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A B S T R A C T

The development of the Australian Community Climate and Earth-System Simulator-Seasonal prediction system
version 1 (ACCESS-S1) signifies a major step towards addressing predictive limitations in multi-week to seasonal
forecasting throughout Australia. It is anticipated that moving to ACCESS-S1 will provide improved skill in
rainfall prediction during the dry to wet season transition period across tropical northern Australia. This is an
important time for northern Australian livestock producers in terms of the decisions they make around pasture
and livestock management. This study quantifies the hindcast skill of ACCESS-S1 for the northern rainfall onset
(NRO), defined as the date when 50 mm of precipitation has accumulated at a given location from the 1st of
September, heralding the shift towards greener pastures. We evaluate the raw model hindcasts, and compare
them to hindcasts corrected for mean biases and those calibrated against observations. It is found that the raw
ACCESS-S1 hindcasts broadly replicate the observed median NRO over the period 1990–2012, despite a ten-
dency for earlier than observed onsets. In terms of forecasting the interannual variability of the NRO, the ca-
librated hindcasts show the greatest skill, with the largest improvements over a climatological forecast in their
probabilistic forecasts of an earlier or later than usual onset, with a large portion of northern Australian showing
more than 10% improvement. With real-time NRO forecasts now generated by ACCESS-S1, it is expected that the
calibrated predictions will help northern Australian graziers make better informed decisions around livestock
management prior to the wet season.

Practical Implications
Across northern Australia, the large year-to-year variations in

rainfall during the summer wet season (Mollah and Cook, 1996;
Brown et al., 2019) creates a challenging environment for cattle
and sheep producers to manage the emerging climate risk (Cobon
et al., 2020). There is a pressing need for more skilful weather
and seasonal forecasts, and better suited forecast products de-
signed to help producers with seasonal management decisions
around forage budgeting, calving, mustering, re-stocking, and
ordering supplies that last through the wet season (Balston and
English, 2009; Cobon et al., 2020). These decisions can be in-
fluenced by the onset of first decent rainfall after the dry season
(Lo et al., 2007; Drosdowsky and Wheeler, 2014), the frequency
and magnitude of monsoon rainfall bursts (Narsey et al., 2018),
and the retreat of the monsoon (Lisonbee et al., 2019). One such
forecast product tailored for northern Australian graziers is the
northern rainfall onset (NRO), defined as the date when an ac-
cumulation of 50 mm of rainfall is reached after the 1st of

September. Typically, northern Australia's (i.e., north of 29°S) dry
season extends from May to September, with the NRO occurring
from October to February, depending on location. The NRO is a
proxy for the emergence of new pasture after the dry season, from
which graziers can plan livestock foraging on the commencement
of the wet season (McCown, 1981; McCown et al., 1981). The
NRO is largely influenced by large-scale changes in the equatorial
Pacific associated with the El Niño-Southern Oscillation, wherein
onsets often occur later than usual for El Niño and earlier than
usual for La Niña events. Operational forecasts of the NRO began
in 2015 using the Australian Bureau of Meteorology’s older-gen-
eration coupled dynamical model. The forecasts are issued from
June each year, giving producers close to a 5–6 month window
for decision planning.

This study assesses the performance of the Bureau’s latest
multi-week to seasonal model, ACCESS-S1, which became op-
erational in 2018 (Hudson et al., 2017a), at both capturing the
long-term observed climatology of the NRO, as well as forecasting
its year-to-year variability. Tailoring forecasts products for the
livestock producers of northern Australia is a key aspect of this
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research. There has already been a successful uptake of ACCESS-
S1 forecast products in fisheries (de Burgh-Day et al., 2019), in
the management of the Great Barrier Reef (Smith et al., 2019) and
for southern Australian horticultural regions (Hudson et al.,
2017b). Yet, very few forecast products exist that are specific to
graziers in northern Australia. In a practical sense, a confident
forecast of an earlier than normal onset might provide the im-
petus for a producerto plan the rotation of their livestock to more
suitable pastures. Or alternatively, a forecast of a later than
normal onset may indicate to a producer that supplementary feed
is required and livestock mating may need to be pushed back later
in the wet season.

In this study, we show that the NRO forecast for 2019/2020
was for a later than normal onset across much of northern and
eastern Australia, and this verified as a widely successful pre-
diction, despite there being no strong climate influence in the
equatorial Pacific. Through skilful forecasts like this, it is hoped
that there will be a wider uptake and usage of simple forecast
products like the NRO. Drawing on the local expertise of graziers,
a dialogue can be created between researchers and producers on
the requirements for more tailored forecast products that describe
other aspects of the wet season, like monsoon bursts and breaks
with rainfall thresholds altered to suit user requirements.
Furthermore, there is also a push to create a forecast product
describing the monsoon cessation date, which will help producers
with dry season stock decisions (e.g., exporting cattle). The ulti-
mate goal of this research is to improve producer resilience to
episodic drought and other extremes by arming them with im-
proved climate and weather information specific to their own
region. Therefore, a first practical step is to provide greater
community awareness of the available forecast products like the
NRO to producers so that they may be incorporated into their
annual management decisions.

1. Introduction

Northern Australia experiences pronounced dry and wet seasons
(Pope et al., 2009; Berry and Reeder, 2016), with the time of transition
(e.g., onset) from dry to wet being of great interest for climate re-
searchers since the 1960s (Lisonbee et al., 2019). One of the first
northern Australian wet season onset definitions considered was when
the first wide-spread rains occurred after the 1st of November (Troup,
1961), often accompanied by low-level westerly winds. This reversal of
the low-level easterlies to westerlies has historically defined the start of
the Australian monsoon (McBride, 1987). In the early 1980s, wet
season onset definitions were tested using different rainfall threshold
values, ranging from 10 mm to 500 mm, accumulated from the 1st of
August (Nicholls et al., 1982). For the northern Australian city of
Darwin (see location in Fig. 2), Nicholls et al. (1982) found that for the
period 1952–1980, the 50 mm accumulation threshold typically oc-
curred around the 26th of October, leading to later work mainly fo-
cusing on a rainfall accumulation from the 1st of September (Nicholls,
1984; Lo et al., 2007).

The Australian Bureau of Meteorology (BOM) defines the date at
which 50 mm of rainfall has accumulated after the 1st of September as
the northern rainfall onset (NRO) (Drosdowsky and Wheeler, 2014).
The simplicity of the definition means that it can be easily understood
by users in the cropping and cattle grazing sectors across northern
Australia. The atmospheric dynamics related to the NRO vary according
to year and region. For example, for Darwin, onsets can result from
short rainfall bursts over 1–2 days from localised weather systems, as
was observed in 1964. In that particular year, onset was reached after
only two rainfall days in early September. Alternatively, the onset can
be more gradual as was the case for Darwin in 1977 where onset was
reached in late November, in response to a more extensive active
monsoon phase affecting the whole of the Northern Territory.

The northern Australian grazing and cropping industries use the

NRO as a proxy date for the stimulation of new pasture growth across
the northern tropics, similar to the ‘green date’ (McRae, 2013) or ‘green
break in the season’ (Balston and English, 2009). The main difference is
that green date/break definitions require relatively high rainfall accu-
mulations over a period of less than a week (Lisonbee et al., 2019),
useful for regions requiring follow-up rainfall for planting crops
(Mollah and Cook, 1996) or for foraging cattle (Balston and English,
2009). Importantly, the NRO can be skilfully predicted primarily due to
its strong association with the El Niño-Southern Oscillation (ENSO) (Lo
et al., 2007), and as such, any improvement in a forecast systems’
predictability of ENSO are likely to lead to more accurate seasonal
predictions of the NRO. Its usefulness also stems from the fact that good
skill in its prediction can be determined as early as June (Drosdowsky
and Wheeler, 2014).

As of 2018, the BOM shifted their operational seasonal predictions
over to the Australian Community Climate and Earth-System Simulator-
Seasonal prediction system version 1; or ACCESS-S1 (Hudson et al.,
2017a). Prior to this, the BOM were publicly providing three seasonal
probabilistic forecasts of the NRO per year, released towards the end of
June, July and August, using an older-generation coupled system: the
Predictive Ocean–Atmosphere Model for Australia version 2
(POAMA2). A previous verification study by Drosdowsky and Wheeler
(2014) showed that POAMA2 is particularly skilful in predicting the
NRO relative to its own long-term median in 50-year hindcasts, with the
greatest predictability over the Northern Territory. The Drosdowsky
and Wheeler (2014) study showed a reduction in POAMA2’s skill during
neutral or weak ENSO years, and noted the model’s dry bias, hence the
reason to compare against POAMA’s long-term NRO median. Despite
this, the probabilistic skill of POAMA2 was found to be higher than that
from a statistical forecast using the relationship between the NRO and
the austral winter Southern Oscillation index (SOI) (Lo et al., 2007).
Higher frequency subseasonal modes of variability like the Madden-
Julian Oscillation (MJO) show improved subseasonal prediction in
ACCESS-S1 compared to POAMA2 (Marshall and Hendon, 2019),
however given the MJO can only be skilfully forecast out to 25 days in
summer, it does not assist in the predictability of the NRO given the 1
September forecast cut-off. It is likely that MJO activity in the model
hindcasts does lead to onsets over many locations, however these
cannot be skilfully predicted at the seasonal time-scale. It has been
shown that ACCESS-S1 has better skill in forecasting mean-state tem-
peratures and rainfall across Australia than POAMA2 (Shi et al., 2016;
Hudson et al., 2017b), even though it features a large summer wet bias
(> 0.5 mm/day) across central Australia (Fig. S1 in Supplementary
Material). Hence this study’s main aim is to verify the skill of ACCESS-
S1’s hindcasts with respect to the NRO, and, in doing so, determine if
there is discernible improvement over POAMA2. We first quantify the
observed long-term median NRO and then assess the representation of
this in ACCESS-S1 (i.e., does it simulate the spatial variability across
northern Australia?). In the context of the ACCESS-S1 evaluation, we
investigate whether there is skill improvement when the raw hindcasts
are separately bias corrected and calibrated to the finer scale resolution
of the observations.

2. Data and methods

2.1. Observations

For this study, we use observed high-resolution (5 km) gridded daily
rainfall from the Australian Water Availability Project (Jones et al.,
2009; AWAP), using data since 1960 in line with the Drosdowsky and
Wheeler (2014) study. Given the northern Australia focus, we only use
land points north of 29°S (see Fig. 1), an area that stretches from the
Queensland/New South Wales border to Cape York in the far northeast
and west to the Pilbara-Gascoyne Basin; it includes the major livestock
grazing regions of the Gulf of Carpentaria, the Northeast Coast and the
Tanami-Timor Sea Coast. In regions encompassing the North Western
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and South Western Plateaus and smaller areas of the Lake Eyre Basin
and Tanami-Timor Sea Coast, the observational station density is in-
sufficient for determining the NRO on a daily temporal scale and hence
has been masked out (yellow regions in Fig. 1). This mask is applied to
the same regions for the hindcasts and does not change across the
hindcast period. After calculating the observed median NRO, we apply
a 1-2-1 spatial filter 50 times latitudinally and longitudinally to smooth
out local inconsistencies (Lo et al., 2007). We arbitrarily choose 50
applications of the filter to better fit with previously displayed NRO
patterns using the 1° AWAP product (Drosdowsky and Wheeler, 2014).
It has also been shown that spatial smoothing improves the skill of a
statistical forecast of the NRO (Lo et al., 2007).

2.2. ACCESS-S1 description

ACCESS-S1 is the BOM’s newest coupled seasonal prediction system,
and became operational in 2018, replacing POAMA2 (Hudson et al.,
2017a). The atmospheric component is based on the UK Met Office’s
Global Coupled model configuration 2 forecast system (MacLachlan
et al., 2015), with a N216 (60 km in the mid-latitudes) horizontal re-
solution and 85 vertical levels, while the land surface model is the Joint
UK Land Environment Simulator with four soil levels (Walters et al.,
2017). In comparison, POAMA2’s horizontal resolution is approxi-
mately 250 km with 17 vertical levels (Hudson et al., 2013). The ocean
component of ACCESS-S1 has a 0.25° horizontal resolution on a tripolar
grid with 75 levels in the vertical, and it relies on the Met Office’s
Forecast Ocean Assimilation Model for its ocean and sea-ice initial
conditions. The atmosphere and land temperature components are in-
itialised by ECMWF Re-Analysis(ERA)-Interim (Dee et al., 2011), in-
terpolated onto the N216 grid (Hudson et al., 2017a). The ACCESS-S1
prediction system includes important climate and weather modes of
variability (e.g., ENSO, MJO), as well as synoptic-scale weather systems
and oceanic eddies, which allows the BOM to provide a probabilistic
prediction service from the weekly to seasonal time-frame.

2.3. ACCESS-S1 hindcasts

The ACCESS-S1 hindcasts consist of an ensemble of 11 members run
for 217 days from a set of initialisation dates for each year over the
period 1990–2012. The hindcasts have been initialised on the 1st, 9th,
17th and 25th of each month, however given the NRO typically occurs
between October and March (i.e., austral summer), we only analyse
hindcasts from 1 May through to 1 September. For example, a 1 May
initialised hindcast finishes 217 days later in early December, while a 1

July initialised hindcast finishes in early February. If an onset is not
reached at a given location by the end of the hindcast, then it is set to a
special “no onset” value, which is determined to be either:

• a late onset if the observed median onset occurs before the end of
the hindcast, meaning the “no onset” value can be used for the
hindcast probability calculation; or

• an unknown onset, if the observed median onset is later than the end
of the hindcast run, meaning this “no onset” value cannot be in-
cluded in the hindcast probability.

To sample uncertainty in the initial conditions, a scaled perturba-
tion was introduced into each ensemble member’s atmospheric state
based on randomly sampled 7-day differences for the month in question
from ERA-Interim reanalysis over 1981–2010 (Lim et al., 2016). For
this study, given the small ensemble size of 11 members and the rela-
tively short hindcast period of 23 years, we combine three consecutive
initialisation dates to create 33-member ensembles with which to cal-
culate probabilities and skill scores. This was not required for POAMA2
given it featured 30 and 33 members for the multi-week and seasonal
hindcasts, respectively (Drosdowsky and Wheeler, 2014).

Three different hindcast products are produced separately from the
raw 60 km ACCESS-S1 hindcast output (for precipitation). The first
product is regridded to the observed 5 km grid using a bilinear inter-
polation. The second product, also interpolated to a 5 km grid, is pro-
duced by mean bias-correcting the raw model output against the ob-
servations using an 11-day window. Following the bias correction,
where precipitation < 0, it is set to 0. The third 5 km product is created
through a quantile–quantile calibration matching technique (Jeon
et al., 2016), which is applied to all locations, start dates and lead times.
Where the raw hindcast output falls outside the observed value, the
calibrated value is calculated as the raw value × (observed max [min]/
model max [min]). Further details on ACCESS-S1 data assimilation and
its mean-state biases are detailed in Hudson et al., 2017a.

3. Results

3.1. Observed onset climatology

A visual representation of the NRO definition is provided in Fig. 2,
showing the observed onset date for Darwin and across the Top End in
1974. The onset in Darwin for that year was reached on 3 October after
three separate multi-day rainfall events on 5–7 September, 24–26
September and 1–6 October. The long-term (1960–2012) median onset

Fig. 1. Major drainage regions of northern Australia. These regions are referred to throughout the study. Also shown are the regions in yellow where there is
insufficient station density.
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date for Darwin Airport (i.e., the nearest AWAP data grid point to
12.42°S, 130.89°E) is 24 October, two days before the mean onset date
using the 50 mm threshold definition of Nicholls et al. (1982) based on
station data from 1952 to 1980. The onset in 1974 occurred in early
October for much of the western Top End, with a clear zonal gradient of
early to late (in terms of calendar month) onset from west to east, with
the onset over eastern region of Arnhem Land occurring in late De-
cember.

Across the observational record, the first meaningful wide-spread
rains for Darwin and the Top End typically arrive in late October, as
indicated by the median NRO (Fig. 3a,c). Across the 1960–2012 period,
the onset distribution for Darwin is characteristically Gaussian and
quite narrow (Fig. 3c), with only one onset in the 53-year record later
than mid-November. The onset expands southward through November,
reaching towns like Longreach (Queensland) and Halls Creek (Western
Australia) around early December. Given these inland locations display
greater interannual rainfall variability (Drosdowsky and Wheeler,
2014), their onset distributions are substantially broader than for
Darwin, with a slight bimodal structure. The October onsets in the
eastern Northern Murray-Darling Basin and along the far Northeast
Coast stem from the fact that rainfall can occur there any time during
the austral winter and spring months (Drosdowsky and Wheeler, 2014).
By January, the onset reaches the southern Lake Eyre Basin and the
western parts of the North Western Plateau, before spreading to the
Pilbara-Gascoyne by February. As in Lo et al. (2007) and Drosdowsky
and Wheeler (2014), we apply a 1-2-1 (3-point) spatial filter to the
median pattern (Fig. 3b). This reduces the spatial noise of the 5 km
observed NRO, but preserves the large-scale spatial gradients.

Earlier or later than median NRO can indicate a greater likelihood of
a strong or weak wet season, particularly in years featuring El Niño or
La Niña events (Lo et al., 2007). Fig. 4 shows a comparison between the
median NRO and austral late spring to early summer (October to

January) rainfall for all El Niño and La Niña years over the 1960–2012
period. The ENSO years are based on the July to August SOI values
exceeding −8.0 (El Niño) or 8.0 (La Niña; years are listed in the Fig. 4
caption), and refer to the year that December falls in. During El Niño
years, the late spring to early summers have a tendency for wide-spread
negative rainfall anomalies of −1.5 mm/day across Cape York; else-
where, anomalies of between 0 and −0.5 mm/day are observed
(Fig. 4b). These patterns are reflected in the NRO, with later onsets
across the western Top End (early November) and across the Gulf of
Carpentaria (late November to early December; Fig. 4a). For La Niña
years, most of far northern Australia experiences positive late spring to
early summer rainfall anomalies exceeding 0.5 mm/day (Fig. 4d), and
earlier than median onsets across most regions. These include October
onsets along the Tanami-Timor Sea Coast and late September onsets
across far eastern Queensland (Fig. 4c), while Pilbara-Gascoyne onsets
occur ~1 month earlier (in late December) compared to onsets during El
Niño years. Around 64% of all cases are ENSO neutral years, with
previous research showing a general lack of skill in predicting the NRO
during weak ENSO years (Drosdowsky and Wheeler, 2014). This could
translate into reduced skill in predicting wet season rainfall, which may
be offset by improvements in ACCESS-S1’s overall prediction of ENSO
(compared to POAMA2) in its build-up phase during austral autumn
(Hudson et al., 2017a). It is also worth noting that the hindcast period is
dominated by a number of strong La Niña events and negative Inter-
decadal Pacific Oscillation conditions. ACCESS-S1 has been shown to
have more accurate forecasts of spring and summer rainfall during La
Niña events than during other seasons, which reflects an over-con-
fidence in the ACCESS-S1 hindcasts (King et al., 2019).

3.2. Hindcast onset climatology

To evaluate the performance of ACCESS-S1 hindcasts in capturing

Fig. 2. (Top) Daily (blue bars) and accumulated daily rainfall (black curve) at Darwin (blue dot, lower panel), the capital city of the Northern Territory, showing the
observed onset date for 1974. (Bottom) Map of onset dates across the Top End (yellow inset region) for 1974. No spatial smoothing has been applied.
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the spatial variability of the observed NRO, we first determine the
observed median onset over the period 1990–2012 to match the hind-
cast period (Fig. 5a). For the ACCESS-S1 hindcasts, the median NRO is
calculated from the 11-member ensemble initialised on 1 September.
The results show the raw ACCESS-S1 hindcast ensemble, regridded to a
5 km resolution, broadly reproduces the western Top End and southeast
Queensland onset climatology (Fig. 5b). However, a number of defi-
ciencies exist; these include early onset biases over the northern tip of
Cape York (far Northeast Coast), much of the interior and Pilbara-
Gascoyne. In general, the raw regridded hindcast ensemble reproduces
the large-scale southwest gradients from the Top End to the Pilbara-
Gascoyne, but fails to replicate the later onsets that stretch inland from
the Gulf of Carpentaria to the northern Lake Eyre Basin. The hindcast
onset climatology pattern also shows predominantly November onsets
across the Lake Eyre Basin, when in reality the observed onsets occur
well into December and January. The regridded hindcast pattern also
does not feature the localised October onset between the Northeast
Coast regional cities of Cairns and Townsville and other finer-scale
spatial maxima, which may reflect ACCESS-S1’s coarse resolution.

Bias correcting improves the hindcast representation of onsets along

the east coast, most notably around Cairns and Townsville, while also
capturing the zonal gradient inland from southeast Queensland
(Fig. 5c). Yet despite these improvements with more finer-scale spatial
detail than the purely regridded hindcasts, the bias corrected ensemble
generates onset biases of ~10–20 days earlier than observed over the
northern Lake Eyre Basin. Furthermore, the bias corrected ensemble
fails to generate the meridional gradient from the southern Top End
through to the Tanami-Timor Sea Coast. Of the three hindcast sets, the
calibrated ensemble performs the best, including capturing the late
February onset over the western Pilbara-Gascoyne (Fig. 5d). The cali-
brated ensemble also displays the large-scale gradients and observed
spatial distribution not seen in the raw regridded or bias corrected
ensembles; these include the later onsets over the Lake Eyre Basin, east
Arnhem Land and the zonal band between 19°-23°S.

To highlight the differences in spatial gradients between the cli-
matological median onsets over 1990–2012 from the hindcast en-
sembles and observations, Fig. 6 compares the three hindcast sets over
four important cattle regions. In each panel, a single dot represents the
climatological median onset day from observations and the hindcast
ensemble (1 September initialisation) for a given grid point in the

Fig. 3. Observed median northern rainfall onset dates over 1960–2012 based on (a) unsmoothed data, and (b) data smoothed 50× using a 1-2-1 spatial filter.
Coloured dots indicate the locations shown in the right hand side panels, that are the distribution of the onsets for (c) Darwin, (d) Halls Creek, and (e) Longreach, as
well as their medians (dashed vertical line). The map contour lines indicate the first day of each month. Dark grey shading represents regions where weather station
density is insufficient for the northern rainfall onset calculation.
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region of interest; this produces scatterplots consisting of between 7575
points for the Top End to over 10,100 points for southeast Queensland
(regions are shown in Fig. 6). This provides a simple way of comparing
the hindcast spatial distribution of the climatological median onset
across each region with the observed onset. For the Halls Creek region
(red box, Fig. 6), the raw regridded hindcast shows difficulty in re-
producing climatological onsets that exceed 100 days (i.e., December
onsets), which are a feature in the south of the region (Fig. 3). This
problem is marginally improved through bias correction and vastly
improved after calibration, particularly for later onset dates. Over the
Top End (grey box, Fig. 6), the raw regridded climatological onsets
occur around 30 days earlier than observations which reduces to
15–20 days earlier for the model onsets > 80 days (late November). This
reflects the raw hindcast’s inability to realistically represent the zonal
gradient in onsets across the Top End, notably throughout Arnhem
Land. This is substantially improved through bias correction, while
further improvements seen in the calibrated product, particularly over
east Arnhem Land, reduces the spatial disparity to the observations. The
region encompassing Mount Isa and Cloncurry (orange box, Fig. 6) is
where the raw hindcast ensemble performs the worst (of the four re-
gions), with an inability to reproduce climatological onsets past early
December. Bias correcting does little to improve the spatial distribution,
however there is significant improvement after calibration, particularly
for grid points with onsets after December. In a region like southeast
Queensland where biases are not as large (blue box, Fig. 6), bias cor-
recting improves the onsets where the climatological value is later than
observed, although there is still a tendency for the model to predict
earlier than observed onsets. Again, as with the other regions in Fig. 6,
calibration appears to be more successful in reducing the magnitude at
points displaying earlier than observed onset. This evaluation shows

that calibrating the model output is the better of the two bias-correcting
techniques, especially for locations that have onset dates beyond De-
cember.

3.3. Hindcast probabilities

The approach in determining the skill of the ACCESS-S1 hindcasts,
with respect to the NRO, is to verify them in a probabilistic framework.
To this end, we calculate the probability of an early onset for each year
from 1990–2012 with respect to the (smoothed) observed 1960–2012
median for each initialisation date (1, 9, 17 and 25 of each month; May
to 1 September). To increase our hindcast ensemble size, we combine
three initialisation dates to form a 33 member ensemble (e.g., 9, 17, 25
of each month). We use the cross-validation approach where the
hindcast probabilities are calculated with respect to an observed
median NRO that does not include the year being predicted (Lo et al.,
2007). In this approach we use the linear interpolation method when
determining the median for an even number of years. The ‘earlier than
long-term median onset probability’ is determined as the percentage of
the 33 ensemble members that have an onset earlier than the observed
median. As detailed prior, if a hindcast onset for a particular year is not
reached but the observed median date precedes the date of the hindcast
run end, then that onset is considered late. Hindcast onsets that fall on
the median date are split evenly between the early and late categories.
For comparing onset probabilities to observed onsets, we consider the
observed onset anomaly to be the difference between the observed
median onset and the onset of the year in question.

As an example of how the hindcast skill changes for different lead
times, we show the probabilities of early than median onset for 1997
and 2002, the two strongest El-Niño years, and 1998 and 2010, the two

Fig. 4. (a,c) Observed median northern rainfall onset dates, and (b,d) October-January rainfall anomalies for (a,b) El Niño years (July-August SOI < −8; 1965, 1972,
1976–77, 1982, 1987, 1993–94, 1997, 2002, 2006), and (c,d) La Niña years (July-August SOI > +8; 1964, 1971, 1973–75, 1988, 1998, 2010). Contour lines indicate
the first day of each month. Rainfall anomalies are calculated with respect to a 1960–2012 climatology. Dark grey shading represents regions where weather station
density is insufficient for the northern rainfall onset calculation, and has been applied to all panels. All maps have been smoothed 50× using a 1-2-1 spatial smoother.
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strongest La Niña years (Figs. 7 and 8, respectively) for lead month 3 (9,
17, 25 May) and lead month 0 (9, 17, 25 August). Here, we are only
showing the calibrated hindcasts. For 1997, the hindcast ensemble
predicts little change to the onset probability from lead month 3 to 0,
with a high likelihood of a later then median onset predicted over the
Top End, Arnhem Land, Cape York and down the Northeast Coast, and a
greater than 50% probability of early onset over central Australia
(Fig. 7a,b). This generally matches the pattern of observed onset de-
viations, with anomalies of up to 20 days later along the Northeast
Coast (Fig. 7c), reflecting the region with the strongest ENSO tele-
connection in the austral spring season (Risbey et al., 2009). The model
also correctly predicts a higher likelihood of early onset over central
Australia, borne out in the observations. It is perhaps not unsurprising
that the hindcasts are inconsistent with the very late observed onset
anomalies over the Pilbara-Gascoyne region given its climatological
onset falls well into February, six months after the lead month 0
hindcast. Generally, the model hindcasts also perform well in 2002 (a
central Pacific El-Niño year), broadly capturing the widespread later
than median onsets over north and eastern Australia, offering good
predictability that does not dramatically change from lead months 3 to
0 (Fig. 7d–f).

For the La Niña years of 1998 and 2010, the model forecasts of early
onset are ubiquitous across the northeast, with good predictive cap-
ability 3 months out, with probabilities exceeding 80% across central
Queensland (Fig. 8). The La Niña examples suggest that the model has
good predictability leading into the extremely wet monsoon seasons
when the western Pacific sea surface temperature anomalies are
anomalously warm and the SOI is strongly positive. This is despite
ACCESS-S1's ENSO teleconnection with rainfall over Australia’s east
coast being weaker than observed (Hudson et al., 2017a), which may
reduce predictability at longer lead times. Even for weaker La-Niña

years (e.g., 1999/00, 2008/09), the hindcast probabilities show good
predictability of the observed earlier than median onsets for northern
Australian latitudes (see Fig. S2 in Supplementary Material). This is also
consistent with the higher skill in ACCESS-S1’s ENSO prediction com-
pared to POAMA2 (Lim et al., 2016; Hudson et al., 2017a). The fact that
the model hindcasts cover a period that feature strong La Niña events
and negative Interdecadal Pacific Oscillation conditions infers that
there is potentially an overstatement of skill in the ACCESS-S1 hindcasts
(King et al., 2019). Unfortunately, the skill for the pre-1990 La-Niña
wet periods of the early 1970s cannot be tested in this seasonal pre-
diction system.

3.4. Hindcast skill

The prediction skill of ACCESS-S1 hindcasts are assessed using the
Brier Skill score and reliability diagrams. The Brier Skill score quantifies
the improvement of a probabilistic forecast ensemble when compared
against a reference forecast (Lo et al., 2007). Here we show the im-
provement over a climatological forecast. The reliability diagrams de-
monstrate the performance of the hindcasts against the observed fre-
quency of a given outcome for every northern Australian grid-point
(Drosdowsky and Wheeler, 2014). They are used for testing if a forecast
is more likely to over or under-predict the low and high probabilities of
a given outcome, in this case, earlier than median onset across all
Australian gridpoints north of 29°S. Here we also include an assessment
of the hindcasts tercile probabilities (i.e., whether the predicted onset
falls in the lowest, middle or highest third of all onsets), although in the
reliability diagrams, we only show the lowest terciles (earliest onsets).
As with the probabilities, three different initialisation dates are com-
bined, where 9, 17, and 25 August represent lead month 0.

The hindcast skill scores for the early or later than median onsets for

Fig. 5. Median northern rainfall onset dates over 1990–2012 for (a) observations, and ACCESS-S1 ensembles, including (b) raw model output regridded to the
observed resolution, (c) bias corrected, and (d) calibrated. The ensembles are all initialised from 1 September. Details of the calibration and bias correction technique
can be found in the Methods section. All maps have been smoothed 50× using a 1–2-1 spatial smoother.
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each hindcast set are presented in Fig. 9. The first feature to note are the
high skill scores along sections of eastern Australia, northeast Queens-
land and Top End in the raw regridded product (scores > 25%), which
only slightly improve with shorter lead times (Fig. 9a-c). Regions of
reduced skill (pink colours) are located over central Australia and the
far north Cape York, consistent with the early biases in median onset
pattern (Fig. 5b). There is little evidence to suggest that bias correcting
improves the hindcast skill, with a large swathe of northern inland
Australia indicating poorer skill (Fig. 9d–f); only small pockets in-
cluding the Top End and the tip of Cape York show any marginal skill
improvements, consistent with the median results (Fig. 5c). Like in their
representation of the median NRO, the calibrated hindcasts are the
most skilful, with nearly all inland regions that are south of 15°S and

east of 132°E displaying improvements exceeding 10% over a clima-
tology forecast (Fig. 9g–i). The percentage of northern Australia grid
points that show a 10% or more improvement sits between 36% (lead
month 2) and 54% (lead month 0) for the calibrated hindcasts, con-
siderably higher than the raw and bias corrected hindcasts. This is
confirmed by the reliability diagrams, with the calibrated hindcasts
correcting the ACCESS-S1’s over-forecasting of higher probabilities seen
in the raw and bias corrected hindcasts (Fig. 10a-c).

For the tercile hindcast skill of the raw and bias corrected hindcasts,
aside for eastern Queensland and the Top End, we see that most
northern regions show no improvement over climatology (Fig. 11a–f).
In fact, the bias correcting hindcasts show a reduction in the overall
number of locations with a skill improvement greater than 10%. Again,

Fig. 6. A comparison of the climatological median northern rainfall onset in observations and the three ACCESS-S1 ensembles for four regions across northern
Australia, including (a) Top End (grey; 129°–137°E, 11°–15°S), (b) Mount Isa and Cloncurry (orange; 137.5°–143.5°E, 18.5°–22.5°S), (c) Southeast Queensland (blue;
147°–154°E, 25°–29°S), and (d) Halls Creek (red; 124.5°–130.5°E, 16.2°–20.2°S). Each dot represents a 0.05° by 0.05° grid point in the region of interest showing the
median onset from observations (x-axis) and median onset from the hindcast ensemble (y-axis) over the 1990–2012 period. The number of land-only points in each
scatterplot panel range from 7575 to 10,124 points, depending on the size of the region. The initialisation date of the model ensemble members is 1 September and
the axes units are days from 1 September.
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the calibrated product provides the greatest skill, with 18% of northern
Australia displaying score values exceeding 10% in lead month 2 (i.e.,
June) ( Fig. 11g); this improvement spreads over much of northern
Australia for the shorter lead months, with only the Pilbara-Gascoyne
showing consistent poor skill scores (Fig. 11h,i). As with the Brier Skill
Score patterns, the reliability diagrams showing the early/late onset
relative to the early tercile, demonstrate the improvement in skill that
calibration achieves, correcting for the over-forecasts in the higher
probability bins (i.e., probabilities > 0.6; Fig. 10d–f). As expected, the
raw and bias corrected hindcasts perform the most poorly in the regions

where they are unable to reproduce the climatological median onsets.
This produces an east-to-west gradient of reduced skill. The reasons for
the poorer skill over the northwest regions relate to a weak tele-
connection with remote sea surface temperatures and the general lack
of a teleconnection with ENSO (Hudson et al., 2017a). Also there is the
reduced skill in ACCESS-S1's prediction of weather events and extreme
rainfall at longer lead times past a month (King et al., 2020) or even a
fortnight, as seen in the prediction of the northern Queensland floods in
February 2019 (Cowan et al., 2019). For the regions like northern-
central Australia with the poorest skill, this may simply be a reflection

Fig. 7. Hindcast probabilities of northern rainfall onset from the calibrated ACCESS-S1 ensemble for El Niño years: (top) 1997 and (bottom) 2002, for lead months
(a,d) 3 and (b,e) 0, compared to the (c,f) observed onset anomaly. Each lead month is comprised of three initialisation dates (9, 17, 25) to increase the sample size.
The hindcast probabilities are calculated with respect to the observed 1960–2012 median onset that excludes the year in question in its median (cross-validation
technique).

Fig. 8. As in Fig. 7, but for La Niña years 1998 and 2010.
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of the acute difficulty in predicting daily rainfall and weather events
almost half a year in advance. For example, the onset over central
Australia occurs around mid-December, meaning a June forecast is a
6 month weather event prediction, and calibration or bias correcting
cannot improve this. Across the far northern tropics, multi-day rainfall
events are often associated with monsoon bursts (Berry and Reeder,
2016; Moise et al., 2019), which are difficult to forecast accurately
beyond 25–30 days (Marshall and Hendon, 2019) – this is the limit of
predictability of intraseasonal modes of variability like the MJO in
ACCESS-S1 (Hudson et al., 2017a).

4. Discussion

This study follows on from the research of Lo et al. (2007) and
Drosdowsky and Wheeler (2014), who both assessed the predictability
of NRO, from a purely statistical ENSO-based standpoint in the former
and using the POAMA2 dynamical model in the latter. We have con-
tinued this line of research by investigating the ability of the BOM’s
newest seasonal forecast system, ACCESS-S1, to predict the NRO. This
study provides the verification groundwork accompanying the real-time
ACCESS-S1 NRO forecasts that commenced in July 2019. The main aim
here was to gauge the improvement in reliability of NRO forecasts,
where the NRO marks the transition from the dry to wet season across
northern Australia. Improving the NRO predictions helps end users, like

northern cattle producers, make smarter and more reliable decisions
around mustering, calving and feed budgeting for when the break of the
season occurs (McRae, 2013). It is worth reiterating that the NRO does
not represent the temporal extent or intensity of the wet season, the
latter of which is more strongly linked to monsoon bursts, quasi-sta-
tionary tropical depressions and cyclones. Yet, as we have shown, the
NRO displays a strong association with ENSO variability, such that from
June onward, the tropical Pacific is often a useful predictor of the NRO
(Lo et al., 2007), particularly over the Northeast Coast.

Despite the short temporal hindcast length of 23-years, ACCESS-S1
has the ability to reproduce the long-term median NRO across northern
Australia. The regions where the model has difficulty capturing the
spatial gradients include the grazing regions over inland Queensland
and the Northern Territory that display onset variability of between 40
and 60 days (Drosdowsky and Wheeler, 2014). These deficiencies allow
us to validate the efficacy of bias correction and calibration of the raw
model hindcasts. While bias-correcting precipitation alleviates some of
the November to December onset biases over Arnhem Land and across
the northwest, calibrating the rainfall produces results that are closer to
observations. This is because the calibration process predominantly
fixes the early onset bias seen in the ACCESS-S1 hindcasts, as it ac-
counts for biases in the mean and corrects any heavily skewed pre-
cipitation days.

Calibration also improves the skill in predicting interannual onset

Fig. 9. Grid point Brier skill score values of the ACCESS-S1 cross-validated hindcasts of earlier or later than median onsets, relative to a climatological forecast,
showing (top panels) the raw model ensemble regridded to the observed grid, (middle panels) the bias corrected ensemble, and (bottom panels) the calibrated
ensemble. Combined initialisation dates include 9, 17 and 25 of June, July and August (i.e., lead months 2 to 0), respectively. In the top right corner of each panel is
the percentage of grid points that show an improvement of greater than 10% over climatology.

T. Cowan, et al. Climate Services 19 (2020) 100182

10



variability by 5–25% (against a climatological forecast strategy) for
much of the Northern Territory and Queensland. More specifically, the
calibrated product shows the greatest improvement over central
Australia and the western Lake Eyre Basin, both relative to median and
tercile probabilities, when compared to the raw and bias-corrected
hindcasts. The calibrated product also dramatically improves the over-
prediction bias seen in the raw and bias-corrected hindcasts (Fig. 10).
There are two reasons why bias correction does not produce more
skilful predictions. Firstly, the raw hindcasts are overly wet across much
of central Australia, compared to observations (Fig. S1 in
Supplementary Material), and as rainfall can only be positive, the bias
correction does not entirely remove the wet bias due to this constraint.
As such, the earlier-than-observed onset bias still persists (e.g., Fig. 6).
Secondly, for regions drier than observations, such as eastern Queens-
land, the bias correction process may fix the mean bias, however this
invariably increases the frequency of drizzle days (daily rainfall <
1 mm). In these cases, the bias corrected hindcasts produces earlier
onsets, as reflected in an example over eastern Queensland for one
hindcast member in 1990 (e.g., Fig. S3 in Supplementary Material).
Hence, calibration is a more effective method of bias removal due to the
quantile–quantile matching approach correcting for the tails of the
distributions.

4.1. The 2019/2020 onset forecast

It is for the reasons outlined above that the calibrated product from
ACCESS-S1 is used for real-time onset prediction of the NRO. The first
operational forecasts using ACCESS-S1, for the 2019/2020 wet season,
were widely featuring a low chance (20–30%) of early onset for large
portions of central and northeastern Australia (Fig. 12a). The outlook is
referenced against the 1960–2012 long-term median and based on a 99-
simulation ensemble from 23-25 August 2019 initialisations (the June
forecast also showed very similar probabilities). Shown in Fig. 12b is
the observed NRO date anomaly map issued on the 26 May 2020, where
coloured regions indicate where the observed NRO anomaly was late
(brown) or early (green). This shows that the first operational forecast
from ACCESS-S1 was widely successful, picking up deficiencies every-
where aside from east Arnhem Land and central southern Queensland.
These latter locations saw isolated rainfall activity over a 3-day period
between 30 October to 1 November, but very little follow-up rainfall for
the remainder of November.

4.2. Comparison of ACCESS-S1 to POAMA2

Finally, we come to the question of whether there is a substantial

Fig. 10. Reliability diagrams showing all grid points north of 29°S for (a–c) early or late onset relative to the median onset and (d-f) early or late onset relative to the
bottom (early) tercile, showing (a,d) raw model ensemble regridded to the observed grid, (b,e) the bias corrected ensemble, (c,f) the calibrated ensemble, for lead
month 0 (i.e., 9, 17, 25 August). The size (area) of each blue square is proportional to the sample size for each bin of forecasts, and the grey zones show regions where
the forecasts contribute positively to the Brier Skill Scores. Hindcasts have not been smoothed.
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improvement in ACCESS-S1 over POAMA2 with respect to the NRO
prediction, even though our study did not quantify the skill improve-
ments or lack thereof in ACCESS-S1 relative to POAMA2. It is difficult
to compare like-for-like, as the atmospheric model resolution of
POAMA2 is coarser than ACCESS-S1 (~250 km versus 60 km), the
hindcast period is longer at 1960–2010 (compared to 1990–2012),
there are more ensemble members per initialisation date (30 to 33
versus 11) meaning initialisation dates do not need to be combined, and
the hindcasts are run out to 9 months as opposed to 6.5 months in
ACCESS-S1. Putting those differences aside, it is clear from the raw
regridded hindcasts, that ACCESS-S1 generally performs better than
POAMA2 at capturing the spatial patterns of climatogical median onsets
over most of the far northern Australia, including the Top End and Cape
York (comparing Fig. 3a of Drosdowsky and Wheeler (2014) with our
Fig. 5b).

The Brier Skill scores are more comparable between the ACCESS-S1
calibrated hindcasts and the multi-week POAMA2 hindcasts (run for
1981–2011) than for the raw ACCESS-S1 hindcasts, which again jus-
tifies the benefit of calibration. Adding to this, we know that ACCESS-
S1 is already considered an improvement in its prediction of the mean-
state temperature and precipitation on a sub-seasonal time-scale, yet it
does not display enhanced skill over the seasonal time-scale (Hudson
et al., 2017a; Lim et al., 2016). A positive aspect of ACCESS-S1’s
hindcast probabilities are that they are determined with respect to the
observed climatological median and not with respect to the model cli-
matology as with POAMA2 (Drosdowsky and Wheeler, 2014). This
provides further evidence that ACCESS-S1 is an improvement over

POAMA2. The next generation system, ACCESS-S2, includes the BOM’s
own data assimilation scheme as well as longer hindcasts. This will
allow for a more comprehensive analysis of the NRO including an as-
sessment of the skill in capturing longer-term trends.

5. Final remarks

The benefits of both providing a NRO forecast product, and doing so
using ACCESS-S1 are clear. The NRO is simple to understand, easy to
interpret and well predicted from austral winter onward making it
suitable for the northern Australian livestock industry, as well sectors
like cropping, infrastructure and telecommunications in terms of
planning for the commencement of the wet season. Through its im-
provement in ENSO prediction and calibrating raw hindcasts to account
for model biases, ACCESS-S1 is more skilful in its NRO prediction than
Australia’s previous dynamical seasonal model. The ongoing need for
improved climate services and climate literacy throughout northern
Australia is driving research and development into targeted forecasts
products, particularly specific to the northern livestock sector, which
can provide a significant economic benefit (Cobon et al., 2020). With
the Bureau now providing fortnightly and intra-seasonal forecasts (in-
cluding measures of skill), the next step forward in wet season fore-
casting is to provide a tailored metric that describes high-frequency
rainfall events or ‘bursts’ as the wet season progresses. Graziers are
dependent on knowing when and where these multi-day rainfall events
will occur, so as to allow themselves sufficient time to make cost-ef-
fective decisions on the logistics of mustering cattle to new pasture

Fig. 11. As in Fig. 9 but for the tercile probability hindcasts.
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growth locations (McCown, 1981; McCown et al., 1981; Mollah and
Cook, 1996; Balston and English, 2009; McRae, 2013), or in the case of
extremes (Cowan et al., 2019), implement mitigation measures to
protect livestock, or delay transportation. The BOM is currently de-
veloping prototype forecast products related to monsoon burst fre-
quency, which, in the near-future, will be an additional climate service
to the northern Australian cattle producers.
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