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Abstract

Asteroseismology is a powerful tool to probe stellar structure. Spaceborne instruments like CoRoT, Kepler, and
TESS have observed the oscillations of numerous stars, among which δ Scutis are particularly interesting, owing to
their fast rotation and complex pulsation mechanisms. In this work, we inferred model-dependent masses,
metallicities, and ages of 60 δ Scuti stars from photometric, spectroscopic, and asteroseismic observations using
least-squares minimization. These statistics have the potential to explain why only a tiny fraction of δ Scuti stars
pulsate in a very clean manner. We find most of these stars with masses around 1.6 Me and metallicities below
Z= 0.010. We observed a bimodality in age for these stars, with more than half the sample younger than 30 Myr,
while the remaining ones were inferred to be older, i.e., hundreds of Myrs. This work emphasizes the importance of
the large-frequency separation (Δν) in studies of δ Scutis. We also designed three machine-learning (ML) models
that hold the potential for inferring these parameters at lower computational cost and much more rapidly. These
models further revealed that constraining dipole modes can help in significantly improving age estimation and that
radial modes succinctly encode information regarding luminosity and temperature. Using the ML models, we also
gained qualitative insight into the importance of stellar observables in estimating mass, metallicity, and age. The
effective temperature Teff strongly affects the inference of all structure parameters, and the asteroseismic offset
parameter ò plays an essential role in the inference of age.

Unified Astronomy Thesaurus concepts: Delta Scuti variable stars (370)

Supporting material: figure set

1. Introduction

Asteroseismic observations from TESS (Ricker et al. 2014)
and Kepler (Borucki et al. 2010) have shed light on the
dynamics and interiors of thousands of pulsating stars
(Paparó 2019; Bowman 2020; Aerts 2021; Kurtz 2022). A
sizeable fraction of the pulsating class from these missions are
δ Scuti (hereafter δ Sct; Bowman et al. 2018; Guzik 2021) stars,
which lie at the junction of the instability strip and the main-
sequence (MS) band in the Hertzsprung–Russell (H-R) diagram
(Uytterhoeven et al. 2011), providing direct views of both these
classes. These are low-to-intermediate-mass (1.5–2.5 Me) MS
variables with spectral types ranging from A to F (Bowman
et al. 2018; Murphy 2021; Kurtz 2022). High-amplitude δ Sct
stars are used as standard candles (McNamara et al. 2007) and
in assessing the metallicities and ages of stellar clusters
(Murphy et al. 2022), in turn enabling Galactic archeology.

Asteroseismology is a powerful tool that can be used to estimate
various structure parameters such as mass, composition, and age
on different pulsating classes, e.g., stochastic oscillators (Chaplin
et al. 2013; Vrard et al. 2016; Hekker & Christensen-
Dalsgaard 2017; Hon et al. 2017, 2018; Dhanpal et al. 2022), γ-
Doradus stars (Li et al. 2019; Mombarg et al. 2021), and high-mass
coherent oscillators (Hendriks et al. 2019), among others. Some
effort has been applied to similar studies of δ Sct stars (Suárez et al.
Suárez 2014; García Hernández et al. 2017; Barceló Forteza et al.
2020; Pamos Ortega et al. 2022). In this paper, we develop a

methodology to measure structure parameters—mass, metallicity,
and ages of δ Sct stars. These measurements can in principle
constrain the metallicities and ages of the host open clusters from
which these stars formed and were dispersed before escaping to
become field stars.
δ Sct stars predominantly exhibit low radial-order pulsations,

with high-frequency pressure and low-frequency gravity
modes, roughly separated around 5 d−1, although this depends
on Teff to leading order (Moya et al. 2017). The pressure modes
are mainly driven by the κ mechanism (Chevalier 1971) in the
helium ionization zone. They primarily propagate in the stellar
envelope and probe the near-surface regions.
Although we have precise estimates of the luminosity (L),

effective temperature (Teff), and pulsation frequencies, the
seismology and the parameter inference of δ Sct stars are
challenging because of the following reasons: (a) they have low
radial-order p-modes and g-modes, where asymptotic theory
fails; (b) many stars exhibit fast rotation, leading to ellipsoidal
deformation (Reese et al. 2006); (c) complex mode-selection
mechanisms (Dziembowski et al. 1990) influence the observed
spectra; and (d) appearance of island modes (Reese et al. 2006),
chaotic modes (Barceló Forteza et al. 2017), etc., make it very
difficult to characterize δ Sct spectra.
Finding regular patterns in δ Sct spectra is very helpful for

carrying out asteroseismology. Although some δ Sct stars had been
previously reported to show regular frequency spacings
(Matthews 2007; García Hernández et al. 2009; Zwintz et al.
2011; Paparó et al. 2013; Suárez et al. 2014), a larger ensemble of
such stars was found by Bedding et al. (2020), who identified 60 δ
Sct stars from TESS and Kepler exhibiting regular pulsation
patterns. They were able to identify some modes, label their radial
orders, and deduce the large-frequency separation (Δν) and p-
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mode offset (ò). Many more examples of high-frequency patterns
in δ Sct stars have subsequently been identified (e.g., Murphy et al.
2020, 2021, 2022; Hasanzadeh et al. 2021; Le Dizès et al. 2021;
Kahraman Alicavus et al. 2022). Here, we use seismic parameters
to infer stellar structure through the application of neural networks
and other techniques. As the relationships between observables
such as luminosity, temperature, pulsation frequencies, and
structure parameters can be highly nonlinear, neural networks
can potentially be useful in building a model connecting them all.
In addition, a well-trained neural network infers these structure
parameters substantially faster than conventional methods such as
Markov Chain Monte Carlo, making it a capable method for
ensemble studies.

At the core of this work lie the simulated models of δ Sct stars,
which we briefly describe in Section 2. Following that we
elaborate on developing three different machine-learning (ML)
methods in Section 3, which in principle could have inferred mass,
metallicity, and ages of δ Sct stars. However, none of the above
methods worked uniformly well over all the stars in our sample
because of various limitations. Yet, the networks helped us in
gaining qualitative insights into the importance of different
observables, which we present along with each method. Since
our goal was to characterize the 60 δ Sct stars from Bedding et al.
(2020), we finally deployed a grid-search-based least-squares
minimization technique in Section 4, with which we were able to
infer (M, Z, τ) parameters for all stars. We end the article with
presenting the statistics of these inferences. While we have
presented all the ML-based methods for the sake of completeness,
we found that the least-squares fitting method performed best and
therefore regard its output as our final result.

2. Grid of Stellar Models

We have used the model grid presented in Murphy et al.
(2023), which contains more than 800,000 stellar models.
However, since we aimed for training the networks on δ Sct
stars, we extracted 524,247 models based on a simpler criterion
of 6500 K �Teff� 10,000 K. MESA inlists used for the grid
computation and the corresponding output models are available
as supplementary files in Murphy et al. (2023). This grid covers
a wider span of mass (M) and metallicity (Z) over the
ranges [1.3–2.2] Me and [0.002–0.026], with 0.1 Me (M) and
0.002 (Z) resolution, respectively.

These models were evolved using the stellar evolution code
MESA (Paxton et al. 2010, 2013, 2015, 2018, 2019), and
corresponding pulsation frequencies were calculated using
GYRE (Townsend et al. 2013, 2017; Goldstein et al. 2020)—
which in turn provides the large-frequency separation (Δν) and
offset parameter (ò).

The computed eigenmodes comprise p-, g-, and mixed modes
oscillating at frequencies between 0 to 95 d−1 and at harmonic
degrees of ℓ= 0 and 1. Since the majority of δ Sct stars pulsate in
radial and dipole modes, and higher-degree modes are not
observable due to geometric cancellation, the availability of modes
with degree ℓ= 2 or higher is not necessary for our purpose. All
the computed modes correspond to nonrotating m= 0 compo-
nents. Δν and ò were calculated by fitting the asymptotic relation
to radial (ℓ= 0) p-modes with order (npg) larger than 5.

We used this grid to train the neural networks to infer
structure parameters from observables and asteroseismic
quantities.

The H-R diagram (Figure 1) shows the stellar models, including
the potential δ Sct models (  T3.83 log 4eff ) on this H-R

diagram. For reference, we mark the target stars of this work using
plus sign symbols, which are taken from the observed δ Sct stars in
Bedding et al. (2020). Figure 2 contains the same models as
Figure 1 but shows the asteroseismicΔν− ò diagram. Both figures
demonstrate that the phase space of our stellar grid is broad enough
to represent the wide range of observed δ Sct stars.

3. Machine-learning-based Methods

The application of ML algorithms to the fitting of stellar
models has shown great promise (Verma et al. 2016; Hendriks
et al. 2019; Dhanpal et al. 2022; Scutt et al. 2023). For the work
presented in this article, we have developed three different
versions of neural networks that perform regression to infer the
values of M, Z, and age (τ). Our networks were developed
using the Python libraries TENSORFLOW (Abadi et al. 2015)
and KERAS (Chollet et al. 2015).

Figure 1. H-R diagram showing the positions of all synthetic stellar models,
with δ Sct stars present in the solid patch. The δ Sct targets of this paper are
denoted using plus sign symbols.

Figure 2.Δν − ò diagram denoting the positions of all synthetic stellar models,
with δ Sct stars present in the solid patch. The δ Sct targets of this paper are
denoted using plus sign symbols.
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In each set of ML experiments, we randomly split the δ Sct
model grid into “training” and “test” (validation) data at a 95: 5
ratio. The network used the training data to learn different
features and compute the output. The training aimed to
minimize the loss function by reducing the mean-squared error
between the actual and predicted outputs (Equation (1))
through stochastic gradient descent:

y y

N
MSE . 1

i

N i i

1

predicted true
2

å=
-

=

( )
( )

The training takes place through a back propagation
technique that gradually optimizes the network parameters
using the ADAM optimizer (Kingma & Ba 2014). To avoid the
situation where networks memorize the data set instead of
learning the inherent features, we equipped the output layer of
each network with an L2 regularizer having regularizing
parameter λ= 10−6.

Once the training is over, we validated network accuracy on
the unseen test data and also compared the network prediction
against ground truth. If the accuracy and the comparison were
deemed acceptable on the validation data, we concluded that
the network was successfully trained without overfitting.

We used the cross-validation method (Mosteller et al. 1968)
to yield a distribution of 40 instances of inferences from trained
network of which median, 16th, and 84th percentiles were
calculated to obtain the most probable result and lower and
higher uncertainties.

However, these three networks were not able to yield
meaningful inferences over real stars due to several limitations
discussed below. Nonetheless, they have the potential to
provide qualitative insights on relative importance of different
observables in the way (Bellinger et al. 2016) assessed for MS
stars. We performed this analysis for all the three networks.
Physical interpretation of such analysis is also presented.

3.1. Method 1: ML Using Seismic Indices

In this method we deployed three regression networks to
infer M, Z, and τ from four input parameters: {L, Teff, Δν, ò}.
Although radius (R) is dependent on L and Teff, supplementing
it as an additional input helped the networks train quickly and
achieve higher accuracy.

For the network to infer age (τ), it typically requires prior
knowledge of M and Z: this is because each physical parameter
(θ) is a function of M, Z, and τ, which is why age inversion
requires (M, Z) to be supplied as inputs:

f M Z f M Z, , , , .1q t t q= = -( ) ⟹ ˜ ( )

The network architecture comprised of 1 input layer (with
5–7 neurons), 10 intermediate layers (of 400 neurons each),
and 1 single-neuron output layer (Figure 3). With the exception
of the output layer, which has a tanh activation function, all
other neurons were activated using the rectified linear unit
function. Since we developed a few alternative methods, we
label this procedure as Method-1 for easy reference.

We trained the networks and compared the network-
predicted values for the validation data with the corresponding
true values (Figure 4). The network was able to achieve high
accuracy in predictions of M and Z. Figure 5 shows the
distributions of errors in our predictions on the validation data.

From Figure 4(c), it is evident that while age inferences are
accurate for younger (log Myr 1t < ) and older stars

(log Myr 2.5t > ), the network systematically overpredicts
for stars of intermediate age (log Myr 1.3 2.5t ~ – ). A
possible reason for this discrepancy is that no observable
evolves as a monotonic function of age. All structure and
seismic parameters cross their pre-MS values sometimes within
the MS, as shown in Figure 6. Hence, none of our inputs may
be used to uniquely distinguish between two possible ages.
This fact was also discussed in Murphy et al. (2021a).
We implemented our trained networks on 43 δ Sct stars

from Bedding et al. (2020), for which Teff, L, Δν, and ò
measurements were simultaneously available. While investi-
gating the results, we noticed that most of the inferences have
unusually high metallicity of Z= 0.026, which is also the upper
boundary of our model grid. It is well-known that what the
neural networks learn is not easily interpretable (Montavon
et al. 2018). This makes it impossible to investigate and
mitigate the shortcomings with the method.

3.1.1. Feature Importance

We determined the qualitative importance of various inputs
to determine how strongly they influence parameter estimation.
To measure the independent contributions arising from the
inputs, we perturbed each input quantity by 0.5% (without
changing other inputs) and measured the relative differences in
outputs. We expected the contribution of the input to be
proportional to the relative difference in output. We carried out
this process for all input quantities to determine their qualitative
importance. Figure 7 shows the average relative differences,
which can be taken as a proxy for feature importance.
Figure 7 indicates that Tlog eff contributes the most toward

the inference of all parameters. Teff is strongly influenced by the
conditions at the stellar core (Tc) through various transport and
mixing processes. Hence, stellar age, which strongly depends
on core hydrogen abundance (Xc), can be expected to correlate
with Tc and hence indirectly with Teff.
M and Z are necessary inputs for the inference of age, which is

straightforward from the inversion relation discussed above.
Despite being an offset parameter that controls the shift in the
ℓ= 0 frequencies, ò plays an important role in the inference of τ.
This was also emphasized in Bedding et al. (2020), where the
Δν− ò diagram was shown to encode information about age (τ).
Apart from Teff, M significantly depends on L, which is

likely due to the well-known “mass–luminosity” relation. Its
dependence on Δν is not surprising, owing to the fact that M is
related to density (ρ) and n rD µ .

Figure 3. Architecture of the neural-network models.
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Figure 4. Plots showing network predictions for validation samples against their corresponding true values. Shown for (a) M, (b) Z, and (c) log t . Uncertainties
associated with predicted values are also shown.

Figure 5. Distribution of errors between network predictions for validation samples and their corresponding true values: shown for (a) M, (b) Z, and (c) log t .

Figure 6. Evolution with time of stellar properties for a model with mass 2.2 Me and Z = 0.026. Most structural and seismic quantities cross their pre-MS values
during MS. Hence, values of these parameters are degenerate at two different ages. Crossing effects are shown for (a) ρ, (b) glog , (c) Tlog eff , (d) Δν, (e) ò, and (f) ν1
(frequency corresponding to n = 1, ℓ = 0).
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Δν plays an important role in the inference of Z. It is highly
correlated with the square root of mean stellar density—which
is tightly related to metallicity (Z) because the higher the
metallicity, the lower the stellar density.

3.2. Method 2: ML Using Radial Modes

Although we used L as an input quantity in Method-1, the
reliability of its measurements depends on the accuracy of
stellar distance, as L is calculated using magnitude and
distance. Since structure parameters are very sensitive to

Tlog eff (evident from Section 3.1.1), errors in measuring the
latter propagate into inferences of the former.

In this section, we show that if we use the first seven
eigenfrequencies of radial-mode oscillations instead of the
observables (L, Teff, Δν, ò), we still achieve similar results
while overcoming existing issues. The reason behind such
selection is that (i) all the synthetic models at least
possess seven overtones of radial modes and (ii) radial modes
are far more easily identifiable than dipole modes using period
ratios (Petersen & Christensen-Dalsgaard 1996) and multicolor
photometry–like (Garrido et al. 1990) techniques.

Architecture and training of this network are similar to those
of Method-1, except its input layer comprises of seven neurons
to accept the seven radial modes.

In this formalism, neural networks could learn all the
parameters, even without needing {L, Teff, Δν, ò}, as seen in
Figure 8. We compare the average learning accuracy (=100% -
average% error) associated with each parameter inference using
the current method and Method-1 of Section 3.1. This method

is as accurate as Method-1 in inferring M and Z. However, it

infers age at a significantly higher accuracy (Table 1). We
designate this procedure as Method-2 in order to distinguish it
from Method-1.
This method highlights the importance of the ℓ= 0

eigenfrequencies of radial orders n= 1–7. It shows that the
non-asymptotic modes succinctly preserve the representation of
L and Teff although how this is so is unclear.
Despite its robustness, we were unable to apply this method

to the observed stars since accurately identifying continuous
radial overtones (ν1− ν7) is difficult. Additionally, it was
harder to automate this method for multiple stars because
identifying radial orders requires significant human interven-
tion. Identifying radial modes crucially depends on choosing
the correct Δν, without which échelle diagrams cannot be

Figure 7. Different inputs contribute unequally toward overall inferences of (a) M, (b) Z, and (c) log t . This figure qualitatively depicts the contribution strengths
corresponding to the input parameters when perturbed by 0.5%.

Figure 8. Network predictions for validation samples for (a) M, (b) Zi, and (c) log t , on taking eigenfrequencies {ν1,...,ν7} as inputs (without L, Teff, Δν, ò). This
implies that these non-asymptotic modes are helpful for parametric inference and particularly useful when L or Teff is not available or reliable.

Table 1
Comparing Performances between Neural Network–Based Method-1 and

Method-2

Method-1 Method-2
(Section 3.1) (Current Method)

Inputs: (L, Teff, Δν, ò) {ν1 − ν7}
(%) (%)

M 99.9 99.5
Z 99.7 99.5
log t 93 96

Note. While both perform similarly, Method-2 works without {L, Teff, Δν, ò}.
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constructed. Even if this method worked efficiently, we were
unable to resolve the age discrepancy (similar as Method-1)
over the synthetics, as evident from Figure 8(c). In Section 3.3,
we propose another method that improves over this issue.

3.2.1. Feature Importance

We investigated the strengths of contributions arising from
each mode involved in the inference routine. We measured
their importance in a manner similar to that in Section 3.1.1.
The attendant measures are shown in Figure 9. It may be
understood from the figure that all frequencies are not equally
important. ν6 has the highest contribution, followed by ν2 and
ν3. Hence, both non-asymptotic and asymptotic modes seem to
be important.

It is surprising that the network depends so significantly on
ν6, which is robust over a range of different Δν and ò. The
probable cause is that the transition to asymptotic nature
(n? ℓ) from low-order non-asymptotic modes occurs around
ν6. It is possible that ν6 therefore contains information from
both regimes.

Having emphasized the salient features of ν6, it is interesting
that the network does not equally depend on modes of radial
order 4, 5, and 7—which altogether constitute the asymptotic
series and hence carry similar Δν characteristics. This may be
similar to principal component analysis or dimensionality
reduction algorithms, and the network is trying to rely on as
few inputs as possible, leaving others redundant.

3.3. Method 3: ML Using Radial and Dipole Modes

In this section, we present the final follow-up experiment to
study the importance of dipole modes. Every experiment
carried out so far has dealt with radial (ℓ= 0) modes or
quantities such as {Δν, ò} that depend on radial modes.
However, since dipole modes are often seen in échelle
diagrams (Bedding et al. 2020) of δ Sct stars, it is useful to
conduct these experiments in order to study their contribution.
In this method, we built a model that took observables {L,

Teff} and eigenfrequencies with n ä [4–7] from each of the
ℓ= 0 and 1 ridges and produced as output the structure
parameters. For age inference, we supplemented pre-inferred M
and Z to the frequencies and {L, Teff}. We refer to this
procedure as Method-3.
Figure 10 and Table 2 indicate that the networks were able to

learn M, Z, and log t from synthetics and the accuracy of age
inference has improved. Since the current method adequately
constrains age, this emphasizes the importance of dipole
modes.
With more number of inputs to neural network, it is

supposed to gain higher accuracy. We also measured χ2/N for
all the three experiments to assess which method is more
efficient. Here χ2 mean average squared differences between
true and machine-predicted values and N represent the number
of inputs fed to the networks. Table 3 summarizes these facts.
We observe that Method-2 consistently outperforms Method-1.

Method-3 excels among all of these but for age inference it could
not outperform Method-2. This may be due to the relatively larger
(yet tolerable) spread at larger ages compared to Method-2. Global

Figure 9. Importance of the first seven eigenfrequencies in the inference of (a) M, (b) Z, and (c) log t .

Figure 10. Improved network prediction after inputting radial-dipole (ℓ = 0, 1) modes of overtone n ä [4–7] along with {L, Teff}. The age inference is much more
accurate than the approaches described earlier.
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statistics such as the χ2 averages out small-scale information and
hence cannot be used to assess the performance across all the ages.
However, a performance-wise comparison after studying Figures 8
and 10 suggest that the outlier level is lower for age inference in
Method-3. Hence, we conclude that results from Method-3 are
preferred. Nonetheless, Method-1 remains practically applicable
until definitive mode identification becomes possible in δ Sct stars.

At present, we were unable to apply this method to measure
structure parameters in observed stars as it is challenging to
accurately label the dipole modes.

3.3.1. Feature Importance

To understand the importance of the dipole and radial
modes, we carried out a feature-importance experiment for
these parameters and show the plots in Figure 11.

An important conclusion is that while M and Z do not
significantly depend on radial and dipole frequencies, the exact
opposite is seen when inferring age. Due to their global nature,
L and Teff appear to encode enough information of global
parameters M and Z, rendering the oscillation measurements
less useful. In contrast, age depends on the deep interior more
than the shallow layers since the core hydrogen fraction (Xc)
governs the evolution. Since pulsation frequencies are ideal
probes of the stellar interior, age determination strongly relies
on them.

4. Method 4: Least-square Fitting of Stellar Parameters

Each method described above has its own set of advantages
and disadvantages. In this section, we employed a grid-search
algorithm to minimize the least-square loss functions in order
to identify the model that best matches the observation. This
method requires interactive inspection to obtain accurate fits,
provided that there exists a close-fit model to the observation.
A similar approach was used by Steindl et al. (2022) to fit
stellar parameters to a small number of δ Sct stars.

One of the advantages of this method is it can be applied to
the 60 stars from Bedding et al. (2020) to achieve good results.
Even for stars with missing values of L or Teff, this method can
obtain a good fit to observed spectra.

4.1. Method

The method of least squares is a common technique to fit
photometric (L), spectroscopic (Teff), and seismic quantities
(eigenfrequencies) between observations and models. The
underlying principle involves assigning a χ2 value (as shown in
Equation (2)) to each sample in the model, which represents a
weighted combination of the squared differences between the
observed and model values. The objective is to find the model
sample that results in the minimum value of χ2. The values of
σL, Teffs , and

isn are critical parameters in this approach as they

represent the magnitude of the errors that can be tolerated. This
methodology can be highly effective if the appropriate σ values
are used:
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The last part of Equation (2) indicates the requirement of
determining both the observed (νi,obs) and model frequencies
(νi,model) of the same radial order and angular degree. However,
accurately identifying and labeling the observed modes in δ Sct
stars is challenging due to the high density contamination and
missing modes as well as presence of modes with unknown
origin. Identification of genuine modes requires iterative pre-
whitening followed by elimination of frequency combinations
—which adds to the complexity of the fitting routine.
In our approach, we have made slight modifications to a

similar method. Our primary objective is to search for a model
that can reproduce as many observed modes as possible
without having additional spurious peaks. We have applied
constraints to the models using the observed values of Δν
(which are obtained from Bedding et al. 2020) to prevent
selection of erroneous fits—since a model with much lower Δν
can accurately match a relatively large number of significant
observed modes. Finally, we introduce a χ2 term to compare
few observed frequencies to their nearest model frequencies
( model

closestn ). Our modified χ2 looks like Equation (3):
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The χ2 formula therefore has similarity to that of Steindl et al.
(2022) and the likelihood function of Scutt et al. (2023).
Values of σL have been taken from Bedding et al. (2020).

Following the same, we have set the uncertainty in Teff to be
2% and that of Δν to be 0.02 d−1. The Rayleigh frequency
resolution criterion has been taken as the uncertainty in mode
frequencies, similar to Steindl et al. (2022). Since we fitted
three parameters simultaneously (M, Z, τ), 1σ uncertainties (or
68% confidence interval) associated with the best-fit parameters
correspond to a 3.5 increase from min

2c (Table 1 of Avni 1976).

Table 2
Comparing Performances of All Neural Network–based Methods

Method-1 Method-2 Method-3
(Section 3.1) (Section 3.2) (Current Method)

Inputs {L, Teff, Δν, ò} {ν1 − ν7} {L, Teff, eight modes}
(%) (%) (%)

M 99.9 99.5 99.8
Z 99.7 99.5 99.6
log t 93 96 98.1

Table 3
Comparing χ2/N for All the Methods

Method-1 Method-2 Method-3
(Section 3.1) (Section 3.2) (Current Method)

Inputs {L, Teff, Δν, ò} {ν1 − ν7} {L, Teff, eight modes}

M 7 × 10−5 10−5 2 × 10−6

Z 10−7 5 × 10−8 9 × 10−9

log t 3 × 10−3 6.5 × 10−4 10−3
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Hence we assembled all the model parameters corresponding to
, 3.52

min
2

min
2c c cÎ +[ ] and used their spread to calculate the

uncertainties.
Regarding the frequency component of χ2, we neither

calculated eigenfrequencies from iterative pre-whitening nor
assigned any possible identifications to the peaks. Instead, we
visually inspected the spectrum and started by selecting four
peaks of relatively high frequency and significant amplitudes.
We selected these modes through trial and error. After
beginning with this arbitrary set of mode we searched for their
closest eigenfrequencies ( model

closestn ) across all the model samples
disregarding their n or ℓ. Treating these frequencies as inputs to
Equation (3), we calculated χ2 across all the models and
inspected for min

2c . We repeatedly selected different sets of
input frequencies as well as varied the number of fitted modes
(N= 1, 2, 3, 4, rarely 5) and carried out the entire fitting
process afresh until we achieved a minimum possible min

2c .
Finally, we also constructed an échelle diagram to ensure that
the N selected modes were genuine m= 0 frequencies and the
obtained solution was able to fit other significant radial and
dipole modes as well. Hence, we used the échelle diagrams to

confirm that we are not comparing model modes with incorrect
peaks such as rotational splits, combination frequencies, etc.
The reason we favored selecting very few modes is as

follows. It is not always possible to obtain exact fits to all the
observed modes simultaneously. In such scenarios, fitting
larger numbers of modes would demand a highly sophisticated
mode-selection process since we are picking up the modes that
are able to be modeled through trial and error. Inappropriate
mode selection usually leads to a solution where none of the
modes are comparable to the observed modes. However, for
each star, we were successful in identifying a smaller number
of genuine modes, which, using as hinge points, we could fit a
(mass, metallicity, age) solution that was finally able to fit most
of the observed modes in the entire spectra.
This fitting routine takes us ∼10 s given that we vectorized

this operation across 112 cpu cores using NumPy. Otherwise,
this would correspond to ∼20 cpu minutes (per single star)
without any core-level parallelization. However the mode-
selection process (being manual and interactive) is the most
difficult one, and it took us around 10 minutes per single star.

Figure 11. Qualitative contributions arising from input quantities for inferences of (a) M, (b) Z, and (c) log t .

Figure 12. Obtaining a best-fit model to observation of HD 40317. The dotted lines on the right side spectrum shows the three modes we selected for the fitting
routine. These three modes are also shown in the échelle diagram (on left) as filled rectangle symbols. After determining the best-fit model, we show its radial and
dipole modes as open circles and triangles over both the échelle diagram and the oscillation spectrum. Some of these open symbols do not exactly fall on the observed
modes because the fitted frequencies fall within the spectral windows in the vicinity of the sharp peaks. We also report the observed and best-fit values of L, Teff, and
Δν in the title of the spectrum plot. The (M, Z, τ) values of the best-fit model are presented in the same title.

(The complete figure set (60 images) is available.)
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In Figure 12, we present an example of our successfully
fitted results using this methodology. It was challenging for us
to find a close-fit model where lower-order model modes would
precisely align with the observed modes. Additionally, dipole
modes of the fitted models were sometimes seen to be present
in the vicinity of the observed ones but not precisely. This
discrepancy could possibly be due to the unequal splitting of
dipole modes and the rotation-induced shift of m= 0
components, even in radial modes.

4.2. Results

In this section, we present the results of our method on 60
stars from Bedding et al. (2020). For three of these stars, either
one or both of (L, Teff) inputs were missing. For such stars, we
ignored the corresponding contributions of χ2. As the best-fit
model has an inherent value of missing parameters, one can
have a crude estimate of the parameters for these stars.
In Table 4 and Figures A1–A3 of Appendix A, we have

presented the fitted structure parameters of the individual stars.
Additionally, Figure 13 summarizes the statistics, indicating
that most of the fitted masses are approximately ∼1.6 Me,
while the dominant metallicity values are distributed around
Z= 0.010, corresponding to [Fe/H] ∼− 0.146. We also
observed a bimodal age distribution among the stars, where
more than half of them are young (around ∼10 Myr) and a few
are very old (over 100 Myr). However, we emphasize that age
inferences are not highly precise due to the degeneracy effect,
which means that at two different ages, the star can have
similar physical and seismic structure.

5. Conclusion

We have deployed a least-squares minimization technique to
obtain the structure parameters of 60 δ Sct stars that show
regular p-mode pulsation patterns. This method allows us to
carry out spectrum fitting without prior mode identification. It
is semi-automated in the sense that we fit very few modes in the
trial-and-error effort, and mode identification comes as a by-
product of the fitting routine. We provided the first inferences
of M, Z ([Fe/H]) and age (τ) for these stars.
We found the masses of most of these stars to be distributed

around 1.6 Me, with the exception of two stars of lower
mass (HD 2280, HD 10961: ∼1.4 Me) and one star with the
highest mass (HD 290750: 2.1 Me). Metallicity of a significant
fraction of the stars are found to hover around Z= 0.010 (or
[Fe/H]=−0.23). In this sample, we also found a few stars
having very low as well as very high values of metallicity. TIC
349645354 and KIC 8415752 have the highest metallicity, at
Z= 0.024. Finally, more than half of the stars turned out to be

Table 4
Inferred Values of Mass, Composition, and Age of 60 δ Sct Stars Taken from

Bedding et al. (2020)

Id mass Zi age
(Me) (Myr)

HD 2280 1.35 0.05
0.1

-
+ 0.008 0.002

0.001
-
+ 977.7 1.23

202.9
-
+

HD 3622 1.7 0.15
0.05

-
+ 0.022 0.014

0.002
-
+ 50.6 42.04

75.3
-
+

HD 10779 1.6 0.02
0.1

-
+ 0.009 0.001

0.013
-
+ 9.0 0.25

156.43
-
+

HD 17341 1.65 0.01
0.1

-
+ 0.012 0.001

0.006
-
+ 9.0 0.01

2.67
-
+

HD 17693 1.7 0.05
0.05

-
+ 0.012 0.003

0.001
-
+ 9.7 1.59

0.01
-
+

HD 20203 1.5 0.05
0.04

-
+ 0.008 0.001

0.001
-
+ 692.5 132.78

0.06
-
+

HD 20232 1.68 0.13
0.02

-
+ 0.018 0.011

0.002
-
+ 229.8 221.47

104.08
-
+

HD 24572 1.52 0.02
0.06

-
+ 0.013 0.004

0.003
-
+ 344.0 331.75

132.62
-
+

HD 24975 1.7 0.06
0.05

-
+ 0.014 0.003

0.001
-
+ 10.4 1.55

0.6
-
+

HD 25674 1.54 0.04
0.01

-
+ 0.007 0.001

0.001
-
+ 829.4 0.08

77.82
-
+

HD 28548 1.7 0.06
0.05

-
+ 0.012 0.006

0.001
-
+ 163.0 155.63

158.0
-
+

HD 30422 1.5 0.05
0.02

-
+ 0.006 0.001

0.001
-
+ 8.3 0.01

0.01
-
+

HD 31322 1.75 0.05
0.05

-
+ 0.011 0.002

0.001
-
+ 7.7 0.75

0.01
-
+

HD 31640 1.55 0.03
0.09

-
+ 0.009 0.001

0.004
-
+ 9.3 0.23

2.44
-
+

HD 31901 1.58 0.02
0.06

-
+ 0.009 0.001

0.001
-
+ 9.4 0.58

0.01
-
+

HD 32433 1.62 0.1
0.03

-
+ 0.018 0.01

0.002
-
+ 201.1 191.66

193.23
-
+

HD 38597 1.58 0.02
0.06

-
+ 0.008 0.001

0.002
-
+ 694.8 185.18

0.02
-
+

HD 38629 1.45 0.1
0.05

-
+ 0.004 0.001

0.001
-
+ 972.4 0.86

0.21
-
+

HD 40317 1.7 0.08
0.05

-
+ 0.009 0.002

0.001
-
+ 8.5 1.17

0.16
-
+

HD 42005 1.6 0.02
0.02

-
+ 0.008 0.001

0.001
-
+ 8.6 0.01

0.01
-
+

HD 42608 1.75 0.1
0.05

-
+ 0.018 0.01

0.002
-
+ 13.8 5.7

96.09
-
+

HD 44726 1.55 0.03
0.01

-
+ 0.011 0.003

0.001
-
+ 396.6 383.59

253.75
-
+

HD 44930 1.64 0.1
0.01

-
+ 0.018 0.005

0.008
-
+ 13.7 3.78

453.78
-
+

HD 44958 1.6 0.02
0.1

-
+ 0.009 0.001

0.013
-
+ 9.1 0.05

11.22
-
+

HD 45424 1.55 0.03
0.01

-
+ 0.008 0.001

0.001
-
+ 823.0 0.06

54.73
-
+

HD 46722 1.52 0.02
0.01

-
+ 0.008 0.001

0.001
-
+ 9.1 0.01

0.27
-
+

HD 48985 1.64 0.02
0.04

-
+ 0.008 0.001

0.001
-
+ 8.5 0.67

0.01
-
+

HD 50153 1.7 0.02
0.05

-
+ 0.02 0.002

0.002
-
+ 15.9 0.01

0.01
-
+

HD 54711 1.62 0.12
0.06

-
+ 0.009 0.003

0.006
-
+ 9.8 1.95

378.22
-
+

HD 55863 1.64 0.06
0.01

-
+ 0.009 0.001

0.001
-
+ 8.6 0.09

0.69
-
+

HD 59104 1.56 0.02
0.02

-
+ 0.018 0.002

0.002
-
+ 19.1 1.96

297.27
-
+

HD 59594 1.6 0.1
0.05

-
+ 0.015 0.007

0.005
-
+ 13.9 4.77

476.0
-
+

HD 78198 1.62 0.02
0.06

-
+ 0.014 0.001

0.006
-
+ 9.9 0.37

4.74
-
+

HD 99506 1.65 0.1
0.03

-
+ 0.018 0.01

0.002
-
+ 16.2 7.1

246.96
-
+

HD 223011 1.62 0.02
0.18

-
+ 0.01 0.001

0.014
-
+ 8.7 0.32

438.49
-
+

HD 290799 1.55 0.01
0.01

-
+ 0.004 0.001

0.001
-
+ 7.1 0.93

0.01
-
+

TIC 349645354 1.75 0.05
0.05

-
+ 0.024 0.004

0.002
-
+ 12.3 2.14

0.01
-
+

TIC 431695696 1.54 0.04
0.08

-
+ 0.006 0.001

0.002
-
+ 8.1 0.01

1.14
-
+

TIC 124381332 1.68 0.06
0.07

-
+ 0.014 0.007

0.001
-
+ 13.3 5.31

145.36
-
+

TIC 340358522 1.62 0.02
0.02

-
+ 0.008 0.001

0.001
-
+ 8.4 0.01

0.01
-
+

HD 187547 1.58 0.04
0.02

-
+ 0.018 0.002

0.002
-
+ 177.9 160.44

0.64
-
+

KIC 8415752 1.75 0.05
0.05

-
+ 0.024 0.002

0.002
-
+ 344.6 0.02

0.04
-
+

KIC 9450940 1.62 0.02
0.03

-
+ 0.015 0.001

0.001
-
+ 702.5 51.24

53.63
-
+

HD 37286 1.52 0.02
0.06

-
+ 0.006 0.001

0.005
-
+ 8.5 0.01

4.51
-
+

HD 39060 1.45 0.1
0.05

-
+ 0.008 0.001

0.001
-
+ 861.4 0.53

0.45
-
+

HD 42915 1.55 0.01
0.09

-
+ 0.006 0.001

0.001
-
+ 7.6 0.87

0.01
-
+

HD 290750 2.1 0.1
0.1

-
+ 0.013 0.001

0.013
-
+ 5.8 0.07

185.38
-
+

TIC 143381070 1.5 0.05
0.02

-
+ 0.007 0.001

0.001
-
+ 594.4 117.6

0.03
-
+

TIC 260161111 1.54 0.04
0.06

-
+ 0.008 0.003

0.002
-
+ 599.3 591.2

51.98
-
+

HD 10961 1.35 0.05
0.1

-
+ 0.003 0.001

0.001
-
+ 8.4 0.01

0.01
-
+

HD 25248 1.5 0.05
0.02

-
+ 0.009 0.001

0.005
-
+ 10.9 0.01

4.14
-
+

HD 67688 1.68 0.03
0.02

-
+ 0.008 0.001

0.001
-
+ 7.6 0.01

0.01
-
+

HD 70510 1.65 0.01
0.03

-
+ 0.018 0.002

0.002
-
+ 90.0 74.06

0.12
-
+

HD 75040 1.6 0.05
0.02

-
+ 0.011 0.001

0.001
-
+ 10.0 0.09

0.58
-
+

HD 222496 1.8 0.15
0.05

-
+ 0.022 0.009

0.002
-
+ 12.1 3.64

485.56
-
+

HD 34282 1.6 0.1
0.02

-
+ 0.009 0.004

0.001
-
+ 421.4 0.02

390.4
-
+

Table 4
(Continued)

Id mass Zi age
(Me) (Myr)

HD 29783 1.68 0.04
0.02

-
+ 0.009 0.001

0.001
-
+ 8.5 0.61

0.3
-
+

HD 220811 1.54 0.01
0.04

-
+ 0.015 0.001

0.003
-
+ 849.5 154.81

0.05
-
+

HD 25369 1.58 0.04
0.06

-
+ 0.012 0.001

0.006
-
+ 9.9 0.33

5.47
-
+

HD 89263 1.52 0.07
0.23

-
+ 0.011 0.006

0.013
-
+ 561.8 555.8

194.6
-
+

Note. These are obtained from the χ2 minimization method.
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younger than 30 Myr, with the rest several hundreds of
Myr old.

We had originally developed three ML-based neural net-
works to carry out similar parameter inferences. Although we
were unable to obtain reliable results, they still carry the
potential of simpler as well as faster parametric fitting. On the
synthetic data, our neural networks were able to infer M and Z
much more accurately using {L, Teff, Δν, ò} as inputs.
However, age inferences were in general not as accurate as M
or Z. This is because, over the course of their MS evolution,
stars cross their pre-MS trajectory, which makes all their
structure parameters degenerate in these two stages of
evolution. A similar behavior was demonstrated in Murphy
et al. (2021a). Therefore, age inference is not expected to be
confident.

With the exception of the parameter inference, neural
networks allowed us to carry out an additional analysis—we
were able to determine the relative importance of different
input quantities. We determined that Teff plays a critical role in
the inference of all parameters. ò was found to have
significance as important as Zlog and other parameters like
M, Δν, and L while constraining the age.

We observed that a longer pattern of radial modes (starting
from n= 1) contains critical information about δ Sct structure.
This set of frequencies may be treated as an essential substitute
to {L, Teff} as we found that they can constrain stellar
parameters even without L and Teff. Doing the feature-
importance experiment, we found that ν6, ν2, and ν3 are the
most significant radial modes.

Finally, we noticed that inclusion of dipole modes led to
more precise determination of δ Sct age. We used L, Teff, and
frequencies of both radial (ℓ= 0) and dipole (ℓ= 1) modes with
radial order n ä [4–7] as inputs to infer different parameters.
The degeneracy problem in age was reduced while using these
inputs. We therefore conclude that dipole modes act as
independent quantities with which to constrain stellar para-
meters, and they add supplementary information to radial
modes and {Δν, ò}.

Our models lack the implementation of rotation and gravity
darkening—which have significant impacts over stellar evol-
ution and pulsation. While 5 km s−1

fluctuation in rotation
velocity can perturb the pulsation frequencies by 2%–3%

(Deupree 2011), gravity darkening can cause as high as ∼50%
and 2.5% departures in L and Teff (Paxton et al. 2019)
respectively. Depending on these facts, our parameter infer-
ences can be subject to modification once we introduce such
phenomena. However, this is beyond our current scope, and we
look forward to studying their impacts in a future project. Such
a detailed analysis will help us in putting more realistic
constraints over the ages of multiple δ Sct stars observed in
missions like TESS and Kepler.
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Appendix A
Inference for Each Star

We show below in Figures A1–A3, M, Z, and τ inferences
from Method-4 for 60 δ Sct stars taken from Bedding et al.
(2020). The x-axis contains the IDs of the stars and the y-axis
displays the inferred quantities.

Figure 13. Statistics of the fundamental parameters of 60 δ Sct stars, inferred using the least-squares minimization method. The dotted vertical lines represent the
boundary of the model grid.
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Figure A1. M inference for 60 δ Scuti stars.

Figure A2. Z inference for 60 δ Scuti stars.

Figure A3. log Myr10 t( ) inference for 60 δ Scuti stars.
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Appendix B
Group-wise Inference Accuracy

For most of the stars, measured values of L and Teff are available
although these quantities are not sufficient to constrain different
stellar parameters. Additional independent quantities are expected
to assist in constraining these structure parameters.

Asteroseismic quantities Δν and ò are suitable for this
purpose. But neither (L, Teff) nor (Δν, ò) alone can accurately
infer the stellar parameters. However, when combined, these
parameters can efficiently constrain those stellar parameters.

We considered {L, Teff, R} as inputs, trained the networks
with these, and measured the maximum absolute errors
between true values and network predictions (over the
validation samples). Similarly, we took asteroseismic quantities
{Δν, ò} and repeated this validation process. Finally, we
combined all of them and again measured the maximum
absolute error associated with the predictions. During age
inference, we supplemented M, Z-like quantities and also
assembled the values of validation errors. We visualize all of
these errors in Figure B1, which emphasizes that validation
error decreases drastically when observables and asteroseismic
quantities are simultaneously considered as inputs.

In Table B1, we show the Pearson r correlation coefficients
(Rodgers et al. 1988) between network predictions (over
validation samples) and corresponding true values. It is a
measure of inference accuracy, i.e., correlation between true

and inferred values. The Pearson r coefficient can have values
between −1 and +1. The higher the r coefficient, the higher the
correlation between true values and network prediction. This
Pearson r correlation coefficient between the two sets of
measurements {p} and {q} is calculated by Equation (B1):

R
p p q q

p p q q
, B1i i i

i i i i
2 2

å
å å

=
- -

- -

( )( )

( ) ( )
( )

where p q, are the means of the measurements.
Adding (M, Z) as additional inputs increases the Pearson r

coefficient by only 0.01. However, from Figure B1(c), it is
evident that (M, Z) inputs actually assist in reducing the
absolute error associated with log t prediction.

Table B1
Pearson R Correlation Coefficients between Inference and True Values for

Different Input Sets

{L, Teff} {Δν, ò} {L, Teff, {L, Teff,
Δν, ò} Δν, ò,

M, Z}

M 0.93 0.86 0.99 ...
Zlog 0.77 0.85 0.99 ...

log t 0.67 0.78 0.98 0.99

Figure B1.Maximum absolute errors between network prediction and true values for a different group of input quantities shown in the x-axis. Figures for prediction of
(a) M in Me, (b) Z, and (c) log t , where τ is in Myr.
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