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Abstract: This paper reports a new Cartesian-grid computational technique, based on local integrated radial-
basis-function networks (IRBFNs), for the solution of second-order elliptic differential problems defined on
two-dimensional regular and irregular domains. At each grid point, only neighbouring nodes are activated to
construct the IRBFN approximations. Local IRBFNs are introduced into two different schemes for discretisa-
tion of partial differential equations, namely point collocation and control-volume (CV)/subregion-collocation.
Numerical experiments indicate that the latter outperforms the former regarding accuracy. Moreover, the pro-
posed local IRBFN CV method shows a similar level of the matrix condition number and a significant improve-
ment in accuracy over a linear CV method.

Keywords: local approximations, integrated RBFNs, point collocation, subregion collocation, second-order
differential problems.

1 Introduction

RBF-based discretisation methods have emerged as a new attractive solver for partial differential equations
(PDEs). They have the capability to work well for problems defined on irregular domains. Very accurate
results can be achieved using only a relatively-small number of nodes. However, RBF matrices are dense
and generally ill-conditioned. To resolve this problem, local RBF methods have been developed, resulting in
having to solve a sparse system of algebraic equations. The RBF approximations are constructed locally on
small overlapping regions which are represented by a set of structured points or a set of scattered points. Works
reported include [Lee, Liu, and Fan (2003); Shu, Ding, and Yeo (2003); Wright and Fornberg (2006); Kosec
and Sarler (2008); Sanyasiraju and Chandhini (2008)].

To transform a PDE into a set of algebraic equations, one needs to discretise the problem domain. For irregular
domain, this task can be expensive and time-consuming. It can be seen that using Cartesian grids to represent
the domain is economical. Considerable effort has been put into the development of Cartesian-grid-based
computational techniques.

The proposed numerical procedure combines strengths of thelocal RBF approach and the Cartesian-grid ap-
proach for solving 2D differential problems. At each grid point, only neighbouring nodes are activated to con-
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struct the RBF approximations. Unlike local RBF techniquesreported in the literature, RBFNs are employed
here to approximate highest-order derivatives in a given PDE and subsequently integrated to obtain expressions
for lower-order derivatives and the field variable. This useof integration to construct the approximations pro-
vides an effective way to circumvent the problem of reduced convergence rate caused by differentiation and to
implement derivative boundary conditions. In this study, we introduce local integrated RBFNs into two PDE
discretisation formulations, namely point collocation and control-volume (CV)/subregion-collocation, and then
conduct some numerical experiments to investigate accuracy of the two local IRBFN techniques.

The remainder of this paper is organised as follows. A brief review of integrated RBFNs is given in Section 2.
The proposed computational procedure is presented in Section 3 and numerically verified through a series of
examples in Section 4. Section 5 concludes the paper.

2 Integrated radial-basis-function networks

RBFNs allow a conversion of a functionf from a low-dimensional space (e.g. 1D-3D) to a high-dimensional
space in which the function can be expressed as a linear combination of RBFs

f (x) =
m

∑
i=1

w(i)G(i)(x), (1)

where the superscript(i) is the summation index,x the input vector,m the number of RBFs,{w(i)}m
i=1 the set

of network weights to be found, and{G(i)(x)}m
i=1 the set of RBFs.

This study is concerned with second-order differential problems in two dimensions. The integral approach
uses RBFNs (1) to represent the second-order derivatives ofthe field variableu in a given PDE. Approximate
expressions for the first-order derivatives and the variable itself are then obtained through integration as

∂ 2u(x)

∂x2
j

=
m

∑
i=1

w(i)
[x j ]

G(i)(x), (2)

∂u(x)

∂x j
=

m

∑
i=1

w(i)
[x j ]

H(i)
[x j ]

(x)+C1[x j ](xk), (3)

u[x j ](x) =
m

∑
i=1

w(i)
[x j ]

H
(i)
[x j ]

(x)+ x jC1[x j ](xk)+C2[x j ](xk), (4)

where the subscript[x j] is used to denote the quantities associated with the processof integration with respect
to the x j variable;C1[x j ](xk) andC2[x j ](xk) the constants of integration which are univariate functions of the

variable other thanx j (i.e. xk with k 6= j); H(i)
[x j ]

(x) =
∫

G(i)(x)dx j andH
(i)
[x j ]

(x) =
∫

H(i)
[x j ]

(x)dx j. The reader is
referred to [Mai-Duy and Tanner (2005); Mai-Duy and Tran-Cong (2005)] for further details.

3 Proposed technique

The 2D problem domain is discretised using a Cartesian grid.Boundary points are generated through the
intersection of the grid lines and the boundaries. For a reference point, we form two local integrated networks
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using (2)-(4): one associated with thex1 coordinate and the other with thex2 coordinate. The two networks are
constructed on the same set ofl× l grid lines. The reference point may not be the centre of the local grid when
the construction process is carried out near the boundary (Figure 1). For local grids entirely embedded in the
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Figure 1: Local networks inx1 (left) andx2 (right) (∗: RBF centre and o: interior point).

domain, the two networks have the same set of RBF centres which are chosen to be the interior grid nodes. The
value ofm in (4) is equal tol2.

For local grids that are cut by irregular boundary, one generally has different sets of RBF centres for the two
associated networks. A set of the RBF centres for thex j network is comprised of the interior grid nodes and
the boundary nodes generated by thex j grid lines. The value ofm in (4) may be less thanl2 (Figure 1).

We also employ IRBFNs to represent the variation of the constants of integration. The construction process for
C1[x j ](xk) is exactly the same as that forC2[x j ](xk). To simplify the notation, some subscripts are dropped. The
functionC(xk) is constructed through

d2C(xk)

dx2
k

=
l

∑
i=1

w(i)g(i)(xk), (5)

dC(xk)

dxk
=

l

∑
i=1

w(i)h(i)(xk)+ c1, (6)

C(xk) =
l

∑
i=1

w(i)h̄(i)(xk)+ xkc1 + c2, (7)

wherec1 andc2 are the constants of integration which are simply unknown values, andg(i), h(i) and h̄(i) the

one-dimensional forms ofG(i), H(i) and H
(i)

, respectively. Collocating (7) at the local grid pointsx(i)
k with
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i = {1,2, · · · , l} leads to

Ĉ = T̂ ŵ, (8)

whereĈ and ŵ are the vectors of lengthl and (l + 2), respectively, and̂T is the transformation matrix of
dimensionsl× (l +2)

Ĉ =
(

C(x(1)
k ),C(x(2)

k ), · · · ,C(x(l)
k )

)T
=

(
C(1),C(2), · · · ,C(l)

)T
,

ŵ =
(

w(1),w(2), · · · ,w(l),c1,c2

)T
,

T̂ =




h̄(1)(x(1)
k ), h̄(2)(x(1)

k ), · · · , h̄(l)(x(1)
k ), x(1)

k , 1

h̄(1)(x(2)
k ), h̄(2)(x(2)

k ), · · · , h̄(l)(x(2)
k ), x(2)

k , 1
...

...
. . .

...
...

...

h̄(1)(x(l)
k ), h̄(2)(x(l)

k ), · · · , h̄(l)(x(l)
k ), x(l)

k , 1




.

Taking (8) into account, the value ofC in (7) at an arbitrary pointxk can be computed in terms of nodal values
of C as

C(xk) =
[
h̄(1)(xk), h̄

(2)(xk), · · · , h̄(l)(xk),xk,1
]
T̂

+Ĉ, (9)

or

C(xk) =
l

∑
i=1

P(i)(xk)C
(i), (10)

whereP(i)(xk) is the product of the first vector on RHS and theith column ofT̂ +, andT̂ + is the generalised
inverse ofT̂ .

Substitution of (10) into (3) and (4) yields

∂u(x)

∂x j
=

m

∑
i=1

w(i)
[x j ]

H(i)
[x j ]

(x)+
l

∑
i=1

P(i)
[x j ]

(xk)C
(i)
1[x j ]

, (11)

u[x j ](x) =
m

∑
i=1

w(i)
[x j ]

H
(i)
[x j ]

(x)+
l

∑
i=1

x jP
(i)
[x j ]

(xk)C
(i)
1[x j ]

+
l

∑
i=1

P(i)
[x j ]

(xk)C
(i)
2[x j ]

. (12)

For convenience of presentation, expressions (2), (11) and(12) can be rewritten as

∂ 2u(x)

∂x2
j

=
m+2l

∑
i=1

w(i)
[x j ]

G(i)
[x j ]

(x), (13)

∂u(x)

∂x j
=

m+2l

∑
i=1

w(i)
[x j ]

H(i)
[x j ]

(x), (14)

u[x j ](x) =
m+2l

∑
i=1

w(i)
[x j ]

H
(i)
[x j ]

(x), (15)
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where

{G(i)
[x j ]

(x)}m+2l
i=m+1 ≡ {0}2l

i=1,

{H(i)
[x j ]

(x)}m+l
i=m+1 ≡ {P(i)

[x j ]
(xk)}l

i=1, {H(i)
[x j ]

(x)}m+2l
i=m+l+1 ≡ {0}l

i=1,

{H
(i)
[x j ]

(x)}m+l
i=m+1 ≡ {x jP

(i)
[x j ]

(xk)}l
i=1, {H

(i)
[x j ]

(x)}m+2l
i=m+l+1 ≡ {P(i)

[x j ]
(xk)}l

i=1,

{w(i)
[x j ]

}m+l
i=m+1 ≡ {C(i)

1[x j ]
}l

i=1, and{w(i)
[x j ]

}m+2l
i=m+l+1 ≡ {C(i)

2[x j ]
}l

i=1.

We seek the solution in terms of nodal values of the field variable u. To do so, (15) is collocated at the nodal
points on the local grid, from which the relationship between the network-weight space and the physical space
can be established as

ũ[x j ] = T̃[x j ]w̃[x j ], (16)

w̃[x j ] = T̃
+

[x j ]
ũ[x j ], (17)

whereũ[x j ] is the vector of lengthm consisting of the nodal values ofu on the local grid,w̃[x j ] the vector of

length(m +2l) made up of the RBF weights and the nodal values ofC(i)
1[x j ]

andC(i)
2[x j ]

, andT̃
+

[x j ]
the generalised

inverse ofT̃[x j ]. The transformation matrix̃T[x j ] has the entries̃T[x j ]rs = H
(s)
[x j ]

(x(r)), where 1≤ r ≤ m and

1≤ s ≤ (m +2l).

It is noted that the two vectors,̃u[x1] andũ[x2], are unknown. From now on, they are forced to be identical

ũ[x1] ≡ ũ[x2] ≡ ũ. (18)

The values ofu, ∂u/∂x j and∂ 2u/∂x2
j at an arbitrary pointx can be computed in terms of nodal variable values

as

u(x) =
1
2

2

∑
j=1

u[x j ](x) =
1
2

2

∑
j=1

([
H

(1)
[x j ]

(x),H
(2)
[x j ]

(x), · · · ,H(m+2l)
[x j ]

(x)
]
T̃

+
[x j ]

)
ũ, (19)

∂u(x)

∂x j
=

[
H(1)

[x j ]
(x),H(2)

[x j ]
(x), · · · ,H(m+2l)

[x j ]
(x)

]
T̃

+
[x j ]

ũ, (20)

∂ 2u(x)

∂x2
j

=
[
G(1)(x),G(2)(x), · · · ,G(m+2l)(x)

]
T̃

+
[x j ]

ũ, (21)

where the function value is computed in an average sense due to numerical error.

For the point-collocation formulation, there are no integrations required for the discretisation. The process of
converting the PDE into a set of algebraic equations is straightforward.

For the control-volume formulation, one has to define a control volume for each node, over which the PDE
will be integrated. The control volume is formed using the lines that are parallel to thex1 andx2 axes and go



7

through the middle points between the reference node and itsneighbours/appropriate points on the boundary
(Figure 1). Integrals can be calculated using Gauss quadrature since the present approximation scheme allows
the accurate evaluation of the variableu and its derivatives at any point within the local grid.

The use of local integrated networks results in a sparse system of simultaneous equations. It can be seen that
operations on zero elements are unnecessary. Avoiding these operations provides a considerable saving in time.
By taking account of sparseness of the system matrix, one hasthe capability to reduce the computational time
and storage facilities. Such sparse equation sets can be solved effectively by means of iterative solvers.

4 Numerical examples

For all numerical examples presented here, the approximations are constructed on local grids of 5×5. IRBFNs
are implemented with the multiquadric (MQ) basis function whose form is given

G(i)(x) =
√

(x− c(i))T (x− c(i))+ a(i)2, (22)

wherec(i) anda(i) are the centre and width of theith MQ basis function, respectively. The set of centres and
the set of collocation points are identical. All MQ centres are associated with the same width that is chosen
to be the grid size. We use the discrete relativeL2 norm of u, denoted byNe(u), to measure accuracy of an
approximate scheme. We apply the matrix 1-norm estimation algorithm for estimating condition numbers of
the system matrix. Furthermore, linear CV (central difference) techniques, which are similar to those described
in [Patankar (1980)], are referred to as a standard CV technique.

4.1 Test problem

Consider the following PDE

∂ 2u

∂x2
1

+
∂ 2u

∂x2
2

= 0 (23)

with Dirichlet boundary conditions. Two computational domains, namely a unit square 0≤ x1,x2 ≤ 1 and a
circle centered at the origin with radius of 0.5, are considered. The exact solution is given by

ue =
1

sinh(π)
sin(πx1)sin(πx2) (24)

from which the boundary values ofu can be derived. The point-collocation formulation consists in forcing (23)
to be satisfied exactly at discrete points in order to form a determined set of algebraic equations. It means that
(23) needs be collocated at the interior grid nodes.

For the control-volume formulation, (23) is forced to be satisfied in the mean. Integrating (23) over a control
volumeΩi, we have
∫

Ωi

∇2udΩi = 0. (25)
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Table 1: Rectangular domain: Condition numbers of the system matrix by standard CV, local IRBFN colloca-
tion and local IRBFN CV methods. Notice thata(b) meansa×10b.

Grid Standard-CV IRBFN-collocation IRBFN-CV
15×15 1.1(2) 1.8(2) 1.2(2)
27×27 3.9(2) 6.4(2) 4.3(2)
39×39 8.5(2) 1.3(3) 9.3(2)
51×51 1.4(3) 2.4(3) 1.6(3)
63×63 2.2(3) 3.7(3) 2.4(3)
75×75 3.2(3) 5.2(3) 3.5(3)
87×87 4.3(3) 7.1(3) 4.7(3)
99×99 5.6(3) 9.2(3) 6.2(3)

111×111 7.1(3) 1.1(4) 7.8(3)
123×123 8.7(3) 1.4(4) 9.6(3)
135×135 1.0(4) 1.7(4) 1.1(4)
147×147 1.2(4) 2.0(4) 1.3(4)
159×159 1.4(4) 2.4(4) 1.6(4)
171×171 1.7(4) 2.7(4) 1.8(4)
183×183 1.9(4) 3.1(4) 2.1(4)
195×195 2.2(4) 3.6(4) 2.4(4)
207×207 2.5(4) 4.0(4) 2.7(4)

Using the divergence theorem, (25) becomes
∫

Γi

(∇u ·n)dΓi = 0, (26)

whereΓi is the boundary ofΩi andn the outward normal unit vector. To compute∂u/∂x j on the faces that are
parallel to thexk (k 6= j) direction, we use thex j network.

Uniform Cartesian grids are employed to represent the problem domain. In the case of rectangular domain,
condition numbers of the system matrix by the present local collocation and CV techniques are presented in
Table 1. Results obtained by the standard CV method are also included for comparison purposes. It can be
seen that the three methods yield a similar level of the matrix condition number. The use of local approxima-
tions leads to a significant improvement in stability over that of global approximations. It was reported in the
literature that the global RBF matrices may be ill-conditioned when using 1000 nodes. Here, with 42849 nodes
taken, condition numbers of the RBF matrix are onlyO(104). In terms of accuracy, both RBF methods are
more accurate than the standard CV method as shown in Figure 2. The IRBFN-CV method outperforms the
IRBFN-collocation method. Given a grid size, the CPU time for the IRBFN-CVM solution is seen to be greater
than that for the standard-CVM solution. However, from Figure 2, the IRBFN-CVM is much more accurate
than the standard CVM. To achieve a similar level of accuracy, it is necessary to use denser grids for the stan-
dard CVM. For example, to yieldNe = 1.9×10−7, one needs to employ approximately a grid of 1701×1701
for the standard CVM (this grid density is estimated throughextrapolation) and only 203×203 for the IRBFN
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Figure 2: Rectangular domain,[7×7,11×11, · · · ,203×203]: Error versus grid size for standard CVM/FDM
and local IRBFN methods.

CVM. It is noted that very high grid densities lead to ill-conditioned matrices. For a given accuracy, the IRBFN
CVM can thus be more efficient than the standard CVM. Figure 3 shows the locations of nonzero entries in the
IRBFN system matrix.

In the case of circular domain, the matrix condition number and the accuracy of the three methods are shown
in Table 2 and Figure 4. Remarks for this case are similar to those for the rectangular case.

These numerical experiments indicate that the control volume formulation works better for local IRBFNs than
the collocation formulation. The IRBFN-CV method is now applied to simulate some heat flow problem.

4.2 Heat flow

Find the temperatureθ such that

∇.

(
vθ − 1

Pe
∇θ

)
= 0, x ∈ Ω, (27)

wherev is a prescribed velocity,Ω the domain andPe the Peclet number. Here,Ω andv are taken as[0,1]×
[−0.5,0.5] and(1,0)T , respectively. Boundary conditions are prescribed as follows

θ = 0, for x2 = −0.5 and x2 = 0.5, (28)

θ = cos(πx2) for x1 = 0, and (29)

θ = 0 for x1 = 1. (30)
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Pe = 10(21×21)

Pe = 100(51×51)

Pe = 1000(401×401)

Figure 5: Heat flow: Temperature distribution for a wide range of Pe by the local IRBFN-CV method. There
are 21 contour lines whose values vary linearly between the two extremes.
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Table 2: Circular domain: Condition numbers of the system matrix by standard CV, local IRBFN collocation
and local IRBFN CV methods. Notice thata(b) meansa×10b.

Grid Standard-CV IRBFN-collocation IRBFN-CV
15×15 9.8(1) 2.1(2) 1.0(2)
27×27 3.3(2) 1.0(3) 3.7(2)
39×39 8.5(2) 3.2(3) 8.6(2)
51×51 1.3(3) 4.7(3) 1.4(3)
63×63 2.2(3) 8.1(3) 2.4(3)
75×75 2.8(3) 8.3(3) 3.2(3)
87×87 3.8(3) 1.1(4) 4.4(3)
99×99 5.6(3) 1.8(4) 7.0(3)

111×111 6.5(3) 1.9(4) 7.4(3)
123×123 8.8(3) 2.7(4) 1.1(4)
135×135 1.0(4) 3.5(4) 1.1(4)
147×147 1.3(4) 4.6(4) 1.6(4)
159×159 1.5(4) 5.8(4) 1.7(4)
171×171 1.8(4) 6.5(4) 2.4(4)
183×183 2.0(4) 7.5(4) 2.2(4)
195×195 2.2(4) 6.6(4) 2.3(4)
207×207 2.7(4) 8.5(4) 3.2(4)

The exact solution to this problem can be verified to be

θe =
cos(πx2)

exp(a)−exp(b)
(exp(a+ bx1)−exp(b+ ax1)) , (31)

wherea = 0.5
(

Pe+
√

Pe2 +4π2
)

andb = 0.5
(

Pe−
√

Pe2 +4π2
)

.

This problem is taken from [Kohno and Bathe (2006)]. The temperature boundary layer becomes thinner with
increasingPe. At Pe = 1000, very steep boundary layer is formed. Figure 5 shows thetemperature contours
for three different values ofPe by the present CV method. Its accuracy is better than that of the standard CV
method as shown in Table 3. Figure 6 displays variations of temperature along the centre line. It can be seen that
the proposed method produces very accurate results for all cases. Figure 7 show that there are no fluctuations
in the IRBFN CVM solution.

5 Concluding remarks

This paper is concerned with the use of local integrated RBFNs and Cartesian grids in the point-collocation and
control-volume frameworks. Two main advantages of the present local techniques are that (i) their matrices are
sparse and (ii) their preprocessing is simple. Numerical results show that (i) both local IRBFN methods result
in the system matrix with a much lower condition number than global RBF techniques, (ii) they outperform
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Table 3: Heat Flow,Pe = 1000: ErrorNe(u) by standard CV and local IRBFN CV methods. Notice thata(−b)
meansa×10−b.

Grid Standard-CV IRBFN-CV
11×11 2.69(-1) 1.00(-1)
51×51 1.83(-2) 3.69(-3)

101×101 4.25(-3) 9.36(-4)
151×151 1.83(-3) 3.47(-4)
201×201 1.01(-3) 1.75(-4)
251×251 6.45(-4) 1.11(-4)
301×301 4.46(-4) 8.32(-5)
351×351 3.27(-4) 6.92(-5)
401×401 2.50(-4) 6.15(-5)

standard control-volume techniques regarding accuracy for a given grid size, (iii) the local IRBFN control-
volume technique is much more accurate than the local IRBFN collocation technique, (iv) the local IRBFN
control-volume technique has the capability to produce accurate results for the simulation of flow problems
having steep gradients.
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