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Abstract: Per- and polyfluoroalkyl substances (PFAS) consist of a range of manufactured fluorinated
chemicals that are used in a variety of household and waterproofing products, industrial processes,
and firefighting foams. In the past few years, there has been increasing concern about PFAS in the
environment, since they are difficult to break down through natural processes, are highly persistent
in humans, animals, soils and waters, and can travel long distances in surface and groundwater. This
has created an increased need for PFAS analysis. Most PFAS monitoring currently takes place using
field sampling and chromatographic analytical methods, which are laboratory-based and are very
costly when used to monitor PFAS in the environment. Using a semi-systematic literature review
approach, a comparative study is conducted in this article on the available analytical methods and
sensor technologies that can be used to monitor and detect PFAS in the environment, including
chromatographic, instrumentation analysis, and sensor-based methods. This study considered four
critical factors for effective and efficient monitoring methods, which include the type of PFAS detected,
removing background levels, determining detection limits, and identifying samples. In general, other
analytical instruments are used in conjunction with chromatographic techniques for detecting both
target and non-target analytes at a lower level of detection (LOD). It is shown that even though some
sensor types have a low LOD, they are only useful for detecting targeted PFAS in water samples.
However, sensors are an emerging technology that could be developed to enable low-cost, portable
methods for the remote detection of PFAS species on-site.

Keywords: PFAS; contaminants in water; environmental monitoring; chromatography technique;
alternative methods and technologies; sensor-based technology

1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are a suite of anthropogenic organic
compounds, most of which contain alkyl chains with carbon atoms bonded to fluorine
atoms [1–3]. A number of sources of PFAS can be found in everyday life, such as firefighting
agents, medical devices, and industrial applications that can include photo-imaging, photo-
resist, waterproofing, and anti-reflective coatings, as well as carpet, textile, and leather
treatments [4–6]. Table 1 provides a brief summary of the PFAS family and its classification.

Over the past decade, there have been increased detections of PFAS compounds in
natural waters [7], wastewater, sludge [8], and aquatic [9] and land species [10]. Recently,
there has been a shift from long-chained PFAS to short-chained PFAS [11] because short-
chained PFAS have a shorter half-life [12] in the body and are less bioaccumulative [13].
However, with a shorter chain, these PFASs have higher water solubilities [11], vapour
pressures [12], and weaker adsorption [13] to particles resulting in higher mobility [14], i.e.,
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transported faster [15] and at greater distance from source. Biological transfer is also easier,
for instance from maternal to cord serum in humans [4,15–17].

Table 1. An overview of the carboxylate and sulfonate PFAS groups and their classification [18–20].

Carbon Number Type Carboxylate Ion (or Acid Form) Sulfonate Ion (or Acid Form)

4 Short chain Perfluorobutanoate (PFBA) Perfluorobutane sulfonate (PFBS)
5 Perfluoropentanoate (PFPeA) Perfluoropentane sulfonate (PFPeS)
6 Perfluorohexanoate (PFHxA) Perfluorohexane sulfonate (PFHxS)
7 Perfluoroheptanoate (PFHpA) Perfluoroheptane sulfonate (PFHpS)
8 Long chain Perfluorooctanoate (PFOA) Perfluorooctane sulfonate (PFOS)
9 Perfluorononanoate (PFNA) Perfluorononane sulfonate (PFNS)
10 Perfluorodecanoate (PFDA) Perfluorodecane sulfonate (PFDS)

Given that the carbon–fluorine bond is very strong [21] and not normally broken
down by natural processes, this has led to widespread concern over the persistence of
PFAS in the environment [22]. Indeed, one recent study describes PFAS contamination
as “cyclical”, in the sense that any disposal technique returns either the original PFAS or
its degradants to the environment [23,24]. Furthermore, the authors argue that standard
methods for landfilling do not reduce or degrade PFAS species. In contrast, when a product
that contains PFAS is disposed to landfill, the PFAS will remobilise into the landfill leachate
and end up in the natural environment or wastewater treatment plants [23]. Due to its high
resistance to degradation, PFAS can be transferred into sewage sludge and effluent, creating
secondary PFAS impacts from the land application of sludge for agricultural purposes [25].

Recent studies report that PFAS species can be bioaccumulated in agricultural crops [25],
contributing to PFAS transmission to humans [26] and animals through food consump-
tion [27]. The sorption behaviour of PFAS is dominated by hydrophobic interactions with
organic materials [28,29]. A number of studies have shown that highly hydrophobic PFASs
tend to sorb to suspended solids (TSS), whereas the less hydrophobic compounds predomi-
nate in aqueous solutions [27,30–34]. Different factors such as the route of PFAS transport
after use (runoff, seepage, direct discharge), the elapsed time since the end of firefighting
activities, and the composition of the firefighting foam have an impact on the distribution
of PFAS profiles [33].

Humans are vulnerable to PFAS exposure: different types of PFASs have been de-
tected in clothes, footwear, and upholstery impregnated with PFAS [35]. Further, human
consumption of fish, seafood, fruits, and their products has been shown to expose them to
PFAS through the environmental intake of these organisms [35]. PFAS exposure has been
linked to several health problems, including reduced kidney function, thyroid disruption,
brain and behaviour disorder, induced obesity and type 2 diabetes, proteinuria, haematuria,
immunosuppression, carcinogenic risks, and low birth weight [4,35,36].

According to the United States Environmental Protection Agency (US EPA), the health
advisory level for perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA),
or their salts over a lifetime is 70 ng/L [2,37]. However, other states in the US have their
own health-based monitoring standards for PFOA and PFOS, which range from 13 ng/L
to 1000 ng/L [38]. More recently, New York State has set the maximum contaminant
levels (MCLs) for drinking water standards as 10 ng/L each for PFOA and PFOS [39]. For
99 percent species protection, the Australian and New Zealand Environment Conservation
Council (ANZECC) prescribes a limit of 0.23 ng/L for PFOS in fresh or marine waters [40].
This is of the same magnitude as the level of reporting (LOR) of PFOS and other PFAS
species by commercial laboratories [41]. Moreover, Food Standards Australia New Zealand
(FSANZ) has proposed trigger points for the investigation of PFOS and PFOS + PFHxS
combined, which are for milk (0.4 g/kg), fruits and vegetables (0.6 and 1.1 g/kg), finfish
(5.2 g/kg), mammalian meat (3.5 g/kg), and eggs (11 g/kg) [42]. A state or territory food
jurisdiction could use FSANZ’s proposed trigger points for PFOS + PFHxS combined and
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PFOA to identify when PFAS levels exceed these values, and more research is needed to
measure PFAS in food.

Since PFOA and PFOS are present at such low concentrations, it is necessary to develop
highly sensitive techniques for their detection. In addition, the measurement of PFAS con-
centrations in environmental samples can be challenging, due to the variability in mobility of
different PFAS species at a given contaminated site, and the low detection limits required to meet
regulatory criteria [43–46]. In order to assess trends over time, a baseline of future monitoring
activities needs to be established [47–49]. However, technological advancements have enabled
the detection of PFAS at very low concentrations in waters and soils, leading researchers to
explore the sources, fates, and impact of PFAS compounds [50–52]. The long persistence of
PFAS in the environment and its consequent risks of human and ecological uptake make it
imperative for researchers to develop improved methods for their monitoring.

The aim of this review is to provide a comprehensive overview of the evolution of
methods and technologies that are used to monitor and detect PFAS in the environment,
with a particular focus on water and soil, as they are the primary transport sites of PFAS. In
this study, a semi-systematic literature review is conducted by collecting peer-reviewed
sources in order to investigate the development of PFAS detection and monitoring method-
ologies and technologies in water and soil. To assist investigators in a more efficient PFAS
environmental monitoring process, this study synthesises the current development of PFAS
detection and monitoring methodologies, as well as the gaps and challenges that need to
be taken into consideration for the future directions of PFAS environmental monitoring in
order to help them make more efficient decisions.

2. Method
2.1. Semi-Systematic Literature Review

A semi-systematic literature review is conducted in this study to investigate methods
and technologies for detecting and monitoring PFAS. A summary of the review methodol-
ogy is shown in Figure 1.
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2.2. Sources of Information and Screening Process

In this study, peer-reviewed sources were retrieved from Scopus and Google Scholar,
using the keywords “PFAS monitoring” and “PFAS detection”, in the article title, abstract,
and full manuscript, which were only published in journals and conference papers, in order
to ensure that the selection process was limited to articles addressing PFAS-related research.
As a result of the study, it was found that the first published article mentioning PFAS as a
possible source of environmental contamination was published back in 2003. Up through
June 2023, the search produced 1318 relevant documents, which were imported to reference
management software EndNoteX9 These documents were then filtered by the software to
remove 398 duplicate and nonrelevant entries. A full-text screening was conducted based
on a set of “Research Questions (RQ)” summarised in Table 2.

Table 2. Eligibility criteria used as methodical guidelines for full-text screening.

Research Questions (RQ) Research Focus

RQ 1: What is the purpose of the study? PFAS monitoring and detection methods

RQ 2: When were these data collected? Studies conducted between 2003 to June 2023.

RQ 3: Which sources are considered for PFAS
contamination?

Studies conducted on surface waters, tap
waters, aqueous waters, soils, or sediments

RQ 4: What was the screening process? Journal and conference publications, full
manuscripts and written in English only.

Each of the 104 articles was coded into an Excel spreadsheet based on the following
criteria: paper number, authorship, document title, year of publication, country of study,
study type, methodology, sample, test location, detection limit, cost involved, type of PFAS
detected, and comments on additional information. Pivot tables and figures were produced
based on the data required for the presentation of results through a descriptive overview
and a comparison study between existing methodologies.

The results of the Level 1 scoping process are presented in Figure 2, which gives a
general overview of the timeline of studies that have been conducted to primarily detect
and monitor PFAS, regardless of the type of sample investigated. This first review of PFAS
as an environmental contaminant published in 2003 noted that there were not enough
physicochemical data to provide a complete analysis of the fate of PFAS in the environ-
ment [53]. Figure 2 illustrates a rapid growth in interest in this topic from 2013, with 71%
of articles published in the past three years under various topic areas related to it. The
following sections analyse trends and the development of methods and technologies for
monitoring PFAS in soil and surface water based on the 104 articles.
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2.3. Publication Distribution

The compiled publications were categorised based on publication type: review papers,
monitoring studies, and experimental studies. Among the publications, 56% reported
results from environmental monitoring activities, 32% reported experimental results, and
12% reported literature reviews. It was found that most studies on PFAS in surface water
and soil have been conducted in China, with 18 publications, followed by the USA with
15 publications. As of 2019, more countries have started publishing their monitoring
reports, suggesting that environmental monitoring of PFAS and establishing baseline data
have become more important. Furthermore, this is also a reflection of the actual shift in
PFAS manufacturing from Western nations to Asian countries over the past few years [54].

Among publications categorised as ‘experimental studies’, the past five years have seen
an increased focus on developing methods and technological advancements to detect and
analyse PFAS. The increasing need to monitor PFAS worldwide has resulted in studies being
conducted to improve current practices, whether through ease of analytical procedures,
rapid analytical results, or reducing the overall costs.

The PFAS monitoring methods analysed in the selected publications were categorised
into three categories: chromatographic techniques, alternative methods, and techniques
and sensor-based detection techniques, as shown in Figure 3. The effectiveness of these
methods must be assessed against the data quality objectives of the monitoring programme,
so it is crucial to understand these objectives.
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3. Results and Discussion
3.1. PFAS Monitoring Methodologies and Technologies

There have been many standardised and non-standardised extraction and analytical
techniques developed for PFAS analysis [55–62]. As a result of advances in instrumentation,
chromatographic methods are now the preferred method for PFAS separation, as demon-
strated by the monitoring studies identified [2,63]. This technique involves separating
compounds by their selective adsorption onto a porous medium, which tends to separate
the species by boiling points and mobilities [64]. This can be effected using liquid chro-
matography (LC) or gas chromatography (GC), depending on whether the compound is
ionic or neutral [61]. Analysing PFAS in soil and sediments are generally similar to the ones
described for water. Samples collected usually need to be dried, sieved, homogenised, ex-
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tracted, and concentrated prior to the HPLC-MS analysis. However, for soil and sediments,
some factors should be considered prior to LC analysis.

Based on the publications examined, approximately 71% of the studies were conducted
using methodologies derived from liquid chromatography coupled with tandem mass
spectrometry (MS). Those with a liquid mobile phase are commonly identified as LC-
MS if they use a single mass spectrometry stage, or LC-MS/MS if they use two mass
spectrometry stages.

From Figure 4, it can be seen that the majority of publications used some form of
chromatographic technique to determine PFAS concentrations in either water or soil.
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The LC-MS/MS technique is usually used to measure targeted PFAS species, including
known PFAS such as PFOA and PFOS. Due to the ever-increasing number of emerging
PFAS being detected, non-targeted approaches have been used to improve environmental
monitoring results.

The use of sensor-based technology for detecting PFAS in the environment is rela-
tively new. The sensor-based technology uses water samples as the aqueous phase for an
electrochemical-based sensor, making water samples a critical component of the instrumen-
tation system [65]. The PFOS is then added to the aqueous phase where the surfactant is
ionised and presents as an anionic form, PFOS, contributing to the study of matrix effects
on electroanalytical signals. Similarly, for optical-based sensors, water samples are used as
aqueous matrices of varying complexity in order to demonstrate the ability of the sensor to
quantify precursor formation. As an example, water is required for hydroxylation to occur
on the surface of nanoporous anodic alumina (NAA), which leads to fluorous interactions
(F–F) when exposed to PFAS solutions. RIfS (reflectometric interference spectroscopy)
can monitor this interaction under flow conditions in real time by quantifying changes in
effective optical thickness (OTeff) [66].

The sensor-based technology can be categorised by the type of sensors used, which in-
clude optical-based sensors, fluorescence-based sensors, smartphone-based sensors, biosen-
sors, and electrochemical sensors [64,67,68]. In each case, the outcomes of the categorisation
vary slightly from one paper to the next. In some cases, categorisation can be a challenging
task since some sensors have several characteristics that separate them into a number of
different categories based on their characteristics. Table 3 attempts to classify sensors based
on the information from the review publications. The two categories of sensors observed
are the optical-based sensors and the electrochemical sensors.

Some examples of other methods that have been successfully used to detect PFAS are
provided in Table 4. PFAS analyses utilising total oxidisable precursor (TOP) assays have
been the most discussed and applied, with 12 publications mentioning or applying this
methodology.
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On the basis of the collected information on PFAS monitoring studies, it has been
determined that four specific critical factors must be met in order for the monitoring
methods and techniques to be effective and efficient.

Factor 1: Types of PFASs detected: Detection methods should be capable of detecting
precursors and emerging PFAS species. This is an important factor that has been reported
in the majority of the previous studies.

Factor 2: Elimination of background levels and/or pre-treatment: Methods should be
able to reduce the potential effect of background contaminants that might affect the validity
of the results.

Factor 3: Limit of detection: Methods should detect low levels of PFAS concentrations,
which are sufficiently low to meet regulatory requirements.

Factor 4: Analysis of various types of samples: Methods should be able to analyse a
wide range of environmental samples.

The following sections will use these critical factors in order to assess the effectiveness
of different methodologies which are currently available for monitoring the effects of PFAS
on the environment.

Table 3. Classification of sensor-based technology for PFAS detection as summarised from [2,39,63,64,67,68].

Sensor-Based Technology

Optical-based [67,68]

Using optical signals:

• Absorbance
• Raman scattering
• Refractive index
• Fluorescence

Nanoparticles-based:

• Gold (AuNP)
• Quantum dot (QD)
• Polystyrene modified
• Magnetic iron oxide

Dye:

• Fluorescein
• Cationic

Optical fibre:

• Silica-based
• Plastic-based (POF)

Electrochemical-based [63,64]

Using quantifiable electrical signals:

• Potentiometric
• Voltametric
• Amperometric
• Impedimetric
• Conductimetric

Electrode:

• Molecularly imprinted polymers (MIP)
• Metal: gold, platinum, nickel
• Metal organic frameworks (MOFs)
• Ion-selective electrodes (ISE)

3.2. Effectiveness of the Chromatographic Technique
3.2.1. Types of PFASs Detected

The standard method used to detect PFAS in groundwater, surface water, and wastew-
ater samples is US EPA Method 8327 [69], which uses multiple reaction monitoring (MRM)
LC-MS/MS to determine 24 analytes, including PFOS and PFOA. In drinking water, US
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EPA Method 537.1 [70] has been approved for 18 different PFAS, and Method 533 [71] for an
additional 11 PFAS, mostly short-chain species. The US EPA provides the full list of analytes
that can be measured using both methods [72]. Various non-standardised methods are also
constantly being developed by researchers to improve the detection of PFAS [55–58].

Chromatographic techniques have the advantage of detecting and quantifying more
PFAS in a single analytical run but can experience difficulties in the analysis of varied
sample matrices and in preparing efficient samples [20]. A quality assurance/quality
control (QA/QC) procedure must be followed throughout the entire sampling and sample
preparation process to minimise background contamination, since several factors can cause
false-positive or false-negative PFAS concentrations [60–62]. For instance, it is essential that
no contact be made with polytetrafluoroethylene (PTFE) or other fluoropolymer materials,
as this will lead to overestimates [61,62].

3.2.2. Elimination of Background Levels and/or Pre-Treatment

To enhance selectivity, sensitivity, and clean-up of target analytes from background,
sample preparation and/or pre-treatment is usually required before chromatographic
analysis. Extraction techniques such as solid phase extraction (SPE), solid phase micro
extraction (SPME), liquid–liquid extraction (LLE), and dispersive liquid–liquid micro ex-
traction (DLLME) can be used for this purpose [20]. However, due to fluorinated materials
in sample pre-treatment and instrumental determination, LC can overestimate analyte
concentrations [20], while GC can underestimate analyte concentrations due to the inability
to achieve 100% yield in derivatisation reactions or incomplete transfer of derivatised
analytes to GC solvents [61]. The results suggest that stand-alone LC techniques are easily
affected by background contaminants, and other instrumental methods are required to
improve accuracy.

3.2.3. Limit of Detection

LOD is an important parameter used to indicate the lowest concentration of PFAS that
can be detected using an analytical method. As fast liquid chromatography techniques are
increasingly used for PFAS analysis, high-performance liquid chromatography (HPLC) is
gradually being replaced with ultra-high-performance liquid chromatography (UHPLC)
and ultra-performance liquid chromatography (UPLC) [64,73]. According to previous stud-
ies, UHPLC analysis had the best LOD for many analytes and improved analysis time [64].
In Table 4, the LOD achieved for water samples using chromatographic techniques are
presented. These studies indicate that these techniques are capable of meeting the New
York State low detection limit of less than 10 ng/L. Although these publications mainly
address liquid chromatography techniques for water analysis, LC conditions for soil and
sediment analysis are mostly similar.

3.2.4. Analysis of Various Types of Samples

Chromatography techniques have been successfully used to validate PFASs from a
wide range of samples, including solid matrices, aqueous matrices, biological matrices, and
air, dust, etc. [20]. Figure 5 illustrates the number of publications under monitoring studies
based on the types of samples analysed. The number of publications on water monitoring
is approximately 32% higher than the number of publications on soil monitoring, and about
23% of publications cover both water and soil monitoring. Generally, samples must be
dried, sieved, homogenised, extracted, and concentrated before LC-MS analysis. However,
for soil and sediments, several additional factors need to be considered prior to LC analysis.
These include the following:

• Pre-treatment of soil samples should be focused on capturing PFAS with diverse
properties, especially hydrophobic compounds, and cationic, anionic, or zwitterionic
species [54].

• Background interferences should be cleaned up, as some recoveries can exceed 100%,
showing high background interference [20].
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3.3. Effectiveness of Alternative Methods and Techniques
3.3.1. Types of PFAS Detected

It has been reported that many researchers are using TOP assays in conjunction with
other methods to examine whether emerging PFAS species are present in the environ-
ment. For example, high-resolution accurate mass spectrometry (HRMS) and an improved
TOP assay methodology are being used in Canada to examine surface and subsurface soil
samples and groundwater samples [74]. In addition to TOP assays, mass spectrometry
techniques have also been used to detect new PFAS compounds [75]. Some experimental
testing on targeted PFAS has also been conducted to assess the validity of this new method-
ology. One study tested a new 3D-printed cone spray ionisation (3D-PCSI) technique
using ambient ionisation mass spectrometry for detecting 11 targeted legacy PFAS [76].
Similarly, perfluorobutane sulfonate (PFBS) and perfluoropentanoic acid (PFOA) have
been analysed using high-resolution continuum source graphite furnace molecular ab-
sorption spectrometry (HR-CS-GFMAS) without additional SPE to test their liquid–solid
extraction method [77]. With the development of portable reading kits for TOP assays,
water samples have been spiked with PFOA before and after oxidation to study precursor
concentrations [78]. Therefore, depending on methodology and combination of techniques,
both targeted and non-targeted PFASs can be analysed; however, at present, identifying
unknown precursors is proving to be the biggest challenge. Using these analytical tools
along with UHPLC-HRMS will be a feasible solution [79].

3.3.2. Elimination of Background Levels and/or Pre-Treatment

Similar to chromatography, these alternative analysis techniques require sample prepa-
ration and/or pre-treatment to enhance selectivity, sensitivity, and clean-up of target
analytes from the sample background. Therefore, the extraction step for PFAS analysis will
be similar prior to using either chromatographic technique, HRMS techniques, TOP assays,
and other total organic fluorine (TOF) techniques.

3.3.3. Limit of Detection

In contrast to chromatography, other techniques do not collect as much data as chro-
matographic techniques. A summary of LODs for PFAS measurements produced by
notable experimental and environmental techniques is presented in Table 4. Similar to the
observation about chromatography techniques, more studies were conducted for water
samples than soil samples.

3.3.4. Analysis of Various Types of Samples

From the limited published studies using alternative analytical methods, Figure 6
represents the trends of PFAS monitoring and research activities using alternative instru-
ments to chromatography. Similar to what was observed regarding the type of samples
used for chromatography techniques, more studies were conducted on water samples (78%
of the total publications under these two categories) than on soil samples. It is important
to note that other types of samples have been used, such as biological matrices (blood,
plasma, serum, urine, and saliva), fish, seafood, textiles, and paper [20], indicating that
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these methods have a broad range of monitoring applications similar to chromatographic
techniques.

Water 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

3.3.4. Analysis of Various Types of Samples 

From the limited published studies using alternative analytical methods, Figure 6 

represents the trends of PFAS monitoring and research activities using alternative instru-

ments to chromatography. Similar to what was observed regarding the type of samples 

used for chromatography techniques, more studies were conducted on water samples 

(78% of the total publications under these two categories) than on soil samples. It is im-

portant to note that other types of samples have been used, such as biological matrices 

(blood, plasma, serum, urine, and saliva), fish, seafood, textiles, and paper [20], indicating 

that these methods have a broad range of monitoring applications similar to chromato-

graphic techniques. 

 

Figure 6. Types of samples analysed using alternative techniques. 

3.4. Effectiveness of Emerging Sensor-Based Technology 

3.4.1. Types of PFAS Detected 

Unlike chromatography and other instrumental analysis techniques, sensor-based 

technology detects only targeted PFAS. With the efforts to replace PFOA and PFOS in a 

broad range of applications with alternative molecules, hexafluoropropylene oxide dimer 

acid (HFPO-DA, known as GenX), formed by hydrogenating ammonium perfluoro (2-

methyl-3-oxahexanoate), has been found to be more toxic than PFOA [80]. 

In order to detect this specific contaminant, one study used molecularly imprinted 

polymer (MIP) electrodes on which HFPO-DA was extracted from the polymers and 

bound to the electrode surfaces [80]. As sensor devices are developed to be sensitive to 

certain types of targeted molecules, selectivity on other types needs to be enhanced, as 

highlighted in a previous study [81]. In order to detect PFOA, PFOS, and 6:2FTS in a 

smartphone-based/fluoro-SPE sensor, the authors found that improving the selectivity for 

particular anionic surfactants would be of benefit to future research [81]. Considering this, 

sensor-based techniques can be used for initial screening procedures to detect targeted 

PFAS at this stage. 

3.4.2. Elimination of Background Levels and/or Pre-Treatment 

Sensor-based technologies for PFAS detection also require extraction to clean up 

background levels as discussed previously. There are several types of water contaminants 

that contribute to these background levels, for example, surfactant anions such as eth-

ylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), sodium dodecyl ben-

zenesulfonate (SDBS), and metallic cations such as Ca2+, Mg2+, F−, and Cl− [68]. They may 

interfere with signal generation by blocking the detection sites on probes, resulting in am-

biguous results or false negatives, as well as hindering the selectivity of the sensor. Prior 

to quantification of PFAS by sensors, solid-phase, liquid–liquid, and solid–liquid extrac-

tions can be used as a pre-concentration step to reduce the effect of interferences like in-

organic ions [68]. 

3.4.3. Limit of Detection 

By eliminating background interference and sample pre-treatment, the sensitivity of 

the instruments can be lowered to the required limit of detection. Solid phase extraction 

Figure 6. Types of samples analysed using alternative techniques.

3.4. Effectiveness of Emerging Sensor-Based Technology
3.4.1. Types of PFAS Detected

Unlike chromatography and other instrumental analysis techniques, sensor-based
technology detects only targeted PFAS. With the efforts to replace PFOA and PFOS in a
broad range of applications with alternative molecules, hexafluoropropylene oxide dimer
acid (HFPO-DA, known as GenX), formed by hydrogenating ammonium perfluoro (2-
methyl-3-oxahexanoate), has been found to be more toxic than PFOA [80].

In order to detect this specific contaminant, one study used molecularly imprinted
polymer (MIP) electrodes on which HFPO-DA was extracted from the polymers and bound
to the electrode surfaces [80]. As sensor devices are developed to be sensitive to certain
types of targeted molecules, selectivity on other types needs to be enhanced, as highlighted
in a previous study [81]. In order to detect PFOA, PFOS, and 6:2FTS in a smartphone-
based/fluoro-SPE sensor, the authors found that improving the selectivity for particular
anionic surfactants would be of benefit to future research [81]. Considering this, sensor-
based techniques can be used for initial screening procedures to detect targeted PFAS at
this stage.

3.4.2. Elimination of Background Levels and/or Pre-Treatment

Sensor-based technologies for PFAS detection also require extraction to clean up
background levels as discussed previously. There are several types of water contami-
nants that contribute to these background levels, for example, surfactant anions such as
ethylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), sodium dodecyl
benzenesulfonate (SDBS), and metallic cations such as Ca2+, Mg2+, F−, and Cl− [68]. They
may interfere with signal generation by blocking the detection sites on probes, resulting
in ambiguous results or false negatives, as well as hindering the selectivity of the sensor.
Prior to quantification of PFAS by sensors, solid-phase, liquid–liquid, and solid–liquid
extractions can be used as a pre-concentration step to reduce the effect of interferences like
inorganic ions [68].

3.4.3. Limit of Detection

By eliminating background interference and sample pre-treatment, the sensitivity of
the instruments can be lowered to the required limit of detection. Solid phase extraction
(SPE) is capable of lowering the LOD for PFOA and PFOS in spiked tap and groundwater
from 10 ppb to 0.5 ppb [82] Also, an efficient concentration procedure based on electro-
chemical aerosol formation can concentrate 10 common PFAS 1000-fold within 10 min [67].
AstkCARETM reagents (cationic dyes containing ethyl acetate and ethyl violet) have also
been used in the extraction step for a sensor-based methodology developed by CRC CARE
Australia [2]. Prior to the smartphone-based PFAS detection technique, astkCARETM
reagents were used to remove background interferences from inorganic ions and other ele-
ments. Nano-enabled sensing can also address the issues of extensive sample preparation
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and selectivity, as nanomaterials can be specifically designed to target particular analytes.
For example, Ba2+ can be added to successfully complex non-fluorinated surfactants (for
example, SDS and SDBS) in aqueous solutions to impede non-specific bindings during
PFAS sensing.

In the case of smartphone app-based sensor technology, PFAS can be detected in soil
samples and water samples after dual- or tri-extraction. During the extraction process,
anionic surfactant (PFOA or PFOS) reacts with cationic dye to form an ion pair. With
the smartphone app-based sensor, the anionic surfactant concentration can be monitored.
While there is a lack of information on sensors used on soil samples, in the future, it is likely
that advancements in sensor-based technology for PFAS detection will involve sample
types other than water.

In the 22 collated publications, 100 data on LOD for different types of sensors used
in PFAS quantification were extracted. More studies have been conducted on the LOD
of fluorescence-based and electrochemical-based sensors, likely due to their potential to
achieve low LODs [2,20,39,63–66,68,80,81,83–94].

3.4.4. Analysis of Various Types of Samples

Based on the reviewed publications, 91% of PFAS detection data was collected for
water samples, while only 1–2% were collected from biological, textile, wastewater, aqueous
film-forming foam (AFFF), or synthetic samples. An app-based reading kit developed in
a previous study allowed PFAS to be analysed in water and soil samples after dual- or
tri-extraction [20]. The anionic surfactant (PFOA or PFOS) reacted with the cationic dye to
form ion pairs during the extraction process. Using an app-based smartphone sensor, the
concentration of anionic surfactant was monitored [20].

Despite the lack of information on the type of sensors used in soil samples, there is a
strong likelihood that sensor-based technology will become increasingly incorporated into
PFAS detection in the future for soil and other samples other than water samples.

A brief summary of the results of the comparative study that was undertaken as part of
this semi-systematic literature review can be found in Table 5. The baselines for comparison
for all four critical factors are established based on the chromatography technique capability.
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Table 4. LOD comparison reported from the collated publications.

Item Type of PFAS Samples (LOD) References

Chromatographic Technique

Multiple monolithic fibre solid-phase microextraction
(MMF-SPME)-HPLC-MS/MS PFCA Tap water, river water, wastewater,

and milk samples 0.4–12.1 ng/L [39,95]

Dispersive liquid–liquid microextraction (DLLME)-
HPLC-MS/MS

Medium- and long-chain PFASs (CF2 >
5) Water and urine samples 0.6–8.7 ng/L [20,96]

Vortex-assisted liquid–liquid microextraction
(VALLME)-LC-MS PFOS Tap, river, and well water samples 1.6 ng/L [54,97]

Ice concentration linked with extractive stirrer
(ICECLES)-HPLC-MS/MS PFHxA, PFOA, and PFHpA Drinking water samples 0.05–0.3 ng/L [98]

Acrodisc Filter multiple reaction monitoring
(MRM)-UPLC-MS/MS PFOS, PFOA, PFNA, and PFBS Tap water and surface water samples 7–40 ng/mL [99]

SPE extraction- UHPLC/(-) ESI-MS/MS PFCAs, PFSAs, and perfluoro ethers Surface water samples 0.48–1.68 ng/L [100]

Sensor-based technology

Biosensor, Colorimetric, Electrochemical,
Electrochemiluminescence
Fluorescence
Nanoparticle
Optical Fibre
Photoelectrochemical
Spectrophotometric

PFOS, PFOA, PFBS, GenX, 6:2 FTS, and
others Mostly water samples

Below 10 ng/L but mostly by
incorporating chromatographic
techniques

[20,65,66,85,94]

Alternative methods and techniques

Total oxidisable precursor (TOP) assays Total oxidisable PFASs Water, surface/subsurface soil and
groundwater samples 0.5–7.9 ng/L [2,6,20,54,64,67,74,78,101–104]

Fluorine-19 nuclear magnetic resonance (19F NMR)
spectroscopy

Total organic fluorine (TOF) and total
fluorine (TF, organic and inorganic) [2,20,54,102]

Inductively coupled plasma mass spectrometry (ICP-MS) Fluorine-specific detection of PFASs after
LC separation [102]

Continuum source molecular absorption spectroscopy
(CS-MAS) Total fluorine [102]

X-ray photoelectron spectroscopy (XPS) Fluorine/organic fluorine detection [20]

Particle-induced gamma-ray emission (PIGE)
spectroscopy

Total fluorine measurements of
HFPO-DA, PFBS, PFPeA, PFHxA,
PFHxS, PFHpA, PFOA, PFOS, PFNA,
and PFDA

Drinking water samples <50 ng/L [2,20,54,105]
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Table 4. Cont.

Item Type of PFAS Samples (LOD) References

Chromatographic Technique

3D-printed cone spray ionisation (3D-PCSI)
PFBA, PFHpA, PFOA, 6:2FTS, PFNA,
PFOSA, PFOS, PFDA, PFUdA, PFDoA,
and PFTrDA

Soil and sediment matrices 100 ng/L [76]

High-resolution graphite furnace continuum source
molecular absorption spectrometry (HR GF-MAS)

Total fluorine measurement of
PFCA

Seawater, river water, and effluent
samples

Without SPE: 0.1 mg/L
With SPE: 300 ng/L [106]

Laser thermal desorption (LDTD) coupled with Orbitrap
HRMS

PFBA, PFPeA, PFHxA, PFHpA, PFOA,
PFNA, PFDA, PFUnA, PFDoA, PFBS,
PFHxS, PFOS, PFDS, FOSA, 6:2 FTS

Surface water samples 0.03–0.2 ng/L [61,107]

Total oxidisable precursor (TOP) assays 29 target analytes including PFUnDA,
PFOA, and PFOS Surface water samples Method detection limit (MDL):

0.5–7.9 ng/L [6]

Table 5. Comparison of the performance of various PFAS monitoring methods and techniques.

Methods/Techniques Factor 1 Factor 2 Factor 3 Factor 4 Disadvantages

Chromatography Targeted and
non-targeted analytes

Sample extraction and
clean-up required

Able to detect analyte concentrations below
10 ng/L

Soil, water, and other various
sample types

• Unable to meet the growing demand for
low-cost, portable, in situ, and rapid PFAS
detection methods

• Relies mostly on highly sophisticated
instruments.

• Analyses data in a highly time-consuming
pro-cess

Other instrumentation
analysis

Targeted and
non-targeted analytes

Sample extraction and
clean-up required

Some analyses are able to detect analyte
concentrations below 10 ng/L (examples:
LDTD, TOP), but mostly by incorporating
chromatography techniques

Soil, water, and other various
sample types

• It is difficult to identify unknown precursors
of tar-geted and non-targeted PFAS

• It can detect low levels of PFAS but still
relies on chromatography to monitor PFAS
levels below 10 ng/L

Sensor-based technology Targeted analytes only Sample extraction and
clean-up required

Some sensors are able to detect analyte
concentrations below 10 ng/L (examples:
sensors based on biosensors, and
electrochemical, electrochemiluminescence,
fluorescence, photoelectrochemical and
nanoparticle sensors)

Mainly water, potential for use
with soil and other sample
types

• Only targeted analytes can be quantified
• Use in soil sample analysis is very limited
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4. Conclusions

This study used a semi-systematic literature review approach to review the required
outcomes from monitoring studies for PFAS in the environment. Using the collected
information, four outcomes were identified as relevant to the monitoring methods and
techniques. The monitoring method used will need to meet specific factors, including
the type of PFAS detected, elimination of background levels, device detection limits, and
types of samples analysed. Comparisons were made between current methodologies,
including chromatography techniques, alternative instrumental analysis, and sensor-based
technologies. Chromatography and, to some extent, other instrumentation techniques
have some disadvantages, too. In particular, they cannot meet the growing demand for an
easy-to-use, low-cost, portable, in situ, and rapid PFAS detection techniques, since these
techniques require highly sophisticated instruments along with a generally lengthy ana-
lytical process [20,63]. As a result, research is focusing more on sensor-based technologies
for environmental monitoring of PFAS. For PFAS monitoring to be successful in the future,
portability and lower cost are two important factors to consider. They are particularly
important for supporting PFAS monitoring activities in remote and developing countries
where samples need to be sent over long distances to specialised laboratories.

4.1. Limitations

The use of chromatography-based methodologies for the measurement of PFAS
has been widely acknowledged as the most accurate and reliable method for quanti-
fying the amount of PFAS in the environment, so other methods have been compared to
chromatography-based methodologies. It was found that other analytical methods are
mostly used in conjunction with chromatography to detect both targeted and non-targeted
analytes at lower levels of detection. In order to improve the reliability of the results of the
PFAS detection procedure, all methodologies generally require extraction steps prior to
PFAS detection. The sensor-based technology includes a number of sensor types that are
capable of detecting PFAS levels at low concentrations. However, these devices can only be
used to detect key PFAS targets and have been extensively used only for water samples
under certain conditions.

4.2. Future Direction

There is a growing interest among researchers to develop sensors or sensor-based fast
technologies for monitoring the environmental concentration of PFAS in order to achieve
the following objectives [68]:

• Field test device: portable and capable of in situ PFAS analysis.
• Rapid analysis: detecting PFAS at its source in time to take immediate action. Labora-

tory results for remote sites can take a week or more to arrive.
• Continuous monitoring of a polluted site: ensuring compliance with regulatory stan-

dards by monitoring soil, water, and wastewater remediation processes.
• Capable of speciating PFAS molecules: specific, sensitive, and selective against com-

peting ions or molecules to enable operation in harsh environments containing high
concentrations of interfering compounds.

It can be noted that none of the monitoring studies reviewed in this study employed
an in situ methodology to quantify PFAS, and instead relied on laboratory equipment
for PFAS quantification. It indicates that deployable devices are still in the experimental
stage. However, most experimental studies claim potential for in situ or on-site application
but are still conducted in laboratories. There has also been a great deal of interest in
incorporating smartphones into on-site monitoring of PFAS. This technology has the
potential to accomplish the following:

• Integrating into a network of smart sensing technology, allowing PFAS contamination
mapping and monitoring.
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• Using high-resolution cameras and custom applications to analyse sample images and
compare them to a calibration curve.

• Utilising GPS tracking and an internet connection to upload results and access online
help for on-site assistance, providing rapid and remote response to PFAS monitoring
works.
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Glossary

PASF Perfluoroalkane sulfonyl fluoride
PFAAs Perfluoroalkyl acids
PFAIs Perfluoroalkyl iodides
PFCAs Perfluroalkyl carboxylates (or acid forms)
PFSAs Perfluoroalkane sulfonates (or acid forms)
PFPAs Perfluroalkyl phosphonates (or acid forms)
PFPiAs Perfluroalkyl phosphinates (or acid forms)
FTIs Fluorotelometer iodides
PFECAs Per- and polyfluoroether carboxylates (or acid forms)
PFESAs Per- and polyfluoroether sulfonates (or acid forms)
FPs Fluoropolymers
PTFE Polytetrafluoroethylene
PVDF Polyvinylidene fluoride
FEP Fluorinated ethylene propylene
PVF Polyvinyl fluoride
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