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Abstract: This paper reports a new Cartesian-grid computationahigal, based on local integrated radial-

basis-function networks (IRBFNs), for the solution of sed@rder elliptic differential problems defined on

two-dimensional regular and irregular domains. At eacH goint, only neighbouring nodes are activated to
construct the IRBFN approximations. Local IRBFNs are idtrced into two different schemes for discretisa-
tion of partial differential equations, namely point cai&tion and control-volume (CV)/subregion-collocation.

Numerical experiments indicate that the latter outperfothe former regarding accuracy. Moreover, the pro-
posed local IRBFN CV method shows a similar level of the matdndition number and a significant improve-

ment in accuracy over a linear CV method.

Keywords: local approximations, integrated RBFNSs, point collocatisubregion collocation, second-order
differential problems.

1 Introduction

RBF-based discretisation methods have emerged as a newtigtrsolver for partial differential equations
(PDEs). They have the capability to work well for problemdirted on irregular domains. Very accurate
results can be achieved using only a relatively-small nunofenodes. However, RBF matrices are dense
and generally ill-conditioned. To resolve this problentdbRBF methods have been developed, resulting in
having to solve a sparse system of algebraic equations. Bfredpproximations are constructed locally on
small overlapping regions which are represented by a seétuaftared points or a set of scattered points. Works
reported include [Lee, Liu, and Fan (2003); Shu, Ding, and {2003); Wright and Fornberg (2006); Kosec
and Sarler (2008); Sanyasiraju and Chandhini (2008)].

To transform a PDE into a set of algebraic equations, onesimediscretise the problem domain. For irregular
domain, this task can be expensive and time-consumingnlbeaeen that using Cartesian grids to represent
the domain is economical. Considerable effort has beenmatthe development of Cartesian-grid-based
computational techniques.

The proposed numerical procedure combines strengths ¢d¢heRBF approach and the Cartesian-grid ap-
proach for solving 2D differential problems. At each gridmiponly neighbouring nodes are activated to con-
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struct the RBF approximations. Unlike local RBF techniqtegsorted in the literature, RBFNs are employed
here to approximate highest-order derivatives in a givek BBd subsequently integrated to obtain expressions
for lower-order derivatives and the field variable. This aé@tegration to construct the approximations pro-
vides an effective way to circumvent the problem of reducaaergence rate caused by differentiation and to
implement derivative boundary conditions. In this studg wtroduce local integrated RBFNs into two PDE
discretisation formulations, namely point collocatioraontrol-volume (CV)/subregion-collocation, and then
conduct some numerical experiments to investigate acgwfate two local IRBFN techniques.

The remainder of this paper is organised as follows. A beefaw of integrated RBFNs is given in Section 2.
The proposed computational procedure is presented indBegtand numerically verified through a series of
examples in Section 4. Section 5 concludes the paper.

2 Integrated radial-basis-function networks

RBFNs allow a conversion of a functiohfrom a low-dimensional space (e.g. 1D-3D) to a high-dimemsi
space in which the function can be expressed as a linear oatitn of RBFs

X) = iw<i>e<i><x>, (1)

where the superscrift) is the summation index the input vectormthe number of RBFsjw()}M, the set
of network weights to be found, a{&! (x)}", the set of RBFs.

This study is concerned with second-order differentialopgms in two dimensions. The integral approach
uses RBFNs (1) to represent the second-order derivativigedfeld variableu in a given PDE. Approximate
expressions for the first-order derivatives and the vagigbtlf are then obtained through integration as
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where the subscrigk;] is used to denote the quantities associated with the pra¢éstegration with respect
to thex; variable'Cl[X]( Xk) andCz[X 1(%) the constants of integration which are univariate functiofi the

variable other thaw; (i.e. x¢ with k # j); H (x) = [ GO (x)dx; andH ( )= fH ) (x)dx;. The reader is
referred to [Mai-Duy and Tanner (2005); Mal Duy and Tram@cQZOOS)] for further details.

3 Proposed technique

The 2D problem domain is discretised using a Cartesian giidundary points are generated through the
intersection of the grid lines and the boundaries. For aeefse point, we form two local integrated networks



using (2)-(4): one associated with thecoordinate and the other with tig coordinate. The two networks are
constructed on the same set of | grid lines. The reference point may not be the centre of tbal Igrid when
the construction process is carried out near the boundagyr@1). For local grids entirely embedded in the
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Figure 1: Local networks in; (left) andx, (right) (x: RBF centre and o: interior point).

domain, the two networks have the same set of RBF centreswabhécchosen to be the interior grid nodes. The
value ofmin (4) is equal td?.

For local grids that are cut by irregular boundary, one gahehas different sets of RBF centres for the two
associated networks. A set of the RBF centres fongheetwork is comprised of the interior grid nodes and
the boundary nodes generated by xherid lines. The value ofnin (4) may be less thalf (Figure 1).

We also employ IRBFNSs to represent the variation of the @oristof integration. The construction process for
Cl[xj](xk) is exactly the same as that f@g[xj](xk). To simplify the notation, some subscripts are dropped. The
functionC(x) is constructed through

d?C L
et = 2w, ®

dCX) < i)
e .;W h'" (%) +c1, (6)
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wherec; andc, are the constants of integration which are simply unknownes andg®”, h®) andh(" the

one-dimensional forms o0, H®) and A", respectively. Collocating (7) at the local grid poirxfg with



i={1,2,---,l} leads to

C=7w, (8)
whereC and W are the vectors of lengthand (I 4 2), respectively, andZ is the transformation matrix of
dimensiond x (I +2)
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Taking (8) into account, the value @Gfin (7) at an arbitrary point, can be computed in terms of nodal values
of C as

C(x() = [H(D(xk), N (%), b (%), X, 1] 7+C, (9)
or
Clx) = 2 P{) (4)C0), (10

whereP() (x) is the product of the first vector on RHS and ttiecolumn of 7+, and.7* is the generalised
inverse of.7.
Substitution of (10) into (3) and (4) yields
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For convenience of presentation, expressions (2), (11]E2)dcan be rewritten as
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where
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We seek the solution in terms of nodal values of the field tégia. To do so, (15) is collocated at the nodal
points on the local grid, from which the relationship betwége network-weight space and the physical space
can be established as

U] = T Wi (16)
W) = T, (17)
wherel) is the vector of lengtim consisting of the nodal values afon the local grid Wy the vector of
length(m+ 2l) made up of the RBF weights and the nodal value@%;]);] andCé'[z(j], andf??jr] the generalised
inverse of:%(j]. The transformation matrix%(j] has the entries?[xj]rs = ﬁffj)] (x(")), where 1< r < mand
1<s<(m+2).

Itis noted that the two vectorsj,,; andu,;, are unknown. From now on, they are forced to be identical

U[Xl] = U[XZ] =0 (18)

The values ofi, du/dx; anddzu/dxj2 at an arbitrary poink can be computed in terms of nodal variable values
as
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where the function value is computed in an average sensedustterical error.
For the point-collocation formulation, there are no intggms required for the discretisation. The process of
converting the PDE into a set of algebraic equations isgdttiirward.

For the control-volume formulation, one has to define a @dntolume for each node, over which the PDE
will be integrated. The control volume is formed using the$ that are parallel to the andx, axes and go



through the middle points between the reference node amiggbours/appropriate points on the boundary
(Figure 1). Integrals can be calculated using Gauss quadraince the present approximation scheme allows
the accurate evaluation of the variabland its derivatives at any point within the local grid.

The use of local integrated networks results in a sparsermsysft simultaneous equations. It can be seen that
operations on zero elements are unnecessary. Avoiding tpesations provides a considerable saving in time.
By taking account of sparseness of the system matrix, ontéhkasapability to reduce the computational time
and storage facilities. Such sparse equation sets can\miseffectively by means of iterative solvers.

4 Numerical examples

For all numerical examples presented here, the approximsatire constructed on local grids of5. IRBFNs
are implemented with the multiquadric (MQ) basis functiomose form is given

G (x) = \/(X_Ca))T(X_c(i))+a<i>2, (22)

wherecl) andal’) are the centre and width of thign MQ basis function, respectively. The set of centres and
the set of collocation points are identical. All MQ centres associated with the same width that is chosen
to be the grid size. We use the discrete relatiyenorm of u, denoted byNe(u), to measure accuracy of an
approximate scheme. We apply the matrix 1-norm estimatigorithm for estimating condition numbers of
the system matrix. Furthermore, linear CV (central diffex&) techniques, which are similar to those described
in [Patankar (1980)], are referred to as a standard CV tgaeni

4.1 Test problem
Consider the following PDE

d%u 9%

Z o142 --0 23
dx§+dx§ @3)

with Dirichlet boundary conditions. Two computational daims, namely a unit square<0x;,x, < 1 and a
circle centered at the origin with radius of 0.5, are congide The exact solution is given by

1
U = ———— Sin(711xq ) Sin( 71X 24
from which the boundary values afcan be derived. The point-collocation formulation corssistforcing (23)
to be satisfied exactly at discrete points in order to formtard@ned set of algebraic equations. It means that
(23) needs be collocated at the interior grid nodes.

For the control-volume formulation, (23) is forced to beisfad in the mean. Integrating (23) over a control
volumeQ;, we have

O2udQ; = 0. (25)
Qi
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Table 1: Rectangular domain: Condition numbers of the systatrix by standard CV, local IRBFN colloca-
tion and local IRBFN CV methods. Notice thafb) meansa x 10P.

Grid Standard-CV IRBFN-collocation [IRBFN-CV

15x 15 1.1(2) 1.8(2) 1.2(2)
27x 27 3.9(2) 6.4(2) 4.3(2)
39x 39 8.5(2) 1.3(3) 9.3(2)
51x 51 1.4(3) 2.4(3) 1.6(3)
63x 63 2.2(3) 3.7(3) 2.4(3)
75% 75 3.2(3) 5.2(3) 3.5(3)
87 x 87 4.3(3) 7.1(3) 4.7(3)
99 x 99 5.6(3) 9.2(3) 6.2(3)
111x 111 7.1(3) 1.1(4) 7.8(3)
123x 123 8.7(3) 1.4(4) 9.6(3)
135x 135 1.0(4) 1.7(4) 1.1(4)
147x 147 1.2(4) 2.0(4) 1.3(4)
159x 159 1.4(4) 2.4(4) 1.6(4)
171x 171 1.7(4) 2.7(4) 1.8(4)
183x 183 1.9(4) 3.1(4) 2.1(4)
195x 195 2.2(4) 3.6(4) 2.4(4)
207 x 207 2.5(4) 4.0(4) 2.7(4)

Using the divergence theorem, (25) becomes
/ (Ou-n)dri =0, (26)
I

wherer’; is the boundary of2; andn the outward normal unit vector. To computa/dx; on the faces that are
parallel to thex, (k # j) direction, we use thg; network.

Uniform Cartesian grids are employed to represent the pmatdomain. In the case of rectangular domain,
condition numbers of the system matrix by the present loclibcation and CV techniques are presented in
Table 1. Results obtained by the standard CV method are rat¢daded for comparison purposes. It can be
seen that the three methods yield a similar level of the matndition number. The use of local approxima-
tions leads to a significant improvement in stability oveattbf global approximations. It was reported in the
literature that the global RBF matrices may be ill-condigd when using 1000 nodes. Here, with 42849 nodes
taken, condition numbers of the RBF matrix are oylo“). In terms of accuracy, both RBF methods are
more accurate than the standard CV method as shown in Figufe€ IRBFN-CV method outperforms the
IRBFN-collocation method. Given a grid size, the CPU timeth® IRBFN-CVM solution is seen to be greater
than that for the standard-CVM solution. However, from Fega, the IRBFN-CVM is much more accurate
than the standard CVM. To achieve a similar level of accyriiéy necessary to use denser grids for the stan-
dard CVM. For example, to yieldle= 1.9 x 10~7, one needs to employ approximately a grid of 1%Q701

for the standard CVM (this grid density is estimated throagtrapolation) and only 208 203 for the IRBFN
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Figure 2: Rectangular domaify, x 7,11 x 11,--- ,203x 203: Error versus grid size for standard CVM/FDM
and local IRBFN methods.

CVM. It is noted that very high grid densities lead to ill-citioned matrices. For a given accuracy, the IRBFN
CVM can thus be more efficient than the standard CVM. Figureddvs the locations of nonzero entries in the
IRBFN system matrix.

In the case of circular domain, the matrix condition humbet the accuracy of the three methods are shown
in Table 2 and Figure 4. Remarks for this case are similardsdtior the rectangular case.

These numerical experiments indicate that the controlaelormulation works better for local IRBFNs than
the collocation formulation. The IRBFN-CV method is now kg to simulate some heat flow problem.

4.2 Heat flow

Find the temperaturé such that
O ve—ime =0, xeQ (27)
. Pe - I

wherev is a prescribed velocity the domain andPe the Peclet number. Her€ andv are taken af0, 1] x
[-0.5,0.5] and(1,0)T, respectively. Boundary conditions are prescribed asvl

0=0, for x=-0.5 andx, =0.5, (28)
6 =coqrmnxy) for x;=0, and (29)
6=0 for x =1 (30)
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local IRBFN methods.



11

Pe=10(21x 21)

Pe = 100(51x 51)

N

Pe = 1000(401x 401)

1]

L

Figure 5: Heat flow: Temperature distribution for a wide ramd Pe by the local IRBFN-CV method. There
are 21 contour lines whose values vary linearly betweenbesktremes.
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Table 2: Circular domain: Condition numbers of the systentrisnly standard CV, local IRBFN collocation
and local IRBFN CV methods. Notice thatb) meansa x 1CP.

Grid Standard-CV IRBFN-collocation [IRBFN-CV

15x 15 9.8(1) 2.12) 1.0(2)
27x 27 3.3(2) 1.0(3) 3.7(2)
39x 39 8.5(2) 3.2(3) 8.6(2)
51x 51 1.3(3) 4.7(3) 1.4(3)
63x 63 2.2(3) 8.1(3) 2.4(3)
75% 75 2.8(3) 8.3(3) 3.2(3)
87 x 87 3.8(3) 1.1(4) 4.4(3)
99 x 99 5.6(3) 1.8(4) 7.0(3)
111x 111 6.5(3) 1.9(4) 7.4(3)
123x 123 8.8(3) 2.7(4) 1.1(4)
135x 135 1.0(4) 3.5(4) 1.1(4)
147x 147 1.3(4) 4.6(4) 1.6(4)
159x 159 1.5(4) 5.8(4) 1.7(4)
171x 171 1.8(4) 6.5(4) 2.4(4)
183x 183 2.0(4) 7.5(4) 2.2(4)
195x 195 2.2(4) 6.6(4) 2.3(4)
207x 207 2.7(4) 8.5(4) 3.2(4)

The exact solution to this problem can be verified to be

e = % (exp(a+bx;) —exp(b+ax)), &

wherea— 0.5 <Pe+ m) andb= 0.5 <Pe— m).

This problem is taken from [Kohno and Bathe (2006)]. The terajure boundary layer becomes thinner with
increasingPe. At Pe = 1000, very steep boundary layer is formed. Figure 5 showsctingerature contours
for three different values dPe by the present CV method. Its accuracy is better than thdteoftandard CV
method as shown in Table 3. Figure 6 displays variationsmoptrature along the centre line. It can be seen that
the proposed method produces very accurate results foasaisc Figure 7 show that there are no fluctuations
in the IRBFN CVM solution.

5 Concluding remarks

This paper is concerned with the use of local integrated RB&i Cartesian grids in the point-collocation and
control-volume frameworks. Two main advantages of thegrelocal techniques are that (i) their matrices are
sparse and (ii) their preprocessing is simple. Numericallte show that (i) both local IRBFN methods result
in the system matrix with a much lower condition number thkobgl RBF techniques, (ii) they outperform
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Figure 7: Heat flow: variations of temperature on the ceimegh the boundary layer by the two techniques for
Pe = 1000 using the same grid.
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Table 3: Heat FlowPe = 1000: ErroNe(u) by standard CV and local IRBFN CV methods. Notice thatb)
meansa x 10°°.

Grid Standard-CV IRBFN-CV
11x11 2.69(-1) 1.00(-1)
51x51 1.83(-2) 3.69(-3)

101x 101 4.25(-3) 9.36(-4)
151x 151 1.83(-3) 3.47(-4)
201x 201 1.01(-3) 1.75(-4)
251x 251 6.45(-4) 1.11(-4)
301x 301 4.46(-4) 8.32(-5)
351x 351 3.27(-4) 6.92(-5)
401x 401 2.50(-4) 6.15(-5)

standard control-volume techniques regarding accuracy fgiven grid size, (iii) the local IRBFN control-
volume technique is much more accurate than the local IRBé&iNaation technique, (iv) the local IRBFN
control-volume technique has the capability to produceaurate results for the simulation of flow problems
having steep gradients.
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