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A B S T R A C T   

Foamed concrete is special not only in terms of its unique properties, but also in terms of its challenging 
compositional mixture design, which necessitates multiple experimental trials before obtaining the desired 
property like compressive strength. Regardless of design challenges, artificial intelligence (AI) techniques have 
shown to be useful in reliably estimating desired concrete properties based on optimized mixture proportions. 
This study proposes AI-based models to predict the compressive strength of foamed concrete. Three novel AI 
approaches, namely artificial neural network (ANN), gene expression programming (GEP), and gradient boosting 
tree (GBT) models, were employed. The models were developed using 232 experimental results, considering 
easily acquired variables, such as the density of concrete, water-cement ratio and sand-cement ratio as inputs to 
estimate the compressive strength of foamed concrete. In training the models, 80% of the experimental data was 
used and the rest was used to validate the models. The optimized models were selected using their respective best 
hyper-parameters on trial and error basis; variable number of hidden layers, number of neurons and training 
algorithms were used for ANN, number of chromosomes, head size, number of genes, variable function set for the 
GEP and GBT employed number of trees, maximal depth and learning rate. The trained models were validated 
using parametric and sensitivity analyses of a simulated dataset. The prediction abilities of proposed models were 
evaluated using the coefficient of correlation (R), mean absolute error (MAE), and root mean squared error 
(RMSE). For the validation data, empirical results from the performance evaluation revealed that GBT model (R 
= 0.977, MAE = 1.817 and RMSE = 2.69) has relative superior performance with highest correlation and least 
error in comparison with ANN (R = 0.975, MAE = 2.695 and RMSE = 3.40) and GEP (R = 0.96, MAE = 2.07 and 
RMSE = 2.80). The study concludes that the developed GBT model offered reliable accuracy in predicting the 
compressive strength of foamed concrete. Finally, the simple prediction equation generated from the GEP model 
signifies its importance and can reliably be used in estimating compressive strength of foamed concrete. It is 
recommended that the prediction models shall be used for the ranges of input variables employed in this study.   
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1. Introduction 

Concrete is a widely used construction material in reinforced con-
crete structures, owing to its better composite behavior with steel. The 
ingredients of concrete are replaced (partially or completely) by a va-
riety of substitutes to change its mechanical and durability properties [1, 
2]. Foamed concrete (FC) is a light cellular concrete that resembles the 
lightweight (LW) concrete (density ranges between 300 and 1850 
kg/m3) [3] with randomly enclosed air voids in the binding mortar, 
which is responsible for its reduced self-weight [4]. The FCs are known 
by other names, such as, low-density FC, cellular LW concrete, and LW 
cellular concrete [5–8]. Note that the FC material is by no means a new 
product but has gained popularity in recent years because of its 
cost-effectiveness and sustainable alternative to the traditional concrete 
[9]. They have been used to build earthquakes and fire resistant LW 
structures [10,11]. FC comprises cement, fine and coarse aggregates, 
water and foaming agents, which imparts the “LW behaviour” to the 
concrete. In addition to the aforementioned traditional ingredients, 
many researchers have introduced binder supplements, such as, glass 
and rubber waste from industries [12,13], eggshell waste [14–16] and 
sawdust [17]. These supplementary materials act as “diets” for the FC, 
positioning it as a solution to some of the environmental and economic 
issues, in addition to properties enhancement [18]. These properties are 
influenced by various characteristics of the constituent materials (i.e., 
foaming agent type, cement minerology, and aggregate granulometry), 
pore nature and uniformity, water quality, mixture proportion of the 
materials and the adopted curing methods [19]. Ordinarily, a higher 
compressive strength is synonymous with higher cement content, as 
reported for normal concrete [20]. A similar trend can be observed in the 
case of FCs; however, a decrease in strength is observed when the 
cement content exceeds 500 kg/m3 [21]. In addition, a greener FC was 
achieved through partial replacement of cement by supplementary 
cementitious materials [22]. 

The LW nature of typical FC is a result of presence of air bubbles from 
a mixture of water, foaming chemicals and pressurized air [3]. 
Commonly available foaming agents are detergents, glue resins, hy-
drolyzed proteins, protein-based resin soap, saponins and synthetic 
agents, such that the synthetic and protein-based foaming agents are 
most commonly utilized [23,24]. In order to obtain a particular property 
of foamed concrete practically, there is no specific mixture propor-
tioning procedure available. However, several trial and error sessions 
are usually conducted to determine the optimal mixture using metrics, 
such as, binder content, percentage foam content, and net water content 
[23,25]. With the appropriate blend of mixtures, FCs exhibit superior 
qualities, for instance high strength-to-weight ratio and low density, 
which assist in minimizing the dead loads, foundation size as well as the 
construction costs pertaining to labor, material transport, and operation 
[26–28]. Besides, owing to their textured surface and cellular micro-
structure the FCs are resistant to fire, good thermal conductivity, 
balanced energy conservation and enhanced sound adsorption [4,29]. 
FCs exhibition of several high-level and distinct properties, particularly 
density reduction, makes them environmentally friendly LW structural 
material in building and road construction projects. In comparison to 
other LW structural materials, such as dry walls and wood, FC is 
favourable in terms of the inherent environmental difficulties involved 
in their production process, alongside their high costs. 

Low density and thermal conductivity as well as cost-effectiveness 
are some of the vital properties that have led to increased usage of FCs 
in myriad of civil infrastructural and structural applications [30,31]. 
Examples include the insulation and filling of cavities, LW precast 
concrete panels and blocks, insulation against fire, sound and heat, soil 
stabilization, shock-absorbing barriers for airports, and normal road 
traffic [30–34]. The impressive rheology of the FCs makes them viable 
choice for void filling, particularly in collapsing sewers, ducts, and voids 
beneath roadways [33]. Furthermore, the popularity of FCs has grown 
globally, with particular interest in areas experiencing shortage of 

houses or extreme weather conditions. Large quantities of FCs are 
consumed annually in developed and developing nations of the world, 
such as the UK (250,000–300,000 m3), western Canada (~50,000 m3), 
and Korea (250,000 m3), to address issues related to load reduction, 
thermal insulation, structural stability, temperature changes, floor 
heating systems, and the expenses of repair and maintenance [33, 
35–38]. In building design, the structural loads (dead, live, wind, etc.) 
need to be resisted hence making them critical factors for consideration. 
The last few decades have witnessed construction of substantial number 
of large-scale tall buildings around the globe [39] wherein the reduction 
of structural loads is a recurring issue amongst designers and practi-
tioners. From a structural material standpoint, balancing the strength 
requirements of the LW concrete for structural applications, for example 
LW blocks and precast panels, is a growing challenge that requires en-
gineering solutions [29,40]. 

One of the most important characteristics of FC is its compressive 
strength since it gives an indication of its capacity to resist loads prior to 
failure. This further underscore the importance of the compressive 
strength characteristic. The density of FC has direct influence on its 
compressive strength through the performance characteristics of its 
constituents. A direct linear relationship exists between the compressive 
strength and density of the FC [41]. This relationship is shared by 
flexural and tensile strengths; as the density of the FC decreases, other 
properties, for instance, its durability performance [42–44], pore 
structural properties [45,46], fracture properties, [47] and other me-
chanical strength properties, [48–51], tend to decrease. The key pa-
rameters affecting the strength properties of the FCs include the 
water-to-binder ratio, sand-to-binder ratio, curing period, void distri-
bution, and the type of foaming agent [52]. With the inclusion of ad-
ditives and admixtures, the compressive strength properties were 
affected, and other parameters, such as the percentage of additive 
replacement for cement, dosage of admixtures, and air void size and 
shape (void structure), served as additional factors [53,54]. 

Several studies in the past attempted to estimate the compressive 
strength of the FCs by optimizing their constituents for performance 
enhancement. For example, the influence of mixture constituents on the 
compressive strength of FC was represented using Feret’s formula [55, 
56], as shown in Eq. (1). 
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Eq. 1  

where (fcc) is the compressive strength, (w
c) is the water-cement ratio and 

(a
c) is the air-to-cement ratio. k and m are constants. 

Other parameters considered in predicting the compressive strength 
of FC included porosity [56], compressive strength of the cement paste 
(fc) [57], air content (A), and binder ratio (∝b) [51]. Pan et al. [50] 
proposed Eq. (2) and Eq. (3), which depict the relationships between the 
water-to-cement ratio (w

c), curing time (t) and compressive strength of 
the cement paste (fc). 

fcc = 1.048fc(1 − A)2.793 Eq. 2  

fc = 88.04 + 6.569 ln(t) −
130.5w

c
Eq. 3 

In addition, Kearsley and Wainwright [51] derived the relationship 
between ∝b, fc and fcc from Eq. (4). 

fcc = 1.172fc∝3.7
b Eq. 4 

They also performed regression analysis to establish another rela-
tionship to estimate the compressive strength using the dry density ratio 
(∝d) (Eq. (5)). 

fcc = fc(− 0.324 + 1.325∝d)
2 Eq. 5 
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Previous empirical models that predicted the compressive strength of 
FCs mainly relied on foundational models such as Balshin’s, Feret’s, and 
Power’s models [20]. Balshin’s model relates the compressive strength 
of FC to the volume of voids present in concrete. Feret’s model relates 
the compressive strength of the FC to the absolute volume of the con-
stituent, whereas Power’s model relates the strength to the gel-space 
ratio [58]. Detailed derivations of these empirical models are avail-
able in the published literature [59]. Most of the empirical models to 
forecast the compressive strength of FCs are calibrated using experi-
mental data, which incorporates limited number of input parameters for 
developing the equations, making their predictions mostly extrapolative 
[60]. Note that prediction using an empirical model requires various 
constants that are not easily determinable while describing the complex 
relationship between the mixture proportions and the compressive 
strength [61]. 

Particularly, complexities exist in the design of FC mixture towards 
achieving a target or required compressive strength; for instance, there 
are reports that have revealed clear differences in the compressive 
strength between the protein-based foam agent and synthetic foam 
agent such that the former tends to have higher influence [62,63]. In 
addition, the production of air bubbles from the foaming agents has a 
substantial impact on numerous mechanical properties in contrast to 
others. Furthermore, the air bubbles have a greater influence on the 

compressive strength of FC than its modulus of elasticity which can be 
attributed to the higher stability of the foaming agent during blending 
[64]. It is pertinent to mention that deploying empirical and numerical 
techniques to model these complexities would be difficult, and the 
resulting models may not be suitable to estimate the intended targets 
with reasonable degree of accuracy. Currently, early decisions on the FC 
mixture design to accurately achieve a particular compressive strength 
are the most important requirement in the LW concrete research. This 
calls for the implementation of more powerful and advanced prediction 
tools such as machine learning (ML) algorithms. The ML algorithms 
have built-in capabilities to handle the complexities inherent in the FC 
mixture proportioning, which usually prevent the empirical equations 
from accurate prediction of the required concrete properties [65]. Also, 
the ML algorithms provide better predictions than those developed using 
traditional methods, such as trial-and-error or mathematical modelling, 
which are limited by human knowledge of physics. These techniques 
have become an essential part of civil and structural engineering for 
analytics and predictions [66–70]. A significant amount of current 
research is aimed at using ML for predictive modelling to design and 
predict the compressive strength of different types of concrete prior to 
casting, which would substantially reduce waste from laboratory trials 
before reaching optimum mixtures [66,71–73]. These algorithms have 
also been used to model the behaviour of concrete structures under 
different conditions [74]. As for the case of FCs, owing to the additional 
influencing variables, such as LW aggregate types, its mixture propor-
tioning design can be challenging in laboratory experiments, especially 
because it mainly involves trial and error. 

In a recent study by Zhang et al. [75], multi-objective optimization 
(MOO) was performed using least-squares support vector regression 
(LSSVR), in which hyperparameter tuning was performed using the 
firefly algorithm (FFA). Optimal FC mixtures using the proposed algo-
rithms with high prediction accuracy and extremely minimal error were 
recorded, which allowed for early decision-making on the mixtures 
before casting. The compressive strength of FCs was estimated using the 
Levenberg – Marquardt-based artificial neural network (LM-ANN) 
approach, the parameters of which were optimized using particle swarm 
optimization (PSO) for achieving higher accuracy in the predictions. 
Using 375 experimental data points, including the dry density, w/c 
ratio, foam volume, sand/cement ratio, and testing age, the compressive 
strength of the FCs was predicted using the proposed PSO-LM-ANN 
hybrid algorithm [18]. In another deployment of the hybrid ML algo-
rithm [76], the LSSVR with grey wolf optimization (GWO) algorithm 
was used to predict the compressive strength of the FCs. The results were 
compared with those of four other ML algorithms: support vector 
regression (SVR), random forest (RF), ANN and M5Rules. The perfor-
mance of the hybrid algorithm (GWO-LSSVR) revealed that the pre-
dicted results were in good agreement with the actual values, with a 
correlation coefficient of 0.991 and MAPE of 0.0354, making the pro-
posed algorithm an excellent tool for the mixture design of the FC. In yet 
another study, a conventional ANN (C-ANN) was proposed to predict the 
28-day compressive strength of the FCs [77]. The network structure of 
the C-ANN was optimized, despite it being one of the most efficient ML 
algorithms for enhancing the prediction accuracy of the FC strength. The 
convergence of the predicted results was verified using a Monte Carlo 
simulation (MCS) with partial dependence plots (PDPs) of over 1000. 
MCS was used to interpret the relationship between the input variables 
(density, water/cement ratio and sand/cement ratio) and 28-day 
compressive strength. In addition, a deep neural network (DNN) with 
a novel higher-order neuron was developed to predict the compressive 
strength of the FCs. To enhance the model, the authors deployed a 
powerful entropy cost function and a rectified linear activation function. 
The results from the DNN models were compared with those of other ML 
algorithms [C-ANN and second-order ANN (SO-ANN)] to establish a 
genuine performance improvement with 1 or 2 hidden layers. An 
extreme learning machine (ELM) was used to predict the compressive 
strength of the FC [58]. To improve the performance of ELM, its 

Fig. 1. Adopted methodology for the current research to evaluate the 
compressive strength of foamed concrete. 
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prediction values were compared with those of other ML algorithms 
(multivariate adaptive regression spline (MARS), M5Tree, and SVR). 
With a better statistical score, the ELM model proved to be a reliable and 
accurate estimator for predicting the FC compressive strength. 

The majority of past studies have focused on the use of neural net-
works with different architectures and optimization techniques based on 
SVM, ELM, MARS, etc., to estimate the compressive strength of various 

FCs. Most of the studies reported the performance of the prediction 
models without evaluating new data based on the developed models for 
the optimization of input variables. Besides, there is a need to expand on 
and show the capabilities of other techniques, especially new evolu-
tionary paradigms such as gene expression programming (GEP) and 
ensemble models such as gradient boost tree (GBT) to accurately predict 
the properties of the FCs. In this study, the compressive strength is 
predicted using the strong nonlinear capabilities of three powerful ML 
algorithms: ANN, GEP, and GBT. Parametric Analysis has been carried 
out in order to optimize the water-cement ratio and sand-cement ratio 

Table 1 
Description of input and target parameters for model development.   

Variable Description Unit Max Min Standard deviation Range 

Input Density Density of concrete Kg/m3 2065.60 430.00 417.71 1635.60  
w/c Water to cement ratio – 0.83 0.26 0.13 0.57  
s/c Sand to cement ratio – 4.29 0.00 0.72 4.29 

Target CS Compressive strength MPa 51.18 1.50 13.93 49.68  

Fig. 2. Distribution histograms of the input and output variables used in the study.  

Table 2 
Linear Pearson’s correlation between inputs and the target variable.  

Attribute Compressive strength Density S/C W/C 

Compressive strength 1.000 0.879 0.023 − 0.587 
Density 0.879 1.000 0.328 − 0.517 
S/C 0.023 0.328 1.000 − 0.068 
W/C − 0.587 − 0.517 − 0.068 1.000  

Table 3 
Setting parameter for ANN model.  

Parameter Setting 

Sampling 
Training record 186 
Validation/testing 46 
General 
Number of hidden layers 01 
Number of hidden neurons 10 
Fitness function Mean squared error 
Training Algorithm Levenberg-Marquardt 
Data division Random  

Fig. 3. The architecture of proposed ANN model to evaluate the compression 
strength of Foamed concrete. 
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for specified density. A brief introduction to the problem is followed by 
the experimental database used in the development of the models, 
rationalization of the selected variables, brief description of the 
employed AI models, and prediction modelling. The results and dis-
cussion are provided in Section 3, which demonstrate the performance 
of the developed models and parametric as well as sensitivity analyses of 

each contributing variable. Finally, the major conclusions of this study 
are presented. The proposed models would be utilized in the selection of 
the appropriate mixture design choice for foamed concrete in order to 
achieve the requisite compressive strength as required by applications. 

2. Research methodology 

Fig. 1 shows the methodology adopted for the current research. The 
data was collected regarding the compressive strength of foamed con-
crete, which was used for developing AI models. ANN, GEP and GBT 
models were employed owing to its superior non-linear capabilities re-
ported in the previous studies [78–80]. The methodology adopted in this 
study has been previously adopted by Iqbal et al. [81]. The developed 
models were assessed to select a more robust model, which was subse-
quently used for parametric analysis to optimize input parameters. A 
brief introduction of AI models and experimental database is presented 
herein. The detailed AI modeling is also explained in this section. 

2.1. Experimental database 

To develop a strong machine-learning model, it is critical to generate 
a well-constructed and extensive database, a clear and precise descrip-
tion of the database, statistically evaluated input variables, and insights 
into the datasets. Consequently, a database of cleaned data consisting of 
232 foamed concrete experimental test results was developed from in-
ternational publications by different researchers [82–87] as given as 
supplementary data was used to train the three algorithms selected for 
this study. The dataset is for different foamed concrete mixtures with 
density, water-to-cement (w/c) ratio and sand-to-cement (s/c) ratio as 
the input parameters and compressive strength (CS) as the output 
parameter. The input and target parameters (experimental design 

Fig. 4. GEP Prediction modelling of compression strength of Foamed concrete using GeneXProtools  

Table 4 
Statistical evaluation of the developed multiple models based on variable setting parameters.  

Variable setting parameters Training data set Validation data set 

Model No. Fitness function Number of chromosomes, head size, genes Correlation (R) RMSE MAE RSE Correlation (R) RMSE MAE RSE 

GEP1 RMSE 30, 7, 3 0.963 3.818 3.040 0.072 0.947 4.054 3.417 0.103 
GEP2 RMSE 30,8,3 0.954 4.093 3.353 0.090 0.961 4.204 3.516 0.080 
GEP3 RMSE 50,10,4 0.957 3.997 3.253 0.085 0.961 4.242 3.563 0.082 
GEP4 RMSE 200,12,5 0.971 3.238 2.751 0.056 0.951 3.401 2.695 0.052 
GEP5 RMSE 200,14,5 0.940 3.706 3.706 0.116 0.936 5.318 4.252 0.128  

Table 5 
Setting parameter for optimized GEP model.  

Parameter Setting 

Sampling 
Training record 186 
Validation/testing 46 
General 
Genes 3, 4,5 
Number of chromosomes 30, 50, 100, 200 
Head size 7,8, 10, 12,14 
Linking function Addition 
Function set +,-,*,/,x∧(1/3),x∧2, 
Numerical constants 
Constants per gene 10 
Data type Floating number 
Upper bound 10 
Lower bound − 10 
Genetic operators 
Mutation rate 0.00138 
Fixed root mutation rate 0.00068 
Function insertion rate 0.00206 
Inversion rate 0.00546 
IS transposition rate 0.00546 
RIS transposition rate 0.00546 
Gene composition rate 0.00277 
Gene transposition rate 0.00277  
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variables) used in the study are listed in Table 1. Fig. 2 shows the dis-
tribution of the input and target parameters during the model devel-
opment. These graphs are particularly valuable because they can assist 
in identifying parameter values for which data are insufficient and more 
data are required [88]. It can be seen that most of the datapoints man-
ifest the density in between 1400 and 2000 kg/m3 (Fig. 2a), w/c ratio 
(0.3–0.5) (Fig. 2b), and s/c ratio (0.5–2.0) (Fig. 2c). It is recommended 
that the developed models should be used within these input limits. 
Because the input parameters are interdependent, the correlation co-
efficients between all variables studied were calculated and are listed in 
Table 2. A brief examination of the connections between the input 
variables indicated that the density was strongly positive, and the w/c 
ratio showed a strong negative correlation with the compressive 
strength. The sand-to-cement ratio (s/c) exhibited a moderate negative 
correlation with the compressive strength of the foam concrete. The 
existence of correlations establishes a clear relationship between the 
input and target features, which allows the proposed techniques to learn 
these relationships easily and efficiently, leading to accurate prediction 

of the compressive strength. 

2.2. Rationalization of the input parameters 

Similar to any type of concrete, the properties of foamed concrete 
rely on the material properties and proportion of the mixture design to 
optimize its mechanical properties. In terms of the mechanical perfor-
mance, the compressive strength of foamed concrete is the most 
important characteristic. Several studies have demonstrated that the 
compressive strength of foamed concrete decreases as its density in-
creases. Owing to the high volume of voids within the microstructure of 
FC, the density decreases, which leads to a lower compressive strength. 
The effects of the properties and proportions of the power material on 
the properties of the FC were carefully studied and reviewed based on 
the available literature. Several studies [89,90] have reported a direct 
relationship between the density of the developed FC and its compres-
sive strength. This relationship is established because FC is preferred as a 
building material because of its low density. FCs with densities ranging 

Fig. 5. Flow diagram depicting GBT modelling (Adapted from Iqbal et al. [81]).  

Fig. 6. Expression trees obtained from GEP4 model used in the development of mathematical equation.  
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from 400 to 1600 kg/m3 have a strength of 1–10 MPa, which fill voids, 
stabilize structures, provide insulation, backfill bridge abutments, 
insulate slabs and houses, and has other subterranean uses [91]. Another 
important mixture design parameter that influences the compressive 
strength of FCs is the water/cement (w/c) ratio, whose optimum range 
for mortar and paste has been reported to be between 0.5 and 0.6. 
However, with the introduction of a superplasticizer, the water demand 
decreases, resulting in an optimum w/c between 0.17 and 0.19 [91]. A 
notable impact of the w/c ratio on the compressive strength of FC has 
also been reported in other studies, [92,93] because it ensures impres-
sive paste fluidity and, as a result, leads to an even distribution of foam, 
thereby leading to strength growth. With the sand/cement (s/c) ratio, its 
relationship with the compressive strength of FC is inversely propor-
tional. The amount of sand in foamed concrete determines its 
compressive strength, whereas the amount of foam added determines its 
density. Thus, FC’s sand content requires comprehensive optimization in 
order to reach maximum effectiveness and ensure sufficient mix strength 
without sacrificing the intended purposes both economically as well as 
practical considerations of placing such concrete [94]. 

2.3. Adopted algorithms 

To evaluate the compressive strength capacity of the foamed con-
crete, this study employed artificial neural networks (ANNs), gene 
expression programming (GEP), and gradient boost trees (GBT). This 
section provides a high-level overview of the machine-learning model-
ling strategies used in this study. 

2.3.1. Gradient boosted trees (GBT) 
An ensemble of regression or classification tree models comprises a 

gradient-boosted tree (GBT) model. These are forward-learning 
ensemble approaches that provide predicted results by steadily 
improving estimates. Boosting is a robust nonlinear regression approach 
for enhancing tree accuracy. A series of decision trees are produced by 
progressively applying weak classification algorithms to gradually 
changing data, resulting in an ensemble of weak prediction models. 
While increasing the number of trees improves their accuracy, it also 

slows it down and makes it more difficult for humans to understand. To 
address these problems, the gradient boosting approach generalizes the 
tree boosting. GBT combines a series of weak base classifiers into a 
strong classifier. As opposed to traditional methods that consider both 
positive and negative sample weights, GBT achieves global convergence 
of the algorithm by following the direction of classification. 

Let the dataset for training be {xi, yi}
n
i=1 with an N-dimensional 

vector of real values passed to the SoftMax function and in turn, produce 
an N-dimensional vector with real values of (0, 1), which sum to 1. To 
ensure convergence of the GBT model, a gradient descent algorithm is 
deployed to follow the direction of the negative gradient. The weak base 
learner is represented by h(x), where xi = (x1i, x2i, …, xqi), q is the 
number of predicted parameters and yi is the predicted parameter. The 
step-by-step procedure followed by the GBT model for training the 
datasets is as follows:  

(A) Using Eq. (6), the primary constant value (α) of the model was 
determined. 

f (x)= argmin
α

∑N

i=1
L(yi,α) Eq. 6    

(B) Based on the number of iterations represented by q, the gradient 
directions of the residuals were calculated using Eq. (7). 

Table 6 
Optimization of GBT model.  

Model Parameter Value Error rate 
optimization (%) 

GBT Number of trees, maximum 
depth, Learning rate 

30,2,0.001 40.95   

90,2,0.001 39.82   
150,2,0.001 38.72   
30,4,0.001 40.93   
90,4,0.001 39.77   
150,4,0.001 38.65   
30,7,0.001 40.93   
90,7,0.001 39.77   
150,7,0.001 38.65   
30,2,0.01 36.39   
90,2,0.01 29.00   
150,2,0.01 24.49   
30,4,0.01 36.09   
90,4,0.01 28.07   
150,4,0.01 23.10   
30,7,0.01 36.09   
90,7,0.01 28.07   
150,7,0.01 23.10   
30,2,0.1 16.57   
90,2,0.1 15.58   
150,2,0.1 15.52   
30,4,0.1 15.85   
90,4,0.1 13.59   
150,4,0.1 13.58   
30,7,0.1 15.81   
90,7,0.1 13.45   
150,7,0.1 13.53  

Fig. 7. Comparison of experimental and predicted results (a) ANN (b) GEP 
(c) GBT. 
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y*
i = −

[
∂L(yi,F(xi))

∂F(xi)

]

F(x)− Fq− 1(x)

, i={1, 2,…,M} Eq. 7    

(C) A subset of the dataset was fitted by using a basic classifier to 
obtain the initial model. The parameter aq of the model, h(xi; aq)

is determined for the model to be fitted (Eq. (8)). 

aq = argmin
α,γ

∑N

i=1

[
y*

i − αh(xi; a)
]2 Eq. 8    

(D) After minimizing the loss function, the current weight of the 
model was computed using Eq. (9). 

αm = argmin
α,γ

∑N

i=1
L
(
yi,Fq− 1(x)+ αh(xi; a)

)
Eq. 9   

(E) With the conclusion of step (D), the model is updated and rep-
resented by Eq. (10). 

Fq(x)=Fq− 1(x) + αmh(xi; a) Eq. 10  

2.3.2. Gene expression programming (GEP) 
Gene expression programming (GEP) is a versatile and soft 

computing technique that incorporates both gene algorithms and ge-
netic programming and has been utilized by many researchers in 
different engineering applications. GEP has been deployed in myriad 
engineering applications to develop empirical equations for estimating 
different concrete properties developed from different materials. Ge-
netic programming (GP) is a valuable and powerful soft computing 

method that ignores previous forms of existing relationships for model 
development [95,96]. GEP is an extension of GP and is a recent intro-
duction that encodes samples or small-sized programs and utilizes them 
for fixed-length linear chromosomes. Ferreira proposed the GEP tech-
nique as a modification of the GP methodology to overcome its dis-
crepancies [97]. The significant alteration was that only the genome is 
transmitted subsequently to another generation and that single chro-
mosomes can establish entities that are composed of genes divided into 
head and tail parts [98]. These entities are known as expression trees 
(ET). GEPs are inspired by the reproduction of DNA molecules at the 
genetic level [99]. The computational time of GEP depends on the 
number of available chromosomes, which in turn controls the magni-
tude of the population. Genetic operators aid the genetic diversity of 
chromosomes. The chromosome that produces the greatest outcomes is 
passed down to the succeeding generations, and the process continues 
until an acceptable fitness level is achieved [100]. Within GEP, every 
gene is represented by fitting the length parameters, terminal sets of 
constants, and arithmetic operations as functions. Additionally, both the 
related function and chromosomal symbol have a stable connection with 
genetic code operators. The data required for the construction of an 
empirical model are encoded in the chromosomes, and a novel software 
called Karva was created to infer these data [100]. 

2.3.3. Artificial neural network (ANN) 
Artificial neural networks (ANNs) are algorithms that mimic the in-

ternal framework (neurons) of a biological nervous system, similar to 
the connection between neurons in the human brain [101–104]. Similar 
to other ML algorithms, ANN is a computational and mathematical 
technique employed to simulate the interdependencies between the 
input parameters and output variable(s) [102]. The most used type of 

Fig. 8. Error analysis (a) ANN (b) GEP (c) GBT  Fig. 9. Tracing of experimental results by the predictions (a) ANN (b) GEP 
(c) GBT. 
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neural network is the feedforward neural network, and the most 
commonly used type is the multilayer perceptron (MLP), which consists 
of an input layer, one or more hidden layers, and output layer (s). 
Although the number of neurons deployed in each layer depends on 
many parameters, there is no connection between the neurons present in 
each layer. The number of input and output neurons required for 
modelling depends on the input and output variables. The hidden layer 
is where computation takes place, and the number of neurons in this 
layer varies, the number of which needs to be determined for the 
appropriate response to be reached [105]. To train the neural network, 
data are introduced into the input and output layers, and appropriate 

models are created. The weights and biases of the network were adjusted 
to achieve the minimum error by calculating the difference between the 
output predicted values and actual values [106]. In most situations, an 
ANN is an adaptive system that can update its model in response to the 
relevant information flowing through the network during the learning 
phase. An ANN can be used to represent almost any complicated rela-
tionship between the inputs and outputs in the data [107]. 

2.4. Prediction modelling 

As stated earlier, three AI methods were employed to predict the 
compressive strength of the lightweight foamed concrete. Eighty percent 
of the data was used to train the ANN model with the Levenberg- 
Marquardt backpropagation algorithm owing to its high accuracy and 
fast convergence behavior [108]. Several trials were performed using 
one, two, and three hidden layers and several neurons. Optimum results 
were obtained using a single hidden layer with 10 neurons, as shown in 
Table 3. The data division was kept random between training and 
validation. The correlation coefficient, R (Eq. (11)) was used to assess 
the predicted yield. The architecture of the developed ANN model is 
presented in Fig. 3, which shows that three inputs, presented in the form 

Fig. 10. Comparison of the developed AI models (a,b) for training and (c,d) for validation data.  

Table 7 
Predicted/experimental results for the developed models.  

Predicted/experimental ANN Model GEP Model GBT Model 

Frequency Cumulative Frequency Cumulative Frequency Cumulative 

0.5 0 0.00% 1 2.17% 0 0.00% 
0.7 0 0.00% 1 4.35% 1 2.17% 
0.8 1 2.17% 0 4.35% 0 2.17% 
0.85 4 10.87% 2 8.70% 4 10.87% 
0.9 5 21.74% 7 23.91% 2 15.22% 
0.95 4 30.43% 8 41.30% 6 28.26% 
1 11 54.35% 5 52.17% 12 54.35% 
1.05 11 78.26% 6 65.22% 6 67.39% 
1.1 3 84.78% 3 71.74% 2 71.74% 
1.15 2 89.13% 1 73.91% 4 80.43% 
1.2 5 100.00% 4 82.61% 1 82.61% 
1.5 0 100.00% 5 93.48% 6 95.65% 
More 0 100.00% 3 100.00% 2 100.00%  

Table 8 
Simulated dataset for parametric ad sensitivity Analysis.  

Variable input parameters No. of datapoints Constant input parameters 

Parameter Range 

Density 430–2065 10 w/c = 0.41, s/c = 1.04 
w/c 0.26–0.83 10 Density = 1542; s/c = 1.04 
s/c 0–4.293 10 Density = 1542; w/c = 0.41  
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of three neurons, were used to estimate the compressive strength with a 
single hidden layer of neurons. 

The GEP algorithm has the valuable feature of creating a simple 
mathematical model by deploying a given number of input variables to 
estimate a target variable [109]. This study also aimed to develop a 
mathematical model that can correlate the compressive strength of foam 
concrete with input attributes. A flow diagram depicting optimal model 
development is shown in Fig. 4. The input data were partitioned into 
80% training data and 20% validation data. The hyperparameter of the 
better GEP model is the trial-and-access method in terms of using 

variable setting parameters, that is, the number of genes, chromosomes 
and head size [110–115]. The setting parameters were changed ac-
cording to the flowchart (Fig. 4) and Table 5, employing the root mean 
square error (RMSE) as a fitness function. In addition, the models were 
assessed using R, the mean absolute error (MAE) and the relative 
squared error (RSE), whose mathematical equations are expressed in 
Eqs. (11) to Eq. (14). Five models were created, as listed in Table 4. All 
the developed models of GEP reflected a close agreement with the 
experimental values, yielding R significantly higher than 0.9 for both the 
training and validation data. However, the model developed using 200 

Fig. 11. Relative contribution of variable density for constant average w/c ratio of 0.416 and s/c of 1.04; density equalling 430, 593, 756, 919, 1082, 1245, 1408, 
1571, 1734, and 2065 from a to j, respectively. 

Fig. 12. Relative contribution of variable w/c ratio for constant average density of 1542 kg/m3 and s/c of 1.04; w/c equalling 0.26, 0.28, 0.30, 0.35, 0.40, 0.45, 0.50, 
0.60, 0.70, and 0.83 from a-j, respectively. 
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chromosomes with 12 head sizes and five genes had the highest corre-
lation and lowest values of MAE, RMSE and RSE in both the training and 
validation phases. Hence, this model, represented as GEP4, was used to 
create a mathematical equation based on the expression trees (Fig. 6) 
and the MATLAB model derived from the modelling process. As shown 
in Table 5, +,-,*,/,x∧(1/3),x∧2 were used as function sets for generating 
expression trees and addition was used as a function for linking 
expression trees. It was also observed that complexifying the function set 
increased the robustness of the model; however, this made the output 
equation complex. Therefore, a simple function set was fed into the 
model. 

R=

∑n
i=1(ei − ei )(mi − mi )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ei − ei )
2
(mi − mi )

2
√ Eq. 11  

MAE =

∑n
i=1

⃒
⃒ei − mi

⃒
⃒

n
Eq. 12  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ei − mi )
2

n

√

Eq. 13  

RSE =

∑n
i=1(ei − mi )

2

∑n
i=1(e − mi )

2 Eq. 14  

where ei and mi are the nth experimental and model CS (MPa), respec-
tively, ei and mi denote the average values of the experimental and 
model CS (MPa), respectively, and n is the number of samples in the 
dataset, where n denotes the total number of sample points. 

The GBT model was generated in the RapidMiner environment. The 
data was loaded into the RapidMiner environment using retrieve data 
operator. The data was then given the target and contributing attributes 
using select attribute operator. With the split data operator, the data was 
randomly divided into training and validation data employing. Overall, 
the modelling involves basic data processing, feature selection as dis-
cussed above, followed by optimization of GBT model (using grid search 
for number of trees, maximal depth and learning rate). The optimized 
model was subsequently used for the validation of the model (Fig. 5). 

The methodology used in the current study was in accordance with those 
adopted by Amin et al. [78] and Iqbal et al. [81]. The hyperparameters 
of the GBT model were optimized. The initial values of the GBT 
hyper-parameters, that is, the number of trees, maximal depth, and 
learning rate, were randomly initiated with lower bounds of 30, 2, and 
0.001, respectively. The optimum performance for the developed model 
was achieved for the number of trees, maximal depth and learning rate 
of 90, 7, and 0.10, respectively, as shown in Table 6. 

3. Results and discussions 

3.1. Predictive performance and validation 

3.1.1. ANN 
A graphical demonstration of the experimental versus predicted 

values of the compressive strength using the proposed ANN-based model 
is shown in Fig. 7. The closer the points are to the regression line (1:1 
plot), the better is the efficacy of the formulated AI model [116]. The 
ANN model precisely captures the impact of the input parameters on 
predicting the compressive strength. The correlation coefficients for the 
training and validation datasets are 0.988 and 0.960, respectively, 
suggesting a strong correlation between the experimental and predicted 
results [117]. However, it was also found that R is insensitive to the 
multiplication and division of the compressive strength [118]; therefore, 
the RMSE and MAE indices were evaluated to better judge the perfor-
mance of the model. Additionally, it is also confirmed from the sub-
stantially decreased values of these performance indices (i.e., 
RMSEtraining = 2.18, RMSEvalidation = 2.80, MAEtraining = 1.71, MAEvali-

dation = 2.07). In addition, the error analysis plot in Fig. 8 shows that the 
compressive strength errors range from zero to 1.4 MPa. Finally, the 
tracing of experimental and ANN-modelled compression strength values 
in Fig. 9a show larger deviations mainly in two regions, that is, data 
points from 0 to 8 and 25 to 32. 

3.1.2. GEP 
According to Ferreira [111], the language of genes and expression 

trees (ETs) are interrelated, and knowledge of one helps understand the 
other. To determine the simple empirical relationships for calculating 

Fig. 13. Relative contribution of variable s/c ratio for constant average density of 1542 kg/m3 and w/c of 0.41; s/c equalling 0, 0.3, 0.50, 1.0, 1.40, 2.0, 2.5, 3.0, 3.5, 
and 4.29 from a-j, respectively. 
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the compressive strength, Fig. 6 illustrates typical ETs for the GEP 

algorithm of the formulated models. The sub-ETs (1–3) of the 
compressive strength of concrete exhibit six fundamental mathematical 
functions: +, − , x, ÷, 3Rt and x2. The mechanism of these sub-ETs 
consists of the regulation of their maximum width and depth (wmax 
and dmax, respectively) by the head size (hs), which can be determined 
from Eq. (15) and Eq. (16). 

wmax = [(amax − 1) * hs] + 1 Eq. 15  

dmax =

(
hs + 1
amin

)

*
(amin

2

)
Eq. 16 

such that amin represents the minimum arity (i.e., the lowest possible 
arguments of the functions), whereas amax represents the maximum arity 
(i.e., the largest possible arguments of the functions). In this study, amin 
was considered to be zero, whereas amax was considered to be two for all 
formulated AI models. 

After the formulation of the GEP model, the ETs were decoded to 
derive a simple mathematical expression for compressive strength as a 
function of the selected input parameters. In accordance with the 
hyperparameter settings for the GEP model, the Karva notation or K- 
expression [119] was first changed into ETs that were subjected to 
decoding to achieve an easy-to-use mathematical equation in the form of 
Eq. (17), below: 

f́c =  A +  B +  C +  D +  E Eq. 17   

A = ((gep3Rt (− 5.13) +(((w/c)-1.90) *((s/c) +8.32)) *((w/c)/ 
((0.64-(w/c)) +((w/c) ∧2)))). 
B = gep3Rt((((((((s/c) +(w/c)) +(s/c)) -((w/c) +1.83)) *(((w/c)/ 
8.16) +gep3Rt((s/c)))) ∧2)-9.49)). 
C = (gep3Rt(((-1818.71/(w/c)) +(15.38∧2)) +((s/c) -(D))) +(D/ 
(((w/c) +3.99) *((s/c) +7.48)]) 
D = (gep3Rt(gep3Rt((D*(((9.25∧2) *(9.25 + 7.52)) -((-6.22-3.52) 
+D))))) ∧2). 
E = (4.25*(-5.46/(((s/c)/(((s/c) +(w/c)) ∧2)) +(((w/c) -(s/c)) 
+(-1.49/8.34))). 
Where D = density in kg/m3, w/c = water-cement ratio in g/g, s/c =
sand-cement ratio in g/g, gep3Rt =

̅̅̅̅
()3

√

These equations can be used directly to estimate the compressive 
strength of concrete [120,121]. A graphical demonstration of the 
experimental versus predicted values of compressive strength using the 
proposed GEP-formulated model is shown in Fig. 7. It is pertinent to 
mention that the results of the validation dataset were better than those 
of the training datasets, unlike those of the two other AI methods 
deployed here. A strong correlation exists between the input variables at 
higher R values [118,122]. Regarding the accuracy of the GEP model, it 
was observed that the difference in all the considered performance 
indices (R, RMSE, and MAE) in the training and validation datasets was 
minimal, that is, 0.004, 0.17, and 0.055, respectively. This shows that 
the concentration of the error scatter is approximately zero. Moreover, 
the error analysis graph in Fig. 8 depicts that the compressive strength 
exhibits errors between 0.3 and − 0.3 MPa, which represents the supe-
rior performance of the developed GEP model. Finally, the tracing of the 
experimental and GEP-modelled output values in Fig. 9 reveals a lesser 
deviation among the values; however, a slight deviation was observed in 
the case of datapoints 0–5, 10–15, and 24–30. 

3.1.3. GBT 
A graphical demonstration of the experimental and predicted values 

of compressive strength using the proposed GBT prediction model is 
shown in Fig. 7c, where all three values of the performance indices 
outperform those of the ANN and GEP models. It can be seen that the 
training and validation datasets exhibit almost identical R values, i.e., 
0.980 and 0.977, respectively. The difference was larger in the MAE 

Fig. 14. Parametric analysis of each input parameter.  

Fig. 15. Relative contribution (%) of input variables in yielding compres-
sive strength. 
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values (2.184 and 1.817) in contrast to the RMSE values of 2.8555 and 
2.690 for the training and validation sets, respectively. Similarly, the 
error analysis plot in Fig. 8c reveals that the compressive strength has 
errors in the range of unity to − 1.7 MPa. Eventually, the tracing of 
experimental and GBT modelled values can be seen in Fig. 9c, where the 
variations in both values are dispersed, unlike the ANN and GEP ap-
proaches, and can therefore be recorded for six small ranges of the data 
points, including 7–13, 15–17, 23–25, 28–32, 36–38, and 41–44. 

3.2. Comparison of the models 

Fig. 10 shows a comparison of the developed models in the form of a 
radar plot. A radar plot conveys information more clearly than other 
charts, particularly for a larger volume of data [123]. Each model 
investigated in this study was represented by a spoke projected from the 
central point. Typically, the radar plot adopts a circular arrangement. 
Three AI models were investigated; they formed a triangular arrange-
ment. Smaller triangles represent the scale of each series. The gap be-
tween the two triangles in the case of R was 0.05, whereas, in the case of 
MAE and RMSE, it was 0.5. Several researchers have used radar plots in 
various fields to obtain multivariate data [124,125]. 

When comparing the correlation between the observed and pre-
dicted results, the GBT model performed better in the validation phase, 
with R = 0.977. The GBT model also showed close agreement during 
training, with an R-value of 0.98. Comparable correlation results were 
obtained for the ANN and GEP models; however, the ANN model was 
slightly overfitted during training, resulting in a reduced correlation 
compared to the training model. Overfitting was not observed in the GEP 
model (Fig. 10a and c). An error comparison of the models can be seen in 
Figs. 10b and 9d. The lowest MAE and RMSE for the validation data were 
1.817 MPa and 2.69 MPa, for the GBT model. The ANN model followed 
the GBT model in terms of accuracy, whereas the GEP model ranked 
third while investigating the accuracy. The comparison of the developed 
models was supplemented with the predicted-experimental ratios 
(Table 7). In this comparison, 100% of the validation records for ANN 
models are within ±20%, whereas, for the GEP and GBT models, the 
percentage of data points with 20-% is 78.26 and 80.4%, respectively. 
Herein, the ANN model excels GBT model; however, due to other good 
performance regarding statistical indices, the GBT model has been used 
for parametric analysis. 

The performance of GBT model was also compared with other studies 
conducted by past researchers. Dao et al. [77] evaluated the compressive 
strength of FC using conventional ANN on the basis of 220 experimental 
results from the literature. A comparable performance was obtained; 
however, the optimization of w/c ratio and s/c ratio were not investi-
gated. Ly et al. [18] achieved maximum value of R equalling 0.959 while 
investigating ANN model on 375 data points. The effect of each input 
parameter was studied in the form of partial dependence plots, figuring 
out the increasing or decreasing trend of compressive strength with 
change input variable; however, the optimized combined effect of input 
variables was not reported. The study conducted herein describes the 
detailed contribution of each variable at various stages of density, w/c 
ratio and s/c ratio. 

3.3. Parametric and sensitivity analysis 

Owing to the robustness of the GBT model, parametric and sensitivity 
analyses were conducted on the simulated dataset (Table 8). Simulated 
data were generated such that one input parameter was changed be-
tween its extremes, whereas the other variables were maintained at their 
average values, as shown in Table 8. Fig. 11 to Fig. 13 show the stepwise 
variation in the relative contribution of the input variables and the 
change in compressive strength with an increase in the density of foam 
concrete. At a fixed w/c ratio of 0.416 and s/c ratio of 1.04, the 
compressive strength increased almost linearly with rise in density, as 
shown in Fig. 14. Fig. 11 illustrates that the relative contribution of 

density increased with increasing density. The s/c ratio of 1.04 nega-
tively contributed to the compressive strength and was comparatively 
more negative in low-density concrete than in high-density concrete. A 
w/c ratio of 0.41 contributed negligibly at the initial stage of increasing 
the density, whereas it negatively contributed to the compressive 
strength at a high density of concrete. An increase in the w/c up to 0.35 
ratio initially increased the compressive strength. Further increase in the 
w/c ratio drastically decreased the compressive strength, as shown in 
Fig. 14. Fig. 12 also shows the negative impact of increasing the w/c. An 
increase in w/c beyond 0.6 reflected no contribution to the compressive 
strength. An increase in s/c also negatively affected the compressive 
strength of the foamed concrete, as supported by Figs. 13 and 14. The 
sensitivity analysis illustrated in Fig. 15 shows that density is the most 
influential factor in the compressive strength of concrete, followed by 
the w/c and s/c ratios. 

4. Concluding remarks 

This research presents the findings of three prediction models, ANN, 
GEP and GBT models that are capable of estimating the compressive 
strength of foamed concrete (FC). Most empirical models for predicting 
the compressive strength of FC are calibrated using experimental data, 
which are limited by the number of input parameters used in the 
equations, thus making their predictions mostly extrapolative. Again, 
prediction with an empirical model requires empirical constants that are 
difficult to obtain when describing the complex relationship between 
mixture proportions and compressive strength. This study focused on 
the optimization of input variables on the basis of a more robust pre-
diction model among the three AI models. Following conclusions were 
drawn from this study. 

Pearson’s correlation coefficients indicated a strong positive corre-
lation between the density of the FC and compressive strength. The 
water-cement ratio interpreted a strong negative correlation, whereas 
send to cement ratio also showed a moderate negative correlation to the 
compressive strength of FC. The results of a Pearson’s correlations were 
also supported by parametric and sensitivity analyses performed based 
on a highly accurate AI model. While optimizing the developed model, 
the optimum results of the ANN models were achieved by employing the 
Levenberg–Marquardt algorithm with one hidden layer and 10 neurons. 
The data trained using the GEP algorithm were assessed in several trials 
by changing the number of chromosomes, the head size and the number 
of genes. The best hyperparameters, namely, the number of chromo-
somes, head size and number of genes for GEP, were 200, 12, and 5, 
respectively. Ninety (90) trees with seven (7) maximal depths and a 
learning rate of 0.10 provided the best GBT model. 

When assessing the performance of the AI models, all the models 
yielded a correlation of R significantly higher than 0.8, ranging from 
0.971 to 0.988 for the training and 0.96 to 0.977 for the validation data, 
reflecting a close agreement between the experimental and predicted 
results. The highest correlation (0.977) in the validation data was ob-
tained for the GBT model, and the lowest MAE and RMSE (2.184 and 
2.85, respectively) for the validation data were obtained for the GBT 
model. Hence, the GBT model surpassed the other models in terms of 
accuracy, followed by the ANN and GEP models, respectively. However, 
the significance of the GBT model cannot be neglected because it ex-
presses the target variable as a simple mathematical relationship. During 
the variation in the quantity of water in parametric analysis, maximum 
concrete strength was achieved at w/c ratio range of 0.35 to 0.40 at an 
average value of density and s/c ratio. Exceeding s/c from 0.4 leads to a 
considerable reduction in the compressive strength. Parametric and 
sensitivity analyses revealed that the density of the concrete play a vital 
role in contributing to the compressive strength of the FC, followed by 
the w/c and s/c ratios. The current models employed three inputs for 
predicting the compressive strength of FC on the basis of 232 experi-
mental records collected from the literature. The authors opine that new 
prediction models shall be developed based on a wide range of 
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experimental work obtained from a single source. Besides, the role of 
variable dosage of the foaming agent shall also be investigated in the 
future using AI modelling. 
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G.B. Lima, Use of nondestructive testing of ultrasound and artificial neural 
networks to estimate compressive strength of concrete, Buildings 11 (2021) 44, 
https://doi.org/10.3390/BUILDINGS11020044, 11 (2021) 44. 

[102] H. Madani, Mohammad Kooshafar, M. Emadi, Compressive strength prediction of 
nanosilica-incorporated cement mixtures using adaptive neuro-fuzzy inference 
system and artificial neural network models, Pract. Period. Struct. Des. Construct. 
25 (2020), 04020021, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000499. 
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