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Abstract
Climate change and anthropogenic activities are affecting the entire earth, where urban areas are not an exception, being affected 
by extreme weather conditions and environmental disturbances. Urban expansion and industrial development have negatively 
affected the local climatic condition due to green space deficiency, soil moisture loss, soil erosion, land subsidence, high runoff, 
and low infiltration rate. Megacities are needed proper management and awareness for healthy ecosystem. The study investi-
gated the properties of land alteration on the urban heat island (UHI) in the city of Seville, Spain. Earth observational Landsat 
5 TM and 8 OLI/TIRS remote sensing datasets were used for generating the urban expansion and related land alteration. The 
study results indicate that built-up land increased by 139.2 Km2 while agricultural land decreased by 104.07 Km2. Open space 
and plantation areas also decreased by 62.33 Km2 and 30.76 Km2, respectively. The average temperature increase was around 
0.13 °C per year between 1991 and 2021. Megacities need appropriate development, design, and supervision for sustainable 
urban development to avoid further UHI intensification. UHI map indicates that thermal variation increased from 2.21 °C (1991) 
to 3.42 °C (2021). The ecological disturbances also identified using UTFVI and the maps denoted that UTFVI values increased 
by 0.005 from 1991 to 2021. The present study outcomes are obliging for planners, researchers, and other participants for future 
evidence-based disaster planning and management.
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1  Introduction

As per the united nations report, urban areas have a larger 
population than rural areas and are projected to reach 6.4 
billion by 2050 (Mauree et al. 2018; Naboni et al. 2019). 

The rapid urbanization around the world has had a con-
siderable impact on urban environments through land use 
land cover (LULC) changes (Pauleit et al. 2005; Lambin 
and Geist 2008), disturbances in urban geometry (Sharma 
2019; Narimani et al. 2022), and urban texture (Das et al. 
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2020; Galli et al. 2021), especially in developing coun-
tries (Zhao et al. 2006). This leads to thermal variation 
using land surface temperature (LST) (Weng 2001; Wang 
et al. 2018; Lamine et al. 2018; Faqe Ibrahim 2017), earth 

surface emissivity (Du et al. 2020), and vegetation cover 
(Ifatimehin and Ufuah 2006). In the last decades, the sur-
face temperature was increased by around 0.87 °C due to 
global climate change and anthropogenic activities (Wang 

Fig. 1   Locational map of the study area

Fig. 2   Adopted methodology of 
the study
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et al. 2019; Sanikhani et al. 2019; Naganna et al. 2020; 
Mehr and Akdegirmen 2021) and evidence proved LST 
worldwide in urban areas will increase further in the future 
(Faqe Ibrahim 2017; Mukherjee & Singh 2020; Bayat-
varkeshi et al. 2021). Increased heat storage capacity at 
the urban level due to the overgrowth of urban life has led 
to the emergence of the UHIs occurrence (Wong & Chen 
2008; Karimi et al. 2020; Santos et al. 2021; Halder et al. 
2021c) where urban areas are more temperate rather than 
the rural and fringe areas (Oke 1982).

The difference in temperature has shown a consider-
able effects on reduced air quality (Fallmann et al. 2016; 
Henao et al. 2020; Halder et al. 2021b), vegetation dynam-
ics (Ashrafzadeh et al. 2019; Salman et al. 2021), outdoor 
thermal comfort (Afsharzadeh et al. 2021; Mohammad 
et al. 2021; Kisi et al. 2019), increased energy or dyna-
mism consumption (Hirano & Fujita 2012; Li et al. 2019), 
loss of biological control (Yang et al. 2016; Halder et al. 
2021a), variation in local wind patterns (Saha et al. 2021), 
groundwater potential area (Armanuos et al. 2021; Halder 
and Bandyopadhyay 2022; Ali et al. 2020), water quality 
(Khaleefa and Kamel 2021; Mohtar et al. 2019), devel-
oped new health emergencies like asthma, lung cancer, 
respiratory track infraction (Shahmohamadi et al. 2011), 
and many more in connection with the environment. Char-
acteristics of UHIs are included in three major classifica-
tions including canopy layer UHI (CLUHI), surface urban 
heat island (SUHI), and boundary layer UHI for mesoscale 
examination (BLUHI) (Goswami et  al. 2016; Karimi 
et al. 2021), given that surface and urban heat islands 
(SUHIs) have been proposed to investigate the spatio-
temporal relationship between built-up growth with the 
SUHI model (Meftahi et al. 2022) and are widely used to 
monitor thermal variation due to geothermal observation 
data sets (Landsat, MODIS, and Sentinel-3) in urban areas 
(Milesi & Churkina 2020). Hence, examining the spatial 
pattern of UHI on how LULC is distributed and its effect 
on LST has always been one of the most important chal-
lenges for researchers. In this regard, Veena et al. (2020) 
investigated the UHI and thermal variation in Indian cities 
and noted that the temperature has been increased around 
2 to 6 °C in the Indian cities. In another study (Chatter-
jee & Gupta 2021), the authors suggested that rises in 
the LST pattern are considered to be spatially associated 
with those areas where the intensity of land-use change 

is maximum. The same results is proposed in Sarif et al. 
(2020); the authors recommended that the average of LST 
has a great impact on the distance from the city where, 
by decreasing and increasing, the values of LST change. 
In addition, Abulibdeh (2021) conducted the field survey 
in urban areas where climatic variation of in cities like 
the semi-arid Gulf region and noted that the transforma-
tion in temperature varies between 1 and 2 °C in barren 
land, bare land, and built-up areas. Furthermore, vari-
ous studies have been conducted in Asia (Bokaie et al. 
2016; Pramanik & Punia 2019; Abulibdeh 2021; Gohain 
et al. 2021; Karimi et al. 2021; Khan et al. 2022), Europe 
(Avram et  al. 2019; Atasoy 2020), and the Americas 
(Coseo & Larsen 2014; Kulawardhana et al. 2021) that 
emphasized the relationship between thermal variation 
and land alteration and its consequences on UHIs. In 
addition, several studies have examined the urban sprawl 
impacts on UHI which is calculated normalized difference 
vegetation index (NDVI) (Senay et al. 2011; Chakraborty 
et al. 2020), normalized difference built-up index (NDBI) 
(Liu & Zhang 2011; Guha et al. 2018), normalized dif-
ference moisture index (NDMI) (Alibakhshi et al. 2020), 
and soil-adjusted vegetation index (SAVI) (Balçik 2014; 
Padmanaban et al. 2019).

Seville city is the mostly urbanized city where expan-
sions of built-up and industrial areas are gradually increased 
due to population and anthropogenic activities. The urban 
areas of Seville city mainly expanded towards east, south-
west, and north side, where agricultural lands are degreased 
due to land crisis (Ruiz-Pérez et al. 2021). Some adapta-
tion policies are more important to protect the city, oth-
erwise Seville city has been affected by several extreme 
climatic condition. The thermal remote sensing is widely 
used for monitoring the UHI affects and urban growth 
modeling using GIS, machine learning algorithm, and 

Table 1   Details of data 
acquisition date, satellite, and 
data source

Satellite Sensor Date Path and row Data source Cloud cover

Landsat 5 TM 13–08-1991 202, 034 https://​earth​explo​rer.​usgs.​gov/ < 5.00
08–08-2001 202, 034 < 5.00
04–08-2011 202, 034 < 5.00

Landsat 8 OLI/TIRS 30–07-2021 202, 034 < 5.00

Table 2   Scale of kappa coefficient

Sl no Value of K Strength of agreement

1  < 0.20 Poor
2 0.21–0.40 Fair
3 0.41–0.60 Moderate
4 0.61–0.80 Good
5 0.81–1.00 Very good
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statistical regression modeling and landscape relationships 
and research is capable of providing significant feedback 
to policymakers and researchers (Coseo & Larsen 2014; 
Rotem-Mindali et al. 2015; Tran et al., 2017; Mohammad 
et al. 2019; Falah et al. 2020). These results are usually 
obtained from remote sensing data, which is enough foun-
dations of information for determining UHIs (Feyisa et al. 
2014; Wu et al. 2014; Tran et al. 2017). The thermal remote 

sensing datasets are widely used for urban development and 
investigating the land surface temperature, temperature 
condition index (TCI), urban thermal field variation index, 
and UHI studies, which is Landsat, ASTER, MODIS, and 
Sentinel-3 (Feng et al. 2014). Based on this availability of 
data, the goal of this study was to investigate land alteration, 
LST variation, and information related to UHIs in the city 
of Seville, Spain.

Fig. 3   Satellite image classification from 1991 to 2021
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2 � Study area

The case study location of Seville city is Spain which is 
used for land alteration, thermal variation, and UHI effects 
study with the location of 37.3891° N, 5.9845° W (Cas-
tillo-Manzano et al. 2015), as shown in Fig. 1. Around 
690,000 people live in the Seville city of Spain. The total 
study area is coved around 1446.76 Km2. Based on Köp-
pen climatic classification, the study area belongs to the 
Csa climate with mild winters and blazing hot summers. 
The city has a regular annual temperature variation of 
18 °C and the precipitation is about 554 mm annually. The 
winter months are much rainier than the summer months 
(Farina 2012). The total area of this study is 1447 Km2 
(Fig. 1). The urban design of the city of Seville shows an 
ecological design with a central urban area and radioactive 
growth, in which recently disintegrated areas are slowly 
incorporated (Herrera-Gomez et al. 2017).

The total green area of Seville is 890 hectares, which 
is mostly a green circle around the city and is not close 
enough to the population (de Medio Ambiente and de 
Territorio 2003). The Seville city is situated in the Gua-
dalquivir valley along the bank of Guadalquivir River. 
The average elevation of the study area is 6 m above the 
sea level. In the last 30 years, Seville city has seen much 
investment in infrastructural development and industrial 
works. The current industrial and infrastructural develop-
ment are influencing the local climatic diversity where 
thermal heat variation is the main research point to iden-
tifying the heat island related activities. Anthropogenic 
activities are the main reason for thermal variation where 
green space dynamics and unexpected population pres-
sure are more influencing factor. Therefore, the land use 
and land cover change study, thermal variation, geo-spatial 
indicators like NDVI, NDBI, NDMI, and NDWI are used 
for environmental variation analysis, and UTFVI and UHI 
are used for surface heat island investigation.

3 � Materials and methods

3.1 � Data acquisition and pre‑processing of Landsat 
data

In this study, multi-temporal Landsat 5 TM and Landsat 8 
OLI/TIRS data were used for investigating the land altera-
tion, thermal variation, and UHI study, which is derived 
from USGS website (https://​earth​explo​rer.​usgs.​gov/), 
were utilized for land use and land cover (LU/LC), and 
change detection analysis, preparation of different geo-
spatial indices, and estimation of LST, UTFVI, and UHI 
maps (Fig. 2). Four different Landsat images of the city of 
Seville (path/row: 202/034) were downloaded from 1991 
to 2021 at a decadal interval. Table 1 is indicating the 
data details and acquisition data of the Landsat data. The 
study used three Landsat 5 TM imageries (1991, 2001, 
and 2011) and one Landsat 8 OLI/TIRS images (2021). 
Clouds have substantially impacted the LST data calcu-
lated from Landsat band 6 (TM) and Band 10 (TIRS) (Wan 
1996; Ermida et al. 2020; Sekertekin and Bonafoni 2020). 
Therefore, the images were selected with the least cloud 
coverage and similar time period, which will lower the 
atmospheric and seasonal effect of LST in our analysis 
(Emran et al. 2018).

Table 3   Scale of UTFVI and level of ecological variation

Urban thermal field varia-
tion index

Urban thermal island 
phenomenon

Ecological 
evaluation 
index

 < 0 None Excellent
0–0.005 Weak Good
0.005–0.010 Middle Normal
0.010–0.015 Strong Bad
0.015–0.020 Stronger Worse
 > 0.020 Strongest Worst

Table 4   Area calculation of 
LULC classification

Sl. no Class name Area (Sq.km) Area (%)

1991 2001 2011 2021 1991 2001 2011 2021

1 Vegetation 106.83 119.23 130.65 156.88 7.38 8.24 9.03 10.84
2 Plantation 444.97 479.31 446.15 414.21 30.76 33.13 30.81 28.63
3 Open space 121.92 103.49 101.37 59.59 8.43 7.15 7.01 4.12
4 Water body 14.04 15.37 17.06 17.87 0.97 1.06 1.18 1.23
5 Built-up land 136.71 164.97 193.41 275.91 9.45 11.4 13.37 19.07
6 Agricultural land 622.24 564.34 554.13 518.17 43.01 39.01 38.3 35.82
7 Mining area 0 0 3.94 4.08 0 0 0.27 0.28
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Landsat data sets were processed with the help of two 
remote sensing-based software like ERDAS Imagine 
v2014 and ArcGIS v10.8. First, atmospheric corrected was 
done using the Fast Line-of-Sight Atmospheric Analysis 
of Hypercubes (FLAASH) atmospheric correction method 
and tool. Separated bands were layer-stacked, mosaic, and 
clipped from the multi-band images of Landsat 5 (TM) and 
Landsat 8 (OLI/TIRS) images.

3.2 � LULC classification and change detection

Image classification is the technique most frequently used in 
GIS in which the pixel of remote sensing data is classified 
into different land use and land cover classes. Land use men-
tions to those parts of the land in which the functional role 
of human intervention is present for varying socioeconomic 
activities, whereas land cover denotes to the natural aspects of 
the surface of the Earth such as water bodies, vegetation, soil, 
and other physical parts of the earth. Since the 1960s, sev-
eral techniques and methods have been developed for LULC 
classification for various types of satellite imagery (Phiri & 
Morgenroth 2017). Supervised maximum likelihood classifier 
(MLC), K-mean clustering, and recently developed random 
forest (RF), artificial neutral network (ANN), deep learning 
techniques, fuzzy logic, etc. are the most common approaches 

to classify remote sensing data (Talukdar et al. 2020). This 
study conducted based on a supervised image classification 
technique for pixel-based LULC classification using the maxi-
mum likelihood method. The study area has been classified 
into six different land use and land cover classes, namely vege-
tation, plantations, open space, water bodies, agricultural land, 
and built-up land. Furthermore, a change detection technique 
was also employed in this study using ERDAS Imagine v2014 
software to understand the spatial variability of LULC classes 
during 1991–2021.

3.3 � Accuracy assessment and kappa coefficient

Investigating the accuracy of classification map is a post-
classification step and is an essential factor after classification 
for evaluating how accurately the LULC maps are classified 
(Cohen 1968). In this step, the classified LULC map from 
remote sensing satellite imagery is compared with the ground-
truth observation. The ground-truth observation points were 
collected from high-resolution Google Earth data with 5 m 
resolution. Around 100 classifications randomly point were 
produced for each LULC class, and each random ground-truth 
sample data was collected for the classified LULC map to 
estimate the overall accuracy. The LULC image classification 
result was constructed exhausting overall accuracy (OA) and 

Table 5   Loss and gain analysis 
of the LULC classification

Sl. no Class name Area (Sq.km)

(1991–2001) (2001–2011) (2011–2021) (1991–2021)

1 Vegetation 12.4 11.42 26.23 50.05
2 Plantation 34.34  − 33.16  − 31.94  − 30.76
3 Open space  − 18.43  − 2.12  − 41.78  − 62.33
4 Water body 1.33 1.69 0.81 3.83
5 Built-up land 28.26 28.44 82.5 139.2
6 Agricultural land  − 57.9  − 10.21  − 35.96  − 104.07
7 Mining area 0 3.94 0.14 4.08
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kappa coefficient ( Ki ), which is a non-parametric Kappa coeffi-
cient test was used for overall classification accuracy (Table 2), 
as shown in Eqs. (1) and (2) below.

where, nij is the diagonal fundamentals of the error matrix, 
total number of LULC classes is represented by k, and n is 
the total number of samples in the error matrix.

(1)OA =

�
∑k

i=1
nij

n

�

(2)Ki =
(Observed accuracy − Change accuracy)

(1 − Change accuracy)

3.4 � Estimation of different land use indices

In this study, four different indices associated with change 
in land use were estimated: normalized difference vegeta-
tion index (NDVI), normalized difference built-up index 
(NDBI), normalized difference moisture index (NDMI), 
and normalized difference water index (NDWI).

Among built-up indices, the NDBI is widely used for 
investigating the information about built-up land in an 
urbanized area. It reflects the density of built-up area of 
a urban regions (Zha et al. 2003). It is derived using the 
surface reflectance of SWIR1 and NIR band ( �SWIR1 and 
�NIR ) of Landsat 5 TM (bands 5 and 4) and Landsat 8 OLI/

Table 6   Accuracy assessment and kappa coefficient of the classification map, 1991

Class name Ground truth/reference Row total Commission 
error

User accuracy

Vegetation Plantation Open space Water body Built-up land Agricultural 
land

Vegetation 78 2 11 4 2 5 102 23.53% 76.47%
Plantation 3 55 5 2 4 1 70 21.43% 78.57%
Open space 5 0 42 3 1 4 55 23.64% 76.36%
Water body 7 1 18 112 2 7 147 23.81% 76.19%
Built-up land 1 2 1 2 19 0 25 24.00% 76.00%
Agricultural 

land
7 0 4 2 0 38 51 25.49% 74.51%

Column total 101 60 81 125 28 55 450
Omission error 22.77% 8.33% 48.15% 10.40% 32.14% 30.91%
Produce accu-

racy
77.23% 91.67% 51.85% 89.60% 67.86% 69.09%

Overall accu-
racy

76.44% Kappa coef-
ficient

0.71

Table 7   Accuracy assessment and kappa coefficient of the classification map, 2001

Class name Ground truth/reference Row total Commission 
error

User accuracy

Vegetation Plantation Open space Water body Built-up land Agricultural 
land

Vegetation 76 2 9 4 1 3 95 20.00% 80.00%
Plantation 3 42 2 1 3 2 53 20.75% 79.25%
Open space 5 0 59 3 1 4 72 18.06% 81.94%
Water body 7 2 16 127 2 7 161 21.12% 78.88%
Built-up land 1 2 1 2 17 0 23 26.09% 73.91%
Agricultural 

land
3 1 4 0 0 38 46 17.39% 82.61%

Column total 95 49 91 137 24 54 450
Omission error 20.00% 14.29% 35.16% 7.30% 29.17% 29.63%
Produce accu-

racy
80.00% 85.71% 64.84% 92.70% 70.83% 70.37%

Overall accu-
racy

79.78% Kappa coef-
ficient

0.74
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TIRS satellite sensor (bands 6 and 5) by following Eq. (3) 
(Zha et al. 2003):

For analyzing the vegetation cover, NDVI is the most 
useful index for calculating the vegetation density. The 
NIR and RED bands surface ref lectance data were 
used for monitoring the NDVI maps ( �NIR and �RED ) of 
Landsat 5 TM (bands 4 and 3) and Landsat 8 OLI/TIRS 
satellite sensor (bands 5 and 4) by following Eq. (4) 
(Estoque et al. 2017):

NDWI is used to extract the water body of an area and 
is superior in delineating water body compared to other 
available water index. The GREEN and NIR bands surface 
reflectance values are used for monitoring NDWI values 
of Seville city ( �GREEN and �NIR ) of Landsat 5 TM (bands 

(3)NDBI =

(

�SWIR1 − �NIR
)

(

�SWIR1 + �NIR
)

(4)NDVI =

(

�NIR − �Red
)

(

�NIR + �Red
)

2 and 4) and Landsat 8 OLI/TIRS satellite sensor (bands 
3 and 5) by following Eq. (5) (Xu 2006):

The moisture contact information of a surface is well 
extracted by NDMI index. The GREEN and NIR bands sur-
face reflectance values are used for monitoring NDWI values 
of Seville city ( �NIR and �SWIR1 ) of Landsat 5 TM (bands 2 
and 4) and Landsat 8 OLI/TIRS satellite sensor (bands 3 and 
5) by following Eq. (6) (Gao 1996):

3.5 � Land surface temperature (LST) estimation

LSTs are an essential character in understanding the thermal 
atmosphere and earth’s surface of any urbanized area. In this 

(5)MNDWI =

(

�GREEN − �NIR
)

(

�GREEN + �NIR
)

(6)NDMI =

(

�NIR − �SWIR1

)

(

�NIR + �SWIR1

)

Fig. 5   Land surface temperature maps of the study area
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study, the Landsat-5 TM band 6 (1991, 2001, and 2011) and 
Landsat-8 TIRS band 10 (2021) satellite datasets were used to 
generate the LST of Seville city. Landsat-8 consists of two differ-
ent thermal bands (10 and 11), but due to uncertainty of the band 
11 for LST estimation arising due to tilt of the orbit (Barsi et al. 
2014; USGS 2017), it is not considered in this study and only 
band 10 is used for generation of LST images over the Sevilla city.

3.5.1 � LST estimation from Landsat 5 TM

Transformation of the digital numbers (DN) of thermal band 
of Landsat 5 TM sensor into radiance luminance ( RTM6

 ) 
using Eq. (7) is the initial step for the LST calculation (José 
A. Sobrino et al. 2004).

where, V  denotes the DN of the thermal band 6 of Landsat 
5 TM, Rmax indicates the 1.896 (m.W.cm−2.sr−1), and Rmin 
denotes 0.1534 (m.W.cm−2.sr−1). Then the next step is to con-
vert the radiance luminance into LST in Kelvin using Eq. (8):

(7)RTM6
=

V

255
(R

max
− Rmin) + Rmin

 and K
2
 are represented the pre-calibration constant obtained 

from the satellite metadata file ( K
1
denotes1260.56K  and 

K
2
indicates607.66 m.W.cm−2.sr−1.µm−1); b is the spectral 

range (b = 1.239 µm). The final LST was obtained in degrees 
Celsius using Eq. (9):

3.5.2 � LST estimation from Landsat 8 TIRS

In preparation of LST maps from Landsat 8 TIRS sensor, the 
step is the conversion of DNs of ground-based substances to 
spectral radiance using Eq. (10) (USGS 2019).

(8)Tk =
K
1

ln
(

K
2

RTM6∕ b

+ 1

)

(9)LST = Tk − 273.15

(10)L� =
Lmax − Lmin

Qcalmax − Qcalmin
∗
(

DN − Qcalmin
)

+ Lmin

Fig. 6   NDBI maps of the study area
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where, L� is representing the top-of-atmosphere (TOA) spec-
tral radiance values which is measured in W / (m2.sr.µm), 
Qcal is represented the quantized calibrated pixel value in 
digital number (DN), Lmin and Lmax are monitored values of 
the minimum and maximum spectral radiance that is scaled 
to Qcalmin and Qcalmax respectively, represent in W/(m2.
sr.µm), where Qcalmin and Qcalmax indicate the minimum 
and maximum quantized calibrated pixel value (correspond-
ing to Lmax ) in DN = 255.

The estimated radiance map from Eq. (10) is used to cal-
culate the brightness temperature map considering the con-
cept of black body radiation as shown in Eq. (11). (USGS 
2019).

where, TB is representing the effective satellite brightness 
temperature, which denotes in degree Celsius, L� indicates 
the spectral radiance, and K

1
 and K

2
 denote the pre-calibra-

tion constant obtained from the satellite metadata file.

(11)TB =
K
2

ln
(

K
1

L�
+ 1

) − 273.15

The following step is required for surface emissivity cor-
rection to the brightness temperature before obtaining the 
final LST map. In this study, the reported method by Sobrino 
et al. (2004) was considered which includes the estimation of 
standard deviation ( m ), combined soil and vegetation emis-
sivity’s ( n ), and proportion of vegetation ( PV ) as calculated 
from Eqs. (12) to (14). These three parameters are used to 
obtain the final surface emissivity from Eq. (15).

where �v and �S are represented the soil and vegetation emis-
sivity respectively, and F indicates the shape factor (= 0.55), 

(12)m = (�v−�S) − (1 − �S)F�v

(13)m = (�v−�S) − (1 − �S)F�v

(14)PV =

(

NDVI − NDVImin

NDVImax − NDVImin

)2

(15)� = mPV + n

Fig. 7   NDVI maps of the study area
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seeing diverse geometric distribution of the satellite data 
(Sobrino et al. 2004). The values of m and n are consid-
ered 0.004 and 0.986 respectively (Sobrino et al. 2004). The 
NDVI map is prepared using Eq. (4) as mentioned in the 
previous Sect. 3.4.

The final LST map is prepared by applying Eq. (16) using 
the satellite brightness temperature ( TB ) and surface emissiv-
ity ( � ). (Li et al. 2011; Weng et al. 2004; Estoque & Muray-
ama 2017).

where, � is denoted the wavelength of emitted radiance 
of satellite images, which is measured ( � = 10.8�m) , 
� = h ∗ c∕� (1.438 × 10−2  m.K), c indicates velocity 
of light which is (2.998 × 108 m/s), � indicates Stefan 
Boltzmann constant, which is 1.38 × 10−23 J/K, and h is 
denoted Planck’s constant, which is 6.625 × 10−34 J.s; 
and � represents the surface emissivity of the satellite 
image.

(16)LST(◦C) =
TB

1 +
(

� ∗ TB∕�
)

ln�

3.6 � Estimation of urban thermal field variance 
index (UTFVI)

It is not possible to analyze the multi-temporal LST images over 
an area to estimate the effect of thermal variance on urbanites’ 
health. Instead, a standardized equation is developed based on 
the LST, known as urban thermal field variance index (UTFVI), 
which represents the UHI scenarios over an urbanized area. 
UTFVI maps are investigated using LST data and the follow-
ing equation is used Eq. (17) (Liu & Zhang 2011; José Antonio 
Sobrino & Irakulis 2020; Halder et al. 2021b).

where, LSTpixel indicates the land surface temperature values 
of the pixels and LSTmean indicates the mean LST of the 
target area. The UTFVI images obtained can be classified 
into six different levels according to the six different ecologi-
cal zones such as none, weak, middle, strong, stronger, and 
strongest, as shown in Table 3.

(17)UTFVI =

(

LSTpixel − LSTmean

LSTmean

)

Fig. 8   NDWI maps of the study area
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3.7 � Urban heat island calculation

The UHI is the key research topic for urban planning and 
management purpose. Anthropogenic activities and unex-
pected population pressure are increased the land dynamics 
and thermal variation (Acero et al. 2013; García & Díaz 
2021; García 2022). Vegetation degradation, soil moisture 
loss, soil erosion, green space dynamics, and air pollution 
are the results due to unexpected urban expansion. Surface 
urban heat island (SUHI) and canopy urban heat island 
(CUHI) are mostly research concern which is identifying 
the thermal variation and ecological disturbances of the 
earth’s surface (Hu et al. 2019). For the valuation of urban 
thermal balance, it is essential to estimate the intensity of 
UHIs (Halder et al. 2021b). LST data from satellite images 
were used for UHI calculation. The UHI over the Seville city 
is estimated using the Eq. (18).

where LSTpixel indicates the values of the pixel, LSTmean indi-
cates the mean LST of the area in study, and SD indicates the 
standard deviation of the calculated LST map.

(18)UHI =

(

LSTpixel − LSTmean

SD

)

4 � Results and discussion

Earth observational remote sensing datasets have been 
widely used for generating the change of the earth surface 
and the alteration of the land for several decades (Yu et al. 
2014; Kim & Brown 2021). Anthropogenic activities 
such as urban development, infrastructure development, 
urban amenities, industrial expansion, and transportation 
development influence urban climate change scenarios 
(Owojori & Xie 2005; Cao et al. 2008; Wang et al. 2017; 
Halder et al. 2021c). Vegetation also influences the heat 
variation of the earth’s surface because overwhelming 
population pressure and urban expansion are destroying 
the green portion of the earth’s surface, and therefore 
river water also fluctuated due to water shortage (Tung 
& Yaseen 2020). This study aimed to identify the effect 
of urban expansion on information related to UHIs in 
Seville, Spain (Fig. 3).

4.1 � Land alteration study

Land transformation is the most important factor on the sur-
face phenomenon where gradually LULC has been changed 

Fig. 9   NDMI maps of the study area
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and modified by extreme weather conditions and anthropo-
genic activities (Corner et al. 2014; Meshesha et al. 2016; 
Nath et al. 2020). Multi-temporal Landsat 5 (TM) and 8 
(OLI/TIRS) data were used to generate the alteration of the 
city of Seville, where data from four decades, such as 1991, 
2001, 2011, and 2021 in the month of July and August, 
were taken for classification. A supervised classification 
technique along with a maximum likelihood algorithm was 
used to define the change in the earth surface in the study 
area (Singh et al. 2017). Six types of main LULC classes are 
identified in this study area, such as vegetation, plantation, 
water bodies, built-up land, open space, and agricultural 
land, where the mining area is noticed in the years 2001 
and 2021.

The total study area is 1447 Km2 and the most dominant 
LULC classes are plantations, open spaces, and agricultural 
land. Figure 3a to d indicate the LU/LC classification of the 
study area. The vegetation part of the Seville city area con-
sisted of 107 Km2 (1991), 119 Km2 (2001), 131 Km2 (2011), 
and 157 Km2 (2021). These results show that the vegetation 
has increased while the plantation area losses due to urban 
built-up development. The plantation areas are identified as 

445 Km2 (1991), 479 Km2 (2001), 446 Km2 (2011), and 414 
Km2 (2021). Open spaces have gradually decrease due to 
anthropogenic activities and urban expansion in the Seville 
city. Table 4 indicates the alteration of the land use classes 
and the entire LULC diversification classes of the Seville 
city. The open spaces constituted around 122 Km2 (1991), 
103 Km2 (2001), 101 Km2 (2011), and 60 Km2 (2021), cor-
respondingly. Most of the open spaces have been converted 
to agricultural land and built-up land. Figure 3 indicates that 
open spaces are converted into built-up land in the south, 
south-eastern, and eastern parts of the Seville city. The open 
spaces are converted into agricultural land in the north and 
northwest parts of the Seville city. The plantation areas con-
sist of around 30% of the study area but urban expansion is 
decreasing the plantation areas along with open spaces and 
agricultural land. These scenarios indicate that urban expan-
sion influences all regions of the city of Seville.

Water bodies constitute a very small part of the city, yet 
have been increased gradually. The estimated area is 0.97% 
(1991), 1.06% (2001), 1.18% (2011), and 1.23% (2021), 
respectively. The built-up land has also gradually increased 
from 137 Km2 (9.45%) to 165 Km2 (11.4%), 193 Km2 

Fig. 10   Correlation analysis of LST and NDVI in different time
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(13.37%), and 276 Km2 (19.07%) in the year 1991, 2001, 
2011, and 2021, respectively. Gradually, agricultural land 
has decreased from 622 Km2 (1991) to 564 Km2 (2001), 
554 Km2 (2011), and 518 Km2 (2021), respectively. Agri-
culture land is decreased in the southeast, south, eastern, 
and northern parts of the Seville city, where built-up land is 
extended toward the south, north-eastern, and east parts of 
the Seville city area.

4.2 � LULC change analysis 

Table 5 indicates the fluctuation of LULC in the city, where 
vegetation has increased from 12.4 Km2 (1991–2001) to 
11.42 Km2 (2001–2011), 26.23 Km2 (2011–2021), and 
50.05 Km2 (1991–2021). The most vegetated areas are 
located in the city area because of thermal comfort and the 
city area is gradually increasing the vegetation area. Planta-
tion and vegetation areas are lessening due to urban built-
up expansion and agricultural development. Figure 4 shows 
the total area of the different classes and land use and land 
cover change in the study area. Open spaces have increased 
from 18.43 Km2 (1991–2001) to 22.12 Km2 (2001–2011), 
41.78 Km2 (2011–2021), and 62.33 Km2 (1991–2021) 

respectively (Fig. 4). Water bodies are increased around 
1.33 Km2 (1991–2001), 1.69 Km2 (2001–2011), 0.81 
Km2 (2011–2021), and 3.83 Km2 (1991–2021), respec-
tively. The built-up areas are increased by 139.2 Km2 from 
1991 to 2021, where 28.26 Km2 (1991–2001), 28.44 Km2 
(2001–2011), and 82.5 Km2 (2011–2021), respectively. 
Agricultural land also decreased 104.07 Km2 in the study 
periods. These results indicate urban expansion and the 
causes of UHIs in the study regions. The accuracy assess-
ments of the different years are 76.44%, 79.78%, 79.48%, 
and 85.10% where kappa coefficients are 0.71, 0.74, 0.75, 
and 0.81 in the years 1991, 2001, 2011, and 2021, respec-
tively (Tables 6, 7, 8 and 9).

4.3 � Distribution of the LST 

The LST maps show that the entire Seville city area has an 
increased thermal variation due to urban expansion, extreme 
climatic conditions, and other phenomena (Amiri et al. 2009; 
Sekertekin et al. 2015). The LST maps show that heat altera-
tion and high temperatures located in the four study years. 
Remote sensing-based Landsat 5 TM (band 6) and Landsat 
8 TIRS (band 10) are used to calculate the LST maps of the 

Fig. 11   Correlation analysis of LST and NDBI in different time
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study area. Mostly agricultural land and built areas are hot-
ter than the other areas. The high temperatures are located 
at 30.13 °C (1991), 33.82 °C (2001), 35.85 °C (2011), and 
37.11 °C (2021), respectively (Fig. 5). The low tempera-
ture also augmented due to global climatic conditions and 
anthropogenic activities in this area. The average tempera-
ture increased around 0.13 °C per year (1991–2021), where 
the yearly temperature increases 0.37  °C (1991–2001), 
0.203 °C (2001–2011), and 0.13 °C (2011–2021), respec-
tively (Fig. 5). This scenario indicates the variation of the 
LST in the Seville city area. The central parts (urban areas) 
are observed to have a higher temperature and an increased 
in the UHI in the Seville city area. The built-up increases 
and influences the UHI effect and the urban thermal field 
variation index indicates the ecological disturbances of the 
study area. Agriculture land increases thermal comfort, but 
overwhelming population pressure increases UHI values in 
this study location.

4.4 � Identification of geo‑spatial indices

In this study, four geospatial indices are used to identify UHI 
and land alteration studies, such as NDBI, NDVI, NDWI, and 
NDMI. The built-up expansion index is used to recognize the 

built-up scenarios of the Seville city area. The NDBI map 
values are located high in the Seville city area, but due to the 
agricultural and plantation area, SWIR bands have a strong 
influence in that area, so the NDBI values are decreased. Fig-
ure 6 indicates the NDBI maps of the study area where the 
highest values are 0.65 (1991), 0.58 (2001), 0.55 (2011), and 
0.32 (2021), respectively (Fig. 6). The NDBI geospatial index 
is used for monitoring the built-up expansion and the variation 
of the urban areas on the earth surface where the short-wave 
infrared (SWIR) and the near-infrared (NIR) bands of satel-
lite data are used. The NDVI maps show that the vegetation 
areas have decreased in the entire study area. The southern 
and northern parts are mostly agricultural land and planta-
tions, where the NDVI values are high. The other areas have 
low NDVI values of different LULC classes. Figure 7 indi-
cates the NDVI maps of the Seville city area in different time 
periods. The NDVI values are 0.79 (1991), 0.73 (2001), 0.69 
(2011), and 0.62 (2021), respectively (Fig. 7). This map shows 
that vegetation health is reduced due to urban expansion and 
land alteration in the city of Seville. The green areas indicate 
healthy vegetation, whereas the bluish locations indicate the 
built-up land and other LULC classes of the study area.

Figure 8 indicates the NDWI maps of different periods 
in the NDWI of Seville city, where the values of NDWI are 

Fig. 12   Correlation analysis of LST and NDMI in different time
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gradually increasing due to the development of new lakes, 
ponds, or water bodies in the Seville city. The NDWI values 
are located at 0.42 (1991), 0.57 (2001), 0.63 (2011), and 
0.71 (2021), respectively (Fig. 8). Those NDWI maps that 
indicate the water bodies of this area are increasing in dif-
ferent time periods. The northeast parts are located as new 
water bodies in the study area, where green and near-infrared 
(NIR) bands are used to estimate the NDWI maps of the 
study area. Figure 9 indicates the moisture index of the study 
area. The NDMI index indicates the moisture of the study 
location where climate change is influencing the location; 
the brown color denotes the low moisture values and the 
blue color indicates the high moisture values. Agricultural 
land, plantations, water bodies, and vegetation areas have 
high moisture values due to water storage, and built-up land 
and mining areas are low moisture. The values of NDMI 
are 0.49 (1991), 0.66 (2001), 0.51 (2011), and 0.45 (2021) 
respectively (Fig. 9). This map shows that the fluctuation of 
moisture in the Seville city area indicates the variation of 
heat, the thermal condition, the urban expansion, and the 
information related to the heat island. These four indicators 
are used for the UHI study because the results show that 
urban expansion and thermal variations impact the study 
area and the reason for UHI.

4.5 � Analysis of the correlation between LST 
and geospatial indices

Correlation analysis is the most important factor in investi-
gating the thermal variation in different geospatial indices 
and different time periods. The correlation of LST and dif-
ferent geospatial indices such as NDBI, NDVI, NDWI, and 
NDMI is denoted as variation and study related to UHI and 
affected areas in the study area. The correlation of LST and 
NDVI is located negative relation and the R2 values are 0.02 
(1991), 0.18 (2001), 0.37 (2011), and 0.13 (2021) respec-
tively. This condition indicates that vegetation is decreasing 
due to urban expansion and anthropogenic activities in the 
Seville city area (Fig. 10). Figure 11 indicates the positive 
correlation of LST and NDBI of Seville city, where the R2 
values indicate that LST increases due to urban expansion, 
climate change, and the alteration of the green land in the 
study area. The R2 values are 0.05 (1991), 0.30 (2001), 0.60 
(2011), and 0.9 (2021), respectively. This correlation is 
influenced by the UHI effect in the study area, where the 
amount of built-up and the LST increased progressively. 
Figure 12 indicates the correlation of the LST and NDMI 
values in the city of Seville. The correlation of LST and 
NDMI is a negative relationship because urban expansion 

Fig. 13   Correlation analysis of LST and NDWI in different time
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and lack of green space influence the moisture of this area. 
The NDMI and LST correlation are negative, where the R2 
values are 0.05 (1991), 0.30 (2001), 0.60 (2011), and 0.69 
(2021), respectively. Figure 13 indicates the correlation 
between LST and NDWI, where the R2 values are located at 
0.0002 (1991), 0.05 (2001), 0.08 (2011), and 0.06 (2021), 
respectively. The water bodies are located high in different 
years, but the LST of the water areas are low, which is why 
the values are low positive in the study area. This correlation 
of different geospatial indices and LST is used to investigate 
the UHI and the ecological study in the study area.

4.6 � Urban heat island study 

The UHI intensification is a new topic for investigating urban 
built-up expansion and climate change phenomenon on the 
earth surface and global climate change (Tolba and Najib 
2009; Bucchignani et al. 2018;). The overwhelming population 
pressure influences the urban green space, thermal variation, 
surface runoff, and low infiltration rate. Groundwater is also 
influenced by urban expansion due to the low infiltration rate. 
Vegetation losses, construction, transportation development, 
and industrial works have increased in recent times, directly 

increasing the UHI effect. Thermal variation and population 
pressure are pushing the heat island effect (He 2019). Two 
types of indicators are used to investigate the heat island effect 
in the city of Seville, such as the urban thermal field varia-
tion index (UTFVI) and UHI index. Figure 14 indicates the 
UTFVI of the study area, where the kelvin LST data and the 
mean LST data are used to calculate the UTFVI in the study 
area. This index is used to identify the variation of UTFVI in 
different time periods in the study area. The highest values 
are indicating 0.215 (1991), 0.322 (2001), 0.334 (2011), and 
0.356 (2021), respectively. This result shows that the UTFVI is 
gradually increased, indicating ecological disturbances in the 
study area. The expansion of urban areas is the main reason for 
the variation of UTFVI in the study area (Fig. 14).

Figure 15 indicates the UHI values of the study area in dif-
ferent time periods. The UHI values are continuously increas-
ing, and the values are 2.21 (1991), 2.89 (2001), 3.29 (2011), 
and 3.42 (2021), respectively. This result indicates the effect 
of UHI in Seville city, where urban expansion and low green 
spaces are the main reason for this variation. The UHI maps 
indicate the actual scenarios of the study area where urban 
areas are most affected, and the location of the plantation is 
high due to the temperature variation in this location. The 

Fig. 14   Urban thermal field variation index (UTFVI) of the study area
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results of this study are more helpful for the future urban plan-
ning, development, and management of the city of Seville.

5 � Limitation and recommendation

Remote sensing-based satellite images are widely used for 
delineating the earth’s surface change and environmental 
degradation related activities. The sensor-based datasets are 
capturing the thermal variation, LULC change, and land-sea 
interaction in the earth’s surface. The remote sensing-based 
satellite image analysis and examination are less time taking, 
cost effective, and accurately observational activities which 
is increased the earth’s surface change visibility. Therefore, 
those techniques also have some problems or limitation. The 
satellite images are capturing the data on pixel basis, where 
urban areas are more heterogeneous due to more feature are 
notified in a particular region. Proper image classification is 
more important for farther investigation of the earth’s sur-
face change or climatic condition analysis. Sometime, index-
based study affected the variation of vegetation or built-up 
expansion, and therefore pre-processing is the vital concern 
before investigation. Field survey data is more important 

for validation or accuracy assessment of the classification 
maps. The Seville city is gradually urbanized, and therefore 
some adaptation policies are necessary to protect the effects 
of extreme climatic condition, like roof top gardening, plan-
tation, planned urban expansion, awareness to protect the 
environment, and policy making towards sustainable develop-
ment of the Seville city. Some future research may be helpful 
for understanding the other climatic effects on the city like 
groundwater potential zone, green space dynamics, predic-
tion of future thermal variation or heat alteration, urbaniza-
tion affected agricultural productivity, water quality analysis 
in mining area, climatic change, and LULC prediction which 
are more useful for future research direction and identifica-
tion of the climatic variation in the Seville city.

6 � Conclusions

Urban heat island intensification is the result of overwhelm-
ing population pressure and urban expansion. Most of the 
earth’s surface is affected by climate change, whereas arid and 
semi-arid regions are mostly affected by heat variation. The 
results of this study investigate land alteration, LST variation, 

Fig. 15   Urban heat island (UHI) maps of the study area
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and information related to UHI in the city of Seville, Spain. 
The city has gradually developed, and the built-up land has 
increased by about 139 Km2 in just 30 years, while the agricul-
tural land and plantation areas have decreased by around 104 
Km2 and 31 Km2, respectively. The entire region is affected by 
thermal variation and the UHI has increased by a yearly aver-
age of 0.13 °C (1991–2021). The loss of green space is one of 
the main reasons for the variation in urban heat in the study 
region. The UHI has affected the area where agricultural land, 
open spaces, and plantation areas are converted into built-up 
land, where 62 Km2 of open spaces is converted into built-up 
land and agricultural land. These conditions indicate climate 
change and anthropogenic activities in the study area, where the 
built-up areas gradually increase and increase the heat variation 
in the study regions. The UTFVI is located around 0.141 devel-
oped (1991–2021) where the UHI maps indicate that the UHI 
values are increased 1.21 (1991–2021). These conditions trig-
ger the UHI effect in the study area. Future research is impor-
tant for this area, such as groundwater potential zone, urban 
green space, water quality, land subsidence, crop production 
scenarios, high-rise buildings, and soil erosion. These study 
results are also helpful to administrators, policy makers, urban 
planners, researchers, and other stakeholders for sustainable 
urban planning and development.
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