
Citation: Subudhi, A.; Dash, P.;

Mohapatra, M.; Tan, R.-S.; Acharya,

U.R.; Sabut, S. Application of

Machine Learning Techniques for

Characterization of Ischemic Stroke

with MRI Images: A Review.

Diagnostics 2022, 12, 2535. https://

doi.org/10.3390/diagnostics

12102535

Academic Editor: Sameer Antani

Received: 13 September 2022

Accepted: 14 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Application of Machine Learning Techniques for
Characterization of Ischemic Stroke with MRI
Images: A Review
Asit Subudhi 1, Pratyusa Dash 2 , Manoranjan Mohapatra 3, Ru-San Tan 4,5, U. Rajendra Acharya 6,7,8,9,10

and Sukanta Sabut 11,*

1 Department of Electronics & Communication Engineering, ITER, SOA Deemed to be University,
Odisha 700107, India

2 Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata 700107, India
3 Department of Radiology, KIMS, KIIT Deemed to be University, Odisha 751024, India
4 Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore
5 Cardiology, Duke-NUS Medical School, Singapore 169857, Singapore
6 Department of Electrical and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
7 Biomedical Engineering, School of Social Science and Technology, Singapore University of Social Sciences,

Singapore 599494, Singapore
8 International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University,

Kumamoto 860-8555, Japan
9 Department Bioinformatics and Medical Engineering, Asia University, Taizhong 41354, Taiwan
10 School of Management and Enterprise, University of Southern Queensland, Toowoomba, QLD 4350, Australia
11 School of Electronics Engineering, KIIT Deemed to be University, Odisha 751024, India
* Correspondence: sukanta.sabatfet@kiit.ac.in

Abstract: Magnetic resonance imaging (MRI) is a standard tool for the diagnosis of stroke, but its
manual interpretation by experts is arduous and time-consuming. Thus, there is a need for computer-
aided-diagnosis (CAD) models for the automatic segmentation and classification of stroke on brain
MRI. The heterogeneity of stroke pathogenesis, morphology, image acquisition modalities, sequences,
and intralesional tissue signal intensity, as well as lesion-to-normal tissue contrast, pose significant
challenges to the development of such systems. Machine learning (ML) is increasingly being used
in predictive neuroimaging diagnosis and prognostication. This paper reviews image processing
and machine learning techniques that have been applied to detect ischemic stroke on brain MRI,
including details on image acquisition, pre-processing, techniques to segment, extraction of features,
and classification into stroke types. The main objective of this work is to find the state-of-art machine
learning techniques used to predict the ischemic stroke and their application in clinical set-up. The
article selection is performed according to PRISMA guideline. The state-of-the-art on automated
MRI stroke diagnosis, with a focus on machine learning, is discussed, along with its advantages and
limitations. We found that the various machine learning models discussed in this article are able
to detect the infarcts with an acceptable accuracy of 70–90%. However, no one has highlighted the
time complexity to predict the stroke in the model developed, which is an important factor. The
work concludes with proposals for future recommendations for building efficient and robust deep
learning (DL) models for quantitative brain MRI analysis. In recent work, with the application of
DL approaches, using large datasets to train the models has improved the detection accuracy and
reduced computational complexity. We suggest that the design of a decision support system based
on artificial intelligence (AI) and clinical data presenting symptoms is essential to support clinicians
to accelerate diagnosis and timeous therapy in the emergency management of stroke.

Keywords: brain stroke; medical imaging; computer-aided-diagnosis; machine learning; decision
support system; artificial intelligence
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1. Introduction

Stroke is a leading cause of death and disability among adult survivors worldwide [1].
A stroke can be either ischemic or hemorrhagic in nature. Stroke has heavy physical,
social, economic, and emotional burdens on patients and their families [2]. According
to the WHO, globally, each year, approximately 15 million people suffer brain stroke, of
which one-third die and the remaining become permanently disabled [1,3]. In India, the
prevalence rates of stroke in rural and urban areas range from 55 to 388 per 100,000 and 45
to 487 per 100,000 [4,5], respectively. The majority of stroke is attributable to high blood
pressure [6]. Other contributory risk factors include an unhealthy lifestyle and smoking.
Stroke incidence and mortality can be prevented by effectively controlling risk factors, such
as hypertension, hyperlipidemia, and tobacco consumption. As a result, stroke incidence
has decreased by approximately 10% between 1990 and 2010 in developed countries. The
preventive impact is, unfortunately, less felt in developing countries, where the incidence
has increased by 10% in the same period [3].

1.1. Classification of Stroke

According to pathogenesis, strokes can be classified into hemorrhagic and ischemic
types [7]. Approximately 70% of all stroke cases are ischemic in nature and the condition is
observed with neurological deficit which persists beyond 24 h or is interrupted by death
within 24 h [8]. Approximately 12% of all strokes are hemorrhagic, which comprise 9%
intracerebral and 3% subarachnoid hemorrhages. Hemorrhagic strokes are caused by the
rupture of cerebral blood vessels or vascular malformations which bleed into adjacent brain
tissues, affecting their function and more likely to lead to death than permanent disability.
In contrast, ischemic strokes occur due to blockage in blood vessels that supply the brain,
and by far represent the majority type. Ischemic strokes can be classified according to
their clinical manifestation. In the Oxfordshire Community Stroke Project [9], stroke
episodes were classified based on initial symptoms and their severity into four groups
that are predictive of stroke extent and affected brain region, underlying cause, as well as
prognosis: total anterior circulation stroke syndrome (TACS); partial anterior circulation
stroke syndrome (PACS); lacunar stroke syndrome (LACS); and posterior circulation stroke
syndrome (POCS). LACS, the commonest type, occurs due to blockages in small arteries
that supply deep structures of the brain. Patients characteristically suffer pure motor
or sensory deficit, sensorimotor deficit, or ataxic hemiparesis. TACS occur when blood
supply to the anterior and middle cerebral arteries on either side of the brain becomes
compromised, which results in unilateral paralysis. PACS is a less severe form of TACS, in
which some but not all symptoms associated with TACS are manifest. POCS is caused by
the reduced blood supply to the posterior cerebral artery on one side of the brain. Clinically,
the survivors suffer neurological deficit with abnormal body function.

1.2. Acute Stroke Imaging

In stroke, the functional deficit corresponds to the site and extent of the ischemic
or hemorrhagic brain lesion. The early detection of stroke and its type is important to
clinicians for deciding an optimal management process. Computed tomography (CT) and
MR imaging are standard investigation tools for excluding brain hemorrhage as well as for
characterizing ischemic lesions and quantifying potentially salvageable tissue at risk [10].
CT is exquisitely sensitive to the presence of hemorrhage, whereas MRI is the most sensitive
technique for the early identification of ischemic stroke. MRI, which exploits different pulse
sequences to enhance the signal contrast between normal and infarct tissues, is the most
sensitive technique for early stroke identification [11,12]. The diffusion-weighted imaging
(DWI) sequence of MRI is commonly used to identify the area of hypoperfusion, i.e., area
at risk, and the irreversibly damaged infarct core, respectively [13]. In the DWI sequence,
the intensity of signal exponentially decays with the rate of diffusion in a voxel [14].
Acute brain ischemia induces temporal changes in the intracellular sodium content of the
injured brain tissue, and intracellular water movement becomes restricted consequently.
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DWI is extremely sensitive to perturbed water diffusion, manifesting as a bright signal
perceptible within minutes of acute ischemic stroke [15–18]. Mismatch between areas
of hypoperfusion and DWI-assessed acute infarct-manifest as a penumbra surrounding
the infarct core, respectively, signifying potential salvageability [19]. The contrast of the
same tissue can be varied by varying the b-value in sequences [20,21]. Increase in b-value
attenuates the intensity of the signal which helps to improve the contrast of the lesion [22,23].
Figure 1 shows examples of CT and MRI images in acute ischemic stroke collected from
different patients.
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Figure 1. Neuroimaging in acute ischemic stroke of different patients. On computed tomography,
infarct is seen as a hypointense region (left). With MRI, signal contrasts between different tissues
can be amplified using different pulse sequences. With fluid attenuated inversion recovery (FLAIR),
the infarct is depicted as a bright signal against surrounding brain tissue as well as the dark signal-
suppressed cerebrospinal fluid (center). With DWI, the infarct tissue exhibits less signal decay as
water diffusion becomes restricted, which shows up as a hyperintense area (right).

1.3. Image Segmentation

Image segmentation aims to represent an image in a more meaningful way for analysis.
It involves the partitioning of the image either manually or automatically into various
regions that share similarities in signal intensity and properties and can be used for lo-
calizing lesions in the brain [24]. Automated image segmentation is an important step in
the processing of brain images which facilitates lesion detection and quantification of the
extent. This information is obligatory for accurate disease prognostication and optimal
clinical management.

1.4. Computer Aided Diagnosis (CAD) for Detection of Stroke

The CAD process has been applied in medical imaging for disease detection, prognos-
tication, decision support for guiding treatment, and therapeutic monitoring [25]. In MRI,
manual segmentation exacts high time costs as experts have to scrutinize multiple images of
the brain acquired in various orientations using different pulse sequences. Moreover, there
is potential for inter-and intra-observer biases [26–28]. Semi-automated and automated ma-
chine learning-based CAD systems for identifying and segmenting ischemic stroke lesions
can surmount these limitations, facilitating high throughput screening of images for faster,
reproducible, and more sensitive detection of ischemic stroke lesions [29]. Automated
delineation of the exact topology of stroke lesions facilitates quantitative analyses of infarct
size and/or salvageability, which are useful for prognostication and therapeutic decision-
making. A typical CAD system for stroke comprises distinct sequential stages (Figure 2):

• Image acquisition and pre-processing stage: For acute ischemic stroke detection, DWI
sequence of MRI is the modality of choice. In the pre-processing stage, the images were
first normalized using linear scaling, followed by background removal using simple
thresholding. The quality of the image is enhanced further with contrast-limited
adaptive histogram equalization (CLAHE).

• Image segmentation: Lesions are segmented using various methods, including cluster-
ing, watershed, and optimization and classified with different classifiers.
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• Features extraction: Extracted statistical or morphological features are used as input
to the classifiers for classification of stroke and its sub-types.

• Classification: Rule-based classifiers, such as neural network, support vector machine
(SVM), decision tree, and random forest classifier, are implemented to classify ischemic
brain lesions according to established standards, e.g., the Oxfordshire Community
Stroke Project classification scheme.
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DNN, deep neural network; NN, neural network.

2. Materials and Methods
2.1. Article Search Strategy

We performed a systematic review of articles according to the PRISMA guidelines [30].
An extensive search strategy was developed for this study consisting of different combina-
tions of the following keywords: “brain stroke”, “ischemic stroke”, “haemorrhage stroke”,
“magnetic resonance imaging”, “detection”, “segmentation”, “lesion”, “infarct identifica-
tion”, “segmentation of lesion”, “prediction of ischemic tissue”, and “machine learning for
stroke classification”. The database search was conducted systematically only for published
articles from 1990 to till May 2022 using search engines such as IEEE Xplore, Wiley, Science
Direct and Springer. PubMed, Embase, Web of Science (ISI), and the Cochrane Library
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were also used separately for search. Additional articles were collected by reviewing the
reference sections of the screened articles. All articles that reported the brain stroke patients
were included during the initial search.

2.2. Article Selection

The articles published in English between 1990 and April 2021 which are related to
the subject area of review and a few earlier articles describing the concepts of the methods
were considered. The electronic search strategy yielded 2484 studies, and we excluded
2145 studies after screening the title and abstract of the paper which did not meet criteria,
and specifically where the segmentation approach was not described. After reviewing full
texts, another 114 articles were excluded and, finally, 153 suitable studies were included
in the systematic review process based on relevance, methods, and technical details of
implementation. The article selection process is shown in Figure 3. We collected all
publications covering this subject related to the segmentation and classification of brain
stroke using MRIs. We excluded case reports and all articles that included animal studies.
Authors verified the title and abstract of each article. Only relevant articles were then
considered for full-text screening for inclusion in the study.
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3. Results

We identified several research articles that applied machine learning techniques for
ischemic stroke detection. The methods described, broadly segregated into segmentation
techniques and machine learning approaches, are reviewed in the following sections.
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3.1. Segmentation Techniques
3.1.1. Overview

Manual segmentation of infarcts in MRI data is a difficult, time-consuming, and chal-
lenging task [31,32]. Many studies have reported automated methods for object recognition
and classification [33,34]. Specifically, methods proposed for image segmentation include
edge-based, region-based, thresholding, clustering-based, and supervised methods [35–40].
Semiautomatic methods are applied for segmentation in medical image analysis. In [41],
region-growing based on image signal intensity was used to extract a connected region
by manually seeding a point within the region of interest [41]. In [42], a rule-based expert
system is used for automatic classified stroke lesions on MRI data using seeded region-
growing method. Unsupervised learning methods have also been used successfully to
segment ischemic infarcts [43–45]. James et al. [46] used a histogram partitioning-based ap-
proach to segment the infarct core and the penumbra in DWI sequences. Mangla et al. [47]
used various techniques to characterize cortical and subcortical border zones of infarct
on MRI according to the underlying pathophysiologic processes. In [48], the background
voxels and brain tissue were separated on MRIs by thresholding and classification of tissue
using fuzzy C-means clustering. Martel et al. [49] measured infarct volume in MRI using
an adaptive thresholding algorithm and Markov random fields. Usinskas et al. [50] pre-
sented an unsupervised method to segment ischemic stroke regions based on computing
mean and standard deviation features. Several automated methods have been published
for segmenting infarcts in MRI images [51–55]. Li et al. [56] reported an unsupervised
method based on multistage processes that included tensor field calculation, diffusion
anisotropy measurement, adaptive multiscale statistical classification for segmentation of
infarct volume, and partial volume voxel re-classification. Prakash et al. [57] segmented the
infarct on MRIs using a probabilistic neural network and adaptive Gaussian mixture model.
Hevia-Montiel et al. [58] used a nonparametric density estimation method to segment
infarct on DWI sequences. Gupta et al. [59] use DWI images to detect infarct based on
its intensity characteristics. Shen et al. [60] reported a method to detect infarct based on
separation of the voxel intensity and spatial tissue distribution.

3.1.2. Clustering

The fuzzy C-means clustering (FCM) approaches have been successfully applied for
medical image analysis as such approaches retain valuable information from the original
image [61–63]. However, standard FCM can fail to produce accurate results when there
is excessive image intensity inhomogeneity or noise [64–66]. Thus, the modified FCM
is used to perform segmentation on noisy images [67,68]. Griffis et al. [69] combined
naive Bayes classification and cluster-extent thresholding for the automated detection of
stroke lesions on T1-weighted images with Dice similarity and Pearson’s coefficients of
0.66 and 0.97, respectively. Seghier et al. [70] segmented the chronic lesions on T1-weighted
MRI using fuzzy clustering. The FCM algorithm can also be improved by partitioning
the images in a meaningful region [71,72]. He et al. [73] incorporated constraints into
the FCM algorithm to perform brain tissue segmentation on diffusion tensor MRI. In the
adaptive FCM algorithm, the objective function gradually becomes better for improving
segmentation [74,75]. In [76,77], fuzzy local information C-means (FLICM) improved the
performance in terms of noise and computational time. In [78], a hybrid approach was
presented combining the K-means and FCM algorithm, which improved the accuracy in
detecting brain infarct with less computational costs (Figure 4).
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Figure 4. Original DWI image (a), and morphological binary image (b), detected infarct marked as
red (c) [78].

3.1.3. Watershed Transformation (WT)

The WT algorithms are widely used in image segmentation and produce a sharp
boundary of the object in low-contrast images [79–81]. The drawbacks of WT, e.g., over-
segmentation, can be eliminated by using appropriate filters [82,83]. In [84], a difficult
region comprising gray and white matter of the brain was segmented with a directional
WT algorithm on noisy 3D brain MRI images [85,86]. In [87], the classification accuracy
of 0.90 was achieved with the morphological operation of a WT model. An interactive
multiscale WT algorithm could accurately segment brain tumors on MRI compared to
manual segmentation [88]. A segmentation approach that combines WT with random
forest algorithm provides better detection of infarcts with accuracy of 95% in DWI of the
brain [89] (Figure 5).

3.1.4. Intelligent Optimization

Optimization techniques, such as expectation-maximization (EM) and optimization via
graph cuts, improved segmentation accuracy on MRI. An optimization approach achieved
a similarity index of 0.849 in segmenting infarct volumes with the fast computational
time of approximately 3–4 min [90,91]. In [92], an entropy-based maximization method
with a set threshold value and particle swarm optimization (PSO) was able to separate
lesions from healthy tissue on brain MRI. A novel automated intensity-based method
based on the histogram-gravitational optimization algorithm (HGOA) attained 0.91 for
segmenting stroke lesions on single-modality T1-weighted brain MRI [93]. In [94], a fully
automated discrete curvelet transformation-based approach was effective for detecting
ischemic stroke lesions on brain MRI. Pham et al. [95] integrated fuzzy entropy clustering
into an improved PSO model for segmenting brain MRI. Ghosh et al. [96] used adaptive
thresholding to segment ischemic lesions on T2-weighted MRI of animal models. Biology-
inspired algorithms have also been used for image segmentation [97,98]. Subudhi et al. [99]
proposed a novel method based on Darwinian particle swarm optimization (DPSO) that
could identify stroke lesions on brain DWI with 90.23% accuracy using SVM classifier.
Couceiro et al. [100] presented fractional-order DPSO (FODPSO), an extension of DPSO,
which could control the convergence rate successfully (Figure 6).
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(f) output of watershed transform; (g) Reconstruction of image; (h) Superimposed image on original
image; (i) Final detected infarct with morphological operation [89].
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Expectation-maximization (EM) algorithms were also used for image segmentation
with different probabilistic models [101]. In the case of multiple local maxima, they may not
converge to the global maximum [102]. Yoon et al. [103] detected and classified the lesions
with adaptive FCM on a large axial brain MRI dataset. Niu et al. [104] used a random
swap EM algorithm for color image segmentation. Huang and Liu used EM to estimate the
Gaussian parameters for classifying color image [105]. Mahjoub and Kalti [106] segmented
images using a Bayesian algorithm-based finite mixture model, in which an EM algorithm
was used estimate parameters of Gaussian mixture model. Marroquin et al. [107] applied
an EM algorithm for efficient automated segmentation of the brain from non-brain tissue
on 3D MRI data. Tian et al. [108] developed a hybrid genetic algorithm-variational EM
(GA-VEM) model that improved the performances of segmentation in brain in MRI images.
In [109], the noise effects were reduced with spatial information and bias correction of EM
and FCM algorithms thereby improved the accuracy in segmentation of gray and white
matter on brain MRI [109]. Kwon et al. [110] segmented the brain lesions by combining
WT and EM algorithms with a clustering approach. Rouainia et al. [111] built a statistical
model from the data, and successfully applied the EM algorithms to detect brain lesions
on MRI. It is necessary to have sharp segmentation of lesion boundary to understanding
the stroke deficit in brain image [112,113] until recently. Using a novel methodology,
Subudhi et al. [114] developed a Delaunay triangulation and optimization-based system
that detected the brain infarct with a better accuracy of 95% (Figure 7).
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3.2. Machine Learning

Table 1 summarizes studies that used machine learning methods to detect acute
ischemic stroke lesions. The method was evaluated for both the segmentation and clas-
sification of stroke lesions using measured parameters, e.g., sensitivity, accuracy, and
Dice index.

Intelligent classifiers, such as artificial neural networks (ANN), SVM, and decision tree
methods have been used successfully for brain stroke detection and classification [128–130].
Abedi et al. [128] developed an ANN model to recognize acute cerebral ischemia.
Kasasbeh et al. [131] detected infarcts in acute stroke patients in DWI sequences with better
accuracy. Wilke et al. [115] used semi-automated and automated approaches for detected
chronic stroke lesions on MRI using fuzzy clustering. Mitra et al. [116] used an automated
method based on the Bayesian–Markov random field for classifying chronic infarcts on
FLAIR MRI. Chyzhyk et al. [132] reported an effective segmentation approach of infarcts
using active learning of classifiers on multimodal MRI data.
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Table 1. Machine learning studies on detection of acute ischemic stroke lesions.

Literature Modality No. of Images Segmentation
Approach Classifier Dice Index

Prakash et al. (2008) [57] DWI scans 13 patients; 361
images

Divergence
based algorithms ProbabilisticNN 0.6

Seghier et al. (2008) [70] T1-weighted 10 images Generative model Fuzzy clustering 0.64

Subudhi et al. (2015) [78] DWI scans 05 subjects Hybrid FCM with
thresholding Random forest 0.79

Subudhi et al. (2018) [89] DWI scans 142 images Watershed and fuzzy
connectedness Random forest 0.96

Wilke et al. (2011) [115] T1 weighted 11 subjects Automatic lesion
identification Expert 0.49

Asit et al. (2018) [114] DWI scan 192 images Delaunay
triangulation Random forest 0.93

Mitra et al. (2014) [116] Multimodal MRI 36 subjects Bayesian-Markov
random field Random forest 0.60

Maier et al. (2015) [117] FLAIR sequences 37 subjects Intensity derived
image features Extra trees 0.65

Maier et al. (2015) [118] FLAIR sequences 37 subjects Fuzzy clustering SVM 0.72

Griffs et al. (2016) [119] T1 weighted 30 subjects Probabilistic tissue
segmentation

Naive Bayes
classifier 0.66

Zhang et al. (2014) [120] DWI 98 subjects General
segmentation Random forest 0.77

Mah et al. (2014) [121] DWI scan 435 images Unsupervised
algorithm Neural network 0.73

Muda et al. (2015) [122] DWI scan 30 subjects Fuzzy C-means
algorithm Expert 0.73

Guo et al. (2015) [123] T1 weighted 60 subjects Unsupervised and
supervised methods SVM 0.73

Wang et al. (2016) [124] T1 weighted 18 subjects Deep lesion
symmetry ConvNet Neural network 0.78

Chen et al. (2017) [125] DWI scan 741 subjects Novel framework CNN 0.67
Yu et al. (2020) [126] DWI scan 182 subjects U-net framework Deep learning 0.53
Liu et al. (2021) [127] DWI scan 2348 images DAGMNet Deep learning 0.74

Various techniques based on machine learning approaches are used to determine the
time since stroke onset based on imaging features and decision support tool for planning of
stroke treatment [133,134]. Deep learning segmented the acute infarcts accurately on DWI
sequences of MR images with a Dice coefficient of 0.79 [135]. Bhattacharya et al. [136] used
an antlion optimization algorithm with deep neural network (DNN) to select optimal hy-
perparameters that improved the quality of stroke data and classification. Maier et al. [137]
tested their ischemic stroke segmentation model, which combined linear models, random
decision forests, and CNNs, on 37 MRI datasets. They concluded that high-level ma-
chine learning methods like random forest and CNN can classify more accurately than
standard classification methods. Guibas and Stolfi [138] introduced clustering scheme on
brain tissues having similar characteristics with a 3D Delaunay triangulation approach.
3D geometrical modeling of human tissues. A 3D Delaunay triangulation is used to seg-
ment non-overlapping regions having similar characteristics in CT/MR images [113,139].
Pennisi et al. [112] used the DT for detecting skin cancer lesions, based on geometrical
and color features. Recently ML approaches using DNNs have been applied for image
segmentation, automated feature extraction in brain images [140]. A deep extreme learning
method was applied effectively for the classification of pathological brain lesions on multi-
class MRIs [141]. In [120], a general method was applied to segment hyperacute ischemic
infarct by extracting multiple features and classified using a random forest classifier with a
Dice coefficient of 0.774. Mah et al. [121] proposed a high dimensional algorithm that to
quantify the ischemic damage on MRI with sensitivity and similarity index of 0.93 and 0.73,
respectively. In [122], the template-based FCM method achieved a Dice index of 0.687 in
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segmenting brain lesions in MRI images. In [123], the learning algorithms along with SVM
classifiers detected the infarcts with a Dice coefficient of 0.73 on T1-weighted images.

Artificial intelligence (AI) is increasingly being used to automated stroke diagnosis on
brain imaging. In the coming years, AI and smart technology can be integrated into stroke
care by neurologists. It will improve the diagnosis and treatment process there by reducing
morbidity and mortality [142,143]. Deep learning has been applied for image segmentation,
automated featurization, and multimodal prognostication in stroke management [144].
Haskin et al. [145] reviewed the use of deep learning approaches for medical image analysis.
Kaur et al. [146] explored different deep and transfer learning models for classification of
pathological brain images. AlexNet with transfer learning yielded the best results with
accuracy of 100% with less computational costs compared other models. Winzeck et al. [147]
used an ensemble of convolutional neural networks to train the model that combinations
116 different images of DWI, ADC, and low b value-weighted sequences. Model produced
better segmentation accuracy on acute infarcts. Xue et al. [148] proposed a CNN model with
multi-modal path for automating segmentation of stroke lesion. The model was designed
with nine series UNets with the input of 2D slices, and examined with a final lesion mask of
3D CNN model. Liu et al. [127] developed a deep learning tool and the trained the model on
2348 images of DWI sequences collected from acute and sub-acute patients having ischemic
strokes. The DAGMNet model resulted better performance than UNet, with higher Dice
index scores of 0.74 and higher precision of 0.76. Bridge et al. [149] used a deep learning
model trained on 6657 DWI sequences could segment the infarcts with Dice coefficient
0.776 [149]. Chang et al. [150] designed a customized deep learning approach, a hybrid
3D/2D based CNN network for hemorrhagic evaluation in CT images, and quantified the
hemorrhagic lesions on NCCT images with Dice score of high accuracy 0.93. The R-CNN
mask provides an efficient model for object classification and segmentation and the results
are depicted (Figure 8). It is concluded that the brain infarct can be detected accurately on
MRI images using a machine learning model in real-world clinical scenarios.
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4. Discussion

It is a challenging task to analyze the infarcts using medical imaging which comprises
various steps from image acquisition to the classification of stroke types. This makes the
aforementioned steps more complicated. So far, there are no particular tools available to
confirm the types of stroke, severity of infarcts, and chances of recovery. The clinicians rely
on the image analysis performed manually, which is a challenging issue and leads to inter-
reader variability. Therefore, computer assisted analysis is a growing area of research in
brain imaging. Table 1 summarizes the main characteristics of the review articles discussed
in the previous sub-sections. It includes important articles that describes guidelines and
objectives of the study and important contribution to detect the infarcts in brain imaging.
A fast and accurate automated CAD system for brain MRI analysis will facilitate the timely
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management of stroke. In this review, we have surveyed large number of research papers
to find different imaging techniques that have been applied successfully to detect the brain
stroke on MRI images. Various researchers presented automatic methods to detect and
classify infarcts using MRI (T1, T2, and FLAIR images) as it is radiation-free and it provides
good contrast. Such approaches mainly focused on increasing classification accuracy by
extracting different features from the readouts of various brain MRI sequences. To optimize
the lesion detection, some reports also explored of image fusion across modalities like
CT, MRI, and functional MRI [130,146]. Of note, the quantification of infarct volume is
important for prognostication. The volume can be estimated by forming a 3-D structure
reconstructed from segmented lesions across contiguous MRI slices [84,107].

Conventional methods may fail to capture small foci of infarct on brain MRI compared
with expert delineation for stroke segmentation [115]. This has motivated researchers to
explore machine learning models, which have recently gained prominence in medical
diagnostic decision-making. The complex data structure in neuroimaging is a significant
challenge that machine learning approaches to stroke classification have to overcome.
In general, the performance of machine learning models for stroke lesion segmentation
and classification has been salutary (Table 1), which supports their application for the
further development of decision support tools in stroke diagnosis and treatment selection.
In an automatic approach, Maier et al. [117] classified the subacute lesions of ischemic
stroke using intensity-based features and extra trees framework with a Dice coefficient of
0.65 tested on 37 DWI sequences. They also obtained acceptable classification of lesions
with SVM [118], but it was time-consuming. Griffs et al. [119] used a naive Bayes classifier
to detect infarcts on T1-weighted and obtained good segmentation accuracy with Dice
index of 0.66. Of note, the performance evaluation of CAD models had been mostly carried
out for sensitivity and accuracy measures, whereas the computational complexity of the
various methods was largely under-reported. As timely diagnosis is paramount, real-
time stroke detection algorithms need to be assessed in terms of accuracy, computational
complexity, and time demands for stroke prediction. The computational time of any
method is a critical factor, as an efficient computational framework is obligatory in the
acute stroke setting to administer treatment within the time-sensitive therapeutic window.
Machine learning is very useful in detecting large vessel occlusion (LVO) in the diagnosis
of acute stroke [151]. It is also used for the prediction of functional outcome of treatment in
hemorrhagic stroke [152].

The performance of the machine learning methods depends on various parameters,
e.g., image modality, image contents, and quality due to low contrast. Thus, different
image enhancement techniques, such as Gaussian filter, contrast starching, and histogram
equalization, are commonly adopted in medical images. The extraction of different features
and in large numbers is time consuming and also makes the classification stage more com-
plex. Hence, feature reduction methods, such as genetic algorithms, principal component
analysis (PCA), and linear discriminant analysis (LDA), are commonly used. The common
traditional classifiers, e.g., KNN, naive Bayes classifier, artificial neural network, SVM,
and decision tree, are the most commonly used for infarct segmentation and classification.
These methods achieved high-level classification accuracy. It is observed that the main
limitation of studies was related to the use of small numbers of images in the training
phase, which may weaken the chance of detecting infarcts. Ideally, the validation needs
to be carried out on large datasets, using deep learning (DL) methods both on imaging
and clinical criteria for better detection accuracy. In [124], an automated deep learning
system was designed to segment the lesion in chronic stroke based on ConvNet on MRI
that produced better result with Dice coefficient of 0.63. Aiming to reduce the potential
for false positives, Chen et al. [125] used two CNN models and validated their results on a
large clinical dataset of DWI in 741 subjects, producing Dice coefficients of 0.61 and 0.83 for
the detection of small and large lesions, respectively. Choi et al. [153] used an ensemble
of DNNs for the prediction of disease after an incident ischemic stroke. The method com-
bined CNN with a logistic regression model for clinical outcome prediction. Yu et al. [126]
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used U-net model which achieved a dice index of 0.53 to predict ischemic stroke on DWI
sequences. Thus, DL methods are now much more popular among researchers, although
many challenges still exist regarding the architecture design. The DL models are very
computationally expensive and require GPUs units to train the model, necessitating a huge
volume of images. In practice, there is a scarcity of high-volume MRI datasets to train
the deep learning models. These limitations may be overcome by establishing a common
dataset to share the different modalities of MRI data of stroke across researchers from
different institutions and making the dataset accessible to researchers worldwide.

5. Conclusions

The development of automated CAD tools is needed for the efficient detection of
stroke and quantification of stroke extent, which has important therapeutic and prognostic
implications. Ultimately, this will lead to timely and improved stroke management and
reduced patient morbidity and mortality. Toward this aim, advancements in neuroimaging
acquisition techniques, as well as the application of machine learning, play crucial roles. In
this review paper, we have extensively searched for different image analysis techniques
applied to detect the stroke lesion using MRI scans. In this study, we reviewed the state-
of-the-art methods of segmentation and classification of brain stroke on MRI images,
focusing on machine learning approaches. We concluded that integrating machine learning
models and smart technology, the brain infarcts can be detected at a faster rate with higher
accuracy on MRI in real-world clinical scenarios, which will be helpful in clinical decision
management. In addition, the limitations of various methods and potential solutions are
discussed. We believe that this work will be a valuable resource and a source of ideas and
inspiration to researchers in the field.

6. Future Directions

To improve the performance and robustness of automated CAD tools, we propose
the following recommendations. First, segmentation methods should be fully automated
both to expedite the recognition of stroke infarcts as well as size. Second, a heterogeneous
data structure is preferred to be adapted for model training with different modalities.
Third, a large number of input images are available, and a deep learning approach can be
implemented to develop fully automated systems for infarct detection and classification.
Fourth, more research can focus on classifying stroke subtypes to guide specific treatment.
Fifth, standardized protocols for brain MRI acquisition and image reconstruction are needed
to improve the reproducibility of the observations. Sixth, an accessible cross-institutional
challenge dataset comprising large number of brain MRI images should be a priority among
the global research community, as it will not only facilitate metadata analysis, but will
catalyze research in advanced machine learning applications. To the best of our knowledge,
much less work has been reported for the automatic detection of infarcts using AI-based
methods, such as deep learning techniques. AI-based methods using medical images
are gradually gaining popularity and becoming a go-to technology to diagnose various
diseases, e.g., diabetic retinopathy and cancer. With several researchers now working on
AI-based stroke detection systems, this may be the next frontier to explore. A decision
support system using AI and clinical data presenting symptoms, such as blood pressure
and body mass index (BMI), has huge potential to avoid stroke occurrence or increase
survival with minimal deficiency in motor functions and communicative skills. AI-based
systems can support clinicians to provide insights regarding disease to accelerate diagnosis
and therapy processes in the shortest possible time. This will become an essential approach
to support preventive and emergency stroke care in the next five years.
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