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Abstract: Wireless communications systems are traditionally designed by independently optimising
signal processing functions based on a mathematical model. Deep learning-enabled communications
have demonstrated end-to-end design by jointly optimising all components with respect to the com-
munications environment. In the end-to-end approach, an assumed channel model is necessary to
support training of the transmitter and receiver. This limitation has motivated recent work on over-the-
air training to explore disjoint training for the transmitter and receiver without an assumed channel.
These methods approximate the channel through a generative adversarial model or perform gradient
approximation through reinforcement learning or similar methods. However, the generative adversarial
model adds complexity by requiring an additional discriminator during training, while reinforcement
learning methods require multiple forward passes to approximate the gradient and are sensitive to high
variance in the error signal. A third, collaborative agent-based approach relies on an echo protocol to
conduct training without channel assumptions. However, the coordination between agents increases the
complexity and channel usage during training. In this article, we propose a simpler approach for disjoint
training in which a local receiver model approximates the remote receiver model and is used to train the
local transmitter. This simplified approach performs well under several different channel conditions,
has equivalent performance to end-to-end training, and is well suited to adaptation to changing channel
environments.

Keywords: deep learning; channel free training; wireless communications; over-the-air training;
neural networks

1. Introduction

The primary goal of a wireless communications system is to transmit a message over-
the-air (the channel environment) to a receiver such that the message can be recovered
without error. However, the channel environment causes distortions in the transmitted
signal that impede perfect recovery of the message. To improve message recovery, commu-
nications systems are designed with multiple signal processing blocks and with comple-
mentary components between the transmitter and receiver for each stage (coding/decoding,
modulation/demodulation, filtering/detection). Figure 1 illustrates a simple wireless com-
munications system comprising a transmitter, channel, and receiver. Each of these stages is
traditionally designed and optimised independently while assuming a fixed mathematical
model of the channel.

More recently, deep learning (DL) in wireless communications systems has been
applied to jointly optimise functions for the transmitter and receiver over an assumed
channel model [1]. Such approaches offer an alternative to the block design of commu-
nications systems, and may achieve better performance in complex channels without a
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formal model [1]. The supervised learning procedure enables the transmitter to learn
complex domain symbols, thereby maximising the ability of the receiver to de-noise and
map soft channel outputs to the original message. The DL auto-encoder (AE) architecture
is a proven approach for application to automatic feature learning, and is coupled with
noise distortions during learning to enable the decoder component of the architecture to
learn robust features for de-noising and estimation [2].

During training, the perturbations provided by an assumed channel model help the
transmitter (encoder) to learn robust features through the process of backpropagation.
Backpropagation communicates the loss at the receiver (decoder) by applying the chain
rule with respect to the training loss function, which requires a differentiable channel
function to pass the gradients from the receiver to the transmitter. The true channel
environment prevents backpropagation between the transmitter and receiver, representing
a key challenge in the over-the-air training of AE for wireless communications systems.

Figure 1. A simplified wireless communications system comprising a transmitter, a channel environ-
ment, and a receiver. The transmitter takes the input message block, then performs encoding and
modulation prior to sending it over the channel. The channel distorts the waveform; such distortions
can include noise and fading. The receiver must detect and filter the content of the received waveform,
then demodulate and decode the data in order to recover the original message.

Research into over-the-air learning for wireless communications systems has demon-
strated approaches in which the transmitter and receiver can be trained in a disjoint manner.
DL approaches which leverage the AE architecture to model the transmitter, channel, and
receiver have approached the problem by training an end-to-end system offline with an
assumed channel model (Joint Learning) and tuning the receiver model online against
the pretrained transmitter [3] (Receiver Tuning). During the tuning phase, the transmitter
is not updated under the true channel conditions, preventing improvement of the code
learned by the transmitter during the tuning phase. Thus, any improvement under the new
channel depends on the adaptation of the receiver.

The transmitter learns a code that relies on the properties of the channel environment,
which are modelled during training. The Joint Learning process results in a code that
maximises the mutual information between the transmitted (channel input) and received
(channel output) symbols through direct observation of the channel [4]. In contrast, conven-
tional coding methods counteract channel effects such as fading by introducing redundant
symbols (diversity) or using estimates of fading coefficients (channel state information)
for precoding at the transmitter or correction at the receiver [5]. DL techniques have
demonstrated the ability to learn accurate estimates for channel state information, and have
been applied to correction and signal detection at the receiver [6,7]. The application of DL
to channel modelling has led to the adoption of generative adversarial network (GAN),
which can learn to emulate the stochastic channel environment [8], motivating the potential
application of DL to either explicitly model the channel environment or implicitly extract
channel state information during over-the-air learning (OAL).

Two methods of extending DL to OAL involve feedback from the receiver to enable
learning a proxy of the channel, thereby permitting backpropagation between the trans-
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mitter and channel model [9–12] (Channel Approximation). Another approach is Gradient
approximation, in which the gradient at the transmitter is approximated through variants of
finite difference approximation or reinforcement learning (policy-gradient learning) [13–16].
Additional methods involve multi-agent approaches such as Collaborative Agent Learning
coordinated by specific training protocols [17], which is able to include a variety of learning
algorithms other than DL. Both the channel and gradient approximation approaches have
demonstrated equivalent performance to the end-to-end joint learning approach [11,13,14],
while the Collaborative Agent Learning method has demonstrated performance close to
conventional codes [17].

In this paper, we refer to Receiver Tuning, Channel Approximation and Gradient
Approximation as methods of Disjoint Learning and regard these as separate from the
Collaborative Agent Learning approach. We present an additional method of Disjoint
Learning, “Learning through Imitation”, that is situated between Channel Approximation
and Gradient Approximation, where a local channel/receiver model is developed using
estimates from the actual receiver to imitate the behaviour of the channel/receiver at the
transmitter side. This enables the application of supervised learning to train the transmitter
using backpropagation. This approach does not model the channel directly; instead, it
learns to mimic the errors made by the remote receiver and acts as a proxy for the remote
receiver model. We use simulation to produce equivalent results to the end-to-end Joint
Learning approach first demonstrated in [1] and show that this method outperforms
receiver tuning. To show that the local receiver model approximates the remote receiver
model, we compare the process of learning without feedback to that of learning with
feedback, and demonstrate that learning through imitation exceeds the performance of
learning without feedback.

Therefore, with the aim of providing a novel method for channel-agnostic over-the-air
training of both transmitter and receiver for resilient wireless communications, the primary
objectives of this study are as follows:

• To propose a novel over-the-air training method and develop machine learning en-
abled coding and modulation schemes for the transmitter and the receiver without an
assumed channel model.

• To develop a Disjoint Learning method that uses a transmitter-side (local) chan-
nel/receiver to imitate the learning process of the remote receiver and enable super-
vised learning of the transmitter through backpropagation.

• To demonstrate that the performance of the proposed Disjoint Learning method is
equivalent or better than the fully connected architecture.

• To show that the proposed method achieves significant performance improvements
against the Receiver Tuning training method.

The rest of this paper is organised in the following way: Section 2 provides a brief
overview of related work; Section 3 describes our proposed model, training, and simulation
methods; Section 4 presents results for the proposed method and provides a discussion of
the results and modelling approach; and Section 5 draws conclusion and proposes future
directions for investigation.

2. Background and Related Works

The canonical application of DL for the joint learning of a wireless communication
system is presented in [1]. An AE transmitter and receiver model was shown to perform
equivalently to short uncoded and Hamming(7,4) coded messages (K = 4 information
bits and N = 7 code bits) on the Additive White Gaussian Noise (AWGN) channel [1].
The authors observed the relationship between the choice of energy constraint and con-
stellation learned by the transmitter. The influence of the channel on the system was
shown by training two pairs of transmitter and receiver AEs on an interference channel.
The transmitters learned to counteract the interference channel by developing orthogonal
codes [1]. It is acknowledged that both symbol-wise AE (classification mapping code word
to message) and bit-wise AE (modelled as K-bit outputs) are limited in their application to
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smaller codes due to the dimensionality of a possible 2K messages for K information bits.
The joint learning approach demonstrates the inclusion of an assumed channel transfer
function in the design of the network, and must be trained offline. This prevents joint
optimisation on the true channel environment.

Receiver tuning, inspired by transfer learning, was carried out after the joint learning
phase and used to update the trained receiver on the true channel in [3]. The resulting
system was compared with differential quadratic phase shift keying (DPSK) in both simu-
lated AWGN and over-the-air channels. The simulated channel included impairments for
timing, phase, and frequency offsets, while the receiver model was developed to correct for
these distortions before decoding [3]. Receiver tuning was demonstrated to improve the
performance of the AE over the end-to-end model, but did not improve upon the DPSK
modulation. However, the approach demonstrated a practical way forward in tuning AE
models over-the-air. The primary disadvantage of receiver tuning is that the transmitter
remains fixed during the tuning phase and does not adapt to the true channel distortions
compensated by adaptation at the receiver.

Methods for disjoint learning emerged to address the limitations of receiver tuning and
permit over-the-air training of both transmitter and receiver models. Channel approximation
methods using GANs [18,19] have been applied to train a proxy for the channel in response to
feedback and enable the transmitter to be trained with backpropagation through the generator
channel model [9–12]. In [9], a channel model inspired by the GAN approach was trained to
approximate the channel response directly, and the transmitter was updated by alternating
backpropagation phases between channel and receiver loss. A local receiver (acting as the dis-
criminator) is required in order to enable end-to-end learning for the transmitter, and leverages
the channel model for backpropagation. This approach was extended in [10] to leverage a
separate discriminator network, while a variational neural network was incorporated in [20]
to describe the channel distribution in the generator. The variational method has been shown
to better approximate the variance of the channel response for a range of channels in compari-
son to the previous method based on mean squared error (MSE) loss [10]. These approaches
introduce a separate training procedure to train the generator in order to approximate the true
channel environment.

In [21], a conditional GAN was trained to approximate the AWGN and Rayleigh fading
channels conditioned on the pilot symbols in [11], then used to optimise a transmitter and
receiver for symbol classification. The channel model was shown to approximate the AWGN
perturbations for a quadrature amplitude modulation (QAM) of sixteen symbols [11]. The
performance of the system was shown to be equivalent to a Hamming(7,4) code over
AWGN and to perform similarly to coherent detection in a Rayleigh fading channel [11].
The approach was later combined with convolutional neural network (CNN) modules for
bit-wise estimation for longer message lengths in [12]. A simple feed-forward GAN was
compared with 4-QAM Hamming(7,4) code under AWGN. A CNN-GAN was compared
to a convolutional code in the Rayleigh fading and selective-frequency channels in [12].
Performance in each channel was shown to be close to the conventional methods, and the
importance of the pilot symbols was empirically demonstrated in the selective frequency
channel [12]. The GAN approach introduces complexity to the training procedure due to
the need to alternate between training the discriminator and generator as well as between
the transmitter and receiver training phases.

A one-shot training approach for a conditional GAN was adopted in [22] to simplify
the training procedure. It was used to train an AE model that supports longer messages
lengths by combining the AE with bit-interleaved coded modulation (BICM) and an outer
low-density parity-check (LDPC) code [22]. Comparison against a 16-QAM baseline and a
AE-GAN trained on a simulated AWGN channel were made, as well as with a AE-GAN
trained over-the-air and the reinforcement learning (RL)-based approach described in [16].
The AE-GAN trained on the true over-the-air channel environment demonstrated improved
performance over the same approach trained on a simulated channel [22]. The approach
required two stages, with the GAN first trained independently of the AE and later applied
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to train the AE on the receiver side. While it was suggested that the GAN framework could
be used to model the channel without prior knowledge, the authors reported difficulties
in training the GAN considering the presence of carrier frequency offset (CFO), which
prevented the GAN from converging [22].

A separate channel model is not a necessity for optimisation of the transmitter and
receiver models. Other approaches have focused on gradient approximation methods to
support backpropagation at the transmitter. A finite difference gradient approximation
method, Simultaneous Perturbation Stochastic Approximation (SPSA), was applied in [13].
The transmitter symbols were perturbed multiple times with a given noise distribution
and the receiver errors were collected for each point and applied to approximate the
gradient at the transmitter [13]. The model was demonstrated to be equivalent to uncoded
quadrature phase-shift keying (QPSK) in AWGN and very close to theoretical uncoded
QPSK in Rayleigh block fading channels. In addition, it was shown to be comparable in
performance to the end-to-end AE described in [1]. The above process is computationally
expensive. Results are taken from an average of 250 independent models; each time the
gradient is approximated, the transmitter outputs are combined with a small perturbation
vector and the receiver loss is calculated for each [13]. Due to the amount of sampling
required to approximate the gradient, this method would encounter difficulty scaling to
more complex transmitter models or longer message sequences.

An alternate gradient approximation approach proposed in [14] is based on policy gra-
dient (PG) approximation. Such methods are applied in deep RL; an agent learns to exploit
actions in response to the environment, resulting in the highest expected reward [23,24].
In [14], a penalty signal is provided by the receiver loss. The transmitter is trained to min-
imise the loss without an explicit model of the channel environment. Learning is achieved
by alternating between the training of the receiver and the transmitter. This approach
does not require a local proxy for the receiver, as the gradient can be estimated directly
from the loss signal calculated for perturbations of the complex symbols learned at the
transmitter. This process generates a stochastic sampling scheme equivalent to RL “policy”
exploration [14]. The approach was evaluated in both AWGN and Rayleigh fading channels.
In the latter, the receiver network was modified with a prior assumption of the channel
distortion to learn estimates of the fading coefficients and reverse the fading prior to the
discriminative layers of the network [14]. While the authors indicated that the training pro-
cedure requires more iterations than the end-to-end method, their evaluation demonstrated
equivalent performance to end-to-end AE in both channels [14]. The method was tested
over-the-air with software defined radio (SDR) in [15,16] and had a lower error rate in
comparison to conventional codes. Both of these sources indicate that the method requires
an extended training duration and that the variance of the receiver loss negatively impacts
the convergence of the gradient at the transmitter [15,16]. To address the long training time,
it has been proposed to pretrain the network offline and perform online tuning of both the
transmitter and receiver [15].

The deep deterministic policy gradient (DDPG) approach was applied in [25] to
address the issues around convergence described in [14] by applying both a “replay” buffer
(sometimes termed an “experience” buffer) and a soft update rule used to transfer learned
weights between a duplicate transmitter and an accompanying critic network. This method
was reported to outperform the alternating algorithm in both Rayleigh and Rician fading
channels [25]. The addition of the replay buffer requires additional memory to store
previous receiver losses, and the additional critic network increases the complexity of the
training algorithm in a trade-off with the improved learning at the transmitter.

The problem of training both the transmitter and receiver has been framed as a
collaborative agent problem. These types of approaches are interesting because they can
coordinate training between different types of learning algorithms for the transmitter and
receiver. A hybrid approach called Collaborative Multi-Agent Learning was presented
in [26]. This method trains a neural network transmitter using RL to learn the symbol
constellation and a k-means clustering receiver to determine the number of symbols and
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estimate the message. A transmitter (Tx A) outputs a modulation for a given preamble, then
transmits to a receiver (Rx B) over an AWGN channel, which produces an estimate of the
message; this estimate is relayed through the second transmitter (Tx B) to a receiver on the
originating side (Rx A), which is used to estimate a loss signal for the original transmitter
(Tx A) [26]. This echo procedure has been shown to produce varying-order modulations
under different training regimes for noise and energy constraints [26]. However, it did
not achieve comparable results to the baseline QAM modulation [26]. The echo procedure
is complex in that it requires two pairs of transmitter and receivers; each pair iteratively
swaps between sending the original message to update each transmitter.

An echo protocol with a private preamble was applied in [17]. Pairs of collaborating
agents share information about the learning task, and the difficulty of learning increases
as less information is exchanged [17]. The authors asserted that their proposed echo
protocol with private preamble enables learning of different types of agents and minimises
the amount of information sharing between agents [17]. The method was demonstrated
to perform similarly to QPSK under AWGN as well as in over-the-air experiments [17].
Both sources [17,26] leveraged a similar approach in defining transmitter and receiver pairs
as agents during training, and both applied RL to train the transmitter. While neither
approach outperforms conventional codes, the technique of using the receiver estimate as
an echo is of interest for our method. Our proposed method learns to imitate the feedback
from the remote receiver estimate, which includes the errors made during training.

Regularisation in DL seeks to reduce the bias of the network towards training data. It
achieves this through reducing the complexity of the model during training [27]. Mecha-
nisms include penalising weights (weight normalisation and averaging), perturbation of
inputs (such as the transformations applied to images in computer vision), learning nor-
malisation of activations (batch and layer normalisation), perturbation of network structure
(such as drop-out), and training algorithms (such as stochastic gradient descent (SGD)).
The use of incorrect labelling has been shown to provide regularisation for classification
tasks [28]. This method makes use of a small noise rate to modify the ground-truth label of
each class by selecting from weighted alternatives [28]. It had been shown to slow conver-
gence and reduce overfitting of the model during training [28]. The authors used a fixed
noise rate parameter and showed improvements when training reference models on several
computer vision benchmarks [28]. While the noise rate is not decreased during training,
this approach is relevant to our proposed method. Early in the learning process, the remote
receiver yields a less accurate estimate which corresponds to a higher loss. The estimates
become more accurate during the learning process, and the loss gradually decreases as
learning progresses. The local channel/receiver is trained to imitate the estimates output
by the remote receiver. In this manner, the learning process is comparable to training
against noisy classification targets where the noise rate decreases over time. The purpose
is to enable the local channel/receiver to learn from the noisy estimation process at the
remote receiver.

The surveyed approaches for learning wireless communications systems have included
joint learning, disjoint learning, and collaborative agent learning. Our focus is on joint and
disjoint learning, with the the focus of this literature review on methods for training AE
neural network models. Our proposed method differs from the GAN and RL methods
surveyed above. In comparison to GAN methods, our method does not learn an explicit
channel generator model and does not require a discriminator model during training.
Instead, a local channel/receiver model is trained to imitate the remote receiver model.
In comparison to RL-based methods, we do not perform gradient approximation; hence,
we do not require multiple perturbations during the forward pass to estimate the gradient
at the transmitter, and do not require additional support from methods such as a “replay”
buffer to address variation in the loss estimate. Instead, the local channel/receiver model
acts as a proxy for the remote receiver model to support end-to-end backpropagation at
the transmitter. While we do leverage the remote receiver estimate as feedback, which is
somewhat similar to the echo protocol in collaborative agent learning, we do not require
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additional coordination protocols for multiple agents and do not train transmitter/receiver
pairs. Instead, our method trains a local proxy on the transmitter side against the feedback
of estimates from the remote receiver. Our simplified approach removes the need for
channel generative modelling, gradient approximation, or coordination protocols.

3. Methodology

In this section, we describe our proposed approach and the channel environment
simulation used for training and evaluation of the resulting transmitter and receiver models.
Section 3.1 briefly describes the communications system, Section 3.2 outlines our proposed
method and training approach, and Section 3.3 describes the channel environments used
for simulation during training and evaluation.

3.1. System Description

A wireless communications system aims to communicate a K bit message x. The trans-
mitter converts the message into an optional code word of length N, and converts the
message (or code) into a set of modulated symbols. It then combines the modulation with
a carrier wave to transmit a set of complex values z(t) ∈ C with t = 1 . . . T timesteps
and applies a filter to prevent inter-symbol interference. These values are transmitted
through a channel environment that causes distortions including noise and fading effects.
The channel environment is represented in our simulations as a channel transfer function
r(t) = h(z(t)). The received signal r(t) is filtered and imperfections are corrected, then it is
demodulated and decoded to produce an estimate for the original K bit message y. In a
wireless communications environment, there are mismatches at the transmitter and receiver
in the timing, phase, and frequency between the transmitted signal z(t) and received signal
r(t). Such imperfections can be simulated with the channel transfer function. However,
for this work we assume perfect synchronisation and do not perform corrections for these
offsets at the receiver, nor do we perform filtering at the transmitter and receiver. Our focus
is on training a local transmitter DL model to perform modulation and coding, simulating
the physical channel external to the DL models, and training the remote receiver DL model
to estimate the original message.

3.2. Proposed Approach

We start with the joint learning of an end-to-end AE model, similar to the architecture
described in [1]. This model, shown in Figure 2, consists of a transmitter neural network
Tx(x, θt) with weights θt and a receiver neural network Rx(r, θr) with weights θr linked by
an assumed channel function h(z). The main paths of both networks consist of feed-forward
dense modules followed by a rectified linear unit (ReLU) activation [29]. In the transmitter,
a tanh activation is applied prior to an energy normalisation layer. The modelling approach
focuses on small block codes using a symbol-wise representation; hence, input messages
of K bits are one-hot encoded as 2K words prior to presentation to the transmitter. A one-
hot encoded vector x has length 2K and contains a one at the index corresponding to the
selected message and zeroes in all other index positions.
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Figure 2. The end-to-end network architecture, where an assumed channel transfer function is
defined as a layer within the network architecture.

A set of complex soft values z ∈ C are output by the transmitter neural network
prior to the channel, and represent the code of length N; these are defined as two real
numbered vectors for the in-phase and quadrature IQ coordinates within the network
z = Tx(x, θt). Inputs to the receiver result from application of a channel transfer function
r = h(z), and the receiver converts these channel symbols back to a probability distribution
over each message p(y|r) = Rx(r, θr). The probability vector contains an estimate for each
of the possible 2K messages using the softmax activation. This activation function takes as
input the vector produced by the final dense layer f of the receiver neural network, which
has 2K linear units. The softmax activation is defined as p(yi|r) = exp ( fi)/ ∑2K

j exp ( f j);
the summation in the denominator ensures that the outputs sum to 1, and corresponds to a
probability density. The model performs classification by taking the index with the highest
probability as the index for the corresponding K bit word in the lookup table containing all
possible words M̂ = arg max p(yi|r).

In the canonical AE, the transmitter model, assumed channel function, and receiver
model are connected such that training can be carried out end-to-end with backpropagation.
Backpropagation consists of a forward pass p(yi|r) = Rx(h(Tx(x, θt)), θr) and a backward
pass that updates the weights at each layer by calculating the derivative with respect to the
loss by application of the chain rule. The model is trained to minimise the cross-entropy
loss between the true and estimated message labels in Equation (1). The expression p(ytrue)
indicates the target one-hot encoded vector for the true message presented during training.
Typically, the network is presented with batches of data and the loss is averaged over the
entire batch.

L(p(ytrue), p(y|r)) = −
2K

∑
i=1

p(yi) log p(yi|r) (1)

The backward pass calculates the gradients for the weights in the network. For the
receiver, the backward pass applies the chain rule between the receiver network model
and the loss function in Equation (2), and updates the weights by taking a small step in the
direction of the gradient θr = θr − η∇θr , where η represents a small learning rate constant.
For the transmitter, the backward pass includes the gradients from the receiver as well as
the gradient for the channel function with respect to the transmitter model, and updates
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the transmitter weights accordingly: θt = θt − η∇θt . In stochastic gradient descent, the
gradient is calculated over the batch and several enhancements to the method add features,
for instance, momentum to dynamically control the step size during learning, or adaptive
learning rates for different parameters of the model, such as in the Adam optimizer [30].

∇θr =
∂Rx(r, θr)

∂θr

∂L[p(ytrue), Rx(r, θr)]

∂Rx(r, θr)
(2)

∇θt =
∂Tx(x, θt)

∂θt

∂h(Tx(x, θt))

∂Tx(x, θt)
∇θr (3)

During receiver tuning, the transmitter and receiver models are detached from the
channel layer and the receiver model is updated via backpropagation while the transmitter
remains frozen. Therefore, receiver tuning does not require differentiation through the
channel function.

The architecture we apply in disjoint learning consists of a disconnected transmitter
model Tx(x, θt) and a receiver model Rx(r, θr), and we simulate a channel transfer function
h(z) separately from both models so that the channel does not participate in backpropaga-
tion. This is to simulate the process of over-the-air learning. In over-the-air learning, the
channel may take on more complex behaviour than is captured by the assumed mathemati-
cal channel function. Therefore, training from the true channel is desirable, as it can permit
the network to learn a coded modulation that is optimised for the true channel environment.
As described in Section 2, the current approaches to disjoint learning achieve backpropaga-
tion at the transmitter by either explicitly learning the channel or by approximating the
channel gradient. Instead of learning the channel directly, we rely on a local proxy for the
remote receiver at the transmitter side, which we use to perform backpropagation without
training an explicit channel model.

Before describing the training method, we first describe the structure of the network
architectures for the transmitter and receiver models. The transmitter and receiver neural
network architectures contain a series of fully connected dense blocks, similar to the end-
to-end AE; however we add skip connections in the main path of each network. This
architecture is illustrated in Figure 3. The skip connections, described as a “Skip Block”
in the figure, assist backpropagation and combine features learned in the earlier hidden
layers with the upper hidden layers [31]. In addition to the effect on backpropagation,
skip connections are indicated to learn an ensemble of networks [32]. Each skip block is
comprised of several dense blocks containing batch normalisation [33] and a nonlinear
swish activation [34]. Input to and output from the transmitter follows the same principle
as the end-to-end architecture, as does the input and output from the receiver. The layers,
unit sizes, and groups within the transmitter are described in Table 1, while the receiver
is described in Table 2. The dimension of the networks was arrived at through a manual
process; while it is possible to use automated procedures for finding the best dimensions,
such processes often tend to be computationally demanding and require a long duration.
We chose a manual stepwise approach for simplicity, gradually increasing the dimensions
of each layer by powers of 2. It is interesting to note that learning shorter codes appears to
be more challenging than learning codes with longer lengths, requiring a larger dimension
of the intermediate dense layer within the skip block for the 4/7 code rate as opposed to
the uncoded 8 bit message.
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Figure 3. The architectural blocks for disjoint learning of transmitter and receiver. The same architec-
ture is applied in both local and remote receivers. A channel transfer function is not assumed as part
of the model.

Table 1. The transmitter consists of four groups: input, skip block, a linear transformation, and an
output block. The number of units are specified for the dense layers, while batch normalisation and
swish activation preserve the same dimension of output as produced by the dense layer. A larger
dimension of units was required for the 4/7 code rate as opposed to uncoded 8 bit message due to
the coding gain required to match the Hamming(7,4) code.

Layer Units Code Rate 7/4 Units Uncoded 8 Bit Group

Input layer 2K 2K Input

Dense layer 256 256 Skip block
Batch normalisation - -

Swish activation - -
Dense layer 128 16

Batch normalisation - -
Swish activation - -

Dense layer 256 256
Batch normalisation - -

Swish activation - -

Dense layer 2N 2N 2N linear block
Linear activation - -

Reshape [N, 2] layer - -

Dense layer 2 2 Output [N, 2]
Tanh activation - -

Energy normalisation - -

The training procedure is illustrated in Figure 4, which shows the three stages of
the proposed disjoint training regime. This approach consists of training three models:
a local transmitter model Tx(x, θt), a local channel/receiver model RxL(z, θl), and a remote
receiver model RxR(r, θr), separated by a channel h(z) which is not connected to the
network models. The local channel/receiver model does not receive inputs r from the
simulated channel; instead, it takes its inputs directly from the output of the transmitter
model z = Tx(x, θt). During training a feedback channel is required, allowing the average
value to be captured for the remote loss per batch along with remote estimates p(y|r)
for each item in the batch. Only one network is trained at each stage.
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Table 2. The receiver network, consisting of three groups for input, feature learning (skip block), and
output. The dimension of units are shown for each dense layer, with subsequent layers producing
the same shape output as the preceding dense layer. A larger network was required to achieve the
4/7 code rate as opposed to the uncoded 8 bit message.

Layer Units Code Rate 7/4 Units Uncoded 8 Bit Group

Input layer [N, 2] [N, 2] Input
Flatten layer - -

Dense layer 256 256 Skip block
Batch normalisation - -

Swish activation - -
Dense layer 128 16

Batch normalisation - -
Swish activation - -

Dense layer 256 256
Batch normalisation - -

Swish activation - -

Dense layer 2K 2K Output
Softmax activation - -

Figure 4. The three stages of the training procedure consist of a forward pass through the transmitter
z = Tx(x, θt), channel r = h(z), and remote receiver p(y|r) = Rx(r, θr). The remote receiver estimates
p(y|r) are obtained through the feedback channel. The second stage trains the local channel/receiver
model using the KL divergence loss between the local channel/receiver estimates p(y|z) and remote
receiver estimates p(y|r). The third stage trains the transmitter using the local receiver as a proxy to
enable end-to-end backpropagation.

To generate the same sequences of random messages in each training iteration, both
sides are initialised with the same random seed at the start of each batch. In the first
stage, the local transmitter remains frozen and provides the forward pass for the batch
of symbols z = Tx(x, θt) that are sent to the remote receiver over the simulated channel
r = h(z). The remote receiver is trained with SGD against the cross-entropy loss between
the true and estimated message labels in Equation (1). The remote receiver probability
estimates p(y|r), along with the mean loss, are sent over the feedback channel to the
local transmitter. In the second stage, the local receiver is trained to imitate the remote
receiver using the Kullbach-Leibler (KL) divergence loss in Equation (4). The aim is
to minimise the difference between the estimated probabilities at the remote receiver
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p(y|r) = RxR(r, θr) given the channel symbols, and the estimated probabilities at the local
channel/receiver p(y|z) = RxL(z, θl) given the local transmitter symbols z. This allows the
local channel/receiver to learn how to act as a proxy for the remote receiver without an
explicit model of the channel by imitating the estimation produced at the remote receiver.
As indicated by Equation (5), the gradient for the connected local transmitter Tx and the
local channel/receiver RxL can be described as a weight update for the combined weights
θt,l of the end-to-end connected model θt,l . Because the feedback channel provides p(y|r)
from the remote receiver, the backpropagation at the transmitter side is no longer dependent
on an assumed channel function.

Lstage2[p(y|r), p(y|z)] =
2K

∑
i=1

p(yi|r) log
p(yi|r)
p(yi|z)

(4)

∇θt,l =
∂Tx(x, θt,l)

∂θt,l

∂RxL(Tx(x, θt,l), θt,l)

∂Tx(x, θt,l)

∂Lstage2[p(y|r), RxL(Tx(x, θt,l), θt,l)]

∂RxL(Tx(x, θt,l), θt,l)
(5)

Both Stage 1 and Stage 2 make use of a larger batch size than the third stage, which we
set at 320 samples in stages 1 and 2 and 32 samples in Stage 3. In the third stage, a forward
pass through the transmitter is made for a new batch. The local channel/receiver is used
to calculate the cross-entropy loss against the true messages L[p(y), p(y|z)]. The local
channel/receiver estimates are conditioned on the output of the local transmitter z, rather
the output of the simulated channel r as is the case on the remote receiver. Updates
resulting from the backpropagation process occur only on the local transmitter, as the
local channel/receiver weights are frozen during this step. The label noise introduced
in the second stage enables the transmitter to learn appropriate IQ symbols to assist the
remote receiver in the labelling task. To demonstrate that this approach has an effect, we
performed training with no feedback, in which the second stage of the algorithm updates
a local receiver model against the true message using the cross-entropy loss instead of
optimising toward the remote distribution. In Section 4, we demonstrate that training the
local channel/receiver to imitate the remote receiver produces an observable difference in
performance in comparison to the same algorithm without feedback.

Energy normalisation is applied to constrain the output of the transmitter such that
||x||22 ≤ 1, as defined in Equation (6), where the learned code x(t) with length L is divided
by its scaled Euclidean norm to produce the transmit symbols z(t).

z(t) =
x(t)√

∑L
i=1 x(i)2/L

(6)

Each of the networks are trained using the Adam algorithm [30], and we combine
stochastic weight averaging (SWA) [35] with a cyclical learning rate schedule [36] which
oscillates between learning rates of 0.0001 and 0.001. In this work, we simulate the channel
transfer function as described in Section 3.3. This allows the signal to noise ratio (SNR)
dB to be randomised during training of the remote receiver; however, in an over-the-air
setting, the SNR dB parameter cannot be set explicitly.

3.3. Simulated Channel Functions

Comparisons between models were made in simulated channel environments for
AWGN, Rayleigh, and Rician fading as well as for an AWGN channel with nonlinear
amplifier effects, namely, power amplifier Additive White Gaussian Noise (PA-AWGN).
In the AWGN channel, the transfer function adds a noise term n(t) to the symbols output
by the transmitter in Equation (7).

r(t) = z(t) + n(t) (7)
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In the Rayleigh fading channel, a series of complex fading coefficients a(t) = 1√
2
|a| are

sampled from the complex standard normal distribution a ∼ CN (0, 1). These coefficients
are applied to scale the transmitter symbols before adding the noise term in Equation (8).

r(t) = a(t)z(t) + n(t) (8)

The Rician fading channel has the same structure as Equation (8), except that the
fading coefficients are drawn from a parameterised complex normal distribution. The mean
µ =

√
K/(2(K + 1)) and standard deviation σ =

√
1/(2(K + 1)) are both determined by

the Rician factor K, which in our simulations we define as K = 10. The coefficients are
then drawn from the complex normal distribution a ∼ CN (µ, σ2) and applied to scale the
transmitter symbols.

The PA-AWGN assumes a Rapp model of a solid state high power amplifier (SSPA) [37]
that is applied to the output of the transmitter in Equation (9). The parameters for the
model include the limiting output amplitude A0, a gain parameter ν, and a smoothness
parameter p; in our simulations, we configure A0 = 1, ν = 1, and p = 5. The nonlinearity
operates on the magnitude of the transmitter output, and is multiplied by the complex
exponent of the argument of the transmitter output A = |z(t)|. In the PA-AWGN channel,
AWGN is applied after amplification.

g(A) = ν
A(

1 +
[(

νA
A0

)2
]p)1/2p

z′(t) = g(|z(t)|)ej∠z(t)

(9)

The noise term n(t) in each of the channel models above is drawn from the complex
normal distribution. When simulating the channel function, we define the desired level
of SNR or ratio of energy per bit to the noise Eb/N0 provided in dB. As the models
learn a coded modulation with a code rate K/N, we convert this quantity to the ratio of
energy per symbol to noise Es/N0 dB = Eb/N0 dB+ 10log10(K/N) and use the linear ratio
Es/N0 = 10Es/N0 dB/10 to separate terms for Es and N0. The term Es is estimated directly
from the L transmitter IQ symbols Es = ∑L

t=1 z(t)2/L and N0 = Es/(Es/N0). The noise is
then sampled from the complex normal distribution n(t) ∼ CN(0, σ2) using the variance
σ2 = N0/2.

4. Results and Discussion

In this section, we evaluate the proposed method in the AWGN, Rician and Rayleigh
fading, and PA-AWGN channels. In the AWGN channel, we train and compare the joint
model and the proposed disjoint model for the 8 bit uncoded and Hamming(7,4) code
rates. We additionally draw comparisons between receiver tuning for the joint model
and the disjoint model. Receiver tuning is performed by training the joint model in the
Rician fading channel and tuning the receiver in the Rayleigh fading channel. We make
comparisons with receiver tuning by training the joint model on the AWGN channel and
tuning the receiver in the PA-AWGN channel. This is performed for both code rates. We
present a comparison between the proposed disjoint training method requiring feedback
against the training without feedback. These results are reported in the Rayleigh fading
channel. In addition, we present results for quantisation of the feedback, which can reduce
the overall channel usage required during training.

The joint and disjoint learning methods for the 8 bit message are compared with un-
coded binary phase shift keying (BPSK) under several channels in Figure 5. The proposed
disjoint learning process provides slightly better performance than the joint learning pro-
cedure under AWGN (Figure 5a). In the Rician fading channel, disjoint learning achieves
lower block error rate (BLER) than the joint learning method (Figure 5b), whereas disjoint
and joint learning produce similar BLER in the Rayleigh fading channel (Figure 5c). Re-
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ceiver tuning leverages the joint dense network from the Rician fading channel and updates
the receiver under the Rayleigh fading channel (Figure 5c). Receiver tuning does not reach
the same level of BLER as the other methods.
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Figure 5. Comparison of BLER in the four channel environments for the uncoded 8 bit message.
The joint learning, disjoint learning and BPSK modulation are compared in the (a) AWGN channel,
(b) Rician fading channel, and (c) Rayleigh fading-channel. (d) Comparison between joint learning,
disjoint learning, and receiver tuning in AWGN with PA-AWGN non-linearity.

Joint and disjoint learning methods are compared to the Hamming(7,4) code in Figure 6
in the AWGN (Figure 6a), Rician (Figure 6b), and Rayleigh (Figure 6c) fading channels. Both
the joint and disjoint methods exhibit very similar or slightly better performance as maximum
likelihood decoding (MLD) for the Hamming(7,4) code in each of these channels. Receiver
tuning is repeated for the (7,4) code in Figure 6c, adapting the joint model receiver trained
under Rician fading to the Rayleigh fading channel. While the performance is close to the
other codes, it does not achieve the same BLER as the disjoint method with the transmitter
optimised for the channel environment.
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Figure 6. Comparison of BLER in the four channel environments for the K = 4, N = 7 code rate.
The joint learning, disjoint learning and the BPSK modulated Hamming(7,4) code are compared in
the (a) AWGN channel, (b) Rician fading channel, and (c) Rayleigh fading-channel. (d) Comparison
between joint learning, disjoint learning, and receiver tuning in AWGN with PA-AWGN non-linearity.

There is a difference in architecture between the joint and proposed disjoint models
for the transmitter and receiver described in Section 3.2. The combination of the residual
connections and additional dense layers increases the size of the disjoint models slightly,
and contribute to the gain over the joint model. In comparison to uncoded BPSK modula-
tion, the joint and proposed models learn a continuous code that is non-zero in both IQ
coordinates; the resulting code is more complex than BPSK modulation, which is non-zero
on the in-phase (I) axis. The performance of a code is related to the minimum squared
distance between all codes [38]. Ideally, the transmitter should learn a code that has a large
minimum Euclidean distance. Taking for example the K = 4, N = 7 learned code, we
can compute the minimum (dEmin ), mean (E[dE]), and variance (Var[dE]) of the Euclidean
distances for each of the proposed K = 4, N = 7 disjoint models, as shown in Table 3.
The reference Hamming(7,4) code with a minimum binary distance (dmin) of 3 is included
for comparison. The disjoint model has learned a slightly different code under each of the
channels, each with a slightly different value for dEmin . While dEmin is not always larger than
the computed value for the Hamming(7,4) code, E[dE] is slightly larger, and the Var[dE] is
quite low in comparison. We would expect that the learned code would perform slightly
better in those channels where dEmin is larger than the reference code, which is indeed
the case for AWGN. While the learned code in the Rayleigh channel has a slightly lower
minimum Euclidean distance, it appears that the E[dE] and low Var[dE] may contribute to
the overall performance of the learned code.
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Table 3. Computed minimum (dEmin ), mean (E[dE]), and variance (Var[dE]) of the Euclidean distances
between 2K messages. Distance measures are shown for the reference Hamming(4,7) and the disjoint
K = 4, N = 7 code trained in each channel environment. The minimum binary distance (dmin) is
provided for the Hamming code, but is not applicable for the learned continuous codes.

Code dmin dEmin E[dE] Var[dE]

Hamming(7,4) 3 3.46 3.83 0.21

Disjoint AWGN (7,4) - 3.51 3.85 0.08
Disjoint Rician (7,4) - 3.44 3.85 0.07

Disjoint Rayleigh (7,4) - 3.37 3.86 0.05
Disjoint PA-AWGN (7,4) - 3.06 3.85 0.08

To further investigate the effect of the channel on tuning and disjoint learning, we
compared the joint model trained on AWGN with a receiver tuned model and the disjoint
model under the PA-AWGN channel. Figures 5d and 6d show the BLER for the uncoded
8 bit message and the 4/7 code rate, respectively. In both cases, the AWGN joint model is
unable to provide decoding for learned symbols under the PA-AWGN channel. However,
the receiver tuned model derived from the same joint AWGN model learns to optimise
the receiver, allowing it to classify messages in this environment. The advantage of the
proposed disjoint learning algorithm is indicated by the improvement in performance over
the receiver tuned model due to training both the transmitter and receiver.

Because the proposed disjoint model outperforms the receiver tuned model, it is clear
that the transmitter model is learning a code that is specifically optimised to the target
channel environment where it is trained. This is evident in the distance measurements of
the K = 4, N = 7 code presented in Table 3. To evaluate the difference between the learned
codes, we computed the BLER performance for models which were not trained on two of the
selected channel environments. Figure 7a presents the BLER for the disjoint models which
were not trained on the Rayleigh fading channel in comparison with the optimal disjoint
model for that channel. The performance of the disjoint models optimised for the AWGN
and Rician fading channel are similar to, but do not exactly match, the same performance of
the optimised Rayleigh fading model. These two models have been optimised for slightly
simpler channels than the Rayleigh fading channel. The Rician fading channel has slightly
different fading characteristics from the Rayleigh fading channel, and the Rician model is
closer in performance. The AWGN channel has no fading effects, and the resulting model
has higher BLER than both of the other fading models. However, there is a large difference
between the performance of the disjoint model optimised for the PA-AWGN channel and
the other models. The performance is reversed in Figure 7b, where the PA-AWGN model is
the optimal model. By imitating the remote receiver, the local channel/receiver enables
the transmitter to learn codes which are optimised for the channel environment and which
can be applied in channels with similar characteristics. However, it is possible for channel
environments to differ significantly, as illustrated in Figure 7. The nonlinear effects of the
amplifier are unique to the PA-AWGN channel, and are not shared with the other channels.
In a practical wireless communications system, it is necessary to detect when the channel
changes significantly (i.e., when performance degrades) and to either adapt using OAL
and/or develop DL methods for adaptive modulation and coding schemes [38] that can
select from multiple learned codes.
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Figure 7. Comparison of BLER performance for the proposed disjoint models without retraining
on targeted channel environments. Indicating the transmitter learns a code that is optimised for
the targeted channel. (a) Comparison of BLER performance without retraining in the Rayleigh
fading channel. (b) Comparison of BLER performance without retraining in the PA-AWGN channel.

The proposed method enables the transmitter to learn codes that are optimised during
training for the observed channel environment. However, the question arises as to what
extent imitating the remote receiver is helpful in achieving optimisation at the transmitter.
Is it possible to achieve the same optimisation by simply training the local receiver against
the true target message? We compared this no-feedback approach against the disjoint
Learning method in Figure 8, where disjoint learning with feedback strongly outperforms
learning without feedback. It is not sufficient to train the local receiver against a noiseless
channel; instead, by imitating the remote receiver, enough information about the channel
distortion is provided to the transmitter model during backpropagation to enable it to
learn optimal symbols for the current channel condition. This is clearly indicated in both
Figures 5 and 6, where the disjoint method either outperforms or matches the joint learning
method, achieving optimal BLER (in the case of the Hamming(7,4) code).
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Figure 8. Comparison between learning without feedback, learning with soft values, and learning
with quantised values in the Rayleigh fading channel.
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Feedback of soft values during disjoint training does require a large amount of data,
depending on the message size; for example, in an uncoded 8 bit message, the feedback
stage requires a batch size of 320 × 256 soft values. It is desirable to reduce the amount of
information that needs to be sent over the feedback channel during learning. One possible
method is to simply take the arg max p(y|z) output at the remote receiver and feed back
the integer indices for learning at the local channel/receiver; this reduces the amount of
data to the batch size (320 × 1). As these integer values can be translated to a one-hot
encoding on the transmitter side, the local channel/receiver then learns to imitate the remote
receiver through the cross-entropy loss. Figure 8 compares the performance resulting from
training with reduced information (Disjoint Quantised) as opposed to soft values (Proposed
Disjoint), and indicates no loss of performance under the Rayleigh fading channel.

Our results show that the learning process in the transmitter is dependent on the local
channel/receiver model. This is indicated by the ability to learn an equivalent or better
performing code than the joint AE as well as by the difference in performance in different
channels. The feedback of the estimates p(y|r) from the remote receiver contains implicit
information about the channel environment. This implicit information is conveyed by
the errors made at the remote receiver, which can be regarded as a kind of classification
label noise, such as the type of regularisation introduced in [28]. Hence, by learning to
imitate the remote receiver, the local channel/receiver learns to make the same errors
over the course of learning. Unlike traditional supervised learning for classification, in
which a model is optimised against a static set of target labels, the proposed learning
process gradually changes all three models (the local transmitter, local channel/receiver,
and remote receiver). The implication is that all three models are jointly optimised. In order
to improve performance at the remote receiver, the transmitter alters the learned code based
on the distance between the local channel/receiver estimate p(y|z) and the remote receiver
estimate p(y|r). The need for backpropagation over an unknown channel is mitigated,
as the information required to learn an optimal code is contained in the feedback of the
estimates for p(y|r) from the remote receiver.

While we have demonstrated equivalent or better performance compared to the joint
model, our work has a number of limitations. First, we assumed perfect synchronisation
and did not apply matched filtering or any timing, phase, or frequency distortions. Second,
for the purposes of discussion, we have limited our study to the domain of short codes.
Third, the method requires high use of a feedback channel, similar to the RL-based methods.
However, we have shown that it is possible to reduce the feedback channel usage; instead
of learning to approximate the soft values for p(y|r) estimated at the remote receiver, it
is possible to train against the arg max p(y|r) without loss of performance. Finally, our
method does not explicitly model the channel in the way that a GAN provides a separate
channel model which can be reused outside of the training process. Instead, the local
channel/receiver provides an implicit distortion to the transmitter in order to enable opti-
misation. Our approach represents a simplification over other training methods, requiring
fewer models than the GAN approach by omitting the generator and discriminator models.
The proposed method is able to take advantage of backpropagation directly, as opposed
to the gradient approximation applied in RL methods, and does not require a complex
coordinating protocol such as the one used in cooperative multi-agent learning.

5. Conclusions and Further Research Work

To date, disjoint learning methods have focused on simulation of the channel via GAN
or gradient approximation through finite difference methods or RL approaches. In this
paper, we have presented an additional approach to disjoint learning by learning to imitate
the remote receiver. We have demonstrated equivalent performance to joint learning in
AWGN, Rician, and Rayleigh fading channels, and shown that learning to imitate has
the advantage of optimising both the transmitter and receiver, as opposed to receiver
tuning, which can only adapt the remote receiver after joint learning. By comparing the
distance metrics for learned codes, the performance of models in different channels, and the
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difference in performance between training with and without feedback, we have provided
evidence that our proposed method is able to optimise the local transmitter and remote
receiver models without an assumed channel model. The local channel/receiver model
has no explicit knowledge of the channel, and by imitating the remote receiver, provides
enough implicit channel information to enable the transmitter to learn optimal codes for
the channel environment.

The limitations described in Section 4 provide an opportunity for future investigation.
The assumption of perfect synchronisation can be addressed by incorporating additional
channel perturbations and matched filtering. Further investigation into longer codes
can be facilitated by incorporating bitwise estimation and concatenated codes. Bitwise
estimation differs from symbolwise classification, and may alter the optimisation of the
local channel/receiver during training. This method can find potential applications in
joint-source coding and semantic coding, which have both benefited from the use of AE.
In order to address changing channel conditions, it is possible to investigate alterations
to the architecture to support adaptive modulation and coding schemes, or alternately to
determine how to appropriately retrain the transmitter and receiver models under changing
channel environments. In addition, future scope remains for investigating real-time training
requirements over physical hardware. Even though this method makes no assumptions
about the channel model, it is possible to train the models offline and adapt both transmitter
and receiver models in a deployed scenario as opposed to receiver only tuning.

As an alternative to channel approximation and gradient approximation methods in
disjoint learning, learning to imitate the remote receiver provides an additional method of
disjoint learning without an assumed channel, and offers a simplified training procedure
that can be applied to over-the-air learning in wireless communication systems.
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