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ABSTRACT

In this paper, we investigate a wide range of dynamical regimes produced by the nonlinearly excited phase (NEP) equation (a single sixth-
order nonlinear partial differential equation) using a more advanced numerical method, namely, the integrated radial basis function network
method. Previously, we obtained single-step spinning solutions of the equation using the Galerkin method. First, we verify the numerical
solver through an exact solution of a forced version of the equation. Doing so, we compare the numerical results obtained for different
space and time steps with the exact solution. Then, we apply the method to solve the NEP equation and reproduce the previously obtained
spinning regimes. In the new series of numerical experiments, we find regimes in the form of spinning trains of steps/kinks comprising one,
two, or three kinks. The evolution of the distance between the kinks is analyzed. Two different kinds of boundary conditions are considered:
homogeneous and periodic. The dependence of the dynamics on the size of the domain is explored showing how larger domains accommodate
multiple spinning fronts. We determine the critical domain size (bifurcation size) above which non-trivial settled regimes become possible.
The initial condition determines the direction of motion of the kinks but not their sizes and velocities.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009215

Detonation waves, solid flames, and similar fronts of reaction in
active-dissipative systems can be simulated by a single sixth-order
nonlinear partial differential equation (PDE) also referred to as
the nonlinearly excited phase (NEP) equation. The concerned
equation was developed phenomenologically by Strunin to model
the propagation of spinning waves on a hollow cylinder. It is very
difficult to solve a highly nonlinear PDE especially when we lack
its exact solution. To overcome this scenario, we took various ini-
tial conditions and demonstrate that regardless of different initial
conditions, we are getting similar results. We will use our solver
to solve complicated physical problems in future work.

I. INTRODUCTION

Formation of super-adiabatic structures in propagating reac-
tion fronts, such as solid-phase combustion and spinning detona-
tion, generated wide interest from theorists and applied mathemati-
cians due to the rich spectrum of nonlinear effects. The original
interest, however, was connected with practical applications includ-
ing manufacturing of advanced materials by self-propagating high-
temperature synthesis (SHS). For recent experimental research on
the area, we refer to Refs. 1–3. Strunin in Ref. 4 designed a com-
pact single-equation model capable of simulating the experimentally
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FIG. 1. A reaction front propagating on a hollow cylinder.

observed spinning reaction fronts on a cylinder,

∂u

∂t
= −

(
∂u

∂x

)2
∂2u

∂x2
+

(
∂u

∂x

)4

+
∂6u

∂x6
. (1.1)

Later on,5 Eq. (1.1) was also shown to describe nonlinear insta-
bilities in some non-local reaction–diffusion systems. In connection
with those systems and for brevity, we will refer to Eq. (1.1) as the
nonlinearly excited phase (NEP) equation.

In the context of the combustion fronts of the present paper,
u stands for the distance passed by the front (approximately a line
separating cold unburned mixture from hot burned products) along
the axis of a hollow cylinder (Fig. 1).

The model (1.1) gives rise to rich dynamics of which the spin-
ning front is one of the most spectacular regimes observed experi-
mentally. Figure 1 sketches the kink shaped solution (1.1). The steep,
almost vertical sections in (1.1) correspond, in experiments, to lumi-
nous hot spots. The spots have a very high temperature often called
in combustion literature super-adiabatic. Similar hot-spot structures
have also been found in experiments with infiltration combustion.3

Special attention was drawn recently to the structures of com-
bustion fronts in heterogeneous reactive compositions. Regardless
of the effect of initial perturbations, the combustion process can be
accompanied by the spontaneous formation of regular structures,
the symmetry of which differs from the symmetry of initial condi-
tions. For systems in which the reactive gas is blown through the
reaction products in the direction of the propagating front, it was
shown in Ref. 6 that the combustion process may become unstable,
accompanied by the formation of finger-shaped structures. These
processes were experimentally studied in Ref. 7 for the propaga-
tion of a smoldering wave in a slit-like channel filled with sawdust.
The focus was on examining the effect of scale factors on the loss
of stability of the combustion of highly porous media. The struc-
turing of the combustion front in metal powders subject to natural
gas infiltration was theoretically and experimentally investigated

in Refs. 1–3. The authors analyzed the infiltration combustion of
porous media and the dynamics of initiation and propagation of
cellular wave structures. They studied the dependence of the num-
ber and shape of cells on the governing thermo-physical parameters
of the heterogeneous medium, the geometric characteristics of the
porous composition, heat loss, etc. These studies showed that the
planar front may break into individual cells, which move through
the condensed material layer in the pulsation mode, leaving behind
a band of condensed combustion products with a periodic structure.

Qualitative character of these regimes can be simulated using
Eq. (1.1). The equation is based on phenomenological principles:
it mimics the evolution of the shape of the front4 while leaving the
concentration and temperature as such outside the scope of consid-
eration. In support of a phenomenological approach, we note that
combustion systems are often extremely complex and may involve
chains of chemical reactions between numerous reactants compli-
cated by mechanical deformations, melting, etc. This may render
prohibitively difficult to model the combustion systems using the
basic heat and concentration equations. As an example of using a
phenological approach, we refer to Refs. 8 and 9 where the long-term
cluster evolution in granular gases was studied.

For the spinning waves of combustion, the first attempt to con-
struct a model based on phenomenological principles was made
by Aldushin et al.10 However, the model (1.1) better describes the
shape of the front.4 In Ref. 10, the shape is sinusoidal, whereas in
Ref. 4, it is kink-like just as observed experimentally. In addition,
the motion of the kink decays completely if affected by a sufficiently
strong heat loss into the outside medium, also in agreement with
the experiments. In terms of the derivative, v = ∂u/∂x, the kink has
the form of a soliton. To be precise, it is an auto-soliton—a type of
solitons encountered in active physical and biological systems.11,12

The prefix auto- distinguishes this type of solitons from the solitons
in conservative systems. While the conservative solitons result from
the balance between nonlinearity and dispersion, the auto-solitons
result from the balance between energy release and dissipation. The
combustion front is a typical example of an active-dissipative sys-
tem, where the energy is produced by chemical reactions and the
dissipation is facilitated by thermoconductivity. An auto-soliton
possesses a unique amplitude and unique velocity as dictated by the
energy balance. In Eq. (1.1), the energy release is represented by the
term (∂u/∂x)2∂2u/∂x2 and the dissipation represented by the term
∂6u/∂x6. The term (∂u/∂x)4 links the release and dissipation.4,5,13

For the convenience of computations, we rewrite Eq. (1.1) as

∂u

∂t
= −A

(
∂u

∂x

)2
∂2u

∂x2
+ B

(
∂u

∂x

)4

+ C
∂6u

∂x6
, (1.2)

where A and C are positive and B is assumed positive for con-
venience (the case of B < 0 is converted to the case of B > 0 by
transforming u → −u and B → −B).

By choosing different values of A, B, and C, we will achieve
reasonably short duration of our experiments and good accuracy.
However, we note that Eq. (1.2) can be transformed to the canoni-
cal form (1.1) by re-scaling u, x, and t. Therefore, the results of each
of our experiments will also represent the solutions of the canonical
equation (1.1) in re-scaled coordinates.
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Previously, Eq. (1.1) was solved using the spectral Galerkin
method4 and the finite difference scheme,13 and a few initial results
were discussed in Ref. 14 using the 1D-IRBFN method. In the
present paper, we use a more accurate method, which is a colloca-
tion method based on integrated radial basis function networks,15,16

called the IRBFN method. As detailed in the Appendix, the method
is particularly effective for solving equations with high-order deriva-
tives. In Sec. II, we discretize Eq. (1.2). The method was previously
verified in different applied areas of mechanics and physics; how-
ever, in Sec. III, we present our own verification by applying the
method to a forced NEP equation with the exact solution. Then, in
Sec. V, we use the method to obtain an analysis of a range of dynam-
ics generated by the NEP equation (1.2), using different initial and
boundary conditions. Conclusions are given in Sec. VI.

II. DISCRETIZATION OF THE GOVERNING EQUATION

FOR SPINNING REACTION FRONTS

In this section, we discretize the governing equation (1.2)
for spinning reaction fronts using the integrated radial basis
function network (IRBFN) method15,16 in conjunction with the
Crank–Nicolson method. The spatial derivatives of the function
u(x), including the first- to sixth-order derivatives, are discretized
using the IRBFN method as shown in the Appendix. Applying
the Crank–Nicolson method17 for the temporal discretization of
Eq. (1.2) results in

u(n+1) − u(n)

1t
=

1

2

[
−A

(
∂u

∂x

)2
∂2u

∂x2
+ B

(
∂u

∂x

)4

+ C
∂6u

∂x6

](n)

+
1

2

[
−A

(
∂u

∂x

)2
∂2u

∂x2
+ B

(
∂u
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)4

+ C
∂6u

∂x6

](n+1)

,

(2.1)

where 1t = t(n+1) − t(n) is the time step and the superscripts (n) and
(n + 1) denote the previous and current time levels, respectively.
To linearize the nonlinear terms on the right hand side (RHS) of
Eq. (2.1), we use a one-step Picard iteration method,17,18

u(n+1) − u(n)
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Making use of Eqs. (A12)–(A16) to determine the spatial derivatives
on the RHS of Eq. (2.2), we obtain
{
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−

1

2

[
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(
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]}
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(2.3)

For simplicity, the above equation can be rewritten as

E1ŵ
(n+1) = RHS1. (2.4)

In the present study, we consider different sets of boundary condi-
tions, namely,

• Set 1:

u (x = L1) = a0, u (x = L2) = b0, (2.5)

∂u

∂x
(x = L1) = a1,

∂u

∂x
(x = L2) = b1, (2.6)

∂2u

∂x2
(x = L1) = a2,

∂2u

∂x2
(x = L2) = b2. (2.7)

• Set 2:

∂u

∂x
(x = L1) = a1,

∂u

∂x
(x = L2) = b1, (2.8)

∂2u

∂x2
(x = L1) = a2,

∂2u

∂x2
(x = L2) = b2, (2.9)

∂3u

∂x3
(x = L1) = a3,

∂3u

∂x3
(x = L2) = b3. (2.10)

• Set 3: Periodic boundary condition

u (x = L1) = u (x = L2) ,
∂u

∂x
(x = L1) =

∂u

∂x
(x = L2) , (2.11)

∂2u

∂x2
(x = L1) =

∂2u

∂x2
(x = L2) ,

∂3u

∂x3
(x = L1) =

∂3u

∂x3
(x = L2) ,

(2.12)

∂4u

∂x4
(x = L1) =

∂4u

∂x4
(x = L2) ,

∂5u

∂x5
(x = L1) =

∂5u

∂x5
(x = L2) ,

(2.13)

where a0, a1, a2, a3, b0, b1, b2, and b3 are set numbers. The boundary
conditions can be described by

E2ŵ
(n+1) = RHS2 . (2.14)

The system of equations (2.4) and (2.14) is solved simultaneously
at each time step for ŵ(n+1) until the prescribed time Tmax is
reached. We then obtain all the values u(n+1) by substituting ŵ(n+1)

in Eq. (A11).

III. VERIFICATION OF THE IRBFN METHOD USING THE

FORCED NEP EQUATION

In this section, we demonstrate the accuracy of our IRBFN
solver using a forced NEP equation. The forced NEP equation is
constructed with the purpose of allowing an exact solution, which, if
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stable, should be captured by the numerical method. Therefore, we
consider the equation

∂u

∂t
= −A

(
∂u

∂x

)2
∂2u

∂x2
+ B

(
∂u

∂x

)4

+ C
∂6u

∂x6
+ f (x, t) (3.1)

and require that it has the exact solution

u = sin(x − t) . (3.2)

By substituting (3.2) into (3.1), we find the force,

f(x, t) = − cos(x − t) − A sin(x − t) cos2(x − t)

− B cos4(x − t) + C sin(x − t). (3.3)

Choosing A = 2, B = 1, and C = 1, we consider Set 1 (2.5)–(2.7)
and Set 2 (2.8)–(2.10) as the boundary conditions with the parame-
ters a0, a1, a2, a3, b0, b1, b2, and b3 calculated using the exact solution
(3.2). We evaluate the performance of the IRBFN solver based on the
relative error norm, Ne, and the convergence rate O(hα),

Ne =

√∑N
i=1 (ui − ui)

2

∑N
i=1 u2

i

, (3.4)

Ne(h) ≈ γ hα = O(hα), (3.5)

where ui and ui are the numerical and exact solutions at the ith node,
respectively; h the grid size; and γ and α are exponential model’s
parameters.

Figure 2 gives the comparison between the exact solution and
the IRBFN result at the time moment t = 5.0 for the two sets of
boundary conditions, using a grid of 100 and 1t = 0.001. It appears
that the IRBFN results are in good agreement with the exact solu-
tion. The relative error norm Ne(u) is 1.31 × 10−4 and 2.26 × 10−2

FIG. 2. Experiments with the forced NEP equation: Comparison between the
exact solution and the IRBFN solution at t = 5.0 for two sets of boundary
conditions using a grid of 100 and 1t = 10−3.

FIG. 3. Experiments with the forced NEP equation: Grid convergence study of
the solution u. The convergence rate is O(h1.51) for Set 1 and O(h1.99) for Set 2.

for Set 1 and Set 2, respectively. Figure 3 presents the grid conver-
gence study of the numerical solution u. The convergence rate is
O(h1.51) for Set 1 and O(h1.99) for Set 2.

Figure 4 shows the influence of the time step 1t on the
solution accuracy Ne(u) for different grid sizes and sets of bound-
ary conditions. We observe that the solution accuracy improves
with reducing time step 1t until a certain value 1topt. The value
1topt reduces with increasing N. For Set 1, 1topt = {5 × 10−3, 2 ×

10−3, 1 × 10−3, 5 × 10−4} for N = {200, 400, 600, 800}, respectively.
For Set 2, 1topt = {5 × 10−3, 2 × 10−3, 1 × 10−3, 2 × 10−4} for N =

{200, 400, 600, 800}, respectively.

IV. RESOLVING DISSIPATIVE STRUCTURE AND

BIFURCATION LENGTH

In this section, we present results of a series of numerical exper-
iments with different initial and boundary conditions and various
lengths of spatial domain, L, as described in Table I.

A. Formation of a moving front

In Experiment 1, the equation coefficients are chosen as A = 2,
B = 1, and C = 1. We use Set 2 boundary conditions, (2.8)–(2.10),
with a1 = 0, a2 = 0, a3 = 0, b1 = 0, b2 = 0, and b3 = 0, L = L2

− L1 = 15π , N = 100 grid points, and time step 1t = 0.001. We
use this time step in all our numerical experiments below. After
some transitional period of evolution [Fig. 5(a)], the front clearly
settles in a constant shape (most evident at the later moments), with
the nearly horizontal tails as is seen from Fig. 5(b). See the ripples
ahead of the main front [Fig. 5(b)]. This is typical when dissipation
is expressed by a high-order derivative, in our case ∂6u/∂x6. Effec-
tively, this regime represents an isolated step of Fig. 1. In Sec. IV B,
we present further comparison between our results and the periodic
solution from Fig. 1.
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FIG. 4. Experiments with the forced NEP equation: Variation of Ne(u) against1t

for different grid sizes for the boundary condition (a) Set 1 and (b) Set 2.

TABLE I. Resolving dissipative structures and bifurcation length: initial conditions,

boundary conditions, and the length of computational domain L for different experi-

ments. l stands for the bifurcation length.

Experiment

Initial
condition

u(x, 0)
Boundary
condition

Domain
length L

1: A moving front 5exp [ − (x − 1)2] Set 2 15π
2: A decaying wave sinx Set 3 π

3: A decaying wave 10sinx Set 3 π

4: Bifurcation length 1.1 [sin(3x)+ Set 3 16.1 <

+ 1
2

sin(4x) + x
8

]
l < 16.2

FIG. 5. Experiment 1: (a) The solution u vs x at different time moments during
the transitional stage and (b) the settled stage.

B. Determination of bifurcation length

For the NEP equation, a dissipative structure is formed when
all the three terms on the right-hand side of the equation balance
each other. Denoting the characteristic amplitude of the structure
by U > 0 and its characteristic length by ` > 0, we have

(
∂u

∂x

)2
∂2u

∂x2
∼

U3

l4
,

(
∂u

∂x

)4

∼
U4

l4
,
∂6u

∂x6
∼

U

l6
. (4.1)

The balance between the terms gives the two equations,

AU3/`4 ∼ BU4/`4 ∼ CU/`6 ,

which determine the scales of the dissipative structure. When the
length L is smaller than the length `, there is not enough room for the
structure to form. In this case, the dissipation term dominates over
the energy release, and the system is driven toward decay. Figures 6
and 7 demonstrate such a decay. In Experiment 2, the equation coef-
ficients are A = 1, B = 1, and C = 1. In this numerical experiment,
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FIG. 6. Experiment 2: (a) The solution u vs x at different time moments during
the transitional stage and (b) the decaying stage.

the solution is periodic in space; therefore, the boundary conditions
are represented by Set 3, (2.11)–(2.13).

In Experiment 3 conducted with the same length L = π , we
use the initial condition of a larger amplitude, namely, u0 = 10 sin x,
compared to u0 = sin x of Experiment 2. Despite the larger initial
amplitude, the dynamic still decays; see Figs. 7(a) and 7(b).

Our main goal in this section is to determine the critical
domain size L = ` (bifurcation length) such that for L > `, a non-
trivial settled regime may form, and for L < `, only a trivial (spatially
flat) settled state is possible. As before, we use periodic boundary
conditions, Set 3.

To determine the critical transition from the decaying wave to
the spinning wave regime, we conducted Experiment 4 using the
domain length L varying from 15 to 17 with a spatial step 1L = 0.5.
We found that the bifurcation length L is in the range from 16.0
to 16.5. To be more accurate, we used a finer step 1L = 0.1 for L
varying from 16.0 to 16.5 and found that the L value is in the range
from 16.1 to 16.2 as shown in Table II. In Experiment 4 with A = 6,
B = 2, C = 2, and L = 15, the step-like structure does not appear

FIG. 7. Experiment 3: (a) The solution u vs x at different time moments during
the transitional stage and (b) the decaying stage.

(Fig. 8) despite we run the experiment for a long period of time
(Tmax = 200).

In Fig. 9, we present the behavior of u for L = 16, L = 16.1, and
L = 16.2. In these experiments to keep the uniformity, we use A = 6,

TABLE II. Experiment 4: Determination of the bifurcation length.

Domain length L Solution regime

15 Decaying
15.5 Decaying
16 Decaying

16.1 Decaying
16.2 Spinning wave
16.3 Spinning wave
16.4 Spinning wave
16.5 Spinning wave
17 Spinning wave
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FIG. 8. Experiment 4 with L = 15: (a) The solution u vs x at different time
moments during the transitional stage and (b) the decaying stage.

B = 2, and C = 2 and take the same initial condition. The bound-
ary conditions are represented by Set 3, the time step is 1t = 0.001,
and the experiments were run until Tmax = 30. From Figs. 9(a)
and 9(b) (L = 16 and L = 16.1, respectively), we see that the humps
start to disappear and merge to a single hump. The formed hump
slowly moves in a vertical direction and then decays as time passes.
From Fig. 9(c) (L = 16.2), we observe that around t = 20, the ini-
tial humps created by the initial condition disappear and merge to a
single hump, which then moves on a helical path as a spinning wave.

In order to obtain a sustaining structure, we increased the
domain length to L = 17. Figures 10(a) and 10(b) show the cor-
responding behavior of u(x, t). After some transitional period
[Fig. 10(a)], a single step-like structure eventually settles as shown
in Fig. 10(b). The wave survives and finally develops into a strong
spinning wave moving to the right and up as time goes. This is the
spinning regime similar to the one shown in Fig. 1. Thus, from this
series of experiments, we determined that the bifurcation length lies
in the interval 16.1 < ` < 16.2.

FIG. 9. Experiment with L = 16, L = 16.1, and L = 16.2: (a) The solution u vs
x for L = 16, (b) the solution u vs x for L = 16.1, and (c) the solution u vs x for
L = 16.2.

We note that the values of the equation coefficients A, B, and C
are generally different in different experiments. In each experiment,
they are selected as is convenient to achieve fast convergence of the
dynamic to a settled state.
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FIG. 10. Experiment 4 with L = 17: (a) The solution u vs x at different time
moments during the transitional stage and (b) the settled stage.

We prefer, however, to translate the above result to one perti-
nent to a canonical form of Eq. (1.2), that is, Eq. (1.1). The canonical
form is obtained by scaling u, x, and t to eliminate the coefficients A,
B, and C as follows. Defining the scaled variables,

u = aU, x = bX, t = cT, (4.2)

we transform Eq. (1.2) to

∂U

∂T
= −A

a2c

b4

(
∂U

∂X

)2
∂2U

∂X2
+ B

a3c

b4

(
∂U

∂X

)4

+ C
c

b6

∂6U

∂X6
. (4.3)

We make each coefficient equal to 1,

Aa2c

b4
= 1,

Ba3c

b4
= 1,

Cc

b6
= 1, (4.4)

by choosing

a =
A

B
, b = B

(
C

A3

)1/2

, c =
C2B6

A7
. (4.5)

Using (4.2), the canonical length, lcan, is

lcan = l/b. (4.6)

Substituting l = 16.1 and l = 16.2 as well as A = 6, B = 2, and
C = 2 into (4.5) and (4.6), we get lcan = 83.65 for l = 16.1 and
lcan = 84.177 for l = 16.2. Hence, the bifurcation length lies within
the interval 83.65 < lcan < 84.177.

V. SPINNING WAVE REGIMES

For experiments in this section, in order to obtain spinning
regimes, we choose the length of the spatial domain larger than
the bifurcation length; i.e., the domain canonical length is chosen
larger than the bifurcation canonical length (83.65 < lcan < 84.177)
as shown in Table III. Table III presents the initial conditions,
boundary conditions, the domain length L, b value, and the asso-
ciated length Lcan for different experiments. We emphasize again
that concrete values of the equation coefficients A, B, and C are not
important in terms of the shape of the front and the way it moves
because each of the presented graphs of u(x, t) can be treated as
one corresponding to the canonical form of Eq. (1.2), only in scaled
coordinates.

A. Single-step regime

In this subsection, we conduct three numerical experiments
under periodic boundary conditions (Set 3) and with different ini-
tial conditions as described in Table III. The experiments produce a
solution in the form of a single-step spinning front.

1. Experiment 1

The equation coefficients are A = 8, B = 3, and C = 2. The ini-
tial condition, u(x, 0) = 2 sin x, is periodic and, hence, is consistent
with the boundary conditions. The dynamics survives apparently
because L is larger than the bifurcation length. After some tran-
sitional period [Fig. 11(a)], the wave dynamic becomes settled as
shown in Fig. 11(b); this is a single-step structure. In spite of the
symmetry of the initial condition, the wave ends up moving to the
left, not to the right. It appears that an ideally symmetric regime is
intrinsically unstable; hence, it eventually evolves into one of the two
possible asymmetric regimes (left-directed in this case).

2. Experiment 2

We use the parameters A = 6, B = 2, and C = 2. The initial
condition is

u(x, 0) = 1.1

[
sin(3x) +

1

2
sin(4x) +

x

8

]
. (5.1)

In this particular experiment, the initial condition does not satisfy
the boundary conditions because at t = 0, the values of the function
on the left end and on the right end of the domain are not the same.
However, immediately after the start of the experiment, the solution
u(x, t) is forced to satisfy the boundary condition, creating the large
step on the left. The dissipation quickly smoothens out the initial
short-wavelength unevenness [Fig. 12(a)]. After a while, the settled
spinning regime, a one-step structure, establishes with the direction
of motion to the right [Fig. 12(c)].
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TABLE III. Spinning wave regimes: initial conditions, boundary conditions, and the domain length L, b value, and the associated length Lcan for different experiments.

Experiment Initial condition u(x, 0) Boundary condition Domain length L b Domain canonical length Lcan = L/b

1: Single-step regime 2sinx Set 3 25 0.188 133.333
2: Single-step regime 1.1

[
sin(3x) + 1

2
sin(4x) + x

8

]
Set 3 12π 0.192 195.890

3: Single-step regime 6.1 exp[0.25(x+1.1)]−exp[−0.25(x+1.1)]

exp[0.25(x+1.1)]+exp[−0.5(x+1.1)]
Set 3 9π 0.177 159.944

4: Two-step regime 7.8exp [ − (x − 5)2] Set 2 70 0.354 197.990
5: Two-step regime 2sinx Set 3 55 0.188 293.333
6: Three-step regime 8.2exp [ − (x − 4)2] Set 2 90 0.354 254.558

3. Experiment 3

The equation coefficients are chosen as A = 4, B = 1, and
C = 2. Figure 13(a) shows the contour plot of u(x, t) using a grid of
100. Figure 13(b) shows the dynamics at early times, while Fig. 13(c)
shows the solution during the settled state. The front survives and
moves up and to the right as time goes. The regime obtained here can

FIG. 11. Experiment 1: (a) The solution u vs x at different time moments during
the transitional stage and (b) the settled stage.

be associated with the reaction front moving in the spinning fashion
on a cylindrical surface, where the x-coordinate is directed along the
perimeter of the cylinder.

In this experiment, again, the initial condition is not consis-
tent with the periodic boundary conditions. However, the solution
u(x, t) is immediately forced to satisfy boundary conditions, creat-
ing the large step on the left. This step is opposite in orientation (u
decreases against x) to the step in the middle of the computational
domain as part of the initial condition (u increases against x). As
a result, an intensive energy release starts to act within the region
of the large newly formed step, pushing the front to the right. This
motion happens to be powerful enough for the new step to climb
over the initial step in the middle and continue to move on top of it.
Eventually, the right-moving spinning regime settles; see Fig. 13(c).

B. Two-step regime

In this section, we use larger computational domain in exper-
iments with homogeneous (Set 2) and periodic (Set 3) boundary
conditions.

1. Experiment 4: Homogeneous boundary conditions

The equation coefficients are chosen as A = 2, B = 1, and
C = 1. Figure 14(a) presents the contour plot of u(x, t). The initial
condition is chosen in the form of a tall peak positioned near the left
end of the domain. Because of the proximity of the left boundary,
the peak can only move to the right. As the amplitude of the initial
peak is sufficiently large, it transforms into not one, but two kinks.
The lower kink leads the configuration, and the higher kink follows
on top of it. After some transitional period [Fig. 14(b)], the two-kink
structure settles as shown in Fig. 14(c).

2. Experiment 5: Periodic boundary conditions

The equation coefficients are chosen as A = 8, B = 3, and
C = 2. Figure 15(a) presents the contour plot of u(x, t). The ini-
tial condition has a sinusoidal form with several oscillations per
period. The spatial domain is larger than that in the one-step regime
(Experiment 1). After some transitional dynamics [Fig. 15(b)], the
structures take a mature form around t = 21. A joined formation of
two kinks moves from left to upper right, which represents a helical
path when the figure plane is rolled into a cylinder [Fig. 15(c)].
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FIG. 12. Experiment 2: (a) Contour plot of u(x, t), (b) the solution u vs x at
different time moments during the transitional stage, and (c) the settled stage.

FIG. 13. Experiment 3: (a) Contour plot of u(x, t), (b) the solution u vs x at
different time moments during the transitional stage, and (c) the settled stage.
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FIG. 14. Experiment 4: (a) Contour plot of u(x, t), (b) the solution u vs x at
different time moments during the transitional stage, and (c) the settled stage.

FIG. 15. Experiment 5: (a) Contour plot of u(x, t), (b) the solution u vs x at
different time moments during the transitional stage, and (c) the settled stage.
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FIG. 16. Experiment 6: (a) Contour plot of u(x, t), (b) the solution u vs x at
different time moments during the transitional stage, and (c) the settled stage.

C. Three-step regime with homogeneous boundary

conditions

In Experiment 6, the amplitude of the initial condition and
the domain size are larger than those used in all the previous

experiments. The equation coefficients are A = 2, B = 1, and C = 1.
Relative to Experiment 4, the initial amplitude is increased from 7.8
to 8.2. This helps, alongside the larger domain available, to create
the third step as shown in Figs. 16(a) and 16(b). After some transi-
tional period [Fig. 16(b)], the three-step structure gradually appears
as illustrated by Fig. 16(c). Observe the two fully formed leading
steps with distinct horizontal plateaus, while the third step is in its
formation stage. Notice that the highest point of the first step sits
right on the crest of the small sub-peak in front of the second step.
It would be interesting to investigate whether such a tight formation
(between the first and second steps) is the closest possible; we leave
this question for further study.

VI. CONCLUSIONS

We applied the IRBFN method in conjunction with the one-
step Picard iteration method to solve the NEP equation simulating
a combustion front propagation. The method successfully repro-
duced the spinning regimes, previously obtained in Ref. 4 using the
Galerkin numerical method. A far wider variety of the dynamics are
studied in the present paper. We used two types of boundary condi-
tions—homogeneous and periodic—and different initial conditions.
The single-step regimes are obtained in Experiments 1, 2, and 3,
two-step regimes in Experiments 4 and 5, and three-step regimes in
Experiment 6. We observed the complex process of formation of the
spinning motion where the balance between the nonlinear energy
release and high-order linear dissipation controls the dynamics. The
direction of the spinning motion is controlled either by the asym-
metry of the initial condition, or in the case of the symmetric initial
condition, by instability of the symmetric regime. We determined
the bifurcation length of the spatial domain, beyond which non-
trivial settled dynamics are possible and below which only a trivial
(no-motion) settled regime may form.
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APPENDIX: THE IRBFN METHOD FOR SPATIAL

DISCRETIZATION

Here, we briefly describe the IRBFN method,15,16 which is used
for spatial discretization of the NEP equation in the present study.
The 1D domain (L1 < x < L2) is discretized by using a uniform grid
with N nodes. Following the basic idea of the integral RBF method,15

we decompose the highest pth-order derivative (p = 6 in our case)
of the function u into RBFs,

∂pu

∂xp
=

N∑

i=1

wiGi(x) =

N∑

i=1

wiI
(p)

i (x), (A1)
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where [wi]
N
i=1 is the set of network weights to be determined and

[Gi(x)]
N
i=1= [I

(p)

i (x)]
N

i=1 is the set of known RBFs. Among possible
RBFs, the multiquadric (MQ) functions are ranked as the most
accurate and possess an exponential convergence with the spa-
tial discretization refinement.19 Therefore, we select the MQ func-
tions for the computations. The MQ functions are given by Gi(x)

=

√
(x − ci)

T(x − ci) + a2
i , where ci is called the center and ai the

RBF width determined as the distance between the ith center and its
nearest neighbor.

Based on Eq. (A1), the lower-order derivatives and the function
itself are then obtained through integration as follows:

∂p−1u

∂xp−1
=

N∑

i=1

wiI
(p−1)
i (x) + c1, (A2)

∂p−2u

∂xp−2
=

N∑

i=1

wiI
(p−2)
i (x) + c1x + c2, (A3)

. . . . . . . . .

∂3u

∂x3
=

N∑

i=1

wiI
(3)
i (x) + c1

xp−4

(p − 4)!
+ c2

xp−5

(p − 5)!

+ · · · + cp−4x + cp−3, (A4)

∂2u

∂x2
=

N∑

i=1

wiI
(2)
i (x) + c1

xp−3

(p − 3)!
+ c2

xp−4

(p − 4)!

+ · · · + cp−3x + cp−2, (A5)

∂u

∂x
=

N∑

i=1

wiI
(1)
i (x) + c1

xp−2

(p − 2)!
+ c2

xp−3

(p − 3)!

+ · · · + cp−2x + cp−1, (A6)

u =

N∑

i=1

wiI
(0)
i (x) + c1

xp−1

(p − 1)!
+ c2

xp−2

(p − 2)!
+ · · · + cp−1x + cp,

(A7)

where I
(p−1)
i (x) =

∫
I
(p)

i (x)dx, I
(p−2)
i (x) =

∫
I
(p−1)
i (x)dx, . . . , I(0)i (x)

=
∫

I(1)i (x)dx and c1, c2, . . ., cp are the constants of integration.

The evaluation of (A1)–(A7) at a set of collocation points [xj]
N
j=1

leads to

∂̂pu

∂xp
= Î(p)ŵ, (A8)

∂̂p−1u

∂xp−1
= Î(p−1)ŵ, (A9)

. . . . . . . . .

∂̂u

∂x
= Î(1)ŵ, (A10)

û = Î(0)ŵ, (A11)

where ŵ = (w1, w2, . . . , wNx , c1, c2, . . . , cp)
T, and

Î(p) =




I
(p)

1 (x1) I
(p)

2 (x1) . . . I
(p)

N (x1) 0 0 . . . 0 0

I
(p)

1 (x2) I
(p)

2 (x2) . . . I
(p)

N (x2) 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I
(p)

1 (xN) I
(p)

2 (xN) . . . I
(p)

N (xN) 0 0 . . . 0 0




,

Î(p−1) =




I
(p−1)
1 (x1) I

(p−1)
2 (x1) . . . I

(p−1)
N (x1) 1 0 . . . 0 0

I
(p−1)
1 (x2) I

(p−1)
2 (x2) . . . I

(p−1)
N (x2) 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I
(p−1)
1 (xN) I

(p−1)
2 (xN) . . . I

(p−1)
N (xN) 1 0 . . . 0 0




,

. . . . . . . . .

Î(1) =




I(1)1 (x1) I(1)2 (x1) . . . I(1)N (x1)
x
p−2
1

(p−2)!

x
p−3
1

(p−3)!
. . . 1 0

I(1)1 (x2) I(1)2 (x2) . . . I(1)N (x2)
x
p−2
2

(p−2)!

x
p−3
2

(p−3)!
. . . 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I(1)1 (xN) I(1)2 (xN) . . . I(1)N (xN)
x
p−2
N

(p−2)!

x
p−3
N

(p−3)!
. . . 1 0




,

Î(0) =




I(0)1 (x1) I(0)2 (x1) . . . I(0)N (x1)
x
p−1
1

(p−1)!

x
p−2
1

(p−2)!
. . . x1 1

I(0)1 (x2) I(0)2 (x2) . . . I(0)N (x2)
x
p−1
2

(p−1)!

x
p−2
2

(p−2)!
. . . x2 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I(0)1 (xN) I(0)2 (xN) . . . I(0)N (xN)
x
p−1
N

(p−1)!

x
p−2
N

(p−2)!
. . . xN 1




.

Since p = 6 in the present study, Eqs. (A8)–(A11) become

∂̂6u

∂x6
= Î(6)ŵ = H6ŵ, (A12)

∂̂5u

∂x5
= Î(5)ŵ = H5ŵ, (A13)

· · ·

∂̂2u

∂x2
= Î(2)ŵ = H2ŵ, (A14)

∂̂u

∂x
= Î(1)ŵ = H1ŵ, (A15)

û = Î(0)ŵ = H0ŵ. (A16)
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