100/ 100 5.63 0.055 0.788 103 

100/ 100 5.92 0.056 0.851 102 

100/ 100 5.96 0.099 0.495 101 

150/ 150 2.26 0.049 0.489 59 

150/ 150 3.48 0.031 0.701 63 

150/ 150 3.96 0.098 1.157 54 

150/ 150 5.81 0.062 0.81 74 

150/ 150 6.35 0.296 1.11 67 

150/ 150 6.36 0.324 1.22 66 

 

 

As is evident from the figures, the minimum creep slope increased with increasing air 

voids, however, no trend was observed for plastic deformation. The 150/150mm tests 

had a higher level of creep slope and plastic deformation. The third creep phase did 

not occur. Data for a tested sample is portrayed in figure 6.35.  
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Figure:  6.34 Plastic deformation for multigrade mix, EDCT 

 

 

 
Figure:  6.35 Failure pattern for the EDCT, 150/ 150mm 

 

6.3 Experimental data comparison 

Laboratory outcomes of the EDCT, CDCT and SCDCT tests have been compared to 

investigate the capability of the new test methods. Effects of platen sizes, ring 

thicknesses, and confinements have been evaluated. To study the effects of platen 

sizes, various sizes of platen were used while mix type, confinement condition, and 

test method were fixed.  
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6.3.1 Comparison between the CDCT and EDCT test methods 

Figures 6.36 to 6.39 provide outcomes of the dynamic creep test in accordance with 

the Australian standard versus the new test method. Both standard specimen sizes 

(100mm and 150mm) were compared with the same sizes of the new confined 

specimen with reduced platen sizes. 

 

The outcomes confirm that the standard method had a much higher minimum creep 

slope when compared to the new method for a same mix but with a much lower 

correlation. The plastic deformation in the new test method was higher than in the 

standard test and also exhibited enhanced correlation with air voids.  

 

The data presented in the this section indicates that the new proposed test methodology 

utilising realistic tyre pressure and confining medium provided much better correlation 

with air voids than the current Australian standard. 

 

 

 
Figure:  6.36 Minimum creep slope comparison between EDCT and CDCT test 

methods for 100mm specimen 
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Figure:  6.37 Plastic deformation comparison between EDCT and CDCT test 

methods for 100mm specimen 

 

 

 
Figure:  6.38 Minimum creep slope comparison between EDCT and CDCT test 

methods for 150mm specimen 
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Figure:  6.39 Plastic deformation comparison between EDCT and CDCT test 

methods for 150mm specimen 

 

6.3.2 CDCT and SCDCT tests comparison 

 Test results for the SCDCT and CDCT specimens are presented in Figures 6.40 to 

6.43.  The minimum slope of the semi-confined specimens was significantly higher 

than that for the confined specimens (Figures 6.40 and 6.41). It is possible that the high 

second creep rates are partially related to crack nucleation and do not solely represent 

creep. The data provided in figure 6.42 and 6.43 indicate comparable levels of stage 1 

deformation to those for the CDCT data indicating good correlation with air voids, 

while a very poor correlation is found for SCDCT.  

 

R² = 0.8383

R² = 0.5341

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Pl
as

tic
 d

ef
or

m
at

io
n 

(m
m

)

Air voids (%)

Aus standard (150/150) vs New method 

(Confinement (4 mm) for 50 on 150)
New Confined Method Exisiting Aus standard



 

 

155 
 

 
Figure:  6.40 Minimum creep slope comparison between SCDCT and CDCT test 

methods for 100mm specimen 

 

 

 
Figure:  6.41 Minimum creep slope comparison between SCDCT and CDCT test 

methods for 150mm specimen 
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Figure:  6.42 Plastic deformation comparison between SCDCT and CDCT test 

methods for 100mm specimen 

 

 

 

 
Figure:  6.43  Plastic deformation comparison between SCDCT and CDCT test 

methods for 150mm specimen 
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As discussed previously, the most important point concerning confined and semi-

confined specimens was related to their failure patterns. In the semi-confined tests, 

cracks developed in the specimens during stage 2 creep, and continued until punching 

occurred. The confined specimens had a failure pattern more representative of 

observed field behaviour due to the realistic test procedure. 

 

 

6.3.3 Effects of platen size 

Various platen/ specimen configurations have been compared in this chapter to 

establish the effects of platen size and to permit selection of the most appropriate 

sample/ platen combination. Experimental results of three configurations namely; 50/ 

100mm, 50/ 150mm, and 75/ 150mm have been compared in Figures 6.44 to 6.49. 

  

Figures 6.44 and 6.45 compare 50/ 100mm and 50/ 150mm configurations when 

SCDCT multigrade specimens were tested. Minimum slope and plastic deformation 

for 50/ 150mm configuration was higher due to the thicker asphalt annulus around the 

specimen.  

 

 

 
Figure:  6.44 Platen size comparison, SCDCT multigrade specimen 
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Figure:  6.45 Platen size comparison, SCDCT multigrade specimen 

 

Comparison of 50/ 100mm, 50/ 150mm and 75/ 150mm platen/specimen 

configurations for confined multigrade specimen (with the 4 mm ring thickness) are 

provided in Figures 6.46 and 6.47. All configurations exhibited similar trends.  The 

minimum slope increased when the thickness of the asphalt annulus around the 

specimens was increased (Figure 6.46).  In each instance, plastic deformation shows 

an ascending trend for all configurations, however, Figure 6.47, has a lower plastic 

deformation for the, 50/ 100 mm configuration, while 75/ 150mm has a higher 

deformation than 50/150mm.  

 

 
Figure: 6.46  Platen size comparison - CDCT (4mm) multigrade specimen 
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Figure: 6.47  Platen size comparison - CDCT (4mm) multigrade specimen 

 

 

Various platen/ specimens configurations have been compared for the confined C170 

mix (with a 2.5mm ring) as displayed in Figures 6.48 and 6.49. Both creep slope and 

plastic deformation exhibited similar trends. Creep slope and plastic deformation also 

increased by increasing the proportion of asphalt surrounding the specimens, as 50/ 

150mm had the highest rate and 50/ 100 mm had the lowest level. 

 

 

 
Figure:  6.48 Platen size comparison - CDCT (2.5mm) C170 specimen 
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Figure:  6.49 Platen size comparison - CDCT (2.5mm) C170 specimen 

 

 

It can be seen that data for all configurations have a similar trends. It is worth noting 

that the confinement conditions (thicknesses of asphalt annulus and PVC) and mix 

type did not appear to make any substantial differences to the performance of various 

platen/ specimens sizes. However, as the 75 mm platen can cover a greater range of 

asphalts (in regard to maximum aggregate size), the 75/150 mm configuration is the 

preferred option for the new test method. 

 

 

6.3.4 Effects of the ring thickness 

Laboratory test results of the CDCT test with 4mm and 2.5mm rings are presented in 

the Figures 6.50 and 6.51.  As shown in the figures, both rings produced identical 

trends for minimum creep slope and plastic deformation. However, the graph for the 

2.5mm ring possesses a higher slope probably attributed to it being a thinner ring, 

which in turn makes it more sensitive to deformation. It is worth noting that both rings 

have a similar slope up to 6% air voids content. 
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Figure:  6.50 Ring comparison of CDCT – minimum slope 

 

 

 
Figure:  6.51 Ring comparison of CDCT – plastic deformation 
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multigrade mix, when the SCDCT method was used. The SCDCT method was not able 

to produce consistent plastic deformation results for the multigrade mix, but the results 

exhibited a reasonable correlation for the C170 mix. The results show the inability of 

the SCDCT method to produce acceptable results for classifying mixes. 

 

 

Figure:  6.52 Mix classifying by using SCDCT method – Minimum creep slop 

 

 

Figure:  6.53 Mix classifying by using SCDCT method – Plastic deformation 
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With reference to Figure 6.54, the confined testing method, yields trends and 

magnitudes for the minimum creep slopes for C170 and multigrade mixes that are 

almost the same when evaluated using the CDCT. The plastic deformation obtained 

for C170 was higher than for the Multigrade mix, and both exhibited good correlation 

with air voids. This demonstrates that using plastic deformation results from the CDCT 

provides a reasonable method for classifying mixes. 

 

 
Figure:  6.54 Mix classifying by using CDCT method – Minimum creep slope 

 

 
Figure:  6.55 Mix classifying by using CDCT method – Plastic deformation 
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6.3.6 Coefficient of determination (𝑹𝟐) comparison for various test conditions 

 

The results provided in this chapter summarise the broad range of comparative 

laboratory evaluations undertaken across variations in loading and confinement 

conditions. The data is summarised in the form of test criteria and regression 

coefficients (𝑅2) with varying air voids for creep slope (Table 6.12) and stage 1 plastic 

deformation (Table 6.13).  

 

 

Table:  6.12 R2 of the minimum creep slope curves 

Test condition Configuration PVC thickness Mix Type 𝑅2 

SCDCT 50/ 100mm  - multigrade 0.949 

SCDCT 50/ 150mm  - multigrade 0.726 

SCDCT 50/ 100mm  - C170 0.558 

CDCT 50/ 150mm  4mm multigrade 0.831 

CDCT 50/ 100mm  4mm multigrade 0.508 

CDCT  75/ 150mm  4mm multigrade 0.968 

CDCT  50/ 150mm  2.5 mm multigrade 0.783 

CDCT  50/ 150mm  2.5 mm C170 0.677 

CDCT  50/ 100mm  2.5 mm C170 0.478 

CDCT  75/ 150mm  2.5 mm C170 0.668 

EDCT 100/ 100mm  - multigrade 0.013 

EDCT 150/ 150mm  - multigrade 0.534 
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Table:  6.13  R2 of the plastic deformation curves 

Test condition Configuration PVC thickness Mix Type 𝑅2 

SCDCT 50/ 100mm - multigrade 3.00E-05 

SCDCT 50/ 150mm - multigrade 0.041 

SCDCT 50/ 100mm - C170 0.929 

CDCT 50/ 150mm 4mm multigrade 0.838 

CDCT 50/ 100mm 4mm multigrade 0.764 

CDCT 75/ 150mm 4mm multigrade 0.803 

CDCT 50/ 150mm 2.5 mm multigrade 0.747 

CDCT 50/ 150mm 2.5 mm C170 0.767 

CDCT 50/ 100mm 2.5 mm C170 0.181 

CDCT 75/ 150mm 2.5 mm C170 0.811 

EDCT 100/ 100mm - multigrade 0.001 

EDCT 150/ 150mm - multigrade 0.882 

 

 

6.4 Summary 

 Three separate test methods for assessing dynamic creep were investigated to ensure 

development of an optimum test methodology. They were the existing Australian 

dynamic creep test (EDCT), semi-confined dynamic creep test (SCDCT), and confined 

dynamic creep test (CDCT). For each of these test methods various conditions such as 

different platen/ specimen sizes, different ring thickness, were investigated. 

 

The test results for the EDCT were found to be inconclusive. As the specimens of the 

existing test method are unconfined, deformation of the specimen largely depended on 

the binder properties while the aggregate’s role was minimised. Failure of test samples 
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was via bursting with no indication of tertiary creep. The characteristics of the EDCT 

suggest that it is not suitable for evaluating the creep potential of asphalt in the 

laboratory. 

 

For the SCDCT, an annulus of asphalt was provided by using a platen size smaller than 

the sample diameter. The annulus provided some capacity for lateral stress transfer. 

However, as with the EDCT, the data obtained was inconclusive.  The test results show 

the provided asphalt annulus was unable to provide adequate confinement to allow 

proper development of secondary creep. The main problems with SCDCT were related 

to specimen failure patterns. During tests cracking developed in the specimens 

followed by punching failure, which differs to the rutting mechanism of in-situ 

pavements. The results indicate that a single thin asphalt annulus does not significantly 

improve the current approach (i.e. EDCT), and provide a more realistic test.  

 

Outcomes of the CDCT display potential to overcome the failings of other tests This 

test method provides much more consistent data in comparison with the other methods. 

Additionally, the designed confinement can appropriately control crack development 

and specimen punching. The CDCT can better duplicate real traffic loads, having a 

proper lateral pressure around the specimens, and providing a more realistic rutting 

mechanism in the laboratory. The 75mm platen on the 150mm specimen with 4mm 

PVC ring may be the best option for the CDCT.  

 

As indicated at the start of the chapter, strain gauge data was obtained from a number 

of CDCT tests to evaluate hoop strain in the PVC confining ring. The success of the 

CDCT methodology as shown in this chapter now enables use of the strain gauge data 

in Chapter 7 to further validate the proposed approach. 
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7 CHAPTER 7 

CORRELATIONS BETWEEN PAVEMENT SAMPLE MODELLING AND 

LABORATORY TEST 

 

 

7.1 Introduction 

The modelling outcomes provided in Chapter 5 have demonstrated a very good 

correlation between the redesigned confined creep test and in-situ asphalt pavement 

performance. The laboratory tests described in Chapter 6 also confirmed that the 

redesigned new creep test appears to be an appropriate method for evaluating 

permanent deformation of asphalt mixes. To obtain correlation between pavement 

models and laboratory test data it was necessary to initially model laboratory 

conditions and correlate the model generated stresses with measured laboratory 

stress/strain data. Stress conditions within the laboratory model were then correlated 

with a pavement model to provide a link between the laboratory data and modelled 

pavement performance. This chapter considers the modelling and laboratory 

relationships. 

 

7.2 Stresses in the laboratory specimens and models 

As described in Chapter 5 and Chapter 6, the ring stresses around the laboratory 

confined specimens were calculated using the hoop stain measured using strain gauges. 

As illustrated in the figure 7.1, two strain gauges were attached to the exterior of the 

PVC ring wall, at the middle height of the specimens (25 mm). Strain gauges were 

connected to a data logger that was set to record strain every 0.2 seconds (or 10 

readings for each cycle). Stresses were measured for 50/100mm, and 50/150mm 

platen/specimen test configurations. The average stresses from the strain gauges were 

calculated. Figure 7.2 shows a record of strain for one of the new confined dynamic 

creep tests during the initial cycles. 
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Figure:  7.1 Confined dynamic creep sample with attached strain gauges 

 

The measured stresses on the laboratory specimens aligned with the Z axis of the 

models. Therefore, the Z axis data has been used for studying modelling and laboratory 

test relationships. The locations of the strain gauges for the specimens are almost at 

the C-2 area of the models. Figure 7.3 represents a model of the new test designed for 

a 50/100mm (with 4mm ring) configuration, with Z axis stresses used for comparison. 

 

7.3 Relationships of the laboratory and modelling outcomes 

It was important to ascertain if the ring stresses generated in the confining PVC were 

of similar magnitude to those within an asphalt mass. The ring stresses for 50/100 mm 

and 50/150 mm test configurations were measured and compared to the stresses within 

the asphalt pavement model. 
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Figure:  7.2 Strain on the confined laboratory specimen measure by strain gauges
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Figure:  7.3 New confined (4mm ring) test for 50/100 mm in the Z axis direction 

 

The stress laboratory measurement utilising strain gauges showed a stress existed on 

the outer part of the PVC wall. The related model for the new designed creep test 

(50/100 mm configuration, with 4mm ring) confirmed that a 250 kPa stress existed on 

the outer part of the PVC ring. Table 7.1 records a summary of stresses for laboratory 

specimens and models.  In the table, the measured stress is reasonably close to the 

model stresses. A lower stress was obtained for the 50/150mm configuration (with 4 

mm ring) that reflects the different levels of stress generated by the different 

configuration. 

 

A comparison was made between the stress provided by a theoretical stress analysis 

on the exterior part of the designed confined dynamic creep sample, and the ring stress 

for the laboratory confined dynamic creep test. This result shows acceptable agreement 

between the confined laboratory test and the FEM modelling. Similar good agreement 

was found between the confined laboratory dynamic creep test model results and in-

situ pavement models (that were previously discussed in detail in chapter 5). It can 
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therefore be concluded that the new designed confined dynamic creep test has good 

potential for simulating in-situ pavement conditions. The existing unconfined creep 

test model did provide a closer match with the in-situ models, and it can be concluded 

that the new designed confined test provides a better approximation to in-situ 

pavement conditions than the existing unconfined test. 

 

Table: 7.1  Calculated stress for model and laboratory specimens 

Item Stress (kPa) 

Elastic dynamic model for 50/100mm new designed test 250 

Laboratory test 50/100mm, 4mm ring 285 

Laboratory test 50/150mm, 4mm ring 163 

 

7.4 Summary 

A comparison of stress levels produced in modelling and laboratory tests has been 

undertaken. Strain gauge data for calculating confining (hoop) stresses for CDCT 

samples was obtained as part of the laboratory tests described in Chapter 6. This 

allowed correlation with stress data at the corresponding locations for the model of the 

laboratory set up. In Chapter 5 the model of the CDCT test was shown to be correlated 

with models for an asphalt mass with similar stress distribution and magnitude 

existing. 

 

This chapter provides further validation of the use of the CDCT as a tool for improved 

evaluation of creep potential of asphalt mixes under laboratory condition.  
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8 CHAPTER 8 

        DISCUSSION 

 

 

8.1 Introduction 

The previous chapters have reported the outcomes of the extensive laboratory 

experimental tests (Chapter 6) and finite element modelling (Chapters 5 and 7). In this 

chapter, an overarching discussion is provided on the outcomes. Some of the more 

significant modelling and laboratory outcomes have been reproduced in this chapter 

to enable effective contextual discussion. Testing and modelling outcomes have 

indicated that the new confined dynamic creep test is better able to address problems 

associated with the existing unconfined test method.  

 

The chapter considers how data generated for the proposed CDCT methodology could 

be utilised to better rank asphalt mixes in the laboratory. This further assist in the 

confirmation of the research hypothesis outlined in Chapter 1. The chapter also 

considers the potential development of creep master curves, similar to those recently 

developed for estimating asphalt resilient modulus. 

 

8.2 Modelling 

Stress conditions in FEM models for the 100/100mm existing dynamic creep tests 

(EDCT), 50/100mm confined dynamic creep test (CDCT), and in-situ pavement 

models in the horizontal and vertical directions at geometrically similar locations, as 

shown in the figure 8.1, have been reproduced in figures 8.2 and 8.3. (Note that the 

grid points of the selected axes (A, B and C in vertical, and 1, 2, and 3 in the 

horizontal directions) have been used for comparing stresses in each model.) 

 

The stresses produced in the models of the CDCT test show a good trend agreement 

with the stresses calculated for the in-situ pavement models. Similar stress levels and 
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trends were found for the in-situ and CDCT models. The asphalt annulus provides 

enough space for effective stress distribution, and the PVC ring provides an effective 

hoop stress for confining the asphalt specimens.  The stress distribution in the EDCT 

specimen is very different to the field asphalt pavement models. 

 

Figure:  8.1 Selected axes for checking stress distribution in the models 

 

FEM deformation for the CDCT and EDCT models is presented in Figure 8.4 and 8.5. 

Models clearly indicate a rutting type mechanism for the CDCT test. Arrows show mix 

deformation directions. In the confined specimen (figure 8.5), the arrows’ direction are 

downward under the platen and then gradually reversing and becoming upward in the 

asphalt annulus region. Modelling indicated the CDCT test is better able to duplicate 

the rutting mechanism of the asphalt pavement in the laboratory. A schematic of CDCT 

and EDCT deformation behaviours under platen loads is provided in the Figure 8.6. 

 

In general, modelling indicates that the CDCT is more able than EDCT to duplicate 

in-situ asphalt conditions in the laboratory. 
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Figure:  8.2  Stress distribution in the various models – X (horizontal) direction 
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Figure:  8.3  Stress distribution in the various models – Y (vertical) direction
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Figure:  8.4 FEM model of specimen deformation in the EDCT test (100/ 100mm) 

 

 

Figure:  8.5 FEM model of specimen deformation in the CDCT test (50/ 100mm) 
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Figure:  8.6 Schematic of CDCT and EDCT specimen deformation behaviours under 
applied loads 

 

8.3 Experimental  

Figures 8.7 to 8.9 reproduce the minimum creep slope and plastic deformation curves 

for EDCT, CDCT, and semi-confined dynamic creep test (SCDCT) methods. As 

previously discussed in the chapter 6, the two significant parameters selected as 

indicators of creep potential were minimum stage 2 creep slope, and stage 1 plastic 

deformation.  

 

Figure:  8.7  Minimum creep slope for EDCT and CDCT test methods. (Note: 200 
kPa pressure applied for EDCT, and 750 kPa for CDCT) 
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Figure:  8.8  Minimum creep slope for SCDCT and CDCT test methods 

 

Figure:  8.9  Plastic deformation (stage 1) for EDCT, SCDCT and CDCT test 
methods 

R² = 0.9485

R² = 0.5977

R² = 0.7262

R² = 0.7761
0

1

2

3

4

5

6

7

8

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

M
in

m
um

 c
re

ep
 sl

op
e 

(µ
s/

 c
yc

le
s)

Air voids (%)

SCDCT 50/100mm CDCT 50/100mm SCDCT 50/150mm CDCT 50/150mm

R² = 0.8383

R² = 0.6541

R² = 0.7637

R² = 0.0011
R² = 3E-05

R² = 0.0294

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

Pl
as

tic
 d

ef
or

m
at

io
n 

(m
m

)

Air voids (%)

CDCT 50/150mm EDCT 150/150mm CDCT 50/100mm
EDCT 100/100mm SCDCT 50/100mm SCDCT 50/150mm



 

 

179 
 

Table 8.1 reproduces regression data ( 𝑅2) of minimum creep slope and plastic 

deformation by EDCT, CDCT, and SCDCT methods.  𝑅2 of the EDCT tests for 

100/100mm are low with the test not demonstrating any reasonable trend of correlation 

between creep and air voids. 

 

For the SCDCT tests, an annulus of asphalt was used to provide semi confinement and 

the specimens subjected to a 750 kPa pressure load. Test results indicated a short creep 

life for samples, even for multigrade mix specimens. As with EDCT, and SCDCT 

results for both multigrade and C170 mixes, both had very high minimum creep slopes 

(as provided in the figures 8.7 and 8.8). Such a short creep life and high creep slope 

are a product of the asphalt annulus providing an adequate lateral pressure thus 

supporting asphalt under real tyre pressures. During testing, numerous cracks 

developed in SCDCT specimens until punching failure occurred under the loading 

platen. Figure 8.10 is a representative sample of specimen failure patterns for various 

test methods. The failure mode of the SCDCT specimens did not reflect accumulation 

of plastic strain, and the failure mechanism differed to that with occurs with in -situ 

rutting. Such crack development and specimen punching were a result of tensile failure 

of the binder. 

 

Both 50/100mm and 50/150mm SCDCT configurations showed similar trends. 

Minimum creep slope was significantly affected by changing mix types.  C170 mix 

had a much higher (more than 100 times) minimum creep slope compared to that for 

the multigrade mix. However, plastic deformation existed over a similar range of 

deformation for different mixes.  Overall, the SCDCT tests failed to yield reasonable 

correlation between creep performance and air voids. 
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Table:  8.1  R2 of the minimum creep slope and plastic deformation curves of various test methods 

Test method Configuration PVC 
thickness Mix Type 𝑅2 of minimum 

creep slope curves 
𝑅2of plastic 

deformation curves 

EDCT 100/ 100mm  - multigrade 0.013 0.001 

EDCT 150/ 150mm  - multigrade 0.534 0.882 

SCDCT 50/ 100mm  - multigrade 0.949 3.00E-05 

SCDCT 50/ 150mm  - multigrade 0.726 0.041 

SCDCT 50/ 100mm  - C170 0.558 0.929 

CDCT 50/ 150mm  4mm multigrade 0.803 0.838 

CDCT 50/ 100mm  4mm multigrade 0.508 
0.764 

 
 

CDCT  75/ 150mm  4mm multigrade 0.968 0.803 

CDCT  50/ 150mm  2.5mm multigrade 0.783 0.747 

CDCT  50/ 150mm  2.5mm C170 0.677 0.767 

CDCT  75/ 150mm  2.5mm C170 0.668 0.811 
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The CDCT data demonstrated good correlation between both minimum creep slope 

and stage 1 plastic deformation, and air voids. The slight change in the confinement 

condition (from 4mm ring thickness to 2.5mm) did not produce any significant 

difference in the trends. A noteworthy comment about the CDCT method is related to 

its deformation mechanism. Analysing specimen failure patterns indicated the CDCT 

could change laboratory specimen deformation to a more realistic outcome.  The 

arranged confinement for the specimens stops crack development, and also it prevents 

specimens bursting and punching, when high pressures were applied on specimens. 

The portion of the asphalt under the platen was pressed downward, and abutting 

asphalt responded with a sliding movement which created upheavals that are typical 

of densification and shear deformation mechanisms which occur in rutting. 

 

   

Figure:  8.10 Specimens’ failure pattern for various test methods 

 

8.4 Experimental and modelling connection 

Experimental tests and modelling outcomes confirmed the potential of the new 

confined creep test. Both confirm that the CDCT method had a more realistic failure 

pattern that duplicates the rutting mechanism of in-situ asphalt pavement in the 

laboratory.  A connection was established between modelling and laboratory work by 

measuring stress distribution on the exterior part of the confined specimens and 

comparing this with the models. The outcomes demonstrated that the stress on the 

external part of the confined specimens was similar to the level of stress in the 

corresponding laboratory FEM models. As there was a good agreement between stress 

distributions of the experimental tests and models of the CDCT on the one hand, and 

as established there is good agreement between CDCT and in-situ asphalt models 

EDCT SCDCT CDCT 
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stress distributions on the other hand, it can be concluded that the new laboratory 

CDCT test delivers good agreement with in-situ asphalt behaviour with regard to stress 

distribution patterns. 

 

8.5 The CDCT and reported issues with the EDCT  

Numerous studies have been undertaken around the world to assess the efficiency of 

creep tests. The literature indicates some issues about the tests’ ability to properly 

evaluate permanent deformation of asphalt.  

 

Studies in Australia have indicated that the creep test data could not be matched with 

the field data (Butcher & Lindsell 1996). It has been found that the creep test could 

not consistently and properly rank mix performance (deformation performance) 

against mix composition (e.g. different aggregate gradation). Additionally, it has been 

shown that the creep test is more sensitive to air void variations (and consequently 

degree of compaction) than is the case for in-situ asphalt rutting. It was reported that 

the deformation resistance of the mixes on the creep test were mostly related to binder 

properties while frictional effects of aggregate became minimised  (Oliver et al. 1995). 

 

 

Researchers in other countries have reported further difficulties for other creep tests.  

For example, unconfined creep tests performed at low loads and temperatures cannot 

duplicate the field condition (real traffic load and temperature) due to specimen 

bursting (Brown & Foo 1994; Brown et al. 2001; Oscarsson 2007). Additionally, little 

relationship was found between unconfined creep test data with sample air voids, with 

the in-situ asphalt air voids, and with pavement rutting (Brown & Foo 1994). 

Furthermore, minimizing the aggregate interlock role for evaluating creep deformation 

has been reported as one of the main disadvantages of the unconfined test (Dołżycki 

& Judycki 2008; Taherkhania 2011). Some studies have  reported that the creep test 

should not be considered as it was unable to simulate in-situ conditions and that test 

outcomes provided a low 𝑅2 for test parameters (Brown et al. 2001). 
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Other studies of the creep test indicated that by providing an effective confinement it 

is possible to provide test conditions that better replicate the field (Brown et al. 2001; 

Brown et al. 2004; Oscarsson 2007; Dołżycki & Judycki 2008; Taherkhania 2011). 

Many attempts have been made to provide effective confining conditions for the creep 

test. Using a triaxial cell (figure 8.11) for the creep test is one of the most promising 

approaches for enhancing dynamic creep accuracy. However, as indicated by some 

studies (Huang & Zhang 2010), applying a constant confining pressure in the triaxial 

cell does not match reality as the in-situ asphalt confinement changes with traffic load, 

ambient temperature and asphalt mixture type.  Additionally, suitable triaxial cell 

equipment installations are expensive, complex to operate and unavailable in most 

asphalt laboratories. 

 

 
Figure:  8.11 Triaxial cell for creep test (Molenaar 2004) 

 

The research reported here has demonstrated that a modified CDCT method can 

address most of the serious problems facing existing creep tests. It provides a test 

condition that duplicates in-situ conditions (applying both realistic traffic loads and 

high temperatures to the creep specimen). It avoids the issues mentioned by Brown et 

al (Oscarsson 2007) and other studies where sample bursting occurs with existing 

unconfined and semi-confined creep tests. By providing an effective confinement the 

modified CDCT method, provides a condition that allows recognition of internal 
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friction of aggregates (in addition to binder resistance to flow) for assessing plastic 

deformation of mixes. As previously mentioned, minimising the role of the aggregate 

skeleton contributes to the failure of existing creep tests to represent field situations. 

Additionally, the new confined test overcomes some problems encountered with the 

triaxial cell. In contrast to triaxial cell testing, the confinement provided by the asphalt 

annulus of the CDCT test varies with the applied load, temperature and mix condition 

thereby allowing better simulation of in-situ pavement conditions. The modified test 

provides effective confinement for samples with a simple operating and low-cost 

method while eliminating problems with using a complex triaxial cell. The new 

confined test can also model the rutting mechanism of the in-situ asphalt in the 

laboratory- a significant advantage of the modified test.  

 

8.6 A new parameter for analysing permanent deformation 

As outlined previously the current Australian dynamic creep test method uses 

minimum creep slope as the main parameter for the evaluation of creep test data. While 

the minimum creep slope of the secondary creep phase can be obtained in most cases 

under the current test criteria, this is not possible with a confined creep test unless load 

cycles exceeding 105 are employed. Analysis of the data generated in this research has 

shown that Stage 1 plastic deformation is a reliable parameter for interpreting creep 

test data. 

 

The CDCT test data confirms that Stage 1 plastic deformation (which Stage1 creep 

moved to Stage2 creep) largely occurs in the range of 40,000 cycles for many cases of 

the tests as indicated in figure 8.12. It is interesting that the 40,000 cycles aligns with 

the current Australian dynamic creep test recommendation of using a maximum of 

40,000 cycles for dynamic creep test. The data in figure 8.12 confirms the use of 

40,000 cycles by comparing data from for the 75/150 mm CDCT test with a 4mm PVC 

ring for air voids between 2% and 8%. The data is for both plastic deformation at the 

end of Stage 1 and that at 40,000 cycles. It thus appears that plastic deformation at 

40,000 cycles could be employed as a measure of asphalt creep potential using 

confined creep testing. 
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Table 8.2 Plastic deformation for multigrade 75/150 mm CDCT test with 4mm ring 

 
Plastic 

deformation at 
40,000 cycles 

 (mm) 

Plastic 
deformation at 
100,000 cycles 

 (mm) 

Extrapolation 
ratio 

100,000/40,000 

Plastic 
deformation at 

1,000,000 cycles 
 (mm) 

A
ir 

vo
id

s (
%

) 2.05 0.96 1.02 1.063 1.69 

3.33 0.75 0.83 1.107 1.64 

5.09 1.29 1.39 1.078 2.28 

6.02 1.57 1.70 1.083 2.56 

8.65 1.65 1.83 1.109 3.64 
 

 

 

Figure 8.12 Plastic deformation at 40,000 cycles versus plastic deformation at the 
end of Stage 1 

 

Test data for this research was obtained for samples up to 105 cycles, which allows the 

extrapolation of data to 106 as seen in table 8.2 and figure 8.13. 
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Figure 8.13 Plastic deformation for multigrade 75/150 mm CDCT test with 4mm 
ring, at various loading cycles 

 

It is possible to hypothesis some new criteria for ranking mixes based on plastic 

deformation at 40,000 cycles as outlined in Table 8.3. The table assumes that C170 

mixes are overall regarding as providing poor rutting resistance and is assigned the 

lowest, a Level 3 ranking. Similarly it is widely accepted that Multigrade provides a 

moderate level of rutting resistance and is assigned a Level 2 ranking. At 40,000 cycles 

and a midpoint value of 5% voids C170 has a plastic deformation of 1.85 mm and 

Multigrade a value of 1.29 mm. 

 

Table 8.3 A criteria for ranking mixes according to their plastic deformation at 
40,000 cycles and 5% voids for CDCT 

Ranks Mix deformation index Rut depth at 40,000 cycles  

Level 1 Rut-resistance mix ≤ 0.8 mm 

Level 2 Medium rut-resistance mix 0.8mm < to > 1.6 mm 

Level 3 Low rut-resistance mix ≥ 1.6 mm 
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It is also worth considering the use of a secant modulus for evaluating creep rate. It 

was noted that the secant modulus between 20,000 and 40,000 cycles approached the 

secant modulus from 40,000 to 105 cycles.  The data in figure 8.14 for the secant creep 

slope between 20,000 and 40,000 cycles for the CDCT test data (75/150 mm with 4mm 

ring) suggest that the parameter is well able to discriminate between creep rates as a 

function of the different air voids. Thus applying a maximum value for strain rate/cycle 

may be useful means of augmenting the data in Table 8.3. For example a range from 

0.06 to 0.12% maybe able to be applied for a Level 2 mix. 

 

 

Figure 8.14 Creep slope (secant value) between 20,000 and 40,000 cycles 

 

8.7 Recommended test procedure for the CDCT test 

The criteria outlined in Table 8.4 is proposed as the basis for a new Australian dynamic 

creep test. The methodology addresses confinement arrangements, revised loading 

conditions and a platen/specimen configuration. 
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Table 8.4 Inputs for dynamic creep test 

Parameter Description 

Compressive stress 750 kPa 

Loading period 500 milliseconds (ms) 

Pulse repetition period 2000 milliseconds (ms) 

Test temperature 50ᵒ C 

Termination pulse count 40,000 cycles 

Platen/ Specimen configuration 75mm/ 150mm 

Ring 2.5mm thickness with 2.5 mm space 
between the PVC rings and samples 

Gap filling material Flowable Epoxy resin 
 

 

8.8 Possibility of developing CDCT master curve  

Recently, an extensive study was undertaken in Australia to develop master curves  

allowing the estimation of the modulus of asphalt at various vehicle speeds and 

ambient temperatures based on the dynamic modulus test (Sullivan 2015). This work 

was based on current international research. These master curves could improve the 

existing Australian asphalt design method. The master curve development process (see 

Figure 8.15) presents dynamic modulus outcomes of an ordinary mix as a function of 

frequency for four different test temperatures. It is believed that it is possible to provide 

some master curves based on the new confined creep test towards improving the 

evaluation of asphalt permanent deformation. Providing such master curves could help 

in enhancing permanent deformation design for asphaltic pavements. As an example, 

the existing mix design specification of BCC (Queensland) (BCC 2001, 2014) states a 

2% to 5% air voids limit in the compacted mix for BCC Type 2 mix. However, use of 

the CDCT indicates that there is around 40% difference in plastic deformation of BCC 

Type 2 mix with a change from 2% to 5% air voids. A similar concern would occur 

for air voids of a compacted mix (or in field compaction) for all other BCC mix types, 

and also binder contents of mixes. Therefore, it is worthwhile developing effective 

master curves based on the creep test to make improvements in existing mix design 

specifications such as tightening the void content of compacted asphalt. 
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Figure:  8.15 Construction of Dynamic Modulus Master curve and Temperature Shift 

Factor Function (Sullivan 2015) 

 
 

Generally, the CDCT test can potentially decrease problems with the existing dynamic 

creep test to the extent that creep testing would provide a good indication of likely 

permanent deformation of in-situ asphalt mixes. Existing UTS machines, (which are 

available in the most asphalt laboratories) or any other similar equipment without any 

changes or requiring additional attachments, can be used for performing such effective 

pulsed confinement for the new CDCT. The capacity to apply realistic truck tyre 

pressures and high temperatures on laboratory specimens, duplicating field rutting 

conditions, and providing effective confinement for the mix, are the significant 

outcomes from the research undertaken here to develop a new test methodology. It is 

concluded that the new creep test provides a superior approximation to field conditions 

and can significantly improve the existing dynamic creep test. The test is more 

practical for initial evaluation of the creep potential of asphalt mixes. 

 

8.9 Summary 

As outlined in Chapters 5 and 7, and discussed above the finite element modelling 

undertaken has indicated that the CDCT approach correlates well with modelled field 

conditions.  

 

The extensive laboratory investigations outlined in Chapter 6 demonstrated that the 

CDCT approach could replicate realistic tyre pressure while providing a similar stress 
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distribution to that which exists within the field. The hoop stresses generated within 

the confining system were seen to be stress dependent as occurs within an asphalt mix 

in actual road pavement. 

 

A new parameter (Plastic deformation at 40,000 cycles) is established for analysing 

creep deformation, which may possibly also be augmented by a secant creep slop from 

20,000 to 40,000 cycles. A 2.5mm PVC confining ring and 75/150mm platen/sample 

configuration may be the overall most practical option for the CDCT test.  

 

Outcomes of this study indicate that the CDCT will significantly improve laboratory 

evaluation of creep by reducing the current problems associated with the existing creep 

test. It is concluded that CDCT is a much-improved test method that is more 

representative of in-situ conditions and is capable of being a new test for the evaluation 

of permanent deformation potentials of asphaltic pavements. 
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9 CHAPTER 9 

     CONCLUSIONS AND RECOMMENDATIONS 

The research undertaken has confirmed the hypothesis that;“The existing Australian 

dynamic creep test can be redesigned to more accurately predict in-situ permanent 

deformation of asphalt”. This has occurred via an international literature review, 

extensive laboratory testing and relevant finite element modelling. The international 

literature review undertaken provided evidence that a better and cost-effective test 

methodology was essential if the creep potential of asphalt was to be evaluated in time-

constrained laboratories. 

 

Key outcomes of the research are a new Confined Dynamic Creep Test and the 

formulation of new test parameters for the ranking of asphalt mixes with respect to 

creep potential. The new parameters are plastic deformation at 40,000 cycles and the 

secant creep slope between 20,000 to 40,000 cycles. These key outcomes are discussed 

in more detail below. 

 

9.1 The Confined Dynamic Creep Test (CDCT) 

Previous research around various confinement systems was extrapolated to develop a 

new and innovative approach where a combination of an asphalt annulus, PVC ring 

and epoxy infill provided a stress responsive confinement. The new test methodology, 

which has been denoted as the CDCT removes the need for complex and expensive 

repeat load triaxial apparatus, is cost effective and provides a stress responsive test 

environment. 

 

Stress conditions within the CDCT can be varied are required via modification of ring 

thickness to ensure that the confining system is able to duplicate the stress distributions 

with the asphalt material being evaluated. 
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9.2 Finite element modelling 

Finite element modelling (FEM) undertaken was able to validate that the stress 

conditions within the CDCT were similar to those within models of asphalt pavement 

structures that are commonly used by pavement designers. 

 

The FEM was also able to demonstrate that the stresses obtained in the models were 

similar with those stresses measured in the laboratory at geometrically similar 

positions. The modelling was able to provide a link between the CDCT stress 

conditions and those within an asphalt road pavement. 

 

9.3 Air voids and creep potential 

CDCT results demonstrated that creep potential increased as a function of voids in a 

compacted asphalt mix. This has significant application to asphalt mix compaction 

specification that are formulated by road owners. The research has shown for example 

that an increase in compacted air voids from 2% to 5% can result in a 40% increase in 

plastic deformation.  

 

A consequence of the research outcomes could be that road owners may consider 

tighter specifications around compacted void limits. This would reduce the both the 

level of stage 1 plastic deformation and longer term stage 2 creep. 

 

9.4 Plastic deformation and secant modulus 

The interrogation of CDCT test results revealed that creep potential could be better 

estimated by applying a realistic tyre pressure of 750 kPa and the use of two new test 

parameters. This would replace the current 200 kPa and significantly improve on the 

current “secondary creep slope” approach for ranking asphalt mixes with respect to 

creep potential. 
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The first parameter is the level of plastic strain at 40,000 cycles. This ranks asphalt 

mixes with regard to stage 1 plastic deformation, which occurs during the early life of 

the road pavement as the aggregate skeleton realigns and voids are reduced. The 

second parameter is the secant modulus between 20,000 and 40,000 cycles that ranks 

the asphalt mixes with regard to stage 2 creep. This parameter is similar to the current 

Australian Standards test that uses the minimum slope of the secondary creep curve, 

but further develops that approach for use with confined asphalt sample 

 

9.5 Extrapolating test data 

The research shows that the secant modulus creep slope between 20,000 and 40,000 

cycles approached that of steady state creep at 100,000 cycles. Extrapolation of the 

secant modulus creep slope to design equivalent standard axels has the potential to 

estimate long life creep performance of asphalt mixes. 

 

While this approach was explored in the research and seen to have good potential it 

was not intimately linked to the original research hypothesis and will be further 

discussed as a recommendation for future research. 

 

9.6 A revised Australian standard 

The research has concluded that the current Australian Standard would benefit from 

the following modifications: 

• An increase in cyclic stress from 200 kPa to 750 kPa to better replicate current 

tyre pressure that are typically in the range of 500 to 1000 kPa. 

• The use of a stress responsive confining system that enables the development 

of stress distributions within laboratory samples similar to those expected in 

the field. The PVC-epoxy system developed within the research satisfies those 

requirements.  

• The use of a reduced size top test platen that enables a surrounding asphalt 

annulus to exist and allow lateral stress transfer within the asphalt. The research 
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outcomes recommends a 75mm platen on a 150mm sample to fulfil this 

requirement. 

• The use of two new test parameters to rank asphalt mixes in the laboratory. 

These are plastic deformation at 40,000 cycles and the secant modulus of the 

creep curve between 20,000 and 40,000 cycles. The use of the current test 

parameter of “secondary creep slope” may be retained but is considered non-

essential.  

 

9.7 Recommendations for future research 

This study has developed a new methodology for evaluating asphalt creep deformation 

based on the modification of the current Australian test method. The research has 

uncovered more areas for future exploration and some recommendations for future 

research are outlined below: 

• The current research maintained a constant mix aggregate grading with 

material compacted to specific voids. The effects of variation in grading might 

be investigated.  

 

• The FEM models developed in the current research were correlated to 

laboratory test through indirect modelling and strain gauging. Future data 

acquisition from stress monitoring in actual pavements would enable enhanced 

correlations to be obtained.  

 
• The use of extrapolation of creep data at early stages within the secondary 

creep life should be further explored. While the research undertaken here was 

able to show that the secant modulus between 20,000 and 40,000 cycles could 

approximate longer term secondary creep the use of mathematical models to 

better predict creep life should be explored. The models could be based on the 

shape of the creep curve as it transforms from stage 1 creep into the more 

extensive stage 2. 
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APPENDIX 

Part 1: (Experimental and literature) 

Table 1: A comparison of test methods for evaluation permanent deformation of 

asphalt mixtures (Sousa et al. 1991; Gibb 1996; Brown et al. 2001; Zhou et al. 2008) 
 

Sample Shape 

and dimension 
Advantage Disadvantage 

E
m

p
ir

ic
a

l 
te

st
s 

Marshall 
Test 

 
Cylindrical, 
 4 inch diameter 
× 2.5 inch 
height or 6 inch 
diameter × 3.75 
inch height 
 

* Easy to implement           
* Equipment generally 
available in labs                  
* Standardized for mix 
design - short test time 

* Not able to correctly 
predict and rank asphalt 
mixture for rutting 

Hveem 
Test 

 
Cylindrical, 

4 inch diameter 
× 2.5 inch 

height 
 

* Short test time  
* Triaxial load applied 

* Special compacter is 
needed for test (California 
kneading compacter)  
* Not able to correctly 
predict and rank asphalt 
mixture for rutting   

Gyratory 
Testing 

Machine 
Loose sample 

 
* Simulate the action of 
rollers during construction 
* Criteria available  * 
Parameters are generated 
during compaction 
 

  
* Equipment not widely 
available - not able to 
correctly predict and rank 
asphalt mixture for rutting 

F
u

n
d

a
m

en
ta

l 
T

e
st

s 

Uniaxial 
Creep 

Cylindrical, 
4 inch diameter 
× 8 inch height 

& others 
 

 
* Wide spread, well known 
* Easy to implement 
* Test equipment generally 
available in labs 
* More technical 
information 

 
* Ability to predict 
permanent deformation in 
questionable  
* Restricted test temperature 
and load levels dose not 
simulate field situations  
* Does not simulate field 
dynamic phenomena 
 

Uniaxial 
repeated 

Load 

* Better expresses traffic 
conditions 

 
* Equipment is more complex  
* Restricted test temperature 
and load levels does not 
simulate field situations 
 

Uniaxial 
Dynamic 
Modulus 

 
* Capability of determining 
the damping as a function 
of frequency for different 
temperatures  
* Non-destructive tests 
 

* Equipment is more 
complex 
* Difficult to obtain 2:1 ratio 
specimens in lab 
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Triaxial 
Creep 

* Relatively simple test and 
equipment 
* Test temperature and load 
levels better simulate field 
conditions than unconfined 
* Potentially inexpensive 

* Requires a triaxial chamber 
* Confinement increases 
complexity of the test 

 
Triaxial 
repeated 

Load 

 
* Test temperature and load 
levels better simulate field 
conditions than unconfined 
* Better expresses traffic 
conditions 
* Can accommodate varied 
specimen sizes 
* Criteria available 
 

* Equipment is more  
complex and expensive 
* Requires a triaxial chamber 

Triaxial 
Dynamic 
Modulus 

* Ability of determining the 
damping as a function of 
frequency for different 
temperatures  
* Non-destructive tests 
* Provides necessary input 
for structural analysis 
 

 
* At high temperature it is a 
complex test system (small 
deformation measurement 
sensitivity is needed at high 
temperature) 
* Some possible minor 
problem 
due to stud, LVDT 
arrangement. 
* Equipment is more 
complex 
and expensive 
* Requires a triaxial chamber 
 

Diametral 
Creep 

Cylindrical,       
4 inch diameter 

× 2.5 inch 
height 

 
* Easy to implement 
Equipment is relatively 
simple and generally 
available in most labs 
* Specimen is easy to 
fabricate 
 

 
* State of stress is non 
uniform 
and strongly dependent on 
the 
shape of the specimen 
* Maybe inappropriate for 
estimating permanent 
deformation 
* High temperature (load) 
changes in the specimen 
shape 
affect the state of stress and 
the 
test measurement 
significantly 
* Found to overestimate 
rutting 
* For the dynamic test, the 
equipment is complex 
 
 
 
 
 
 
 
 

Diametral 
Repeated 

Load 

 
* Easy to implement 
* Specimen is easy to 
fabricate 
 

Diametral 
Dynamic 
Modulus 

* Specimen is easy to 
fabricate 
* Non-destructive test 

 

 

 

Cylindrical,   
4 inch 

diameter × 8 
inch height 
& others 
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ST 
Frequency 

Sweep 
Test – 
Shear 

Dynamic 

Cylindrical,       
6 inch diameter 
× 2 inch height 

 
* The applied shear strain 
simulate the effect of road 
traffic 
*AASHTO standardized 
procedure available 
* Master curve could be 
drawn from different 
temperatures and 
frequencies 
* Non-destructive test 
 

* Equipment is extremely 
expensive and rarely 
available 
* Test is complex and 
difficult to 
run, usually need special 
training 
 

SST 
Repeated 
Shear at 
Constant 
Height 

* The applied shear strains 
simulate the effect of road 
traffic 
* AASHTO procedure 
available 
 

* Equipment is extremely 
expensive and rarely 
available 
* Test is complex and 
difficult to 
run, usually need special 
training 
* More than three replicate 
are needed 

Triaxial 
Shear 

Strength 
Test 

* Short test time 
* Much less used 
* Confined specimen 
requirements add complexity 

  
 
 

Hollow 
Cylindrical 
 

1 inch wall 
thickness 
18 inch high 
9 inch external 
diameter 

*Almost all states of stress 
can be duplicated. 
* Capability of determining 
damping as a function of 
frequency for different 
temperatures for shear as 
well as axial 

* Sample preparation is 
tedious. 
* Expensive equipment 
* Cores cannot be obtained 
from pavement. 

S
im

u
la

ti
v

e 
te

st
s 

Asphalt 
Pavement 
Analyser 

Cylindrical, 
6 inch × 3.5 or 
4.5 inch 
or beam 

* Simulates field traffic and 
temperature conditions 
 
* Simple to perform 
* 3-6 samples can be tested 
at the same time 
* Most widely used LWT in 
the US 
* Guidelines (criteria) are 
available 
 

* Relatively expensive except 
new table top version 

Hamburg 
Wheel- 

Tracking 
Device 

Slab,                                                              
10.2 inch × 
12.6 inch × 1.6 
inch 

* Widely used in Germany 
* Capable of evaluating 
moisture-induced damage 
* Two samples tested at 
same time 

* Less potential to be 
accepted 
widely in the word 

French 
Rutting 
Tester 

Slab                                                              
7.1 inch × 19.7 
inch × 0.8 to 

3.9 inch 

* Successfully used in 
France 
* Two HMA slabs can be 
tested at one time 

* Not widely available 
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Table 2: Summary of the dynamic creep test outcomes and samples’ properties  

 

Specimen     

No. 

 

Specimen 

place in 

the slab 

 

Test 

method 

 

Platen/Sample 

size 

 

Tyre 

Pressure 

 

P Bulk 

 

P max 

 

Air 

voids 

 

Creep curve 

 

Minimum 

creep slope 

 

Plastic 

Deformation 

 

Cycle 

number at 

minimum 

strain rate 
Stage 1 Stage 2 Stage 

1 

Stage 

2 

(mm) kPa tonnes/ 

m3 

tonnes/ 

m3 

(%) Cycles Cycles (µs/cyc) mm mm 

11 - SCDCT 50 mm/ 100 mm 750 2.389 2.497 4.33 5600 52000 0.339 0.68 1.81 29,953 

20 - SCDCT 50 mm/ 150 mm 750 2.367 2.497 5.19 6000 42000 0.813 0.89 2.56 28,865 

4 - - 100 mm/100 mm 750 2.351 2.497 5.84 800 5600 7.96 1.51 3.48 10,817 

8 - SCDCT 50 mm/ 100 mm 750 2.368 2.497 5.18 6000 36000 0.484 0.88 1.75 23745 

9 - - 100 mm/ 100 mm 750 2.374 2.497 4.94 1400 - 3.73 1.17 - 2.893 

17 - - 100 mm / 100 mm 750 2.368 2.497 5.18 600 - 6.98 1.27 - 1,165 

6 - - 100 mm/ 100 mm 750 2.38 2.497 4.7 1800 - 3.67 1.18 - 3,277 

2 - SCDCT 50 mm/ 100 mm 750 2.354 2.497 5.72 3800 19000 1.57 0.692 1.93 32,769 

3  SCDCT 50 mm/ 100 mm 750 2.375 2.497 4.88 5500 - 0.24 0.392 - 51,201 

24 6 BB SCDCT 50 mm/ 150 mm 750 2.36 2.497 5.48 800 4200 7.6 0.83 2.25 2,769 

31 8 BT SCDCT 50 mm/ 150 mm 750 2.32 2.497 6.91 2000 10,000 3.42 1.1 2.6 7,777 
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Specimen     

No. 

 

Specimen 

place in 

the slab 

 

Test 

method 

 

Platen/Sample 

size 

 

Tyre 

Pressure 

 

P Bulk 

 

P max 

 

Air 

voids 

 

Creep curve 

 

Minimum 

creep slope 

 

Plastic 

Deformation 

 

Cycle 

number at 

minimum 

strain rate Stage 1 
 

Stage 2 
Stage 

1 

Stage 

2 

(mm) kPa 
tonnes/ 

m3 

tonnes/ 

m3 
(%) Cycles Cycles (µs/cyc) mm mm 

22 6 AB - 75 mm/ 150 mm 750 2.359 2.497 5.53 1500 6800 6.54 1.46 3.3 3,537 

23 6 BT - 75 mm/ 150 mm 750 2.33 2.497 6.59 600 3100 14.77 1.29 3.27 1,825 

29 8 AT - 75 mm/ 150 mm 750 2.326 2.497 6.86 4000 13500 2.56 0.96 2.24 8,737 

30 8 AB - 75 mm/ 150 mm 750 2.337 2.497 6.41 1500 7000 5.79 1.37 3.07 4,097 

34 9 AB SCDCT 50 mm/ 100 mm 750 2.299 2.497 7.9 1800 4000 4.89 0.69 1.28 2.033 

5 - CDCT 50 mm/ 100 mm 750 2.362 2.497 5.42 43,000 - 0.012 0.428 - 89,437 

18 - CDCT 50 mm/ 150 mm 750 2.349 2.497 5.94 49,000 - 0.03 1.381 - 96,129 

35 9 BT CDCT 50 mm/ 100 mm 750 2.296 2.497 8.04 55,000 Plus 100,000  
(Did not reach) 0.018 0.864 Did not 

happen 81,281 

39 10 AT CDCT 50 mm/ 100 mm 750 2.278 2.497 8.78 43,000 Plus 100,000  
(Did not reach) 0.013 1.033 Did not 

happen 94,977 

42 10 BB CDCT 50 mm/ 100 mm 750 2.244 2.497 10.1 43,000 Plus 100,000  
(Did not reach) 0.019 1.137 Did not  

happen 91,265 

44 10 CB CDCT 50 mm/ 100 mm 750 2.249 2.497 9.93 38,000 Plus 100,000  
(Did not reach) 0.013 0.874 Did not 

happen 93,953 

33 9 AT CDCT 50 mm/ 100 mm 750 2.313 2.497 7.39 45,000 Plus 100,000 
 (Did not reach) 0.013 0.99 Did not  

happen 97,793 

26 7 AB CDCT 50 mm/ 150 mm 750 2.364 2.497 5.32 40,000 - 0.022 1.145 - 78,721 
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Specimen     

No. 

Specimen 

place in 

the slab 

Test 

method 

Platen/Sample 

size 

Tyre 

Pressure 

P Bulk P max Air 

voids 

Creep curve Minimum 

creep slope 

Plastic 

Deformation 

Cycle 

number at 

minimum 

strain rate 

Stage 1 Stage 2 
Stage 

1 

Stage 

2 

(mm) kPa 
tonnes/ 

m3 

tonnes/ 

m3 
(%) Cycles Cycles (µs/cyc) mm mm 

27 7 BT CDCT 50 mm/ 150 mm 750 2.337 2.497 6.41 45,000 Plus 100,000  
(Did not reach) 0.025 1.331 Did not  

happen 94,209 

28 7 BB CDCT 50 mm/ 150 mm 750 2.359 2.497 5.54 40,000 Plus 100,000  
(Did not reach) 0.025 1.238 Did not  

happen 91,777 

32 8 BB CDCT 50 mm/ 150 mm 750 2.334 2.497 6.52 40,000 - 0.032 1.678 - 78,977 

25 7 AT CDCT 50 mm/ 150 mm 750 2.355 2.497 5.68 50,000 Plus 100,000  
(Did not reach) 0.031 1.08 Did not  

happen 97,537 

47 14 BT CDCT 50 mm/ 150 mm 750 2.448 2.497 1.96 45,000 Plus 100,000  
(Did not reach) 0.016 0.674 Did not  

happen 92,289 

53 16 AB CDCT 50 mm/ 150 mm 750 2.399 2.497 3.92 43,000 Plus 100,000  
(Did not reach) 0.019 0.94 Did not  

happen 97,793 

70 22 AB CDCT 50 mm/ 150 mm 750 2.275 2.497 8.88 45,000 Plus 100,000  
(Did not reach) 0.045 1.666 Did not  

happen 97,409 

48 14 BB SCDCT 50 mm/ 150 mm 750 2.448 2.497 1.96 55,000 Plus 100,000  
(Did not reach) 0.034 0.807 Did not  

happen 94,849 

69 22 AT SCDCT 50 mm/ 150 mm 750 2.28 2.497 8.68 5,000 20,000 1.93 1.571 3.119 13,697 

111 26 BT CDCT 50 mm/ 100 mm 750 2.44 2.497 2.3 45,000 Plus 100,000  
(Did not reach) 0.006 0.276 Did not  

happen 65,537 

43 10 CT CDCT 50 mm/ 100 mm 750 2.259 2.497 9.55 45,000 Plus 100,000  
(Did not reach) 0.016 0.841 Did not  

happen 97,025 
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Specimen     

No. 

Specimen 

place in 

the slab 

 Platen/Sample 

size 

Tyre 

Pressure 

P Bulk P max Air 

voids 

Creep curve Stage 2 Plastic 

Deformation 

Cycle 

number at 

minimum 

strain rate Stage 1 Stage 2 
Creep 

slope 

Stage 

1 

Stage 

2 

(mm) kPa 
tonnes/ 

m3 

tonnes/ 

m3 
(%) Cycles Cycles (µs/cyc) mm mm 

85 11 AB CDCT 50 mm/ 100 mm 750 2.393 2.497 4.18 45,000 Plus 100,000  
(Did not reach) 0.013 0.711 Did not  

happen 96,257 

95 12 CT CDCT 50 mm/ 100 mm 750 2.414 2.497 3.32 50,000 Plus 100,000  
(Did not reach) 0.013 0.358 Did not  

happen 90,753 

109 26 AT SCDCT 50 mm/ 100 mm 750 2.436 2.497 2.45 50,000 Plus 100,000  
(Did not reach) 0.038 0.75 Did not  

happen 98,433 

112 26 BB SCDCT 50 mm/ 100 mm 750 2.43 2.497 2.68 48,000 Plus 100,000  
(Did not reach) 0.032 0.798 Did not  

happen 70,273 

105 20 BT SCDCT 50 mm/ 100 mm 750 2.358 2.497 5.56 13,000 30,000 0.833 1.379 2.109 18,497 

36 9 BB CDCT 50 mm/ 100 mm 750 2.284 2.497 8.53 40,000 Plus 100,000  
(Did not reach) 0.022 1.55 Did not  

happen 98.433 

41 10 BT CDCT 50 mm/ 100 mm 750 2.239 2.497 10.3 45,000 Plus 100,000 
 (Did not reach) 0.013 1.49 Did not  

happen 73,729 

21 6 AT CDCT 50 mm/ 150 mm 750 2.34 2.497 6.27 45,000 Plus 100,000  
(Did not reach) 0.045 2.59 Did not 

happen 97,025 

66 21 AB EDCT 150mm/ 150mm 200 2.338 2.497 6.36 21,000 Plus 40,000  
(Did not reach) 0.324 1.22 Did not 

happen 35,329 

67 21 BT EDCT 150mm/ 150mm 200 2.338 2.497 6.35 14,000 Plus 40,000  
(Did not reach) 0.296 1.11 Did not 

happen 19,297 

74 23 AT EDCT 150mm/ 150mm 200 2.352 2.497 5.81 23,000 Plus 40,000  
(Did not reach) 0.062 0.81 Did not 

happen 37,825 
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Specimen     

No. 

Specimen 

place in 

the slab 

Test 

method 

Platen/Sample 

size 

Tyre 

Pressure 

P Bulk P max Air 

voids 

Creep curve Stage 2 Plastic 

Deformation 

Cycle 

number at 

minimum 

strain rate Stage 1 Stage 2 
Creep 

slope 

Stage 

1 

Stage 

2 

(mm) kPa 
tonnes/ 

m3 

tonnes/ 

m3 
(%) Cycles Cycles (µs/cyc) mm mm 

88 11 BB EDCT 100mm/ 100mm 200 2.406 2.497 3.64 25,000 Plus 40,000  
(Did not reach) 0.044 0.352 

 
Did not 
happen 

 

38,081 

101 19 CB EDCT 100mm/ 100mm 200 2.348 2.497 5.96 27,000 Plus 40,000  
(Did not reach) 0.099 0.495 

 
Did not 
happen 

 

35,201 

102 19 CT EDCT 100mm/ 100mm 200 2.349 2.497 5.92 23,000 Plus 40,000  
(Did not reach) 0.056 0.851 

 
Did not 
happen 

 

35,969 

103 20 AB EDCT 100mm/ 100mm 200 2.356 2.497 5.63 24,000 Plus 40,000  
(Did not reach) 0.055 0.788 

 
Did not 
happen 

 

35,073 

107 20 CT EDCT 100mm/ 100mm 200 2.365 2.497 5.29 26,000 Plus 40,000  
(Did not reach) 0.049 0.24 

 
Did not 
happen 

 

38,465 

115 1 AT EDCT 150mm/ 150mm 200 2.339 2.477 5.55 300 Plus 40,000  
(Did not reach) 23.28 1.054 

 
Did not 
happen 

 

521 

131 5 CT EDCT 100mm/ 100mm 200 2.341 2.477 5.48 2100 Plus 40,000  
(Did not reach) 5.83 1.26 

Did not 
happen 

 
561 

49 15 AT CDCT 50 mm/ 150 mm 750 2.441 2.497 2.23 52,000 Plus 100,000 
 (Did not reach) 0.013 0.338 

Did not  
happen 

 
80129 

71 22 BT CDCT 50 mm/ 150 mm 750 2.282 2.497 8.62 37,000 - 0.093 1.756 
Did not  
happen 

 
58113 

78 24 AT CDCT 50 mm/ 150 mm 750 2.356 2.497 5.64 45,000 Plus 100,000  
(Did not reach) 0.025 1.355 

Did not  
happen 

 
95233 
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Specimen     

No. 

Specimen 

place in 

the slab 

Test 

method 

Platen/Sample 

size 

Tyre 

Pressure 

P Bulk P max Air 

voids 

Creep curve Stage 2 Plastic 

Deformation 

Cycle 

number at 

minimum 

strain rate Stage 1 Stage 2 
Creep 

slope 

Stage 

1 

Stage 

2 

(mm) kPa 
tonnes/ 

m3 

tonnes/ 

m3 
(%) Cycles Cycles (µs/cyc) mm mm 

60 17 BB CDCT 50 mm/ 150 mm 750 2.432 2.497 2.6 48,000 Plus 100,000  
(Did not reach) 0.012 1.092 Did not  

happen 83329 

61 18 AB CDCT 50 mm/ 150 mm 750 2.405 2.497 3.66 35,000 - 0.025 0.723 Did not  
happen 59841 

117 1 BT CDCT 50 mm/ 150 mm 750 2.317 2.477 6.47 45,000 Plus 100,000  
(Did not reach) 0.05 2.948 Did not 

happen 93,569 

118 1 BB CDCT 50 mm/ 150 mm 750 2.351 2.477 5.1 40,000 Plus 100,000  
(Did not reach) 0.031 2.383 Did not 

happen 96,769 

121 3 BB CDCT 50 mm/ 150 mm 750 2.37 2.477 4.32 40,000 Plus 100,000  
(Did not reach) 0.035 2.442 Did not 

happen 98,433 

122 3 BT CDCT 50 mm/ 150 mm 750 2.331 2.477 5.89 40,000 Plus 100,000  
(Did not reach) 0.04 2.64 Did not 

happen 93,441 

134 6 AB CDCT 50 mm/ 100 mm 750 2.35 2.477 5.12 55,000 Plus 100,000  
(Did not reach) 0.016 1.023 Did not 

happen 97,409 

135 6 BT CDCT 50 mm/ 100 mm 750 2.344 2.477 5.36 48,000 Plus 100,000  
(Did not reach) 0.018 1.452 Did not 

happen 84,737 

136 6 BB CDCT 50 mm/ 100 mm 750 2.363 2.477 4.59 52,000 Plus 100,000  
(Did not reach) 0.016 1.093 Did not 

happen 86,273 

127 5 AT SCDCT 50 mm/ 100 mm 750 2.353 2.477 5.01 40 150 163.6 1.048 2 95 

130 5 BB SCDCT 50 mm/ 100 mm 750 2.356 2.477 4.88 60 260 95.52 1.025 2.043 189 

132 5 CB SCDCT 50 mm/ 100 mm 750 2.343 2.477 5.42 50 160 157.4 1.167 2.083 94 

137 6 CT SCDCT 50 mm/ 100 mm 750 2.359 2.477 4.76 50 240 102.04 0.929 1.881 124 

120 2 AB CDCT 75 mm/ 150 mm 750 2.352 2.477 5.04 45,000 - 0.025 1.86 Did not 
happen 95,873 

123 4 AT CDCT 75 mm/ 150 mm 750 2.337 2.477 5.66 45,000 - 0.025 1.911 Did not 
happen 92,801 
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Specimen     

No. 

Specimen 

place in 

the slab 

Test 

method 

Platen/Sample 

size 

Tyre 

Pressure 

P Bulk P max Air 

voids 

Creep curve Stage 2 Plastic 

Deformation 

Cycle 

number at 

minimum 

strain rate 

Stage 1 Stage 2 
Creep 

slope 

Stage 

1 

Stage 

2 

(mm) kPa 
tonnes/ 

m3 

tonnes/ 

m3 
(%) Cycles Cycles (µs/cyc) mm mm 

124 4 AB CDCT 75 mm/ 150 mm 750 2.358 2.477 4.81 50,000 - 0.022 1.79 Did not 
happen 93,825 

126 4 BB CDCT 75 mm/ 150 mm 750 2.365 2.477 4.51 48,000 - 0.022 1.632 Did not 
happen 74,753 

45 14 AB CDCT 75 mm/ 150 mm 750 2.446 2.497 2.05 55,000 - 0.013 0.979 Did not  
happen 81,793 

62 18 AT CDCT 75 mm/ 150 mm 750 2.414 2.497 3.33 55,000 - 0.015 0.781 Did not  
happen 93,185 

65 21 AT CDCT 75 mm/ 150 mm 750 2.347 2.497 6.02 48,000 - 0.025 1.598 Did not  
happen 93,057 

72 22 BB CDCT 75 mm/ 150 mm 750 2.281 2.497 8.65 50,000 - 0.031 1.7 Did not  
happen 93,825 

83 25 BT CDCT 75 mm/ 150 mm 750 2.37 2.497 5.09 50,000 - 0.019 1.313 Did not  
happen 92.033 

58 17 AT SCDCT 50 mm/ 150 mm 750 2.434 2.497 2.51 15,000 42,000 0.31 1.671 2.135 
 

33,281 
 

54 16 AT EDCT 150mm/ 150mm 750 2.398 2.497 3.96 25,000 - 0.098 1.157 
Did not 
happen 

 
39,169 

91 12 AT EDCT 100mm/ 100mm 750 2.398 2.497 3.98 25,000 - 0.098 1.171 
Did not 
happen 

 
37,249 

82 25 AT CDCT 50mm/ 150mm 750 2.344 2.497 6.12 60,000 - 0.031 1.793 
Did not 
happen 

 
37,595 

129 5 BT CDCT 50mm/ 100mm 750 2.352 2.477 5.03 55,000 - 0.016 1.087 
Did not 
happen 

 
83,585 

138 6 CB CDCT 50mm/ 100mm 750 2.354 2.477 4.97 55,000 - 0.016 1.452 Did not 
happen 89,601 
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Table 3: Brisbane City Council mix design and material properties 
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Table 4: Brisbane City Council Type 2 Mix (Aggregate gradation) 
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Table 5: Properties of the used bitumen 
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Part 2: FEM modelling outputs for various laboratory and in situ conditions. 

 

 

Figure 1: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Mises 

stress. 

 

Figure 2: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Max, 

In-Plane Principal stress. 
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Figure 3: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Max, 

In-Plane Principal (Abs) stress. 

 

Figure 4: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Min, 

In-Plane Principal stress. 



 

 - 16 -  
 

Figure 5: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Out-

of-Plane Principal stress. 

 

    
Figure 6: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Max, 

Principal stress. 
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Figure 7: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Max, 

Principal (Abs) stress. 

 

Figure 8: Existing unconfined test for a 100/ 100mm section (200 kPa load) –Mid. 

Principal stress. 
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Figure 9: Existing unconfined test for a 100/ 100mm section (200 kPa load) – Min. 

Principal stress. 

 

 

Figure 10: Existing unconfined test for a 100/ 100mm section (200 kPa load) – 

Tresca stress. 
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Figure 11: Existing unconfined test for a 100/ 100mm section (200 kPa load) – 

Pressure. 

 

Figure 12: Existing unconfined test for a 100/ 100mm section (200 kPa load) –Third 

Invariant stress. 
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Figure 13: Existing unconfined test for a 100/ 100mm section (200 kPa load) – S33 

stress (stress in the Z direction). 

 

 

Figure 14: Existing unconfined test for a 100/ 100mm section (200 kPa load) – U 

(deformation) Magnitude. 
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Figure 15: Existing unconfined test for a 100/ 100mm section (200 kPa load) – U1 

(deformation in the X direction). 

 

 

Figure 16: Existing unconfined test for a 100/ 100mm section (200 kPa load) – U2 

(deformation in the Y direction). 
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Figure 17: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Mises 

stress. 

 

Figure 18: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Max, 

In-Plane Principal stress. 
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Figure 19: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Max, 

In-Plane Principal (Abs) stress. 

 

Figure 20: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Min, 

In-Plane Principal stress. 
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Figure 21: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Out-

of-Plane Principal stress. 

 

Figure 22: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Max, 

Principal stress. 
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Figure 23: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Max, 

Principal (Abs) stress. 

 

Figure 24: Existing unconfined test for a 100/ 100mm section (750 kPa load) –Mid. 

Principal stress. 
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Figure 25: Existing unconfined test for a 100/ 100mm section (750 kPa load) – Min. 

Principal stress. 

 

 

Figure 26: Existing unconfined test for a 100/ 100mm section (750 kPa load) – 

Tresca stress. 
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Figure 27: Existing unconfined test for a 100/ 100mm section (750 kPa load) – 

Pressure. 

 

Figure 28: Existing unconfined test for a 100/ 100mm section (750 kPa load) –Third 

Invariant stress. 
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Figure 29: Existing unconfined test for a 100/ 100mm section (750 kPa load) – S33 

stress (stress in the Z direction). 

 

 

Figure 30: Existing unconfined test for a 100/ 100mm section (750 kPa load) – U 

(deformation) Magnitude. 
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Figure 31: Existing unconfined test for a 100/ 100mm section (750 kPa load) – U1 

(deformation in the X direction). 

 

Figure 32: Existing unconfined test for a 100/ 100mm section (750 kPa load) – U2 

(deformation in the Y direction). 
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Figure 33: New confined (4mm ring) test for a 50/100mm section – Mises stress. 

 

 

 

Figure 34: New confined (4mm ring) test for a 50/100mm section – Max, In-Plane 

Principal stress. 
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Figure 35: New confined (4mm ring) test for a 50/100mm section – Max, In-Plane 

Principal (Abs) stress. 

 

 

Figure 36: New confined (4mm ring) test for a 50/100mm section – Min, In-Plane 

Principal stress. 
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Figure 37: New confined (4mm ring) test for a 50/100mm section – Out-of-Plane 

Principal stress. 

 

 

 
Figure 38: New confined (4mm ring) test for a 50/100mm section – Max, Principal 

stress. 
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Figure 39: New confined (4mm ring) test for a 50/100mm section – Max, Principal 

(Abs) stress. 

 

 

 
Figure 40: New confined (4mm ring) test for a 50/100mm section –Mid. Principal 

stress. 



 

 - 34 -  
 

 
Figure 41: New confined (4mm ring) test for a 50/100mm section – Min. Principal 

stress. 

 

 

Figure 42: New confined (4mm ring) test for a 50/100mm section – Tresca stress. 
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Figure 43: New confined (4mm ring) test for a 50/100mm section – Pressure. 

 

 

 
Figure 44: New confined (4mm ring) test for a 50/100mm section –Third Invariant 

stress. 
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Figure 45: New confined (4mm ring) test for a 50/100mm section – S33 stress (stress 

in the Z direction). 

 

 
Figure 46: New confined (4mm ring) test for a 50/100mm section – U (deformation) 

Magnitude. 
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Figure 47: New confined (4mm ring) test for a 50/100mm section – U1 (deformation 

in the X direction). 

 

 
Figure 48: New confined (4mm ring) test for a 50/100mm section – U2 (deformation 

in the Y direction). 
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Figure 49: New confined (2.5mm ring) test for a 50/100mm section – Mises stress. 

 

 

 
Figure 50: New confined (2.5mm ring) test for a 50/100mm section – Max, In-Plane 

Principal stress. 
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Figure 51: New confined (2.5mm ring) test for a 50/100mm section – Max, In-Plane 

Principal (Abs) stress. 

 

 
Figure 52: New confined (2.5mm ring) test for a 50/100mm section – Min, In-Plane 

Principal stress. 
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Figure 53: New confined (2.5mm ring) test for a 50/100mm section – Out-of-Plane 

Principal stress. 

 

 

 
Figure 54: New confined (2.5mm ring) test for a 50/100mm section – Max, Principal 

stress. 
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Figure 55: New confined (2.5mm ring) test for a 50/100mm section – Max, Principal 

(Abs) stress. 

 

 

 

Figure 56: New confined (2.5mm ring) test for a 50/100mm section –Mid. Principal 

stress. 
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Figure 57: New confined (2.5mm ring) test for a 50/100mm section – Min. Principal 

stress. 

 

 

Figure 58: New confined (2.5mm ring) test for a 50/100mm section – Tresca stress. 
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Figure 59: New confined (2.5mm ring) test for a 50/100mm section – Pressure. 

 

 

 
Figure 60: New confined (2.5mm ring) test for a 50/100mm section –Third Invariant 

stress. 
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Figure 61: New confined (2.5mm ring) test for a 50/100mm section – S33 stress 

(stress in the Z direction). 

 

 
Figure 62: New confined (2.5mm ring) test for a 50/100mm section – U 

(deformation) Magnitude. 
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Figure 63: New confined (2.5mm ring) test for a 50/100mm section – U1 

(deformation in the X direction). 

 

 
Figure 64: New confined (2.5mm ring) test for a 50/100mm section – U2 

(deformation in the Y direction). 
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Figure 65: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Mises stress. 

 

 

 
Figure 66: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Max, In-Plane Principal stress. 
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Figure 67: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Max, In-Plane Principal (Abs) stress. 

 

 

 
Figure 68: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Min, In-Plane Principal stress. 
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Figure 69: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Out-of-Plane Principal stress. 

 

 
Figure 70: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Max, Principal stress. 
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Figure 71: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Max, Principal (Abs) stress. 

 

 

 
Figure 72: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Mid. Principal stress. 
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Figure 73: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Min. Principal stress. 

 

 
Figure 74: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Tresca stress. 
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Figure 75: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– Pressure. 

 

 

 
Figure 76: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

–Third Invariant stress. 
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Figure 77: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– S33 stress (stress in the Z direction). 

 

 
Figure 78: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– U (deformation) Magnitude. 
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Figure 79: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– U1 (deformation in the X direction). 

 

 

 
Figure 80: Full depth asphalt pavement, 2000×1000mm section under a 200mm tyre 

– U2 (deformation in the Y direction).
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Figure 81: Multi-layer pavement 2000×1000mm section under a 200mm tyre – 

Mises stress. 

 

 

 
Figure 82: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Max, 

In-Plane Principal stress. 
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Figure 83: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Max, 

In-Plane Principal (Abs) stress. 

 

 

 
Figure 84: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Min, 

In-Plane Principal stress. 
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Figure 85: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Out-

of-Plane Principal stress. 

 

 
Figure 86: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Max, 

Principal stress. 
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Figure 87: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Max, 

Principal (Abs) stress. 

 

 
Figure 88: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Mid. 

Principal stress. 
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Figure 89: Multi-layer pavement 2000×1000mm section under a 200mm tyre – Min. 

Principal stress. 

 

 

 
Figure 90: Multi-layer pavement 2000×1000mm section under a 200mm tyre – 

Tresca stress. 
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Figure 91: Multi-layer pavement 2000×1000mm section under a 200mm tyre – 

Pressure. 

 

 

 
Figure 92: Multi-layer pavement 2000×1000mm section under a 200mm tyre –Third 

Invariant stress. 
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Figure 93: Multi-layer pavement 2000×1000mm section under a 200mm tyre – S33 

stress (stress in the Z direction). 

 

 
Figure 94: Multi-layer pavement 2000×1000mm section under a 200mm tyre – U 

(deformation) Magnitude. 
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Figure 95: Multi-layer pavement 2000×1000mm section under a 200mm tyre – U1 

(deformation in the X direction). 

 

 
Figure 96: Multi-layer pavement 2000×1000mm section under a 200mm tyre – U2 

(deformation in the Y direction). 
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Figure 97: Single asphalt layer 200×2000mm section under a 200mm tyre – Mises 

stress. 

 

 

 

 
Figure 98: Single asphalt layer 200×2000mm section under a 200mm tyre – Max, In-

Plane Principal stress. 
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Figure 99: Single asphalt layer 200×2000mm section under a 200mm tyre – Max, In-

Plane Principal (Abs) stress. 

 

 

 

 
Figure 100: Single asphalt layer 200×2000mm section under a 200mm tyre – Min, 
In-Plane Principal stress.
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Figure 101: Single asphalt layer 200×2000mm section under a 200mm tyre – Out-of-
Plane Principal stress. 

 

 

 

 
Figure 102: Single asphalt layer 200×2000mm section under a 200mm tyre – Max, 
Principal stress. 
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Figure 103: Single asphalt layer 200×2000mm section under a 200mm tyre – Max, 
Principal (Abs) stress. 

 

 

 

 
Figure 104: Single asphalt layer 200×2000mm section under a 200mm tyre – Mid. 
Principal stress. 
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Figure 105: Single asphalt layer 200×2000mm section under a 200mm tyre – Min. 
Principal stress. 

 

 

 

 

 
Figure 106: Single asphalt layer 200×2000mm section under a 200mm tyre – Tresca 
stress. 
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Figure 107: Single asphalt layer 200×2000mm section under a 200mm tyre – 
Pressure. 

  

 

 

 
Figure 108: Single asphalt layer 200×2000mm section under a 200mm tyre –Third 
Invariant stress. 
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Figure 109: Single asphalt layer 200×2000mm section under a 200mm tyre – S33 
stress (stress in the Z direction). 

 

 

 

 
Figure 110: Single asphalt layer 200×2000mm section under a 200mm tyre – U 
(deformation) Magnitude. 



 

 - 69 -  
 

 
Figure 111: Single asphalt layer 200×2000mm section under a 200mm tyre – U1 
(deformation in the X direction). 

 

 

 

 
Figure 112: Single asphalt layer 200×2000mm section under a 200mm tyre – U2 

(deformation in the Y direction). 


