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Rodents are widely used to mimic human diseases to improve understanding of the causes and progression of disease symptoms
and to test potential therapeutic interventions. Chronic diseases such as obesity, diabetes and hypertension, together known as
the metabolic syndrome, are causing increasing morbidity and mortality. To control these diseases, research in rodent models that
closely mimic the changes in humans is essential. This review will examine the adequacy of the many rodent models of metabolic
syndrome to mimic the causes and progression of the disease in humans. The primary criterion will be whether a rodent model
initiates all of the signs, especially obesity, diabetes, hypertension and dysfunction of the heart, blood vessels, liver and kidney,
primarily by diet since these are the diet-induced signs in humans with metabolic syndrome. We conclude that the model that
comes closest to fulfilling this criterion is the high carbohydrate, high fat-fed male rodent.

1. Introduction

Hypertension, diabetes and obesity are common but not
independent in humans and the combination is referred
to as metabolic syndrome [1, 2]. While the definition
of the syndrome may help understanding causes and
prognosis, there are continuing arguments on the clinical
usefulness of defining the syndrome in humans. Human
metabolic syndrome is accepted as a consequence of dietary
imbalance rather than a genetically programmed disease.
This syndrome includes central obesity, insulin resistance,
elevated blood pressure, impaired glucose tolerance and
dyslipidaemia [1, 2]; these are accepted risk factors that
increase the incidence of cardiovascular disease and type 2
diabetes [3–5]. Metabolic syndrome is also associated with
an increased risk of nonalcoholic fatty liver disease and
kidney dysfunction [6, 7]. Similarly, there is solid evidence
for correlations between metabolic syndrome and functional
changes in the lungs, dementia and cancers of the breast,
pancreas and bladder (Figure 1) [8–12]. Lifestyle and diet
modulate metabolic syndrome [4, 13] and this induces
pathophysiological changes throughout the body. Hence it is
important to study the progression and treatment strategies
for metabolic syndrome.

The number of adults with metabolic syndrome is
substantial and the prevalence is increasing throughout the
world [14]. The gender ratio was similar in the USA [15],
Singapore and Australia showed increased rates in females
[16, 17], while Japan showed increased rates in males [18].
In 2002, the prevalence of metabolic syndrome in the USA
was 24% and 23.4% in males and females, respectively
[19]. In 2005 and 2006, this prevalence had increased to
34% in both males and females [15, 20]. In the Australian
population, 18.8% of males and 25.4% of females fulfilled
the requirements for diagnosis with metabolic syndrome
in 2000 [17]. In a Japanese study, 45% of males and 38%
of females were diagnosed with metabolic syndrome [18].
Similar prevalence rates of metabolic syndrome have been
reported in the Indian subcontinent [21].

The widespread occurrence of metabolic syndrome in
humans means that there is an urgent need to study
relevant causes and progression of the signs. These studies
require viable animal models that adequately mimic all
the aspects of the human disease, developing all major
signs of metabolic syndrome, especially obesity, diabetes,
dyslipidaemia, hypertension and possibly fatty liver disease
and kidney dysfunction. Rodents have been used for many
years as models of human disease, especially hypertension,
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Figure 1: Metabolic syndrome and associated complications.

diabetes and obesity [22–25]. This review will examine
whether the existing rodent models for components of
metabolic syndrome mimic the range of changes in humans
and are therefore suitable to evaluate potential treatments for
human metabolic syndrome.

2. Genetic Models of Obesity and
Type 2 Diabetes

Genetic models of obesity and diabetes include db/db mice,
ob/ob mice, Zucker diabetic fatty rats and Otsuka Long-Evans
Tokushima Fatty rats, while Goto-Kakizaki rats are diabetic
but nonobese. These models are useful in evaluating specific
molecular mechanisms that may be involved in development
of obesity in rodents, but the metabolic syndrome in humans
is not a monogenetic disorder. Therefore, the relevant
questions are whether these genetic changes mimic those
observed in humans and whether these models show the
range of signs that characterise the metabolic syndrome.
As an example, several of these models have mutations in
the leptin gene or receptor (Figure 2), yet similar mutations
are a very rare recessive genetic disorder in humans with
only 4 mutations in 15 people reported up until 2009 [26].
Further, although cholecystokinin is important as a satiation
signal [27], there are only a few reports of CCK-1 receptor
mutations, as found in the Otsuka Long-Evans Tokushima
fatty rats, inducing obesity in humans [28, 29].

3. ob/ob (C57BL/6J-ob/ob ) Mice

This was one of the first genetic models used for the study of
diabetes [30]. These mice inherited a monogenetic autoso-
mal recessive mutation in the leptin gene on chromosome
6 [31, 32] and developed obesity, hyperinsulinaemia and
hyperglycaemia after 4 weeks of age [33]. They showed an
increased body weight compared to their lean littermates at
all ages [33, 34]. The presence of impaired glucose tolerance
was found after 12 weeks of age [35]. These mice developed
left ventricular hypertrophy with decreased cardiac function
at 24 weeks of age [36], cardiac fibrosis after 20 weeks of
age [37] and hepatic steatosis and inflammation at 12 weeks
of age [38, 39]. Unlike humans with metabolic syndrome,
these mice showed reduced blood pressure [34] and did not
develop dyslipidaemia even after the age of 36 weeks [35].

4. db/db (C57BL/KsJ-db/db ) Mice

These mice have inherited an autosomal recessive mutation
in the leptin receptor gene present on chromosome 4 [40]
leading to higher body weights than their lean littermates
after 6 weeks of age [41]. Fasting blood glucose concen-
trations were higher after 8 weeks of age and these mice
showed increased plasma concentrations of triglycerides,
total cholesterol and nonesterified fatty acids along with
reduced HDL/LDL cholesterol ratio after 13 weeks of age
[42]. Hyperinsulinaemia and impaired glucose tolerance
were observed after 12 weeks of age [41, 43]. In the heart,
both infiltration with inflammatory cells and fibrosis were
present after 12 weeks of age, although blood pressure was
unchanged [41]. These mice showed vascular endothelial
dysfunction at 12 weeks of age [41] and developed hepatic
steatosis after 20 weeks of age [44]. db/db mice failed to show
hepatic inflammation and fibrosis [45].

5. Zucker Diabetic Fatty Rats (fa/fa)

Diabetic Zucker fatty rats (ZDF), a model of early onset
obesity, have a mutation in the leptin receptor gene [46].
ZDF rats became hyperglycaemic after 13–15 weeks of
age [47] with hyperinsulinaemia and hypertriglyceridaemia
after 12–14 weeks of age along with diastolic and systolic
dysfunction [48]. Serum cholesterol concentrations were
slightly increased in ZDF rats compared to lean Zucker rats
at 10 weeks of age whereas the serum concentration of
cholesterol was ∼2.5 times higher compared to lean Zucker
rats at 20 weeks of age [49]. These rats also developed
endothelial dysfunction after 12 weeks of age [50]. ZDF rats
showed only moderate increases in systolic blood pressure by
15 weeks of age [51]. Albuminuria was present at the age
of 31 weeks [52] with thickening of basal membrane and
glomerular fibrosis after 47 weeks [52]. Increased hepatic
triglyceride deposition was observed after 20 weeks of age
in ZDF rats [53]. ZDF rats also showed increased serum
markers of inflammation such as TNF-α and IL-1β after 26
weeks of age [54].
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Figure 2: Mechanism of the actions of leptin including the effects of leptin deficiency or leptin receptor deficiency.

6. Otsuka Long-Evans Tokushima Fatty Rats

Otsuka Long-Evans Tokushima Fatty (OLETF) rats have
been used as a rat model of human diabetes and obesity
[55]. Pancreatic acini cells in OLETF rats were insensitive to
the actions of cholecystokinin (CCK), which controls food
intake [56], due to the absence of CCK-1 receptors [57]. Male
and female OLETF rats were similar in body weight to lean
Long-Evans Tokushima rats at the time of weaning but they
became 30–40% heavier than age-matched lean Long-Evans
Tokushima Otsuka rats after 20 weeks [58]. Due to the lack
of CCK-1 receptors, the average meal size and overall food
intake were higher in OLETF rats [57]. OLETF rats presented
with high blood glucose concentrations after 18 weeks of
age but they showed impaired glucose tolerance starting at
24 weeks of age [58]. Plasma triglyceride concentrations
in OLETF rats started increasing from 8 weeks of age but
cholesterol concentrations were only slightly higher even
after 40 weeks of age [58]. After week 40 of age, OLETF rats
showed diffuse glomerulosclerosis [58]. Hearts from OLETF
rats showed cardiac hypertrophy with left ventricular systolic
and diastolic dysfunction [59]. OLETF rats showed higher
blood pressure compared to lean Long-Evans Tokushima
Otsuka rats after 14 weeks of age [60]. After 34 weeks of age,
OLETF rats showed 5 times higher triglyceride deposition in
liver compared to the lean Long-Evans Tokushima Otsuka
rats [61].

7. Goto-Kakizaki Rats

Goto-Kakizaki (GK) rats are nonobese and spontaneously
diabetic [62]. The occurrence of diabetes in these rats is an
interaction of several events including presence of suscep-

tibility loci for some diabetic traits, gestational impairment
inducing decreased β-cell neogenesis and proliferation and
loss of β-cell differentiation [63]. These inbred rats were
hyperglycaemic after 4 weeks of age with impaired glucose
tolerance but they were lighter than the age-matched Wistar
rats [64]. These rats developed cardiac hypertrophy and
decreased systolic function at 20 weeks of age [65]. There was
no change in blood pressure even after 14 months of age [66].
Plasma and liver lipid concentrations were higher in Goto-
Kakizaki rats after 8 weeks of age compared to age-matched
Wistar rats [67]. Goto-Kakizaki rats had higher urinary
excretion of albumin and decreased creatinine clearance after
14 months of age along with increases in glomerular volume,
basement membrane thickness and kidney weight [66].

These genetic models consistently develop obesity and
non-insulin-dependent diabetes, but metabolic syndrome is
a much broader constellation of pathophysiological changes,
especially including hypertension. Thus, these rodent mod-
els, although used in obesity research, replicate neither the
causes nor the changes that occur in human metabolic
syndrome (summarised in Table 1).

8. Genetically Engineered Diabetic Mice

In recent years, genetically engineered mice models, either
transgenic or knockout, have been developed to study the
normal and abnormal effects of a particular protein or
a set of proteins. Different proteins, signalling molecules
and hormones, important in development of diabetes and
obesity, can be removed by changes in the genome of the
mice. Some of the important proteins that have been deleted
from the mice for obesity and diabetes research include
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Table 1: Different rodent models with the signs of metabolic syndrome.

Rodent
model

Age (weeks)

Signs of metabolic syndrome shown by rodents

References
Obesity Hypertension Dyslipidaemia

Cardiovascular
dysfunction

Impaired
glucose

tolerance
Fatty liver

Kidney
dysfunction

ob/ob
mice

4 � × × × × × U
[33–39]12 � × × × � � U

24 � × × � � � U

db/db
mice

6 � × × × × × U
[41–44]12-13 � × � � � × U

20 � × � � � � U

ZDF rat

12–15 � � � � × × ×
[47–53]20 � � � � × � ×

31–47 � � � � × � �

OLETF
rats

8 × × � × × × ×

[58–61]

14 × � � × × × ×
20 � � � × × × ×
24 � � � × � × ×
34 � � � × � � ×
40 � � � × � � �

60–66 � � � � � � �

Goto-
Kakizaki
rats

4 × × × × � × ×
[64–67]

8 × × � × � � ×
20 × × � � � � ×
60 × × � � � � �

This table represents the signs of metabolic syndrome at different ages. The symbols � and × indicate the presence and absence of these signs of metabolic
syndrome at that age, respectively, whereas U indicates unavailability of the data. The table indicates that age is an important parameter since some of the
signs are developed in very young rodents whereas others take much longer to develop.

insulin receptor, GLUT4, IRS-1 and IRS-2. Insulin receptor-
null mice do not survive for more than 72 hours as they
develop severe ketoacidosis [68] with hyperglycaemia and
hyperinsulinaemia [69]. Thus they cannot be used in long-
term studies as adults. Further, the insulin receptor knockout
mice are unlikely to mimic human conditions as this receptor
loss is very rare in humans [68, 70]. Other models lacking
GLUT4, IRS-1 and IRS-2 may give useful information about
the roles of each protein [71–75], but they do not mimic the
cause of human metabolic syndrome.

9. Chemically Induced Rodent Models
of Diabetes

Alloxan and streptozotocin are structural analogues of
glucose that enter pancreatic beta cells via the GLUT2
transporter [86]. Single injections of alloxan or strepto-
zotocin induce selective necrosis of pancreatic β cells in
rats, mice and rabbits [86–91] as a model of type 1
diabetes. Chemically induced diabetic rodents show fatty
liver and inflammation [92] along with decreased ventricular
contractility and function [93]. In contrast to patients with
metabolic syndrome, alloxan- and streptozotocin-induced
diabetic rats are hypoinsulinaemic [94], do not gain weight

and are usually hypotensive. Thus, chemically induced type 1
diabetic rodents do not show the diverse characteristics of
the metabolic syndrome and therefore they are not a suitable
model for this syndrome in humans.

Type 2 diabetes may be induced by low-dose streptozo-
tocin given neonatally, for example, at a dose of 70 mg/kg
on day 5 of life, producing moderate hyperglycaemia in
adult rats with decreased HDL-cholesterol concentrations
but no other lipid abnormalities or oxidative enzyme changes
[95]. Insulin resistance and an approximate doubling of
plasma C-reactive peptide and TNF-α were produced in 14-
week-old rats treated on day 2 of life with streptozotocin
(90 mg/kg) [96]. However, these changes following neonatal
streptozotocin are insufficient to define the signs of the
metabolic syndrome. A better option may be treatment with
low-dose streptozotocin in a nutritional model of type 2
diabetes induced by an increased energy diet. In 8-week-
old rats, the combination of streptozotocin (25 mg/kg) and
a high-fructose, high-fat diet for 6 weeks increased plasma
glucose, insulin and triglyceride concentrations, decreased
left ventricular contractile function and reduced myocardial
metabolic efficiency [97]. A similar protocol with a high-
energy diet for 5 weeks followed by streptozotocin admin-
istration (40 mg/kg) produced metabolic abnormalities with
insulin resistance that could be decreased by administration
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Table 2: Effects of some treatment strategies on rodent models of metabolic syndrome.

Rodent model Interventions
Reversal or prevention of signs of metabolic
syndrome and associated complications

Signs of metabolic syndrome
not affected by drug treatment

ob/ob mice

Temocapril (ACE
inhibitor) and
olmesartan (AT1

receptor blocker) [37]

Reduced blood pressure and ventricular fibrosis
No change in body weight and
blood glucose concentrations

Resveratrol [76]
Reduced blood glucose, plasma insulin,
adiponectin concentrations, improved glucose
tolerance

No change in body weight and
blood lipid concentrations

db/db mice
Aliskiren (renin
inhibitor) [41]

Reduced blood pressure, cardiac fibrosis,
macrophage infiltration in heart and coronary
remodelling, improved endothelial function and
glucose tolerance, increased pancreatic insulin
content and beta cell mass, reduced pancreatic
fibrosis

No change in body weight,
visceral fat and liver weight

ZDF rats
Sitagliptin (DPP-4
inhibitor) [54]

Reduced body weight and blood pressure,
reduced blood glucose, plasma triglyceride,
plasma insulin and serum inflammatory markers,
reduced pancreatic fibrosis and inflammation

No change in total cholesterol
concentration

OLETF rats
Rosiglitazone (PPARγ
agonist) [77]

Reduced blood glucose, plasma insulin and
serum inflammatory markers

No change in body weight

GK rats
Levosimendan (calcium
sensitiser) [78]

Reduced cardiac fibrosis and cardiac hypertrophy,
improved ventricular function

No change in blood pressure

Hesperidin [67]

Reduced serum insulin and blood glucose, serum
triglyceride, serum total cholesterol
concentrations, increased serum HDL-cholesterol
and adiponectin concentrations

—

Alloxan
Cucurbita pepo peel
extract [79]

Reduced blood glucose, plasma total cholesterol,
HDL-cholesterol, triglycerides, LDL-cholesterol
and VLDL-cholesterol, increased plasma insulin
concentrations

—

Streptozotocin Quercetin [80]
Increase in body weight, reduced serum glucose
concentrations and increased plasma insulin
concentrations, pancreatic beta cell protection

—

Fructose-induced
metabolic
syndrome

Lipoic acid [81]
Reduced blood pressure, blood glucose and
plasma insulin concentrations, improved renal
function

—

Sucrose-induced
metabolic
syndrome

Hippophae rhamnoides
(sea buckthorn) seed
extract [82]

Reduced blood pressure, reduced plasma
concentrations of triglycerides, total cholesterol
and free fatty acids, increased plasma
HDL-cholesterol concentrations

No change in body weight,
blood glucose and plasma
insulin concentrations

High fat-induced
metabolic
syndrome

Enalapril (ACE
inhibitor) [83]

Reduced body weight, epididymal fat pads and
plasma insulin concentrations, increased plasma
leptin and cholesterol concentrations, improved
vascular relaxation

No change in blood glucose,
plasma triglyceride and plasma
free fatty acids concentrations,
glucose tolerance

High fructose,
high fat-induced
metabolic
syndrome

Purple carrot juice [84]

Reduced body weight gain, improved glucose
tolerance, reduced plasma triglycerides, total
cholesterol, free fatty acids concentrations,
reduced plasma inflammatory marker, improved
ventricular function, reduced cardiac fibrosis and
stiffness, reduced blood pressure, improved
vascular relaxation, attenuation of fatty liver

—

High sucrose,
high fat-induced
metabolic
syndrome

Piperine [85]
Reduced body weight, reduced abdominal fat
pads

No change in blood glucose,
plasma triglyceride, plasma
total cholesterol and free fatty
acid concentrations

ACE - Angiotensin converting enzyme, AT - Angiotensin, ZDF - Zucker diabetic fatty, DPP-4 - dipeptidyl peptidase-4, OLETF - Otsuka Long-Evans Tokushima
Fatty, PPAR - peroxisome proliferator-activated receptor, GK - Goto-Kakizaki.
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of chitooligosaccharides for 8 weeks [98]. While these models
may be suitable for studies in type 2 diabetes [99], the key
signs of hypertension and obesity necessary for the metabolic
syndrome were not reported.

10. Diet-Induced Metabolic Syndrome

Diet plays an important role in growth and development as
a source of nutrition, but the composition of the diet decides
its nutritional status. The modern diet, especially in Western
countries, is rich in carbohydrates such as fructose and
sucrose as well as saturated fat. This increased calorific intake
has been associated with many diet-induced complications
including metabolic syndrome, cardiovascular diseases and
nonalcoholic fatty liver disease [100, 101]. Combinations
of carbohydrate and fat-rich dietary components have been
used in rodents to mimic these signs and symptoms of
human metabolic syndrome.

11. Fructose-Induced Metabolic Syndrome

Fructose has become an important and pervasive ingredient
in Western diets [102, 103]. The world average per capita
daily fructose intake increased by 16% between 1986 and
2007 [103]. Together with the increase in consumption
of fructose in the diet over the last fifty years, there has
been a proportionate increase in the incidence of obesity
[104]. The main sources of fructose in the diet are sucrose,
high-fructose corn syrup, fruits and honey. Unlike glucose,
high-fructose feeding to rodents induced the development
of symptoms of metabolic syndrome including high blood
pressure, insulin resistance, impaired glucose tolerance and
dyslipidemia [102, 105]. Fructose feeding induced ventricu-
lar dilatation, ventricular hypertrophy, decreased ventricular
contractile function, infiltration of inflammatory cells in
heart and hepatic steatosis [106, 107]. In the liver, fructose
feeding induced both microvesicular and macrovesicular
steatosis with periportal fibrosis and lobular inflammation
[108]. Fructose has been reported to induce obesity [109]
but this was not confirmed [106]. Fructose feeding in
rats caused renal tubular injury, collagen deposition in
interstitium and increased macrophage infiltration along
with proliferation and hyperplasia of renal proximal tubules
[110] as well as leptin resistance without changes in body
weight and adiposity [111]. Increases in plasma uric acid
and plasma triglyceride concentrations have been reported
without changes in plasma cholesterol concentrations [112,
113].

Fructose, unlike glucose, did not elicit insulin secretion
from pancreatic β-cells, possibly due to the absence of the
fructose transporter (GLUT5) on pancreatic β-cells [104].
Fructose also lacks the ability to stimulate the secretion of
leptin [104] whereas it has the ability to activate de novo
lipogenesis in the liver (Figure 3) [114]. During metabolism,
fructose bypasses the rate-limiting step, the reaction catal-
ysed by phosphofructokinase, leading to uncontrolled supply
of carbon skeleton for lipogenesis in liver [115].

12. Sucrose-Induced Metabolic Syndrome

Sucrose is a dietary source of fructose [103], thus sucrose
feeding has been used to mimic human metabolic syndrome
in animal models. Similar to fructose, sucrose feeding has
shown variable results, especially with obesity [116, 117]. As
with fructose, sucrose induced lipogenesis in rats along with
increased plasma concentrations of insulin, leptin, triglyc-
erides, glucose and free fatty acids, and impaired glucose
tolerance [118, 119]. Sucrose feeding in rats led to an insulin-
resistant state with no change in fasting plasma insulin
and glucose concentrations, but higher postprandial plasma
concentrations of insulin and glucose [117]. Sucrose feeding
increased systolic blood pressure in rats with increased left
ventricular mass but without cardiac fibrosis [120] and
caused development of hepatic steatosis [121]. No changes
were seen in kidneys of rats fed with high-sucrose diet [122].

13. High Fat-Induced Metabolic Syndrome

High-fat diets have been used to model obesity, dyslipi-
daemia and insulin resistance in rodents for many decades.
The complications developed by high-fat diets resemble the
human metabolic syndrome and these complications may
extend to cardiac hypertrophy, cardiac fibrosis, myocardial
necrosis and hepatic steatosis [123–126]. High-fat diet
feeding in mice increased systolic blood pressure and induced
endothelial dysfunction [126]. High-fat diet-fed mice also
showed albuminuria, increased glomerular tuft area, mesan-
gial expansion, renal lipid accumulation, collagen deposition
in glomeruli and increased infiltration of macrophages in
renal medulla [127]. Different types of high-fat diets have
been used with fat fractions ranging between 20% and 60%
energy as fat as either animal-derived fats, such as lard or
beef tallow, or plant oils such as olive or coconut oil [125].
Long-term feeding of rats (60% of energy) and mice (35% fat
wt/wt) with high-fat diet increased body weight compared to
standard chow-fed controls [128, 129]. Although the increase
in body weight was significant after as little as 2 weeks, the
diet-induced phenotype became apparent after more than 4
weeks of high-fat diet feeding [128]. Long-term feeding with
both animal and plant fat-enriched diets eventually led to
moderate hyperglycaemia and impaired glucose tolerance in
most rat and mouse strains [130, 131].

Lard, coconut oil and olive oil (42% of energy con-
tent) increased body weight, deposition of liver triglyc-
erides, plasma triglyceride and free fatty acid concentrations
and plasma insulin concentrations and decreased plasma
adiponectin concentrations [125]. Lard and olive oil but
not coconut oil decreased insulin sensitivity [125]. Lard,
coconut oil and olive oil caused hepatic steatosis with no
signs of inflammation and fibrosis in any of the groups
[125]. Beef tallow when used as fat source (40% of energy)
increased plasma insulin and leptin concentrations with
increased plasma lipid concentrations and hepatic steatosis
[132]. Although high-fat diet induces most of the symptoms
of human metabolic syndrome in rodents, it does not
resemble the diet causing metabolic syndrome and associated
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Figure 3: Metabolism of fructose.

complications, as the human diet is more complex than a
high-fat diet.

14. High Carbohydrate-, High Fat-Induced
Metabolic Syndrome

A diet high in carbohydrates together with fat, either of
animal or plant origin, mimics the human diet more closely.
This combined diet should induce metabolic syndrome in
rodents (Figure 4). Different combinations and amounts of
carbohydrates and fats have been used in different studies
[133–136]. The common carbohydrates used are fructose
and sucrose whereas the source of fat varies in different
studies.

Different combinations of sucrose and fat have been
used to induce signs of metabolic syndrome. Sucrose content
varied between 10% and 30% whereas fat content in
this diet group varied between 20% and 40% [137–139].
Rodents fed on high-sucrose, high-fat diet had increased
body weight, abdominal fat deposition, hyperinsulinaemia,
hyperglycaemia and hyperleptinaemia [137, 138]. Sucrose
and fat in combination also caused hepatic steatosis and
increased hepatic lipogenic enzymes [139].

Fructose and fat have been used in combination to induce
metabolic syndrome. The fructose content varies between
10% and 60%, either in the diet or drinking water or both,
whereas the fat content varies between 20% and 60% [133,
140–143]. Fructose and fat feeding increased body weight
and the plasma concentrations of triglycerides, cholesterol,
free fatty acids and leptin [133, 140]. The combination
of fructose and fat also caused hyperinsulinaemia, insulin

resistance, impaired glucose tolerance, increased abdominal
fat deposition, hepatic steatosis and inflammation [133,
140]. The rats fed with the high-fructose, high-fat diet
showed cardiac hypertrophy, increased ventricular stiffness,
ventricular dilatation, cardiac inflammation and fibrosis,
hypertension, decreased cardiac function and endothelial
dysfunction along with mild renal damage and increased
pancreatic islet mass [133].

Since high-carbohydrate, high-fat diet-fed rodents
develop all the complications present in human metabolic
syndrome and the diet is similar to human diets (sometimes
called a “cafeteria diet”), this model is probably the
best model to study the human metabolic syndrome.
Pharmaceutical and nutraceutical preparations can be tested
for treatment of diet-induced human metabolic syndrome
in this high-carbohydrate, high-fat diet-fed model.

15. Obesity-Resistant Rat Strain

The interaction of genes with the diet is crucial for the
induction of obesity in rodents and humans as shown by
the studies with diet-induced obese (DIO) and diet-resistant
(DR) rats [144, 145]. DR rats, even when fed with high-
fat diet, did not produce the signs of metabolic syndrome,
whereas DIO rats clearly showed those signs [144, 145].
The signs shown by DIO rats and not shown by DR rats
included increases in body weight and body fat, impairment
of glucose tolerance, dyslipidaemia, hyperinsulinaemia and
hyperleptinaemia [144, 145]. However, these signs are similar
to many control rats and mice fed standard rodent food that
are sedentary, obese and develop impaired glucose tolerance,
described as “metabolically morbid” [146].
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16. Fatty Liver Disease

Nonalcoholic steatohepatitis is now recognized as a compli-
cation of metabolic syndrome [147]. The most important
model of nonalcoholic steatohepatitis is the methionine-
and choline-deficient diet-fed rat. This special diet produced
hepatic steatosis and fibrosis, increased hepatic triglycerides,
increased serum activities of transaminases and alkaline
phosphatase and increased serum concentrations of total
bilirubin [148, 149]. Methionine- and choline-deficient diet-
fed rats showed extreme reduction in body weight and
liver weight along with decreased serum triglyceride and
total protein concentrations [148, 149]. Although these rats
develop nonalcoholic steatohepatitis, they do not show the
other signs of metabolic syndrome.

17. High-Fat Diet-Fed Spontaneously
Hypertensive Rats

Spontaneously hypertensive rats (SHRs) are the most widely
used genetic model of human hypertension [22]. High-fat
feeding to SHRs led to an increased body weight compared
to SHRs fed on normal chow diet [150]. High-fat-fed SHRs
also showed renal inflammation and albuminuria but did not
show changes in plasma concentrations of total cholesterol,
triglycerides and insulin, although plasma concentrations of
free fatty acids were higher in high-fat-fed SHRs compared
to normal diet-fed SHRs [150]. There was no change in
systolic blood pressure with high-fat feeding in SHRs [151].
High-fat-fed SHRs also showed impaired glucose tolerance

[152]. Although high-fat-fed SHRs show some symptoms
of metabolic syndrome, they have genetically induced rather
than diet-induced hypertension. Since human hypertension
is not monogenetic, this model should not be considered
appropriate as a model of the metabolic syndrome.

18. Nile Grass Rats

Apart from laboratory animals, wild rodents have been
tested for the development of diabetes and obesity with
laboratory diets. The Nile rat (African grass rat; Arvican-
this niloticus) and sand rat (Psammomys obesus) are two
examples. These rats do not develop diabetes in the wild,
but diabetes was induced when these rats were kept under
laboratory conditions on chow diet [153]. These rats show
hyperglycaemia and dyslipidaemia after 1 year of age [154].
They also develop liver steatosis, abdominal fat deposition,
hypertension and hyperinsulinaemia [153, 154]. These rats
show promise for metabolic syndrome research, even though
these signs develop when fed on normal diet rather than the
high-carbohydrate, high-fat diet in humans. This is similar
to the concept of metabolically morbid rodents fed a normal
diet [146].

19. Useful Treatment Strategies in
Metabolic Syndrome Research

These rodent models have been used to characterize
responses to many interventions. Success has been variable
but some treatments have attenuated most of the signs
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of the metabolic syndrome. These treatment strategies
clearly indicate that it is possible to inhibit the progression
of metabolic syndrome and associated complications and
maybe to reverse them. Some of the responses to treatments
in different rodent models have been described in Table 2.

20. Conclusion

Pharmaceutical and nutraceutical preparations are required
to decrease morbidity and mortality in chronic diseases
such as metabolic syndrome. These preparations need to
be tested for efficacy in an appropriate rodent model.
Thus, different animal models have been developed for this
purpose. While many rodent models display some of the
signs of the metabolic syndrome, few models can adequately
mimic the range of signs that characterise this syndrome
in humans. In particular, the presence of inflammation has
often not been tested or defined. Further, many models rely
on genetic changes to induce symptoms even though the
human disease is usually diet induced. It is our opinion
that chronic consumption of a high-carbohydrate, high-fat
diet by normal rodents provides an adequate rodent model
to mimic the human metabolic syndrome and for testing
potential therapeutic interventions.
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[102] K. A. Lê and L. Tappy, “Metabolic effects of fructose,” Current
Opinion in Clinical Nutrition and Metabolic Care, vol. 9, no.
4, pp. 469–475, 2006.

[103] L. Tappy and K. A. Le, “Metabolic effects of fructose and the
worldwide increase in obesity,” Physiological Reviews, vol. 90,
no. 1, pp. 23–46, 2010.

[104] G. A. Bray, S. J. Nielsen, and B. M. Popkin, “Consumption of
high-fructose corn syrup in beverages may play a role in the
epidemic of obesity,” American Journal of Clinical Nutrition,
vol. 79, no. 4, pp. 537–543, 2004.

[105] L. T. Tran, V. G. Yuen, and J. H. McNeill, “The fructose-
fed rat: a review on the mechanisms of fructose-induced
insulin resistance and hypertension,” Molecular and Cellular
Biochemistry, vol. 332, no. 1-2, pp. 145–159, 2009.

[106] J. Patel, A. Iyer, and L. Brown, “Evaluation of the chronic
complications of diabetes in a high fructose diet in rats,”
Indian Journal of Biochemistry and Biophysics, vol. 46, no. 1,
pp. 66–72, 2009.

[107] K. C. Chang, J. T. Liang, C. D. Tseng et al., “Aminoguanidine
prevents fructose-induced deterioration in left ventricular-
arterial coupling in Wistar rats,” British Journal of Pharma-
cology, vol. 151, no. 3, pp. 341–346, 2007.

[108] T. Kawasaki, K. Igarashi, T. Koeda et al., “Rats fed fructose-
enriched diets have characteristics of nonalcoholic hepatic
steatosis,” Journal of Nutrition, vol. 139, no. 11, pp. 2067–
2071, 2009.

[109] M. E. Bocarsly, E. S. Powell, N. M. Avena, and B. G. Hoebel,
“High-fructose corn syrup causes characteristics of obesity in
rats: increased body weight, body fat and triglyceride levels,”
Pharmacology Biochemistry and Behavior, vol. 97, no. 1, pp.
101–106, 2010.

[110] T. Nakayama, T. Kosugi, M. Gersch et al., “Dietary fructose
causes tubulointerstitial injury in the normal rat kidney,”
American Journal of Physiology, vol. 298, no. 3, pp. F712–
F720, 2010.

[111] A. Shapiro, W. Mu, C. Roncal, K. Y. Cheng, R. J. Johnson, and
P. J. Scarpace, “Fructose-induced leptin resistance exacer-
bates weight gain in response to subsequent high-fat feeding,”
American Journal of Physiology, vol. 295, no. 5, pp. R1370–
R1375, 2008.

[112] T. Nakagawa, K. R. Tuttle, R. A. Short, and R. J. Johnson,
“Hypothesis: fructose-induced hyperuricemia as a causal
mechanism for the epidemic of the metabolic syndrome,”
Nature clinical practice. Nephrology, vol. 1, no. 2, pp. 80–86,
2005.

[113] R. Miatello, M. Vázquez, N. Renna, M. Cruzado, A. P.
Zumino, and N. Risler, “Chronic administration of resvera-
trol prevents biochemical cardiovascular changes in fructose-
fed rats,” American Journal of Hypertension, vol. 18, no. 6, pp.
864–870, 2005.

[114] H. Basciano, L. Federico, and K. Adeli, “Fructose, insulin
resistance, and metabolic dyslipidemia,” Nutrition and
Metabolism, vol. 2, no. 5, 2005.



Journal of Biomedicine and Biotechnology 13

[115] A. C. Rutledge and K. Adeli, “Fructose and the metabolic
syndrome: pathophysiology and molecular mechanisms,”
Nutrition Reviews, vol. 65, no. 6, pp. S13–S23, 2007.

[116] R. B. Kanarek, J. R. Aprille, E. Hirsch, L. Gualtiere, and C.
A. Brown, “Sucrose-induced obesity: effect of diet on obesity
and brown adipose tissue,” American Journal of Physiology,
vol. 253, no. 1, pp. R158–R166, 1987.
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