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Abstract
In this paper we propose a new fast grid search algorithm for finding the least square
estimators of a step regression model. This algorithm makes it practical to compute
resampling-based confidence intervals for step regression models. We introduce five
data generating models, including one where the mean model is a step model (model
correctly specified) and four where the mean models are not step models (model
misspecified), and use them to study the coverage probabilities of two new types of
resampling-based confidence intervals for step regression: symmetric percentile boot-
strap confidence intervals and subsampling confidence intervals using a new set of
rules-of-thumb to select block size. Our results show that when the model is correctly
specified, the symmetric percentile Efron bootstrap confidence intervals provide close-
to-nominal coverage and have shorter intervals than the subsampling methods; when
the model is misspecified, the subsampling method using the rules-of-thumb provides
good coverage and shorter confidence intervals than the symmetric percentile Efron
bootstrap method and the subsampling method using a double bootstrap-like proce-
dure for block size selection. Finally, we apply the proposed methods to a real world
environmental dataset on the relationship between grassland productivity, soil mois-
ture anomalies and other hydro-climatic and land use variables to provide inference
for the threshold in soil moisture anomalies, across which there is a jump in grassland
productivity.
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1 Introduction

Step regression, also known as discontinuous threshold regression, is a type of non-
regular regression model where the mean of an outcome variable is a step function of
the covariate of interest, e.g.

Y = α + αT
z z + β I (x > e) + ε,

where Y is the response, x is the predictor with threshold effect, z is a covariate vector
with p−1 dimensions, and ε denotes an error termwith bounded variance that is inde-
pendent between observations, e is the threshold parameter, β denotes the size of the
jump at the threshold, α is the intercept, and αz denotes the coefficients corresponding
to z. This model is often used in practice because it provides a simple but elegant and
interpretable way tomodel certain kinds of threshold-dependent relationships between
an outcome and a predictor. Despite the simplicity of step regression models, the pres-
ence of threshold parameters changes both estimation and inference for the models in
profound ways. For example, it is well understood that the asymptotic distribution of
the threshold parameter is nonstandard: while the least square estimator of the change
point or threshold converges at a rate of n1 when both the data generating model and
the working model are step linear regression models, it converges at a rate of n1/3

when the true underlying model does not actually follow a step regression model (e.g.
Bühlmann and Yu 2002; Pons 2003; Banerjee and McKeague 2007; Kosorok 2008;
Song et al. 2016).

The use of step regression in data analysis is currently limited by two factors: (i)
Existing methods for step regression model estimation either produce locally opti-
mal instead of globally optimal solutions or are too slow. (ii) The performance of
resampling-based confidence interval methods depends critically on block size selec-
tion, but there is a dearth of studies onhow to select block sizeswhen thedata generating
model and the working model do not match. Here we address these two limitations.
In Sect. 2 we propose a fast grid search algorithm for step linear regression that seeks
globally optimal solutions and apply the method to empirically study the conver-
gence rates under five different simulation scenarios. In Sect. 3, we study symmetric
percentile Efron bootstrap confidence intervals and subsampling confidence intervals
both when the data generating model and the working model match and when they
do not match. We further propose new rules for selecting block size in subsampling
that compare favorably with the existing double bootstrap-like procedure. In Sect. 4,
we apply the proposed methods to a real data example from a study of hydro-climatic
drivers of agricultural grassland productivity under extreme drought and rainfall. We
end with a discussion in Sect. 5.

2 Fast grid search-based estimation of step linear regressionmodels

Due to the threshold parameter, the likelihood function of a step threshold model is
non-smooth and non-convex. A natural approach to maximize the likelihood is to
approximate the step function in the likelihood by a smooth function (e.g. Gallant and
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Fuller 1973;Tishler andZang1981; Pastor andGuallar 1998;Muggeo2003; Fong et al.
2017). However, as shown in Fong (2019), such approximation may lead to inaccurate
coverage of bootstrap confidence intervals in threshold linear regressions because
the criterion functions are still non-convex and the approach finds locally optimal
solutions. Conceptually, the grid search approach (Friedman and Silverman 1989) is
a two-stage process: in the first stage we optimize a series of submodels conditional
on a grid of candidate threshold values (typically the realized covariate values in the
dataset); in the second stage we simply find the maximum in the set of likelihoods
computed in the first stage and take the corresponding threshold value as the estimated
threshold. Since conditioning on the threshold values removes both non-smoothness
and non-convexity associated with the presence of the threshold parameter, the grid
search approach yields globally optimal solutions. The main disadvantage of the grid
search approach is its computational burden.

We propose a fast grid search-based estimation method for step linear regression
models. The method uses the same strategy from Elder and Fong (2019) and Son and
Fong (2020), which deals with continuous two-phase regression models. We sketch
the outline of the algorithm here; further details can be found in Section B of the
Supplementary Materials. Consider the model given in the introduction, the least
squares estimator for the model parameters minimizes the sum of squares of the
residuals, which equals [(I − He)Y ]T [(I − He)Y ] = Y T Y − Y T HeY , where He ≡
Xe(XT

e Xe)
−1XT

e is the hat matrix, and Xe ≡ [1, Z, ve] ≡ [X, ve] is the design
matrix, where 1 is a vector of ones, Z is a n × (p − 1) matrix, X is a n × p matrix,
and ve ≡ I(x > e) is a n-dimensional vector which equals 1 when xi > e and 0
otherwise. Thus it is equivalent to maximizing Y T HeY with respect to e.

The key factor for accelerating computation is to avoid computing Y T HeY de novo
for every candidate e. We achieve this by breaking down Y T HeY into components
and deriving a recursive relationship for each component between successive e’s. We
can write

Y T HeY = Y T HY +
(
vTe r

)2
/(vTe ve − vTe Hve), (1)

where H ≡ X(XT X)−1XT and r ≡ (H − I)Y . By the QR decomposition, we
can further write vTe Hve = (QT

1 ve)
T QT

1 ve, where Q1 is the first p columns of the
orthogonal matrix Q from the QR decomposition.

Consider two successive (different) values of e: et and et+1. Suppose et and et+1
correspond to the t th and t + 1th ascending ordered values of x . Let vet+1 = vet − δt .
We find that:

vTet+1
vet+1 = vTet vet − 1 (2)

vTet+1
Q1 = vTet Q1 − δTt Q1 (3)

vTet+1
r = vTet r − δTt r (4)

Here we use the fact that δt is a vector of size n with the (t + 1)th entry equal to 1
and 0 everywhere else. δTt Q1 is the t + 1th row vector of Q1, and δTt r is the t + 1th
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Table 1 Run time (sec) for
fitting step linear regression
models on a single Intel(R)
Xeon(R) CPU E5-2667 v4 @
3.20GHz, averaged over 20
Monte Carlo datasets

Grid search Fast grid search

n = 103, p = 2 2604 0.40

n = 104, p = 2 – 3.80

n = 105, p = 2 – 42.7

n = 106, p = 2 – 465

n = 106, p = 10 – 1223

element of r . Hence, these update steps can be done very quickly. The full algorithm
is described more formally below. The results of some benchmarking experiments are
shown in Table 1.

Algorithm 1 Fast grid search algorithm for step linear regression model

1. Sort the samples by the ascending order of xi
2. Compute and store the initial values: vTe1ve1 , v

T
e1 Q1, v

T
e1 r

3. Compute and store the initial value of Y T He1Y
4. For t in 1 to n − 1:

– update vTet+1
vet+1 , v

T
et+1

Q1, v
T
et+1

r based on (2), (3), and (4)

– update Y T Het+1Y based on (1)
– update ê = et+1 if Y T Het+1Y > Y T Het Y

With the fast grid search algorithm, we can more easily study the convergence
rates of the parameter estimates empirically. To compare these converge rates to the
asymptotic rates, we use five data generating models: (i) Step: The mean of Y is a step
function of x ; (ii) Sig_γ for γ ∈ {1, 5, 15}: The mean of Y is a sigmoid function of x .
Sig_15 more closely resembles a step function than Sig_1; (iii) Quad: The mean of Y
is a quadratic function of x :

E(Y |Z , X) = α + αz Z + β I (X > e) (Step)

E(Y |Z , X) = α + αz Z + β
γ e(X−4.7)

1 + γ e(X−4.7)
(Sig)

E(Y |Z , X) = α + αz Z + γ1X + γ2X
2 (Quad)

The model parameters and the covariate distributions are given in Section A of the
SupplementaryMaterials. The step linear regressionmodel is correctly specified under
the Step model and misspecified under the Sig_γ models and the Quad model. Under
the Sig_γ models, the step linear regression model can be seen as an approximation of
the data generating models because they have the same overall shape; under the Quad
model, the interpretation of the step model fit needs to be more carefully considered,

123



Environmental and Ecological Statistics (2022) 29:779–799 783

e.g. the limits of the step linear regression model parameters depend heavily on the
distribution of X . To obtain the limits of the step linear regression model parameters
when the model is misspecified or when the limits cannot be inferred from symmetry,
we fit the step linear regression model Y = α + αz Z + β I (X > e) to datasets with
sample size n = 106 and take the average over ten Monte Carlo replicates, the results
of which are listed in Tables A.1–A.4 of the Supplementary Materials.

To study the empirical rate of convergence over a spectrum of sample sizes, we
consider two sets of sample sizes. The first set has sample sizes of 500, 1000, 1500,
and 2000, and the second set has sample sizes of 1024,000, 2048,000, 4096,000,
and 8192,000. At each sample size, we estimate the variability of the estimator by
conducting 10,000 Monte Carlo runs and computing the standard deviation of the
parameter estimates across the Monte Carlo replicates, which we denote by σn . To
estimate the rate of convergence, we fit the model σn = a×nb by fitting a straight line
through (n, log(σn)) so that the slope b̂ of the fitted line gives an estimated convergence
rate.

The results for the two sets of sample sizes are summarized in Tables 2 and 3,
respectively. When the model is correctly specified, as shown in both Tables 2 and 3,
the estimated convergence rates are close to the asymptotic rates: n for the threshold
parameter e and n1/2 for the slope parameters. When models are misspecified, the
results are complex. We discuss the results one parameter at a time. In larger datasets,
ê is n1/3-convergent. In smaller datasets, the convergence rate is between n1/2 and
n1/3, and among the three sigmoid models, the closer the model is to the step model,
the faster it converges.

The estimates of α and α + β, which correspond to the contribution of x to the
mean when x ≤ e and x > e, respectively, converge at a rate between n1/2 and n1/3.
The convergence rate is closer to n1/3 when the sample size is larger, and in the series
of sigmoid models, closer to n1/3 when the true model is further away from the step
model.

The behaviors of β̂, the estimated jump at the threshold, are more interesting. For
the quadratic model, the convergence rate is close to n1/2 in smaller datasets but tends
towards the asymptotic rate of n1/3 in larger datasets. For all three sigmoid models,
however, the convergence rate is n1/2 in both smaller and larger datasets, suggesting
that the asymptotic rate of convergence is n1/2 and not n1/3. The reason for this can be
seen fromTheorem 2.1 of Banerjee andMcKeague (2007). The limiting distribution of
β, when scaled by n1/3, equals to n1/3(c1−c2) argmaxt Q(t), but due to the symmetry
of the these sigmoid models and the choice of the distribution of X , c1 equals to c2 in
this special case causing this limiting distribution to be degenerate.

Finally, the estimates αz , the slope associated with Z , converges at the regular
√
n

rate in both smaller and larger datasets.

3 Empirical studies of resampling-based confidence interval methods

3.1 Symmetric percentile Efron bootstrap confidence intervals

Efron bootstrap confidence intervals (Carpenter and Bithell 2000) are widely used
for making inference in

√
n-convergence problems. The percentile Efron bootstrap
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confidence interval is well known to be inconsistent for non-regular problems, includ-
ing step regression (e.g. Bühlmann and Yu 2002; Seijo and Sen 2011; Yu 2014). The
theoretical properties of other types of general purpose Efron bootstrap confidence
intervals (Carpenter and Bithell 2000), such as inverse percentile and symmetric per-
centile, are largely unknown. A type of bootstrap method specific for step regression,
smoothed percentile bootstrap confidence intervals (Seijo and Sen 2011), has been
proposed, but it involves a tuning parameter and can be hard to apply in practice (Yu
2014) and only works when the model is correctly specified. In this section, we com-
pare the coverage of two types of Efron bootstrap confidence intervals under each
of the five data generating models introduced in the previous section. In addition to
the percentile method, we focus on the symmetric percentile (“symmetric”) method
(Hansen 2017). The symmetric method can be seen as a compromise between the per-
centile and inverse percentile methods. For example, for α the 95% confidence interval
is defined as α̂ ± q∗, where q∗ is the 95%th quantile of the bootstrap distribution of
|α̂∗ − α̂|.

As shown in Table 4, when the data is generated from a step model, both percentile
and symmetric Efron bootstrap confidence intervals have coverage probabilities close
to the nominal level 0.95 for the n1/2-convergent slope parameters β, αz and α. As for
the threshold parameter e, the percentile method suffers from undercoverage. Impor-
tantly, this does not improve with larger sample sizes, providing empirical evidence
that the Efron bootstrap is inconsistent for the n-convergent ê. Interestingly though,
the symmetric method produces reasonable coverage with only a small increase in the
width of the confidence intervals.

In contrast with the results under correct model specification, under model mis-
specification both the percentile and symmetric methods show a small amount of
over-coverage for the threshold parameter e. For the slope parameter β, even though
it is n1/2-convergent under the Sig_1 model, the percentile method shows substan-
tial undercoverage when the sample size is small-to-moderate; the symmetric method
also under-covers, but to a much smaller extent. For the n1/3-convergent α, both meth-
ods provide reasonable coverage, but show some over-coverage when the sample size
increases.Moreover, the amount of over-coverage also increases fromSig_15 to Sig_1.
These results, together with the results in Tables 2 and 3, suggest that the more the
“effectual” convergence rates move from n1/2 towards n1/3, the more over-coverage
there will be for both bootstrap confidence interval methods.

To better understand the reasons behind the difference in performance between the
percentile and symmetricmethods, we divide the 104 Monte Carlo replicates into three
categories based on the skewness of the bootstrap sampling distributions of ê, as mea-
sured by the moment coefficient of skewness (Joanes and Gill 1998). We regard those
calculated to be less than − 0.5, between − 0.5 and 0.5, and greater than 0.5 as left-
skewed, not-skewed,and right-skewed, respectively (Bulmer 1966). We find that 40%
of the bootstrap distributions are left-skewed, 20% are not-skewed, and 40% are right-
skewed. While the percentile method covers the truth 71%, 89% and 89% of the time
for left-skewed, not-skewed, and right-skewed bootstrap distributions, respectively,
the symmetric method covers 96%, 95% and 95% of the time, respectively.

To summarize, these Monte Carlo experiment results show that the symmetric
Efron bootstrap confidence interval method may correct for the under-coverage of the
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n-convergent threshold parameter exhibited by the percentile Efron bootstrap method
when the step regression model is correctly specified. Moreover, the symmetric Efron
bootstrap method provides reasonable coverage for the n1/3-convergent model param-
eters when the step regression model is misspecified and the sample size is small to
moderate.

3.2 Subsampling with a double bootstrap-like procedure for block size selection

Two types of resampling-based methods have been proposed for making inference
for non-regular problems: m-out-of-n bootstrap, which resamples with replacement
fewer than n observations (e.g. Bickel et al. 1997), and subsampling, which resamples
without replacement fewer than n observations (e.g. Politis and Romano 1994; Bertail
et al. 1999). Seijo and Sen (2011) showed that m-out-of-n bootstrap is valid in a step
linear regression model when the mean model is correctly specified. However, it is not
clear whether the method is still consistent when the mean model is misspecified. In
our empirical studies (results not shown) them-out-of-n bootstrap confidence intervals
provided close-to-nominal coverage with appropriately chosen block sizes when the
mean model is correctly specified, but over-covered for all block sizes when the mean
model is misspecified. We thus focus our attention on subsampling.

An important consideration for using the subsampling method is the choice of the
block size mn , or m for short (Politis et al. 1999). A common approach in all blocking
methods (e.g. Delgado et al. 2001; Gonzalo and Wolf 2005; Chakraborty et al. 2013)
is nested resampling. This leads to a double bootstrap-like (DBL) procedure (Delgado
et al. 2001), inwhich the original dataset is bootstrapped and subsampling is performed
on each bootstrap dataset at a grid of candidate block sizes to look for the block size
that provides a close to nominal estimated coverage. The procedure can be described
more formally as follows:

1. Draw B1 first-level samples by Efron bootstrap from the data, and calculate the
first-level estimates of the parameter of interest êb1 , b1 = 1, . . . , B1.

2. For each first-level bootstrap sample (b1 = 1, . . . , B1):
(a) Draw B2 second-level samples by sampling m subjects without replacement and

calculate the second-level parameter estimates êb1,b2 , b2 = 1, . . . , B2 for the
smallest m in a grid of 25 values evenly spaced between 0.05 and 0.8n.

(b) Denote the (α/2) × 100 and the (1 − α/2) × 100 percentiles of êb1,b2(b2 =
1, . . . , B2) by êb1(

α
2

) and êb1(
1− α

2

), respectively. Construct the subsampling confi-

dence interval for a first-level sample as (êb1(
α
2

), êb1(
1− α

2

)).
3. Estimate the coverage probabilities at eachm by 1

B1

∑B1
i=1 I{êb1( α

2

) ≤ ên ≤ êb1(
1− α

2

)},
where ên is the estimate of the parameter of interest from the original dataset.

4. Increment the block size m from the smallest to the next higher value in the grid
and repeat steps 2 and 3 until the estimated coverage probability goes above the
nominal level.
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5. Find m that corresponds to the nominal coverage level by linear interpolation
between the two block sizes whose estimated coverage probabilities bracket the
nominal level.

For the choice of B1, which affects how well we can estimate the coverage prob-
abilities under different block sizes, and B2, which affects how well we can estimate
the subsampling confidence intervals, we experiment with different combinations of
B1 and B2 with a fixed B1× B2. The results, shown in Table C.3 of the Supplementary
Materials, suggest that the performance of the procedure is not overly sensitive to the
choice of B1, but when B2 is too small (50), it leads to small selected block sizes,
wide confidence intervals, and over-coverage. For the remainder of the paper, we let
B1 = 200 and B2 = 200.

The block size m selected by the double bootstrap-like procedure and the corre-
sponding coverage probabilities and widths of subsampling confidence intervals for
the threshold parameter e are shown in Table 5. When the model is correctly spec-
ified, the DBL confidence intervals appear to over-cover; comparing with Table 4,
we see that the DBL confidence intervals are on average longer than the symmetric
Efron bootstrap confidence intervals for the threshold parameter, e.g. at n = 1000,
the mean confidence interval width is 0.14 and 0.20 for symmetric Efron bootstrap
and DBL, respectively. When the model is misspecified, the DBL confidence inter-
vals also over-cover, but the degree of over-coverage decreases as the sample size
increases. Comparing with Table 4, we see that the DBL confidence intervals are on
average shorter than the symmetric Efron bootstrap confidence intervals for the thresh-
old parameter, e.g. at n = 1000, the mean confidence interval width is 0.32 and 0.28
for symmetric Efron bootstrap and DBL, respectively, when the data is simulated from
the quadratic model.

3.3 Subsampling with simple rules-of-thumb for block size selection

The heavy computational burden of the double bootstrap-like procedure motivates us
to develop alternative methods for block size selection. We start by determining the
optimal block sizes for each of the five data generating models we have studied. To
do this, we estimate the coverage probabilities of subsampling confidence intervals
using 104 Monte Carlo replicates for each m in a grid of block sizes. We then find the
m that corresponds to the nominal coverage level by linear interpolation between the
two block sizes whose estimated coverage probabilities bracket the nominal level.

The selected block sizes are listed in Table C.1 in the Supplementary Materials. We
use a linear model to model the relationship between the Monte Carlo-selected block
sizes and the sample sizes, both on the log scale, under correct model specification,
and we use a linear mixed effects model to model their relationship under the four
misspecified models (Fig. 1. We obtain the following relationships:

log(m) = −0.9207 + 0.9804 × log(n), under correct model specification (5)

log(m) = −0.5565 + 0.9961 × log(n), under model misspecification (6)
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Fig. 1 Fitted linear regression lines (linear model for step model and linear mixed effects model with
random intercept for non-step models) of the relationship between the sample size n and the block size m.
The block size m is derived by letting the coverage probabilities be closest to 0.95 for threshold parameter
e by subsampling bootstrap

Table 6 shows the performance of the subsampling confidence interval method
when these rules-of-thumb are used to select block sizes. When the model is correctly
specified, the block sizes selected by the rule-of-thumb are on average smaller than
those selected by the DBL procedure, which leads the rule-of-thumb confidence inter-
vals to be longer; however, the coverages provided by the rule-of-thumb confidence
intervals are actually smaller than those provided by the DBL procedure. If we restrict
to theMonte Carlo replicates for which the DBLmethod covers and the rule-of-thumb
method does not cover, the rule-of-thumb confidence intervals are shorter, but among
the Monte Carlo replicates for which both methods cover, the rule-of-thumb confi-
dence intervals are longer. When the model is misspecified, the block sizes selected
by the rule-of-thumb are on average bigger. This leads both the confidence intervals
to be shorter and the coverage probabilities to be smaller, as we would expect.

3.4 Additional Monte Carlo studies

These simulation results suggest that the symmetric Efron bootstrap confidence inter-
val and the two subsampling confidence intervals using either a double bootstrap-like
procedure or a rule-based procedure to select block size all provide reasonable cov-
erage. To investigate the robustness of their performance under a wider variety of
scenarios, we conduct two additional Monte Carlo studies. First, we shift the distri-
bution of X so that the threshold e0 is not always at the center of the distribution.
The results, summarized in Supplementary Material Section E.1, show that all three
methods perform similarly as in the original Monte Carlo study. Second, we let the
noise term ε be distributed as a Student’s t distribution with four degrees of freedom
instead of a normal distribution. The results, summarized in Supplementary Material
Section E.2, show that while the symmetric Efron bootstrap method and the subsam-
pling method using the double bootstrap-like procedure to select block size perform
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similarly as in the original Monte Carlo study, the subsampling method with the rule-
based method to select block size under-covers when the data is generated from a step
model.

Taken together, these results suggest that both the symmetric Efron bootstrap
method and the subsampling method with a double bootstrap-like procedure to select
block size provide good coverage and can be recommended. These two methods per-
form similarly when the model is misspecified, but the symmetric bootstrap method
performs better, with narrower confidence intervals and closer-to-nominal coverage,
when the model is correctly specified. The symmetric bootstrap method is also com-
putationally more efficient than the subsampling method; the subsampling method,
on the other hand, is better understood theoretically. The subsampling method with a
rule-based procedure to select block size provides a useful alternative when a faster
subsampling method is desired, but its coverage may be insufficient when the model
is correctly specified and the noise distribution is heavy-tailed.

4 Hydro-climatic drivers of agricultural grassland productivity under
extreme drought and rainfall

Efficient methods for estimating thresholds are important in environmental sciences,
where complex and large datasets are frequent and abrupt non-linear threshold
responses are common. Eutrophication of lake ecosystems (Carpenter and Lathrop
2008), fire mediated vegetation transitions in forests and woodlands (Adams 2013)
and algal responses to light in polar ecosystems (Clark et al. 2013) all show some
evidence for step threshold responses. However, despite threshold responses being a
common feature of natural systems, accurate and efficient techniques for the estimation
of thresholds are lacking.

To demonstrate the utility of the fast grid search algorithm developed here for step
regression on a real world dataset, we used a remotely sensed derived dataset (n =
2549) on grassland productivity responses to soil moisture changes during drought on
the Darling Downs, eastern Australia (Plant et al. 2021; Kath et al. 2019). Grasslands
and forests are good model systems for investigating thresholds because the roots of
vegetation have a discrete physiological limit to the amount of soil moisture they can
access. Once moisture levels decline below a critical level, plants can no longer access
water and so a rapid decline in plant biomass (possibly leading to plant death) occurs.
Given the rapid nature of this change, it is likely to occur as a step threshold (Elmore
et al. 2006; Kath et al. 2014). In line with these expectations, Plant et al. (2021) applied
Bayesian additive regression trees (BART) to model grassland productivity responses,
using the Darling Downs dataset, to soil moisture. Their results suggested a clear step-
like response of the rate of grassland productivity changewith soil moisture anomalies.
The BART approach, while allowing the subjective visualization of a threshold, does
not provide an estimate of where that step threshold occurs, nor its uncertainty.

To provide an estimate and quantify the uncertainty of a potential threshold response
of grassland productivity change to soil moisture anomalies, we fit a step threshold
using the fast grid approachdevelopedhere.Weuse the rule-of-thumbassuming correct
model specification (5) because both the regression tree modelling result (Plant et al.
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Table 7 For the grassland example, point estimates and confidence intervals for the threshold e and jump
β

With covariates adjustment Without covariates adjustment
e β e β

Point estimate −0.26 0.00025 −0.29 0.00065

symmetric bootstrap (−0.29, −0.23) (0.00019, 0.00032) (−0.32, −0.26) (0.00058, 0.00072)

Subsampling-dbl (−0.32, −0.25) (−0.31, −0.26)

Subsampling-rule (−0.32, −0.24) (−0.30, −0.26)

Subsampling-d and subsampling-r use the double bootstrap-like procedure and the proposed rules of thumb,
respectively, to select block size

2021, Fig. 8) and a three-phase segmented model fit (Fig. 2a left panel) suggest a very
sharp transition.

We account for the influence of 11 other hydro-climatic (e.g. soil moisture and
evaporation) and land use (e.g. proportion of woody vegetation and agriculture in
the landscape) predictors that may influence the relationship between soil moisture
and grassland productivity (Table D.1 in the Supplementary Materials). To account
for the nonlinear associations between grassland productivity and these variables, we
allow each variable 1–9 degrees of freedom as selected by cross-validated generalized
additive models (Wood 2017).

The right panel of Fig. 2a shows the step model fit. The change point estimate by
the step model is −0.26 with an estimated jump of 2.5×10−4 (95% symmetric Efron
bootstrap CI 1.9 × 10−4, 3.2 × 10−4) (Table 7):

E(EVI trend) = α + αT
z z + 0.00025 × (mid soil moisture layer anomaly + 0.26)

The stepmodel therefore quantifies the step threshold shift to a greater rate of grassland
productivity decline under drought once soil moisture anomalies exceed a threshold
value of a− 0.26 (or a− 26%anomaly in soilmoisture). Consistentwith the simulation
study results under Sig_15, symmetric Efron bootstrap produces slightly shorter 95%
confidence interval than subsampling with a DBL procedure for block size selection.

For illustration, we also fit a step model between grassland productivity change
to soil moisture anomalies without adjusting for any other covariates. We use the
rule-of-thumb assuming model misspecification (6) because a three-phase segmented
model fit (Fig. 2b left panel) clearly shows that the true model is unlikely to be a
step model. The change point estimate by the step model is −0.29 with an estimated
jump of 6.5 × 10−4 (95% symmetric Efron bootstrap CI: 5.8 × 10−4, 7.2 × 10−4)
(Table 7). Consistent with the simulation study results under Sig_1, symmetric Efron
bootstrap produces slightly longer 95% confidence interval than subsampling with a
DBL procedure for block size selection.
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(a) With covariate adjustment.

(b) Without covariate adjustment.

Fig. 2 The grassland example. The solid lines are the fitted curves. The dashed lines are pointwise 95%
confidence bands. Subsampling-d and subsampling-r use the double bootstrap-like procedure and the pro-
posed rule-of-thumb, respectively, to select block sizes. In panel a, “EVI trend partial response” is defined
as the observed EVI trend minus the predicted value based on the adjusted covariates

5 Discussion

Our proposed fast grid search algorithm finds globally optimal solutions to a non-
convex, non-smooth problem. It is several orders of magnitude faster than the
brute-force grid search algorithm and makes it feasible to analyze large datasets.
We illustrated the use of step regression with a dataset on grassland productivity.
Since thresholds are often used to inform targets around which to base environmental
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management decisions (Simmonds et al. 2019), step regression could be applied in
a range of natural settings to inform environmental guidelines and regulations (e.g.
safe water quality thresholds that are set in freshwater systems, forest restoration tar-
gets, etc.). The proposed methods are implemented in the R package chngpt, which
is hosted on the Comprehensive R Archive Network. The R scripts for simulation
studies and real data analysis are available on the Github code repository youyi-
fong/StepModelSearchBootstrap.

We studied three resampling-based confidence interval methods under a variety
of data generating models. The results support recommendation of the symmetric
Efron bootstrap method (symmetric bootstrap) and the subsampling method with
a double bootstrap-like procedure (subsampling-dbl) for selecting block size. Both
methods have nominal or conservative coverage. The symmetric bootstrap is faster,
and produces substantially narrower confidence intervals than subsampling-dbl when
the model is correctly specified. We designed our simulation studies to include three
models, Sig_1, Sig_5, and Sig_15, which increasingly resemble a step model. Inter-
estingly, when the sample size is small (n = 250), symmetric bootstrap confidence
intervals are also narrower under Sig_15; this difference decreases under Sig_5 and
disappears under Sig_1. When the sample size is large enough (n = 2000), the two
methods produce confidence intervals of similar width under all three sigmoidmodels.
On the other hand, the symmetric bootstrap is not as well understood theoretically as
subsampling-dbl and may not be as general as subsampling-dbl.

We focused on the threshold parameter in the development of subsampling-based
confidence interval methods. Using the block size selected to provide good coverage
for the threshold parameter e is not guaranteed to work for other parameters. This
is because different parameters converge at different rates and even parameters with
the same convergence rates may require different sample sizes for the asymptotics to
kick in. Table C.2 of the Supplementary Materials shows the coverage of all model
parameters when the subsampling block size is chosen to optimize the coverage of
e. The results show that the coverage for β in the Sig_1 model is well below the
nominal level. To achieve good coverage for parameters other than e, we recommend
symmetric Efron bootstrap, which is fast and provides a coverage between 90-95%
depending on the sample size (Table 4). Alternatively, for a specific parameter, e.g.,
β, subsampling with a modified double bootstrap-like procedure for targets β may
provide improved coverage at the cost of a higher computational burden.

When there aremultiple covariateswith threshold effects in a step regressionmodel,
the fast grid algorithm can be generalized by searching through a multi-dimensional
grid of candidate thresholds. A detailed description of the algorithm for two covariates
with threshold effects is shown in Section F of the Supplementary Materials. It is
worth noting that as the number of candidate thresholds increases, exhaustive search
using even the type of fast grid search algorithm proposed here quickly becomes
impractical due to the exponentially increasing computational burden, which makes
heuristic search a necessity. However, the fast grid search algorithm developed here
could become part of the heuristic search algorithm as an efficient way for providing
high quality solutions to sub-problems.

In this work we have operated under a step regression model that assumes the
observations are independent, the error term and the predictors are independent of
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each other, and the predictors are without measurement errors. The simplicity of this
model allows the least squares estimator for the submodel with a fixed threshold to
have a closed-form solution, which provides the target for our optimization. Whether
the proposed approach to accelerating computation can be extended to more complex
regression models warrants future research.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10651-022-00547-2.
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