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Geometrical effects on the local joint flexibility of three-planar tubular Y-joints in
substructures of offshore wind turbines
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aFaculty of Civil Engineering, University of Tabriz, Tabriz, Iran; bCentre for Future Materials, University of Southern Queensland, Toowoomba, Australia;
cCenter of Excellence in Hydroinformatics, University of Tabriz, Tabriz, Iran

ABSTRACT
Although three-planar tubular Y-joints are amongst the most common joint types in jacket- and tripod-type
substructures of offshore wind turbines (OWTs), local joint flexibility (LJF) of this type of connection has not
been studied so far, mainly due to the complexity of the problem and high cost involved. Results of a
parametric study conducted on the LJF of three-planar tubular Y-joints are presented and discussed in
this paper. A set of finite element (FE) analyses were carried out on 81 FE models subjected to six types
of axial, in-plane bending (IPB) moment, and out-of-plane bending (OPB) moment loadings in order to
study the effects of geometrical characteristics of the three-planar Y-joint on the LJF factor (fLJF). FE
results were then used to develop a new parametric equation for the prediction of the fLJF in axially
loaded three-planar Y-joints, and the derived equation was checked against the UK DoE acceptance criteria.
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1. Introduction

Jacket and tripod structures are steel space frames composed of
welded circular hollows section (CHS) members also called tubu-
lars. They are commonly used in offshore industry as the substruc-
ture of fixed offshore oil/gas platforms and offshore wind turbines
(OWTs) as shown in Figure 1(a). The connection between the tub-
ulars in which the prepared ends of brace members are welded onto
the undisturbed surface of a chord member is called a tubular joint
(Figure 1(b,c)).

The local joint flexibility (LJF) which is an intrinsic feature of a
tubular joint is one of the factors affecting the global static and
dynamic responses of an offshore structure. The LJF increases
the deflections, redistributes the nominal stresses, reduces the
buckling loads, and changes the natural frequencies of the struc-
ture (Bouwkamp et al. 1980; UEG 1985; Gao et al. 2013). For
example, analysis of a jacket platform considering the local flexi-
bility of the joints results in higher primary natural period of
vibration and lower base shear compared to the case in which
the joints are assumed to be rigid. These facts imply that the con-
ventional procedures for the analysis and design of tubular struc-
tures with the assumption that the tubular joints are rigid may not
be accurate enough, especially for unstiffened joints. Hence, it is
necessary to determine the local joint flexibility for commonly
used tubular joints.

The primary factors affecting the LJF are the joint type, its geo-
metrical properties, and brace loading type. In order to relate the
behaviour of a tubular joint to its geometrical characteristics, a
set of dimensionless geometrical parameters including α, αB, β, γ,
and τ, defined in Figure 1(d), is commonly used.

UEG (1985) and DNV (1977) have provided parametric
equations to determine the LJF for tubular T-/Y-joints. The UEG
guidelines do not clearly define the range of applicability; and the
DNV equations are based on a limited number of FE analyses. Efth-
ymiou (1985) developed a set of equations for T-, Y-, and K-joints
subjected to in-plane bending (IPB) and out-of-plane bending

(OPB) loads by numerical analysis. The database was limited to
12 T-, 3 Y-, and 5 K-joints, 5 of which were partially overlapped.

Fessler et al. (1986a, 1986b) measured the local deformation of
the chord wall subjected to basic loadings within the elastic range
based on 27 models and derived a set of parametric equations for
both T-/Y- and K-joints. However, their experimental models
were made from araldite instead of steel; and they had relatively
small scale. Ueda et al. (1990) proposed a set of equations to predict
the LJF under the axial and IPB loads based on FE analysis of 11 T-
joint models. The results amended and improved the accuracy and
maintained the simplicity of numerical computation as well. How-
ever, the validity range of geometrical parameters for these
equations was very limited in terms of brace-to-chord diameter
ratio, which was restricted to 0.35−0.55.

Chen et al. (1990) determined the LJF of T-, Y-, and K-joints. By
using the semi-analytical approach, Chen et al. (1993) and Hoshyari
and Kohoutek (1993) quantified the LJF for simple gap K- and T-/
Y-joints, respectively. Buitrago et al. (1993) provided the method-
ology as well as the parametric equations for computing the LJF
in gap and partially overlapped joints based on the FE analysis.
Chen and Zhang (1996) studied the stress distribution in space
frames with the consideration of local flexibility of multiplanar tub-
ular joints.

Hu et al. (1993) and Golafshani et al. (2013) proposed equivalent
elements representing the local flexibility of tubular joints in struc-
tural analysis of offshore platforms. Gao et al. (2013, 2014) and Gao
and Hu (2015) proposed parametric equations to predict the LJF in
completely overlapped tubular joints subjected to axial, IPB, and
OPB loadings, respectively.

Ahmadi and Ziaei Nejad (2017a, 2017b, 2017c) developed a set
of parametric equations to determine the LJF factor ( fLJF), defined
in Sect. 2.1, in two-planar tubular DK-joints subjected to axial, IPB,
and OPB loadings, respectively. They indicated that the effect of
multi-planarity on the LJF can be significant and consequently
the use of the equations already available for uniplanar joints to
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calculate the LJF in multi-planar joints may lead to highly under-/
over-predicting results.

Ahmadi and Mayeli (2018, 2019) derived the probability density
functions (PDFs) governing the fLJF in tubular DK-joints subjected
to eight types of bending moment loads including four types of IPB
and four types of OPB loadings. Developed PDFs are useful for the
reliability analysis of offshore jacket structures in order to calculate
the probability of structural failure.

Nassiraei (2019) studied the local joint flexibility of tubular X-
joints reinforced with collar plates subjected to axial loading. Geo-
metrical effects on the LJF of tubular T/Y-joints with doubler and
collar plates were investigated by Nassiraei (2020a, 2020b). Nassir-
aei and Rezadoost (2021a) investigated the local joint flexibility of
tubular T/Y-joints retrofitted with GFRP under in-plane bending
moment. Nassiraei and Rezadoost (2021b) studied the local joint
flexibility of tubular X-joints stiffened with external ring or external
plates.

Ahmadi and Mohammadpourian Janfeshan (2021) and
Ahmadi and Akhtegan (2022) investigated the effects of geo-
metrical parameters on the LJF of offshore two- and three-pla-
nar tubular T-joints, respectively. Nassiraei and Yara (2022a,
2022b) examined the local joint flexibility of tubular K-joints
reinforced with external plates under the IPB and OPB moment
loadings.

The above discussion on the previous investigations of the LJF
indicates that the LJF for uniplanar tubular joints such as T-/Y-,
X-, and K-joints due to basic load cases has been extensively
studied; based on which extensive parametric equations have
been derived. However, for multi-planar tubular joints which
cover the majority of practical applications, the research works in
terms of the LJF are very limited mainly due to the more complex-
ities involved in the modelling.

In the present paper, results of a parametric study carried out on
the LJF of three-planar tubular Y-joints subjected to six types of
axial, IPB moment, and OPB moment loadings (Figure 2) are pre-
sented and discussed. A total of 81 FE models were used to study
the effects of the three-planar Y-joint’s geometrical parameters on
the fLJF. Generated FE models were validated based on the existing
experimental data and parametric equations. The fLJF values in
three-planar and uniplanar Y-joints were compared; and the FE
results were used to derive a new parametric equation for the pre-
diction of the fLJF in axially loaded three-planar Y-joints. The pro-
posed equation was checked against the acceptance criteria
recommended by the UK DoE (1983) and hence can be reliably
used for the analysis and design of tubular joints in substructures
of offshore wind turbines.

2. Methodology

2.1. Calculation of the fLJF

2.1.1. Axial loading
The LJF of an axially loaded tubular joint is defined as the displace-
ment attributed to the local chord wall deformation due to a unit
applied load. It measures the distortion of the CHS which is an
oval shape under the axial loading without considering the beam
bending movement (Gao et al. 2013).

The LJF of a tubular joint under the axial loading can be calcu-
lated as follows:

LJF = (dAX/PAX) sin u (1)

where θ is the brace inclination angle (Figure 1(d)), PAX is the axial
load of the brace, and δAX is the displacement caused only by chord

Figure 1. (a) A typical offshore wind turbine with tripod substructure in service, (b) Tripod substructures during the fabrication, (c) A tripod substructure during the installa-
tion, (d) Geometrical notation for a three-planar tubular Y-joint (This figure is available in colour online).
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wall deformation, in which overall bending deflection of the chord
acting as a beam must be excluded.

Since the intersection of the brace and chord members is a space
curve, for the purpose of actual calculation in an FE model, dAX can
be expressed as the average local displacement of the joint normal
to the chord axis:

dAX = (d1 − d′1)+ (d2 − d′2)+ (d3 − d′3)+ (d4 − d′4)
4

(2)

where δ1, δ2, δ3, and δ4 are the displacements at the crown toe,
crown heel, and two saddle positions measured perpendicular to
the chord axis; and δ’1, δ’2, δ’3, and δ’4 are the bending deflections
that can be determined by simple beam theory. Saddle, crown
toe, and crown heel positions are shown in Figure 1(d).

According to Gao et al. (2013, 2014), bending deflections in
an FE model can be reasonably approximated by the displace-
ments at the bottom of the chord member corresponding to δ1,
δ2, δ3, and δ4, respectively (Figure 3(a)). The reader is referred
to Chen et al. (1990) for the details of deriving Equations (1)
and (2).

In order to relate the local joint flexibility to dimensionless geo-
metrical parameters of the joint, a dimensionless coefficient called
the local joint flexibility factor ( fLJF) is defined. Under the axial
loading, the fLJF is the LJF multiplied by ED:

fLJF = (dAX/PAX)ED sin u (3)

where D is the chord diameter and E is the Young’s modulus.

2.1.2. IPB moment loading
To determine the LJF factor under the brace IPB moment loading,
the rotation of the joint due to the overall displacement should be
omitted from the total measured rotation. In an FE model, the local
rotation at the joint can be directly measured without considering
the beam bending movement. It measures the distortion of the cir-
cular cross section which is an oval shape under the IPB load. The
LJF of a tubular joint under the IPB loading can be defined as (Gao
et al. 2014):

LJF = fIPB/MIPB (4)

where MIPB is the brace IPB moment and fIPB is the joint local
rotation expressed as:

fIPB = (d2 − d′2)− (d1 − d′1)
d− t

sin u (5)

where d is the brace diameter; t is the brace wall thickness; θ is the
angle between the chord and brace members; δ1 and δ2 are the
respective deformations at the crown toe and heel positions
measured perpendicular to the chord axis as shown in Figure 3
(b); and δ’1 and δ’2 are the deformations at the bottom of the
chord corresponding to δ1 and δ2, respectively.

Under the IPB moment loading, the fLJF is the LJF multiplied by
ED3:

fLJF = fIPB

MIPB
ED3 (6)

where D is the chord diameter and E is the Young’s modulus.

Figure 2. Studied axial, IPB moment, and OPB moment loading conditions (This figure is available in colour online).
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2.1.3. OPB moment loading
The LJF of a tubular joint under the OPB loading can be defined as
(Gao and Hu 2015):

LJF = fOPB/MOPB (7)

where MOPB is the brace OPB moment and fOPB is the joint local
rotation expressed as:

fOPB = d2 − d1
d− t

sin u− d4 − d3
D− T

(8)

where D and d are the chord and brace diameters respectively;
T and t are the chord and brace wall thicknesses respectively; θ
is the brace inclination angle; δ1 and δ2 are the respective
deformations at both saddles measured in the direction of
brace axis; and δ3 and δ4 are the deformations at the side
face of the chord corresponding to δ1 and δ2, respectively
(Figure 3(c)).

Under the OPB moment loading, the fLJF is the LJF multiplied by
ED3:

fLJF = fOPB

MOPB
ED3 (9)

2.2. FE modelling and analysis of three-planar tubular Y-
joints to calculate the fLJF

FE-based software package ANSYS was used in the present research
for the modelling and analysis of three-planar tubular Y-joints sub-
jected to axial loading in order to determine the fLJF values for the
parametric study and design formulation. This section presents the
details of FE modelling and analysis.

2.2.1. Modelling of the weld profile
One of the factors which affects the accuracy of the fLJF results is the
modelling of the weld profile. In the present research, the welding
size along the brace-to-chord intersection satisfies the AWS D 1.1
(2002) specifications. The weld sizes at the saddle, crown toe, and
crown heel positions can be determined as follows:

Hw(mm) = 0.85t(mm)+ 4.24

Lw = t
2

135◦ − c( deg .)
45◦

[ ]

c =
180◦ − cos−1b( deg .)

180◦ − u( deg .)

u( deg .)

⎧⎪⎨
⎪⎩

Saddle

Crowntoe

Crownheel

(10)

Figure 3. Positions for the deformation measurement to determine the fLJF in a tubular joint subjected to (a) axial loading, (b) IPB moment loading, (c) OPB moment
loading (This figure is available in colour online).
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The parameters used in Equation (10) are defined in Figure 4. As
an example, the weld profile generated for a sample joint model (α
= 8, τ = 0.7, β = 0.3, γ = 12, θ = 60°) is shown in Figure 5. For details
of the weld profile modelling according to AWS D 1.1 (2002) spe-
cifications, the reader is referred to Lie et al. (2001).

2.2.2. Application of boundary conditions
Chord end fixity condition in tubular joints of offshore structures
ranges from almost fixed to almost pinned with generally being clo-
ser to almost fixed (Efthymiou 1988). In the view of the fact that the
effect of the chord end restraints on the stress distribution at the
brace/chord intersection is only significant for joints with α < 8
and high β and γ values (Smedley and Fisher 1991; Morgan and
Lee 1998), which do not commonly occur in practice, both chord
ends were assumed to be fixed, with the corresponding nodes
restrained. For a joint with the brace member of sufficient length,
the brace end fixity imposes marginal effects on the joint strength
(Choo et al. 2006). The sufficient brace length is discussed in
Sect. 2.3. In the present research, no restraint was applied to the
upper end of brace members.

Application of symmetric and antisymmetric boundary con-
ditions is beneficial in order to reduce the computational time.
Due to the symmetry in geometry and loading of the joint, only
½ of the entire three-planar tubular Y-joint is required to be mod-
elled subjected to the 1st and 2nd axial load cases, as well as the 1st
and 2nd IPB moment loading conditions. Similarly, due to the sym-
metry in geometry and antisymmetry in loading, again only half of
the entire three-planar joint should be modelled under the 1st OPB
moment loading condition. However, a full three-planar tubular Y-
joint must be modelled subjected to the 2nd OPB moment loading
condition (Figure 6). Appropriate symmetric and antisymmetric
boundary conditions were defined for the nodes located on the
symmetry and antisymmetry planes.

2.2.3. Mesh generation and analysis
In order to model the chord, braces, and the weld profiles, ANSYS
brick element type SOLID185 was used. This element has compati-
ble displacements and is well-suited to model curved boundaries.
The element is defined by eight nodes having three degrees of free-
dom per node and may have any spatial orientation. Using this type
of 3-D brick elements, the weld profile can be modelled as a sharp
notch. This method will produce more accurate and detailed stress
distribution near the intersection in comparison with a simple shell
analysis.

To guarantee the mesh quality, a sub-zone mesh generation
method was used during the FE modelling. In this method, the
entire structure is divided into several different zones according

to the computational requirements. The mesh of each zone is gen-
erated separately and then the mesh of entire structure is produced
by merging the meshes of all the sub-zones. This method can easily
control the mesh quantity and quality and avoid badly distorted
elements. The mesh generated by this method for a three-planar
Y-joint is shown in Figure 7.

In order to make sure that the results of the FE analysis are not
affected by the inadequate quality or the size of the generated mesh,
convergence test was conducted and meshes with different densities
were used in this test, before generating the 81 models. Based on the
results of convergence test, the number of elements through the
chord and brace thickness was 1; the number of elements on the
surface, base, and back of the weld profile was 2; and the number
of elements along ½ of the entire brace-to-chord intersection was
selected to be 22.

The static analysis of linearly elastic type is suitable for the pre-
diction of LJF in tubular joints (Gao et al. 2013, 2014). The Young’s
modulus and Poisson’s ratio were taken to be 207 GPa and 0.3,
respectively.

2.2.4. Verification of the FE model
The accuracy of FE results to determine the fLJF in tubular joints
should be validated using the experimental test results. To the best
of the authors’ knowledge, there is no experimental/FE database of
fLJF for three-planar tubular Y-joints currently available in the litera-
ture. Considering this issue, in order to verify the FE model used in
the present study, a set of uniplanar Y-joints were modelled (Figure
8) and the fLJF values obtained from these models subjected to axial,
IPB moment, and OPB moment loadings were compared with the
experimental results of Fessler et al. (1986b) and values predicted
byFessler et al. (1986b) equations.Geometrical properties of the vali-
dating Y-joints have been presented in Table 1.

The procedure of geometrical modelling (introducing the chord,
braces, and weld profiles), the mesh generation method (including
the selection of the element type and size), the analysis type, and the
method of fLJF calculation are the same for the validating uniplanar
Y-joint models and the three-planar Y-joints used in the present
research for the parametric study. Hence, the verification of the
fLJF values derived from the validating FE models with available cor-
responding experimental/equation-predicted values lends some
support to the validity of the fLJF values derived from the three-pla-
nar Y-joint FE models.

Results of the FE validation process, presented in Table 2, indi-
cate that there is a good agreement between the results of previous
studies and the predictions of the validating FE model. According
to Table 2, the average difference between the fLJF of the validating
FE model and the experimental results of Fessler et al. (1986b) is

Figure 4. Weld dimensions: (a) Saddle position, (b) Crown toe position, (c) Crown heel position (This figure is available in colour online).
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11.3%; while the average difference between the results of the vali-
dating FE model and the equations proposed by Fessler et al.
(1986b) is 6.2%. Hence, generated FE models can be considered
to be accurate enough to provide valid results.

2.3. Details of parametric study

To study the effects of non-dimensional geometrical parameters on
the fLJF values in three-planar tubular Y-joints subjected to the 2nd
axial loading condition (Figure 2(b)), 81 models were generated and
analyzed using the FE-based software package, ANSYS. The reason
behind selecting this specific loading condition for the parametric
study is fully discussed in Sect. 3.1.

Values assigned to the parameters β, γ, τ, and α have been pre-
sented in Table 3. These values cover the practical ranges of
dimensionless parameters typically found in tubular joints of
offshore jacket structures. The brace length has no effect on the
results when the parameter αB is greater than a critical value
(Chang and Dover 1999). According to Chang and Dover
(1996), this critical value is about 6. In the present study, in
order to avoid the effect of short brace length, a realistic value
of αB = 8 was assigned to all joints. Ahmadi and Ziaei Nejad
(2017a) and Ahmadi and Mohammadpourian Janfeshan (2021)
showed that the parameter τ has no considerable effect on the
fLJF values. Hence, a typical value of τ = 0.7 was selected for all
the Y-joints in the present research. Results of parametric study
are presented and discussed in Sect. 3.2.

The 81 generated models span the following ranges of dimen-
sionless geometrical parameters:

0.3 ≤ b ≤ 0.6

12 ≤ g ≤ 24

30◦ ≤ u ≤ 60
◦

8 ≤ a ≤ 24

(11)

2.4. Development of a parametric design equation

In order to calculate the fLJF values for three-planar tubular Y-
joints subjected to axial loading, a new parametric equation is pro-
posed in the present paper. Results of multiple nonlinear
regression analyses performed by SPSS were used to develop this
parametric fLJF formula. Values of dependent variable (i.e. fLJF)
and independent variables (i.e. β, γ, θ, and α) constitute the

Figure 5. The weld profile generated for a sample joint model (α = 8, τ = 0.7, β = 0.3, γ = 12, θ = 60°) (This figure is available in colour online).

Figure 6. Half of the entire three-planar Y-joint that is required to be modelled
under the 1st and 2nd axial, 1st and 2nd IPB moment, and 1st OPB moment loading
conditions (This figure is available in colour online).

Figure 7. Generated mesh by the sub-zone scheme.
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input data imported in the form of a matrix. Each row of this
matrix involves the information about the fLJF value of a three-pla-
nar tubular Y-joint having specific geometrical properties. When
the dependent and independent variables are defined, a model
expression must be built with defined parameters. Parameters of
the model expression are unknown coefficients and exponents.
The researcher must specify a starting value for each parameter,
preferably as close as possible to the expected final solution.
Poor starting values can result in failure to converge or in conver-
gence on a solution that is local (rather than global) or is physically
impossible. Various model expressions must be built to derive a
parametric equation having a high coefficient of determination
(R2). Developed parametric equation along with a discussion on
its applicability is presented in Sect. 3.3.

3. Results and discussion

3.1. The effect of multi-planarity on the fLJF values subjected
to different types of loading

In order to investigate the multi-planarity effects on the fLJF values
subjected to the axial, IPB moment, and OPB moment loading con-
ditions, nine uniplanar Y-joints were generated and the fLJF values
of these joints were compared with the fLJF values of the corre-
sponding three-planar Y-joints. Geometrical properties of these
joints are given in Table 4.

3.1.1. Axial loading
In order to study the effect of multi-planarity on the fLJF values
under the 1st and 2nd types of axial loading (Figure 2(a,b)), values
of the fLJF in nine multi-planar tubular Y-joints were compared with
the fLJF values obtained from the corresponding uniplanar Y-joints
under the two considered axial load cases. Results summarised in
Table 5 show that the fLJF value in a three-planar Y-joint under
the 1st axial loading condition is smaller than the corresponding
fLJF value in a uniplanar Y-joint; where, on an average basis, the
three-planar to uniplanar fLJF ratio is 0.88. Under the 2nd axial
loading condition, the fLJF value in a three-planar Y-joint is much

Figure 8. (a) A validating Y-joint FE model developed to compare its results with available experimental data and results of parametric equations proposed by Fessler et al.
(1986b), (b) ½ of the entire validating FE model required to be generated in order to reduce the computational time (This figure is available in colour online).

Table 1. Geometrical properties of the uniplanar tubular Y-joints used for the verification of FE models.

Joint ID

Dimensions (mm) Parameters

θD T L d t l τ β γ α αB
Y1 132 6.6 813 44 2.6 250 0.39 0.33 15 12.32 11.36 50°

Y2 132 6.6 813 70 2.6 225 0.39 0.53 15 12.32 6.43 50°

Y3 132 6.6 813 100 3.2 200 0.48 0.76 15 12.32 4.00 50°

Table 2. Results of the FE model verification based on available experimental data and parametric equations.

Loading type Joint ID

fLJF
(a)–(b)

difference (%)
(a)–(c)

difference (%)
(a)
Present FE model

(b)
Fessler et al. (1986b) experiment

(c)
Fessler et al. (1986b) equation

Axial Y1 205 223 217 8.1 5.6
IPB Y2 2180 2361 2417 7.6 9.8
OPB Y3 350 296 339 18.2 3.2

Table 3. Values assigned to each dimensionless parameter.

Parameter Definition Value(s)
β d/D 0.3, 0.45, 0.6
γ D/2T 12, 18, 24
θ Brace inclination angle 30°, 45°, 60°

α 2L/D 8, 16, 24
αB 2l/d 8
τ t/T 0.7
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bigger than the corresponding fLJF value in a uniplanar Y-joint;
where, on average, the three-planar to uniplanar fLJF ratio is 2.09.

Hence, it can be concluded that for axially loaded three-planar
Y-joints, the parametric formulas of simple uniplanar Y-joints are
not applicable for the fLJF prediction, since such formulas may
lead to highly under-predicting results. Consequently, developing
a set of specific parametric equations for the fLJF calculation in
three-planar Y-joints has practical value.

3.1.2. IPB loading
To study the effect of multi-planarity on the fLJF values under the 1st
and 2nd types of IPB loading (Figure 2(c,d)), values of the fLJF in
nine multi-planar tubular Y-joints were compared with the fLJF
values obtained from the corresponding uniplanar Y-joints under
the two considered IPB load cases. Results are presented in Table
6 showing that, under both considered IPB moment loadings, the
fLJF values in three-planar Y-joints are smaller than the correspond-
ing fLJF values in uniplanar Y-joints. On an average basis, the differ-
ences between the three-planar and uniplanar fLJF values for the 1st
and 2nd IPB load cases are 11.8% and 77.7%, respectively.

3.1.3. OPB loading
To investigate the effect of multi-planarity on the fLJF values under
the 1st and 2nd types of OPB loading (Figure 2(e,f)), values of the
fLJF in nine multi-planar tubular Y-joints were compared with the
fLJF values obtained from the corresponding uniplanar Y-joints
under the two studied OPB load cases. Results are presented in
Table 7 indicating that, under both considered OPB moment load-
ings, the fLJF values in three-planar Y-joints are bigger than the cor-
responding fLJF values in uniplanar Y-joints. However, the amount
of the difference between the three-planar and uniplanar fLJF values

is not large; where, on an average basis, the difference between the
three-planar and uniplanar fLJF values is 10.2%.

3.1.4. Critical loading condition
Since the increase of the LJF increases the deflections and reduces
the buckling load as well as the primary natural frequency of the
structure, biggest values of the fLJF are of real concern for the struc-
tural design applications and smaller fLJF values merely mean that
the considered tubular joint can be safely assumed to be rigid.
Hence, according to Sects. 3.1.1−3.1.3, the only loading case
under which the fLJF values should be individually studied with
the aim of investigating the effects of geometrical parameters and
the development of design equations is the 2nd type of axial loading
(Figure 2(b)).

3.2. Effects of geometrical parameters of the joint on the
fLJF values

3.2.1. The effect of the β on the fLJF values
The parameter β is the ratio of the brace diameter to the chord
diameter. Hence, provided that the chord diameter remains con-
stant, the increase of the β results in the increase of the brace diam-
eter. Figure 9 demonstrates the change of the fLJF, under the 2nd
axial loading condition, due to the change in the value of the β
and the interaction of this parameter with the γ. It can be seen
that the increase of the β results in the decrease of the fLJF. The
reason is that the increase of the β leads to the increase of the
joint stiffness (due to the increase of the chord diameter) which
consequently results in the decrease of the joint deflection; and
hence, according to Equation (3), the decrease of the fLJF. As can
be observed in Figure 9, this conclusion is independent from the

Table 4. Geometrical properties of the uniplanar and three-planar tubular Y-joints used to investigate the multi-planarity effects on the fLJF values subjected to the six
studied loading conditions.

Joint ID D (mm) T (mm) L (mm) d (mm) t (mm) l (mm) β γ θ α αB τ

YJ1 500 20.83 4000 225 14.6 900 0.45 12 30° 16 8 0.7
YJ2 500 20.83 4000 225 14.6 900 0.45 12 45° 16 8 0.7
YJ3 500 20.83 4000 225 14.6 900 0.45 12 60° 16 8 0.7
YJ4 500 14 4000 225 9.8 900 0.45 18 30° 16 8 0.7
YJ5 500 14 4000 225 9.8 900 0.45 18 45° 16 8 0.7
YJ6 500 14 4000 225 9.8 900 0.45 18 60° 16 8 0.7
YJ7 500 10 4000 225 7 900 0.45 24 30° 16 8 0.7
YJ8 500 10 4000 225 7 900 0.45 24 45° 16 8 0.7
YJ9 500 10 4000 225 7 900 0.45 24 60° 16 8 0.7

Table 5. Comparison of the fLJF values in uniplanar and three-planar Y-joints subjected to the axial load cases.

Joint ID Loading condition

fLJF Value

Uniplanar joint Three-planar joint Difference (%)
YJ1 1st axial load case (Figure 2(a)) 18.9 14.97 21.16

2nd axial load case (Figure 2(b)) 38.1 50.39
YJ2 1st axial load case (Figure 2(a)) 40.3 30.5 24.3

2nd axial load case (Figure 2(b)) 82.6 51.2
YJ3 1st axial load case (Figure 2(a)) 127.5 126.7 0.7

2nd axial load case (Figure 2(b)) 264 51.89
YJ4 1st axial load case (Figure 2(a)) 80.26 63.1 21.38

2nd axial load case (Figure 2(b)) 156 48.5
YJ5 1st axial load case (Figure 2(a)) 171.7 148.3 13.4

2nd axial load case (Figure 2(b)) 347 50.72
YJ6 1st axial load case (Figure 2(a)) 259.6 232 10.42

2nd axial load case (Figure 2(b)) 527 50.85
YJ7 1st axial load case (Figure 2(a)) 122.5 115.9 5.7

2nd axial load case (Figure 2(b)) 255 52.15
YJ8 1st axial load case (Figure 2(a)) 211 229 7.8

2nd axial load case (Figure 2(b)) 533 60.4
YJ9 1st axial load case (Figure 2(a)) 437.3 361 17.39

2nd axial load case (Figure 2(b)) 901 51.5
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values of other geometrical parameters. It can also be seen that the
increase of the γ leads to increasing the slope of the fLJF decrement
curve due to the increase of the β. In other words, in joints with big-
ger values of the γ, the increase of the β results in more drastic
decrease of the fLJF.

3.2.2. The effect of the α on the fLJF values
The parameter α is the ratio of the length to the radius of the chord.
Hence, the increase of the α in models having constant value of the
chord diameter means the increase of the chord length. Figure 10
shows the change of the fLJF due to the change in the value of the
α and the interaction of this parameter with the γ under the 2nd
axial loading condition. Results showed that the change of the fLJF
as a function of the α does not exactly follow a regular pattern.
However, the amount of the change in the fLJF values due to the
change of the α is usually not significant.

3.2.3. The effect of the θ on the fLJF values
Figure 11 depicts the change of the fLJF values as a function of the
brace inclination angle θ and the interaction of this parameter
with the γ under the 2nd axial loading condition. It can be seen

that the increase of the θ leads to the increase of the fLJF. As can
be observed in Figure 11, this conclusion is independent from the
values of other geometrical parameters. It can also be seen that
the increase of the γ leads to increasing the slope of the fLJF incre-
ment curve due to the increase of the θ. In other words, in joints
with bigger values of the γ, the increase of the θ results in more
drastic increase of the fLJF.

3.2.4. The effect of the γ on the fLJF values
The parameter γ is the ratio of the section radius to wall thick-
ness of the chord. Hence, provided that the chord diameter
remains constant, the increase of the γ means the decrease of
the chord thickness. It is evident from Figures 9–11 that the
increase of the γ leads to the increase of the fLJF. The reason is
that the increase of the γ leads to the decrease of the joint stiff-
ness (due to the decrease of the chord wall thickness) which con-
sequently results in the increase of the joint deflection; and
hence, according to Equation (3), the increase of the fLJF. This
conclusion does not depend on the values of other geometrical
parameters.

Table 6. Comparison of the fLJF values in uniplanar and three-planar Y-joints subjected to the IPB load cases.

Joint ID Loading condition

fLJF Value

Uniplanar joint Three-planar joint Difference (%)
YJ1 1st IPB load case (Figure 2(c)) 7878 7254 7.9

2nd IPB load case (Figure 2(d)) 1098 86
YJ2 1st IPB load case (Figure 2(c)) 8125 7852 3.36

2nd IPB load case (Figure 2(d)) 1125 86.1
YJ3 1st IPB load case (Figure 2(c)) 8651 8001 7.5

2nd IPB load case (Figure 2(d)) 1642 81
YJ4 1st IPB load case (Figure 2(c)) 9125 8247 9.6

2nd IPB load case (Figure 2(d)) 1896 79.22
YJ5 1st IPB load case (Figure 2(c)) 9862 8574 13.06

2nd IPB load case (Figure 2(d)) 2198 77.7
YJ6 1st IPB load case (Figure 2(c)) 10081 8842 12.2

2nd IPB load case (Figure 2(d)) 2531 74.9
YJ7 1st IPB load case (Figure 2(c)) 10958 9011 17.7

2nd IPB load case (Figure 2(d)) 2994 72.6
YJ8 1st IPB load case (Figure 2(c)) 11023 9200 16.5

2nd IPB load case (Figure 2(d)) 3111 71.7
YJ9 1st IPB load case (Fig. 2c) 11855 9655 18.55

2nd IPB load case (Figure 2(d)) 3487 70.5

Table 7. Comparison of the fLJF values in uniplanar and three-planar Y-joints subjected to the OPB load cases.

Joint ID Loading condition

fLJF value

Uniplanar joint Three-planar joint Difference (%)
YJ1 1st OPB load case (Figure 2(e)) 6638 6821 2.7

2nd OPB load case (Figure 2(f)) 7568 12.28
YJ2 1st OPB load case (Figure 2(e)) 6218 6698 7.1

2nd OPB load case (Figure 2(f)) 7089 12.28
YJ3 1st OPB load case (Figure 2(e)) 5897 6254 5.7

2nd OPB load case (Figure 2(f)) 6480 9
YJ4 1st OPB load case (Figure 2(e)) 5321 5897 9.7

2nd OPB load case (Figure 2(f)) 6142 13.3
YJ5 1st OPB load case (Figure 2(e)) 5012 5606 10.5

2nd OPB load case (Figure 2(f)) 5861 14.48
YJ6 1st OPB load case (Figure 2(e)) 4981 5296 6

2nd OPB load case (Figure 2(f)) 5500 9.4
YJ7 1st OPB load case (Figure 2(e)) 4456 4958 10.12

2nd OPB load case (Figure 2(f)) 5023 11.28
YJ8 1st OPB load case (Figure 2(e)) 4189 4765 12

2nd OPB load case (Figure 2(f)) 4875 14
YJ9 1st OPB load case (Figure 2(e)) 3847 4294 10.4

2nd OPB load case (Figure 2(f)) 4456 13.6
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3.3. Proposed parametric equation for the calculation of
the fLJF

After performing a large number of nonlinear analyses, as described
in Sect. 2.4, following parametric equation is proposed for the

calculation of the fLJF values in three-planar tubular Y-joints sub-
jected to the 2nd axial loading condition (Figure 2(b)):

fLJF = 0.001u1.697 exp [2.288(1+ b−0.314 + g0.297 + a0.036)] (12)

Figure 9. The effect of the β on the fLJF values and its interaction with the γ under the 2nd axial loading condition (τ = 0.7, α = 24): (a) θ = 30°, (b) θ = 45°, (c) θ = 60° (This
figure is available in colour online).

Figure 10. The effect of the α on the fLJF values and its interaction with the γ under the 2nd axial loading condition (τ = 0.7, θ = 60°): (a) β = 0.3, (b) β = 0.45, (c) β = 0.6 (This
figure is available in colour online).
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A quite high value of 0.971 was obtained for the coefficient of deter-
mination (R2) indicating the accuracy of the fit. The validity ranges
of dimensionless geometrical parameters for the developed
equation have been given in Equation (11). The 1st axial loading
condition as well as the IPB and OPB moment loading conditions
were completely omitted during the equation development phase
due to the reasons discussed in Sect. 3.1.4.

Figure 12 compares the fLJF values predicted by the proposed
equation with the fLJF values extracted from FE analyses. It can be
seen that there is a very good agreement between the results of
the proposed equation and numerically computed values.

The UK Department of Energy (DoE) (1983) recommends
the following assessment criteria regarding the applicability of
the parametric equations (P/R stands for the ratio of the pre-
dicted fLJF from proposed equation to the recorded fLJF from
FE analysis):

. For a given dataset, if % fLJF values under-predicting ≤ 25%, i.e.
[%P/R < 1.0]≤ 25%, and if % fLJF values considerably under-pre-
dicting ≤ 5%, i.e. [%P/R < 0.8] ≤ 5%, then accept the equation.
If, in addition, the percentage fLJF values considerably over-pre-
dicting ≤ 50%, i.e. [%P/R > 1.5] ≥50%, then the equation is
regarded as generally conservative.

. If the acceptance criteria is nearly met i.e. 25% < [%P/R < 1.0] ≤
30%, and/or 5% < [%P/R < 0.8] ≤ 7.5%, then the equation is
regarded as borderline and engineering judgment must be
used to determine acceptance or rejection.

. Otherwise reject the equation as it is too optimistic.

In view of the fact that for a mean fit equation, there is always a
large percentage of under-prediction, the requirement for joint
under-prediction, i.e. P/R < 1.0, can be completely removed in the
assessment of parametric equations (Bomel Consulting Engineers
1994). Assessment results according to the UK DoE (1983) criteria

are presented in Table 8 showing that Equation (12) satisfies the cri-
teria, and hence it can be reliably used for the design of three-planar
tubular Y-joints.

Figure 11. The effect of the θ on the fLJF values and its interaction with the γ under the 2nd axial loading condition (τ = 0.7, α = 24): (a) β = 0.3, (b) β = 0.45, (c) β = 0.6 (This
figure is available in colour online).

Figure 12. Comparison of 81 fLJF values calculated by the proposed equation
(Equation (12)) with the corresponding fLJF values extracted from the FE analyses
(This figure is available in colour online).

Table 8. Results of fLJF equation assessment according to the UK DoE (1983)
acceptance criteria.

Proposed equation

UK DoE conditions

Decision%P/R < 0.8 %P/R > 1.5
Equation (12) 0% < 5% OK. 12.34% < 50% OK. Accept
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6. Conclusions

In order to study the effects of geometrical characteristics of three-
planar tubular Y-joints on the LJF factor ( fLJF), 81 FE models were
generated and analyzed subjected to six types of axial, in-plane
bending (IPB) moment, and out-of-plane bending (OPB) moment
loadings. Results can be summarised as follows.

The fLJF value in a three-planar Y-joint under the 1st axial load-
ing condition is smaller than the corresponding fLJF value in a uni-
planar Y-joint; where, on an average basis, the three-planar to
uniplanar fLJF ratio is 0.88. Under the 2nd axial loading condition,
the fLJF value in a three-planar Y-joint is much bigger than the cor-
responding fLJF value in a uniplanar Y-joint; where, on average, the
three-planar to uniplanar fLJF ratio is 2.09. Hence, it can be con-
cluded that for axially loaded three-planar Y-joints, the parametric
formulas of simple uniplanar Y-joints are not applicable for the fLJF
prediction, since such formulas may lead to highly under-predict-
ing results. Consequently, developing a set of specific parametric
equations for the fLJF calculation in three-planar Y-joints has prac-
tical value.

Under both considered IPB moment loadings, the fLJF values in
three-planar Y-joints are smaller than the corresponding fLJF values
in uniplanar Y-joints. On an average basis, the differences between
the three-planar and uniplanar fLJF values for the 1st and 2nd IPB
load cases are 11.8% and 77.7%, respectively.

Subjected to both considered OPB moment loadings, the fLJF
values in three-planar Y-joints are bigger than the corresponding
fLJF values in uniplanar Y-joints. However, the amount of the differ-
ence between the three-planar and uniplanar fLJF values is not large;
where, on an average basis, the difference between the three-planar
and uniplanar fLJF values is 10.2%.

Since the increase of the LJF increases the deflections and
reduces the buckling load as well as the primary natural frequency
of the structure, biggest values of the fLJF are of real concern for the
structural design applications and smaller fLJF values merely mean
that the considered tubular joint can be safely assumed to be
rigid. Hence, the only loading case under which the fLJF values
should be individually studied with the aim of investigating the
effects of geometrical parameters and the development of design
equations is the 2nd type of axial loading.

Under the 2nd axial loading condition, the increase of the γ and/
or θ leads to the increase of the fLJF; while the increase of the β
results in the decrease of the fLJF; and the increase of the α does
not have a significant effect on the fLJF value. In joints with bigger
values of the γ, the increase of the β results in more drastic decrease
of the fLJF, and the increase of the θ leads to more drastic increase of
the fLJF.

The FE results were used to develop a new parametric equation
for the calculation of the fLJF values in three-planar Y-joints sub-
jected to the 2nd type of axial loading. Proposed equation, having
a quite high coefficient of determination, was assessed based on
the acceptance criteria recommended by the UK DoE and can be
reliably used for the analysis and design of tubular joints in offshore
structures.
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