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Abstract: The cause of peanut kernel shrivel (PKS) syndrome, affecting peanut crops in Australia’s
growing regions, is currently unknown. It is estimated that PKS is costing the peanut industry more
than AUD 5 M p.a. and is a potential threat to the industry. Previous investigations have ruled out
all abiotic factors and most biotic factors as the cause of PKS. This research aimed at investigating
the scope, distribution, and cause of the PKS syndrome. The survey showed PKS symptoms to
be present in peanut crops in all the growing regions surveyed. Based on our study of culturable
microorganisms, there appears to be no clear-cut involvement of plant pathogenic bacteria and fungi;
however, Fusarium spp. were revealed as the most prevalent fungi in affected plants. Moreover,
the soil metagenomics study revealed Fusarium spp. as the most abundant fungal communities in
the soil microbial profile, and they could contribute to the PKS syndrome. The consistent presence
observed of the identified Fusarium oxysporum in PKS-affected samples could indicate a role for this
pathogen in the syndrome, especially in conjunction with abiotic stressors. The pathogenicity testing
of F. oxysporum resulted in very mild PKS symptoms. A separate report suggesting the involvement
of phytoplasma in the PKS syndrome raises the possibility of an interplay of biotic factors in the
development of this disease. Further investigation is warranted to determine the true cause or causes
of this disease.

Keywords: Fusarium oxysporum; Peanut Company of Australia (PCA); pathogenicity; Koch’s postulates;
soil metagenomics

1. Introduction

The cause of peanut kernel shrivel (PKS), affecting peanut crops in Australia’s peanut-
growing regions, is currently unknown. It is a condition where kernels in some, or all, pods
on a peanut plant approaching maturity cease normal development and fail to reach their
full size, resulting in a low kernel percentage and high shell percentage, which reduces
overall crop yield, quality/grading, and price/Mt of farmer stock [1]. Damaged kernels
are smaller and have a shrivelled testa, while in more mature kernels, the testa appears
faded due to a lack of assimilates from the plant and develops a brown/light tan colour.
The ‘funiculus’ (or kernel umbilical cord), which feeds assimilates from the plant/pod to
the developing kernel, often appears swollen, darkened, fibrous, and prominent compared
to its smaller transparent appearance in a normally developing kernel. The swollen and
unusual funiculus looks like it has resulted from some sort of ‘physiological blocking’
of assimilate flow from the plant to the developing testa/kernel. There are no other
symptoms during vegetative growth, which appears quite normal, and the main quality
constraint associated with PKS remains undetected until harvest. PKS does not affect
peanut edibility or end-user traits; however, it has a significant impact on yield, kernel
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grades, and returns, wherein the reduction in kernel size appears to be a result of the altered
normal assimilate transport through the funiculus/testa [2]. Despite reduced size, kernels
have normal blanchability (skin removal), taste and flavour, and germination. But with a
lower percentage of larger peanut variety kernels and a higher percentage of kernels going
to oil production, a significant financial penalty should be expected.

According to the Peanut Company of Australia (PCA), Kingaroy Australia, based on
historic yield and grading information from Bundaberg and North Queensland over the
past few years, PKS has cost the industry more than AUD 5 M, with reduced returns to
growers in the order of AUD 500–1450/ha [2]. There has also been an indirect cost from the
loss of confidence in growing peanuts in rotation with sugarcane in coastal production areas,
and this has the potential to threaten the future viability of the Australian peanut industry.
So far, PKS has been a bigger problem in coastal production areas around Bundaberg,
even though it has been observed to a lesser extent in the inland Burnett region, southern
Queensland, and North Queensland, and some years had a higher incidence than others [2].
Further, all the main commercially grown peanut varieties, such as Holt, Menzies, Kairi,
and Taabinga, appear to be highly susceptible to PKS.

Preliminary investigations into the cause of PKS were conducted in 2015–2016, and
the results have ruled out all abiotic factors (including water quality and nutritional status)
and most biotic factors (including insects, nematodes, viruses, and bacteria). Research
results at the University of Southern Queensland (UniSQ) and at the Commonwealth
Scientific and Industrial Research Organisation (CSIRO)-Australian National University
(ANU) have suggested that some sort of pathogen, e.g., fungi such as Fusarium and/or
Diaporthe spp., may be involved (unpublished report). CSIRO has also suggested, from
electron microscopic analysis, that symptoms expressed in the kernel (testa and funiculus)
are consistent with a pathogen of some sort, and that the tissue in the swollen funiculus is
quite typical of an excess of some kind of hormone.

According to Boote [3], co-author of a paper on the shrivelled trait in peanut [4],
the genetic mutation causing shrivel in the University of Florida peanut mutant lines
is not what causes the PKS symptoms observed in Bundaberg. So far, no one in the
global peanut research community has seen PKS, but it raises concerns about this problem
in Australian peanuts, with the threat that it might be capable of spreading to other
countries. Sharman [5] suggested that PKS in peanut appears to be connected in some way
to phytoplasma infection based on the observation that every peanut plant they received
for testing that had phytoplasma symptoms tested positive for phytoplasma and had some
or all kernels showing signs of PKS. Still, the role of soilborne pathogens in causing root
rot, southern blight, crown rot, pod rot, and other root and stem diseases [6–8] cannot be
discounted as a possible cause of or contribution to the PKS syndrome [9].

This investigation aimed to determine how widespread and severe the peanut kernel
shrivel (PKS) syndrome is in the peanut-growing regions of Australia and to apply classical
and modern procedures to identify the biotic cause of PKS.

2. Materials and Methods

Peanut crop surveillance. A total of 250 samples randomly selected from 82 crops in
five peanut-growing regions in Australia were surveyed for PKS symptoms (Figure 1;
Supplementary Table S1) [10,11]. Surveillance was performed between 14 and 20 weeks
after planting, with three representative samples taken from each paddock and assessed for
PKS symptoms. Peanut crop was considered as having PKS disease based on the following
symptoms: peg lesions; yellow/swollen funiculus; discoloured testa; shrivelled kernel; and
aborted kernels (Figure 2).
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Figure 1. Number of samples from peanut crops surveyed in each peanut-growing region in Aus-
tralia for 2016/17: Bundaberg, SQ = southern Queensland, CQ = Central Queensland, Burnett, and 
NQ = North Queensland, BUN = Bundaberg and BUR = Burnett. 
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Fungi and bacteria isolation and identification. A total of 77 PKS-symptomatic and
-asymptomatic peanut plant samples from PCA’s surveillance activity were used in the
investigation. The samples represent nine peanut-growing regions, twenty-nine sample
locations within the regions, seventeen peanut varieties, PKS-affected and -non-affected
plants, twenty-five different planting dates, seventeen different sample collection dates,
thirty different ages of plants (DAP—days after planting) when sampled, and sixteen
different numbers of weeks when sampled.

Morphology-based grouping. Fungal and bacterial isolations on Potato Dextrose Agar
(PDA) (Bacto Laboratories, Sydney, NSW, Australia) and Nutrient Agar (NA) (Bacto Labo-
ratories, NSW, Australia), respectively, were performed separately on ten distinct parts of
the peanut plant, namely, leaf, upper stem, middle stem, basal stem, peg, pod, funiculus,
testa, kernel, and roots. All isolations were performed in three replications. Single spore
isolation and hyphal tipping were performed on fast-growing and slow-growing fungi,
respectively, to obtain pure cultures, while single colony sub-culturing was performed for
bacteria. The isolated fungi and bacteria were characterised and grouped based on their
morphology, examined by microscopy, and grown on culture media.

Molecular identification. For fungi molecular identification, total genomic DNA was
extracted, and polymerase chain reaction (PCR) was performed using ITS1 and ITS4
primers on representative fungal isolates from each morpho-group, targeting the conserved
Internal Transcribed Spacer (ITS) region for genus-level identification [12]. Sequencing
was performed by Macrogen (Geumcheon-gu, Seoul 08511, Republic of Korea), and the
resulting sequences were BLAST-searched in NCBI’s GenBank (https://www.ncbi.nlm.nih.
gov/genbank/) (accessed on 15 January 2023) to obtain their closest identities at the genus
level. For bacteria molecular identification, the universal primers 27F and 1492R were
used for PCR to amplify the 16s rRNA region [13]. PCR products were sent to Macrogen
(Macrogen Inc., Seoul, Republic of Korea) for sequencing, and the resulting sequences
were BLAST-searched as described above. The identified fungal and bacterial genera from
PKS-unaffected and -affected plants were compared. Those that were found consistently
present and unique to PKS-affected plants were considered as a potential cause of the PKS
syndrome. Cultures of the identified morpho-group representatives were used for further
analysis as required.

For the species identification of the most dominant fungal genera, Fusarium spp.,
a partial sequence of the Translation Elongation Factor (TEF) EF-1α gene was obtained
using EF-1 sequencing primer [14]. The EF-1α gene sequence data were used to deter-
mine the Fusarium species identity using the NCBI-BLAST (https://www.ncbi.nlm.nih.
gov/nucleotide/) (accesses on 23 January 2023), Fusarium MLST Polyphasic Identification
(https://fusarium.mycobank.org/page/Fusarium_identification) (accessed on 19 May 2024),
and BOLDSYSTEMS (https://v3.boldsystems.org/) (accessed on 24 January 2023) plat-
forms. A phylogenetic tree was created for the EF-1α gene sequences based on the genetic
distance model, using the software Geneious Version 11 [15].

Soil metagenomic analysis. A total of 495 (165 × 3 replications) rhizosphere samples (a
mixture of roots and soil), not necessarily all from the same locations where the peanut
plant samples were collected, were received from PCA. The samples represent three peanut-
growing regions (Brisbane Valley, Burnett, and Bundaberg), five crop rotations (no peanut,
one season of peanut, two seasons of peanut, continuous crop, and pasture for 25 years),
four peanut varieties (Holt, Fisher, Kairi, and Redvale), PKS-affected and -unaffected soil,
fifteen paddocks, and fifteen sampling locations within a paddock. Roots and soil from
each sample were separated, and then samples from the three replications were pooled to
create a homogeneous mix. For the 165 soil samples, the Powersoil DNA Isolation Kit (MO
BIO Laboratories, Inc., Carlsbad, CA, USA) was used for soil DNA extraction, while the
CTAB DNA extraction method from the laboratory of Dr. Chris Dunlap of USDA, Illinois
was used for the 150 root DNA extractions. DNA libraries were prepared and assays for
both the fungal ITS and 16S rRNA gene sequence libraries were run in an Illumina MiSeq
NGS machine using the Nextera XT v2 to generate FASTQ sequence data. The generated
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FASTQ data were analysed using a CLC Microbial Genomics Module (Qiagen, Melbourne,
QLD, Australia). Furthermore, a subset of the DNA samples was re-analysed using EF-1
fungal primers [16] to give a more definitive species assignment.

Pathogenicity test. A pathogenicity test was performed to determine whether the
identified Fusarium oxysporum, found to be the most common and abundant fungal species
of the PKS-affected plants and soil rhizosphere, would produce PKS symptoms. A “side-
by-side” dual-pot experiment was conducted, using French white millet seeds soaked
in distilled water for 24 h and autoclaved twice as the substrate inoculated with 9 mm
mycelial discs of the F. oxysporum isolates and incubated at 25 ◦C for a minimum of three
weeks, referred to from here on as the “F. oxysporum inoculum”. Healthy peanut seeds cv.
Taabinga were sown in the first 20 cm dia. plastic pot containing pasteurised potting mix
(Searles Premium Advanced Potting Mix, Kilcoy, QLD, Australia), from here on referred to
as “healthy soil”. A second 20 cm dia. plastic pot containing the pasteurised potting mix
was infected with the F. oxysporum inoculum at a rate of 10 g inoculum per kg of potting
mix by mixing at the upper 5 cm layer of the potting mix, from here on referred to as “sick
soil”. No inoculum was added to the “healthy soil”. The two pots were placed next to each
other, which allowed the pegs from the “healthy soil” to extend and become embedded in
both the “healthy soil” and the “sick soil” (Figure 3). After about 19 weeks, peanuts from
the different treatments were harvested, and the pegs, pods, and kernels were inspected for
presence of PKS symptoms.
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Figure 3. The “side-by-side” dual-pot experiment with healthy peanut plant, cv. Taabinga, in pots
containing “sick soil” (Left) next to the pot of “healthy soil” (Right).

3. Results
3.1. Peanut Crop Surveillance
3.1.1. Effect of Region

The Bundaberg samples had the highest incidence of symptoms, but also the high-
est variability in the symptoms that were detected. The Brisbane Valley samples had
the lowest symptoms detected and the most uniform symptoms observed (Figure 4,
Supplementary Figure S1).
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3.1.2. Effect of Previous Crop

Results showed that Bundaberg with a previous crop of cane had the highest % of
pods with PKS symptoms compared to the other previous crop, followed by peanuts, and
then legumes at Central Qld (Supplementary Figure S2).

3.1.3. Effect of Variety

Peanut cv. Holt at Bundaberg exhibited a higher % of pods with PKS symptoms
compared to the other varieties (Supplementary Figure S3).

3.1.4. Effect of Planting Date

Planting in October at Bundaberg resulted in a much higher % of pods with PKS
symptoms compared to the other planting dates in the other surveyed regions, but a
mid-January planting at North Qld followed next in % of pods with PKS symptoms
(Supplementary Figure S4).

3.1.5. Effect of Sample Days after Planting

Sampling between 100 and 140 days after planting resulted in a considerably high %
of pods with PKS symptoms in all regions surveyed (Supplementary Figure S5).

3.1.6. Effect of Soil Type

Alluvial soil and hydrosol in Bundaberg seem to favour PKS on pods, followed by
ferrosol at NQ, and Tenosol at CQ (Supplementary Figure S6).

3.2. Fungi and Bacteria Isolation and Identification

There were a total of 1560 fungal (42 morpho-groups) and 1560 bacterial (36 morpho-
groups) isolations from 77 PKS-affected and -unaffected samples provided by PCA. Se-
quencing the 16S rRNA gene of bacteria morpho-group representatives resulted in bacteria
belonging to the following genera: Erwinia sp.; Pectobacterium sp.; Bacillus sp.; Pantoea
spp.; and Serratia sp. Furthermore, sequencing the ITS1 gene of fungal morpho-group
representatives revealed several fungal genus identities (Table 1). Comparing the fungi and
bacteria isolated from above-ground and below-ground plant parts, between PKS-affected
and -unaffected peanut plants, revealed no fungus or bacterium that was uniquely and
consistently present in PKS-affected plants. This indicates that, based on culture-dependent
samples, there is no clear-cut involvement of fungi or bacteria in the PKS syndrome. How-
ever, Fusarium spp. were found to be the dominant fungal genera in PKS-affected plants,
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comprising 47% of the total number of fungi isolated from the surveillance samples (Sup-
plementary Figure S7). Further amplification and sequencing of the EF-1α gene of the
Fusarium spp. revealed that the most dominant Fusarium species is F. oxysporum (Figure 5).

Table 1. Identities of fungal morpho-group representatives based on ITS1 gene sequencing and
NCBI-BLAST search.

Isolate ID# * Morpho-Group ITS1 Region-Based ID % Similarity

PKSF3 A Fusarium sp. 99%
PKSF5 B Fusarium sp. 97%
PKSF9 C Fusarium sp. 100%
PKSF16 D Fusarium sp. 100%
PKSF19 E Fusarium sp. 100%
PKSF23 G Diaporthe sp. 99%
PKSF29 H Chaetomium sp. 99%
PKSF30 I Alternaria sp. 99%
PKSF32 K Alternaria sp. 99%
PKSF34 M Paecilomyces sp./Talaromyces sp. 99%
PKSF37 N Paecilomyces sp./Talaromyces sp. 99%
PKSF38 O Penicillium sp. 98%
PKSF39 P Chaetomium sp. 97%
PKSF40 AI Fusarium sp. 99%
PKSF41 D Fusarium sp. 99%

* Isolates were curated at the University of Southern Queensland.
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3.3. Metagenomics Based on Fungal Internal Transcribed Sequence (ITS)

The Operational Taxonomic Unit (OTU) belonging to Fusarium spp. after blasting was
found to be the most abundant. OTUs are clusters of (uncultivated or unknown) organisms,
grouped by DNA sequence similarity of a specific taxonomic marker gene. Each of the
formed clusters represent a taxonomic unit of a species or genus depending on the sequence
similarity threshold. In this metagenomics study, all the graphs are at the genus level, and
the OTUs for Fusarium spp. were made black in all the pictures. The unidentified sequences
have been removed, and all graphs are a percentage of total fungi identified. There is one
group of pictures for the soil and one for the roots. Each graph is the same data (all samples)
grouped/sorted by the given variable.

3.3.1. Root Samples

Overall, Fusarium spp. detected from PKS-positive roots were more abundant com-
pared to PKS-negative roots (Figure 6). Among the regions, Bundaberg was the region that
had the most abundant Fusarium sp. communities, followed by Burnett, and then Brisbane
Valley (Figure 7). In comparing the effect of crop rotation, there appeared to be a slight
increase from 1 to 2 yrs. (Figure 8). From 0 yrs. to 1 yr. to 2 yrs., the Fusarium ITS increases
from 6% to 12% to 15% of fungi, respectively. Among the varieties, Holt had the highest
abundance of Fusarium spp. detected, followed by Fisher, and then Kairi.

3.3.2. Soil Samples

Fusarium spp. were more abundant in PKS-affected soil compared to PKS-unaffected
soil. The Bundaberg region had the highest abundance detected, followed by Burnett, and
then Brisbane Valley. Regarding the crop rotation effect, the results showed an increasing
trend in terms of Fusarium sp. abundance from zero peanut, one peanut, and two peanut
rotations (Figure 9). There is a difference in Fusarium sp. abundance in the soil of different
peanut varieties, which follows the same trend as the root samples’ results, with Holt
having the highest abundance, followed by the Kairi and Fisher varieties.

3.4. Metagenomics Based on Fungal Elongation Factor (EF-1)

A subset of the root DNA samples that was re-analysed with EF-1 primer gave a
more definitive species assignment. This allowed us to correlate the culture samples
more easily to the metagenomics DNA samples. The reads came back as the F. oxysporum
species complex after blasting with NCBI’s GenBank database and the Fusarium MLST
database. Matching these environmental EF-1α sequence data with the sequences from
the culture isolates identified from the isolation and identification section of this project
showed that the F. oxysporum species complex is the most common and abundant fungus of
the PKS-affected plants and soil rhizosphere.

3.5. Metagenomics Based on Bacteria 16S Data

The 16S data did not show any meaningful results after a preliminary evaluation.
No difference in bacteria communities and abundance between the PKS-affected and
PKS-unaffected samples was revealed by metagenomics analysis.

3.6. Pathogenicity Test

After about 19 weeks, the pegs, pods, and kernels of harvested peanuts from the pegs
that extended and became embedded in the “sick soil” displayed some of the peanut kernel
shrivel (PKS) syndrome symptoms: peg lesions; shrivelled kernel; and aborted kernels
(Figure 10).
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4. Discussion

The peanut crop surveillance conducted by PCA showed that PKS symptoms were
present in all paddocks from the regions surveyed, indicating the possible threat that this
syndrome brings to the Australian peanut industry. The most promising development to
arise from the research undertaken in 2016 is the identification of two Fusarium species:
F. oxysporum and F. chlamydosporum, which have been reported as being pathogenic to other
crop species [17]. The present results agree with the result of the initial investigation at
UniSQ, where the majority of fungi isolated from samples belonged to the Diaporthe and
Fusarium species group [18]. CSIRO’s electron microscopy results indicated that the tissue
in the swollen funiculus is quite typical of an excess of some kind of hormone and is seen
as a response to bacterial and fungal infection, and CSIRO-ANU also discovered two fungi
which appeared to be unique to the infected kernels compared to the uninfected ones,
namely, F. oxysporum and F. chlamydosporum [17]. According to CSIRO-ANU, Fusarium
oxysporum is a prolific plant pathogen that is divided into distinct groups based on the host
it infects. While F. chlamydosporum is far less associated with the disease, it is commonly
found in soils and rhizospheres. It was suggested that F. chlamydosporum is unlikely to
be the causal agent of the disease; however, it should not be excluded without further
experimentation. There is also a possibility that it could form a part of a disease complex
with F. oxysporum that could be causal to PKS. Furthermore, the results of the recently
concluded bacterial and fungal isolations from plant samples received from PCA also
showed Fusarium spp. as the dominant fungal genus present on PKS-affected plants. This
agrees with the report of Bellgard and Ham [8] on the participation of Fusarium spp. in
peanut peg and pod rot complex observed in the northern territory. The metagenomics
study showed a significant difference in Fusarium sp. abundance between PKS-affected
and PKS-unaffected samples, with F. oxysporum as the key Fusarium species [19].

F. oxysporum is a soilborne ascomycete common in soils around the world and the
cause of fusarium wilt, a deadly vascular wilting syndrome in plants. It has over 120 known
strains or “special forms” (formae speciales; f. sp.), each of which is specific and causes disease
in a unique plant host. These F. oxysporum strains infect and kill a large host range, including
many commercially harvested crops such as species in the Solanaceae family: tomatoes,
peppers, potatoes, eggplant, lettuce, legumes, beets, basil, strawberries, chrysanthemum
watermelon, sugarcane, bananas, and many other species [20]. F. oxysporum enters its
host through the root where it grows in the xylem tissue, eventually blocking the vascular
system. The blockage prevents the transport of water and nutrients within the host, causing
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wilting, discoloration, and death of the plant (Gonsalves and Ferreira, 1993). Excessive
soil moisture predisposes pods to infection by Fusarium and other pod-rotting pathogens,
resulting in the death of very young pods and dry rot in mature pods [21]. Such events
are typical of the PKS syndrome, which makes the identified F. oxysporum the probable
cause of PKS. However, the pathogenicity test demonstrated that F. oxysporum alone did
not produce the typical PKS disease symptoms. It is possible that it combines with other
biotic and abiotic factors to produce typical PKS symptoms. In related investigations, the
unpublished reports of Sharman [5] based on PKS surveillance and Vukovic, Sharman [22]
based on graft- and leafhopper-mediated transmission of phytoplasma disease between
peanut plants have suggested that PKS is a symptom of phytoplasma infection. This
recent research has narrowed down the potential causes of PKS to an insect-vectored
phytoplasma and/or the fungus F. oxysporum [9]. In addition, Laycock [23] also suggested
that PKS has a strong interaction with seasonal environmental conditions. Unless the
four criteria of Koch’s postulates have been met to establish the true causal relationship
between the pathogen(s) and PKS via individual inoculation or co-inoculation of suspected
causal organisms, the cause of this syndrome will remain unknown. Nevertheless, as
a precautionary measure, the presence of PKS should not be ignored, and measures to
minimise it should be practised as a management strategy.

Once a field is infected with Fusarium, the infectious spores remain present in the
soil for years. Crop rotation practices might help reduce the speed with which pathogen
populations build in the soil but do little to reduce the number of infectious spores and
eventually will not reduce the incidence or severity of the disease [21]. F. oxysporum is a
soilborne pathogen, and currently controlling the initial inoculum by sanitation is the best
means to control it. Moreover, the result of PCA’s field experiment in Bundaberg indicated
that there exists some level of resistance to PKS in some peanut varieties, wherein very large
genotypic variation in PKS susceptibility/resistance in their variety trials was observed,
suggesting that the genetic control over PKS resistance may be quite strong and offers the
potential for genetic resistance as a longer-term management strategy for PKS [2]. There
are reports as well from abroad on available peanut resistance to soilborne pathogens that
could potentially be useful in breeding efforts to address PKS disease [24–27].

The findings of the current project indicated that F. oxysporum is the most likely cause of
the PKS syndrome, in combination with other biotic and abiotic factors. Currently, control-
ling the initial inoculum by sanitation is the best means to control soilborne pathogens. One
should avoid bringing infected soil or plant tissues into disease-free areas. Make certain
that all tools and equipment have been cleaned and sterilised after contact with infected
sites and plants. New plantings should be in areas known to be free of the pathogen, and
the soils should be screened to ensure that no soilborne pathogen is present.

5. Conclusions

This investigation was able to demonstrate that Fusarium spp. were the most abundant
fungal genus communities in PKS-affected plants and soil, with F. oxysporum identified as
the most abundant Fusarium species. However, the pathogenicity test (Koch’s postulates)
for the fungus Fusarium oxysporum failed to demonstrate that it is the main cause of PKS,
suggesting that it could just have an integral role in combination with other biotic factors
and abiotic stressors to cause the disease. Further investigations are needed to identify
the main cause or causes of this disease. This information can then be used by plant
pathologists in developing disease management strategies, plant breeders in developing
resistant/tolerant varieties, and the growers/peanut industry in implementing available
disease management strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy14071435/s1, Figure S1: Effect of region on percent of
pods with PKS symptoms; Figure S2: Effect of previous crop on percent of pods with PKS symptoms
by region; Figure S3: Effect of peanut variety on percent of pods with PKS symptoms by region;
Figure S4: Effect of planting date on percent pods with PKS symptoms by region; Figure S5: Effect
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days to sampling after planting on percent of pods with PKS symptoms by region; Figure S6: Effect of
soil type on percent pods with PKS symptoms by region; Figure S7: Percent distribution of different
fungal genera representing different fungal morpho-group isolated from PKS surveillance; Table S1:
GPS coordinates of sampling locations for peanut crops, including peanut variety information,
surveyed in each peanut-growing region in Australia for 2016/17: Bundaberg, SQ = southern
Queensland, CQ = Central Queensland, Burnett, and NQ = North Queensland.
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