THREE-DIMENSIONAL TABLES

M. A, Toleman

So far we have only considered log~linear models for two~dimensional
tables. Contingency tables of more than two-dimensions are very common,
In this chapter we shall focus on three-dimensional tables and consider
log-iiﬂear models for such tables, We shall also discuss the concept
of collapsibility. In the past many investigators have opted to
collapse over variables and examine the two~way tables so generated.
Duncalfe (1980) explains that this rmay be a dangerous procedure and
refers to Simpson's paradox. Tables of more than three~dimensions
are discussed briefly. This is followed by an example of the analysis

of & three~dimensional table.

te THE GENERAL LOG~LINEAR MODEL

Consider an I x J x K contingenéy table, Let Xijk be the obgerved

count in the ith row (variable 1), jth column (variable 2) and kth layer
(variable 3) of this table and lot mijk be the corresponding expected
value for that entry under some model, The general log-linear model

for the table is given by
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Note that the programs GLIM and GENSTAT use different constraints to

those in (1.2). Both set the first level of & variable/factor to

zero instead of having the levels sum to zero, This gives an identical
analysis to above,

Interaction terms eg. u12(ij)’ have the same general meaning as
for I x J tables ie. their presence in a model implies some dependence
between the subscripted variables,

Four other types of models, corresponding to deletion of one or
more terms from (1,1), are usually considered:

(a) Upp = gz = Uy = Uyp3 = Oy complete independence, ie. 21l three

variables are independent of each other,

(b) Uy = Uz = Wipz = 0, Joint independence, ie. variable 1 is

independent of variables 2 and 3 {there are three versions of
this model).
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(c) Uiz = Bqp3 = 0, conditional independence, ie., variables 1 and 2

are independent for all levels of variable 3 but each is associated

with variable 3 (there are three versions of this model).

(q) Uyp3 = 0y 10 second-order interaction, ie., no two variable

interaction is affected by the third variable but all two

variable interactions are present,

S0 far we have not considered the sampling distributions that
are used for the collection of categorical data., Fienberg (1977)
notes three sampling distributions, Poisson, multinomial and
product-multinomial, that all give the same maximum likelihood
estimates for expected céll counts. Duncalfe (1980) gives the
derivation for each case.

These different sampling distributions arise because our
variables are either response variables eg., disecase rating,
pregnancy, or design variables eg. treatment, age group, For
a three-dimensional table there are three possible arrangements
for our variables:

(1) three response, zero design

(ii)  two response, one design;

(iii) ome response, two design.

Fienberg (1977) states that for (i) only Poisson and
multinomial sampling distributions are a?propriate, whereas,
for (ii) and (iii) we could use a product-multinomial
distribution in which the fixed marginal totals correspond
to design variables,

Bishop, Fienberg and Holland (1975, p.70) show that certain
interactions have to be included in models for cases (ii) and

(iii), This will be discussed in more detail under Logit Models.

2o ESTIMATED EXPECTED VALUES

Consider model (a) from the previous section. We have
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or
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Then for all i, j and k and using the "+ notation to denote

summation across all the levels of a variable we have
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Dividing the product of (2.3), (2.4) and (2.5) by the square of
(2.8) gives
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with the corresponding maximum likelihood estimates given by
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In & similar fashion the maximum likelihood estimates for
model (b) are given by
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and for model (c) by
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All the estimates considered so far are direct estimates, ie.
each %ijk is a function of marginal totals. No such closed-form
expression exists for the ﬁijk for model (d). In this case an
iterative procedure is necessary to evaluate the egtimated expected
values. Iienberg (1977, p.33-36) describes the procedure, known
as the "iterative propbrtional fitting procedure' and adds that it

will evaluate both indirect and the direct estimates,

%« HIERARCHICAL MODELS

All the models considered so far are hierarchical models in

that higher order terms may be included only if related lower order
terms are included. Nelder (1976) refers to this concept as
"marginality". TFor example

log mijk = U + u?(i) + ua(j) + uB(k) + u123(ijk)

with the usual constraints, is a non~hierarchical model since
u12(ij)’ u?B(ik) and u23(jk) are not included. The interpretation
of non-hierarchical models is usually complex and hence they are
avoided,

Bishop et al (1975) and Fienberg (1977) use thel Jnotation
to represent hierarchical models, €.fe
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4, COLLAPSING TABLES

The dimensionality of a contingency table may be reduced

by collapsing across one or more of the variables in the table.
Bishop et al (1975) state and prove the following theorem on
collapsing three~dimensional tables:
Iheorem 4.1 In a rectanguler three~dimensional table a variable
is collapsible with respect to the interaction between the other
two variables if and only if it is at least conditionally in-
dependent of one of the other two variables given the third.

Thus, for examplé, We cen measure u,, from the two~-dimensional
table of variable 1 and variable 2 if and only if Uy = 0 or
u23 = Oa  In this case we say the table is collapsible with
respect to variable 3. Hence at least one two-factor term
must be zero before we may collapse a three~dimensional table,
If we collapse a table without considering these interactions then
we risk drawing erroneous conclusions about the table. Simpson's

paradox is explained by this theorem (Fienberg, 1977, p.i45).

5 HIGHER~DIMENSTONAL TABLES

The extension of the theory of log-linear models to tables

of more then three-dimensions is relatively straightforward,
However, there are two practical provlems that are not found

with three-dimensional tables, The first problem relates to

the selection of a model. The next chapter gives more detail

on this but essentially the more dimensions, the more models,and then
the harder it becomes to quickly pick a useful model. The

second problem lies in the interpretation of a selected model.
Bishop et al (1975, p.46) suggest that the verbal interpretation

of many of these models is very cumbsrscme, They also suggest

that one of the main purposes for a model is to help determine

which variables can be collapsed across.

6. EXAMPLE OF THE ANALYSIS OF A THREE~-DIMENSIONAL TABLE
Table 1 represents hypothetical data for 510 cows on the

relationship between three variables, (1) breed of cow,
(2) age of cow and (3) calf loss. There are two breeds,
bfahman and sahiwal, three age groups, 2 year old, 3 year
old and 4 year old, and two categories of calf loss, loss

and no loss.



Table 1 Frequency data on. breed x age x calf loss

Calf Loss

Breed Age Yes No

2 55 67

Brahman 3 16 Lely
b 8 45

2 48 66

Sahiwal 3 20 52
Lo 18 71

Data in Table 2 are the expected values under two log-linear
12 F Uz T Uy = Ugng = 0,
Upy = u15 = u123 = 0, The estimated

expected values are given by the following equations

models; (a) complete independence, u

(b) joint independence,
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where i refers to breed (2 levels), j to age (3 levels) and k to
calf loss (2 levels), ,
Table 2 Observed values and expected values under two log~linear

models for data in Table 1.

Cell (i,],k) . Observed Expected(a) Expected(k)
T,1,1 55 35018 b7, 46
T41,2 67 7%.56 61.28
1,2, 1 16 19.68 16,59
1,2, 2 Ly 41,15 Ll 24
143, 1 8 21,17 11.98
143, 2 45 | L, 26 5345
2, 1,1 L8 41,17 55,54
2,1,2 66 86.08 71,72
2,241 20 23,03 19,11
2,2 ,2 52 48,15 51.76
24341 18 2h,77 1h.02
24,23,2 71 ' 51.80 62,55
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Expected cell values are now obtained for all possible

hierarchical log-linear models.,

The log-likelihood ratio

statistic (Ga)is then calculated using these expected cell

values and the observed cell frequencies, 1
is then compared with the 5% level of the X° distribution with

degrees of freedom given by

defe = number of cells - number of paraneter in model

Table 3 lists all these models, their degrees of freedom and

G2 values,

This test statistic

Teble 3 Log-linear model fits %o data from table 4

Model dof, °

L1al2]C 30 7 37, 14%
(12133 5 29.69*
3]l 2] 6 36,82

L3 5 8,28
(12730137 I 29,37*
[mz2]l27] 3 0.83
Lasl[e3] 4 7.96
[1270130{ 23] 2 0.83

* P <0,05

The model with the fewest parameters and non~-significant G2
value 15(:1J{“23J Or U5 = u13 = u123 = 0. Hence this is the
simplest model that fits the data well.

Tstimates of the

parameters for this model are given in Table 4,

Table 4 EBstimates for model [17][237 using GLIM

Parameéeter Fstimate Standard Error
u 3,860 0110
uq(a) 0,157 0,089
u2(2) =1,051 0. 194
u2(5) =1 937? 00219
u3(2) 0,256 0,131
“23(2) 0,725 0,235
u23(3) 1,240 0,254

Since Uyg = O and using the theorem from Section 4 we

can collapse across variable (1), "breed of cow! and produce

Table 5, A later chapter on ordered categories will deal with

further aspects of such tables,
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fable 5 Data on age of cow x calf loss

Age _ Calf Loss
Yaes - ‘No
no. % no. %
103 20 133 26
3 36 7 9% 19

4 26 5 116 23
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