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A B S T R A C T

Wind is an important source of renewable energy, often used to provide clean electricity to remote areas. For
optimal extraction of this energy source, there is a need for an accurate and robust wind speed forecasting.
The intermittent nature of wind makes this goal quite challenging. This research proposes a novel hybrid
bidirectional LSTM (BiLSTM) model for near real-time wind speed forecasting. The hybrid model is developed
using wind speed and selected climate indices from a group of neighbouring reference stations as predictors
to forecast wind speed of a target station. A 3-stage feature selection is applied on the predictors to robustly
extract highly significant input features. Stage 1 employs partial auto-correlation and cross-correlation, stage 2
uses the RReliefF filter algorithm, and Boruta-RF wrapper method is implemented in the final stage to improve
the BiLSTM model with an efficient Bayesian optimization used for hyperparameter tuning. The proposed
model has been benchmarked with comparative models including standalone and hybrid LSTM, RNN, MLP
and RF. The proposed hybrid BiLSTM algorithm is found to be superior in wind speed prediction for all tested
sites with ≈ 76.6 − 84.8% of errors being ≤ |0.5| ms−1. The hybrid BiLSTM model also registered the lowest
Relative Root Mean Square Error (9.6 − 23.8%) and Mean Absolute Percentage Error (8.8 − 21.5%) among all
the tested algorithms. This research ascertains that the proposed model can accurately predict wind speed and
capacitate wind energy availability to be regularly monitored at a near real-time level.
1. Introduction

An increased dependence on fossil-derived non-renewable energy
sources has prompted countries to set climate mitigation targets, fo-
cused on the transition into renewable alternatives (RE) [1,2]. In 2015,
196 countries ratified the Paris Agreement commitments in support
of Sustainable Development Goal (SDG) target 7 [3]. Similarly, Fiji,
a Pacific Small Island Developing State (PSIDS) has set an ambitious
target of 100% RE by 2036 [4]. Around 64% of this target has been
met mainly through hydro- and bio-energy sources [5]. Fiji will need
to add more RE capacities to attain 100% RE status, as highlighted in
the updated Nationally Determined Contributions (NDC) roadmap [4].
As a vital component of greener resource, wind energy can significantly
help Fiji in meeting its RE and NDC targets. In fact, Fiji has a good wind
regime, so more energy could be harnessed [6,7]. However, the status
of wind-based energy in Fijian electricity grid is currently negligible,
with just one wind farm that has not yet realized its full potential [8].
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Therefore, to meet the 100% RE target, it would require additional
wind power to have a diverse mix of RE resources. Wind speed (U,
hereafter) has a significant role in wind power generation. Wind power
is cubically proportional to U, and a sudden twofold change in U can
affect the wind power output by eight times [9]. The available U needs
to be greater than the wind turbine’s cut-in speed and less than its
cut-out speed for a successful wind farm operation. During cyclonic
events, the U often exceeds the cut-out speed. The turbines used in
Fiji (i.e. Vergnet GEV 275 kW model) can be lowered during cyclonic
period to avoid damages, but pre-planning is needed. However, this
is not an option in Fiji since there are no forecasting tools in place.
Hence, turbines get damaged resulting in monetary losses from repair
and maintenance work. This leads to irregular wind power causing
disturbance in the power quality and system stability [10]. Due to
the stochastic nature of U, the energy generated is intermittent [11].
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Fig. 1. Map of Viti Levu, Fiji Islands showing the six selected study sites and their geographical locations.
Therefore, an accurate near real-time wind speed predictive model is a
prerequisite to ensure a safe and stable wind energy conversion.

Wind speed prediction can be achieved via the physical-based and
artificial intelligence (AI) models. Physical-based models (e.g. numer-
ical weather prediction — NWP) are used to forecast long-term U
using physical data such as terrain, roughness, obstacle, atmospheric
pressure and ambient temperature [12]. However, these models have
a high computational demand and require detailed descriptions of
the diverse weather variables, which are not always available [13].
Physical models perform poorly while forecasting near real-time U.
Conversely, AI models (i.e. Machine Learning — ML and Deep Learning
— DL) are useful for near real-time U forecasting. AI models are data-
driven, and provide a strong nonlinear forecasting skill as they capture
the future variations of near real-time U and extract relevant features
from historical data [14]. The ML and DL models commonly applied
in U forecasting include: artificial neural networks (ANN) [15], mul-
tilayer perceptron (MLP) [16], multiple linear regression (MLR) [17],
support vector regression (SVR) [18], random forest (RF) [19], decision
tree (DT) [20], k-nearest neighbour (KNN) [21], deep belief networks
(DBN) [22], stacked autoencoders (SAE) [22] and recurrent neural
networks (RNN) [23]. Among these, only ANN, MLR and RF have been
applied to forecast U at selected Fijian sites [17,24]. These studies im-
plemented standalone modelling that have innate drawbacks in terms
of their generalization competence.

Unlike standalone models, hybrid methods offer better predictive
performance. Alongside increased interest in hybrid methods, there
has been an upsurge in the number of DL models like convolutional
neural network (CNN) [25], gated recurrent unit (GRU) [26], long
short-term memory (LSTM) [27] and bidirectional LSTM (BiLSTM) [28]
used in the literature recently. DL can solve more complex problems
relatively well provided sufficient datasets are available [29]. One of
the commonly used DL models is RNN [30], which unfortunately face
short-term memory problem due to exploding and vanishing of gradi-
ents. To solve this issue, two specialized versions of RNN introduced
were GRU [31] and LSTM [32]. GRU is a less complex architecture
with two gates (i.e. reset and update). LSTM is similar to GRU but has
additional gates in its architecture (i.e. input, forget and output), which
provides an added advantage in remembering longer sequences of data.
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Ma et al. [33] proposed an LSTM-based double decomposition hybrid
tool for short-term U predictions. The double decomposition strategy
helped in reducing the complexity and non-stationarity of each series,
improving the LSTM’s predictive performance. However, LSTM can
only use the forward information to make predictions, but BiLSTM [34]
considers the future sequence of information in reverse recursive pat-
tern, allowing the model to learn the forward and backward details
simultaneously.

The dual flow of information in BiLSTM facilitates efficient learning
of long-term dependencies. Hence, BiLSTM networks have been applied
to U prediction and related problems. To test this, Xiang et al. [35]
hybridized the BiLSTM network with wavelet transform (WT) decom-
position to forecast multi-step short-term U. WT-BiLSTM performed
better in forecasting longer time horizon over shorter time scale as the
average 𝑀𝐴𝑃𝐸 at 𝑡𝐿+1 was (1.62 ± 0.99)% for WT-BiLSTM vs. (1.20 ±
0.80)% for BiLSTM and the average 𝑀𝐴𝑃𝐸 at 𝑡𝐿+7 was (16.03±12.08)%
for WT-BiLSTM vs. (19.52 ± 14.85)% for BiLSTM. Neshat et al. [36]
used evolutionary decomposition (ED) to split the original U data
into sub-series, where BiLSTM model tuned with hybrid generalized
normal distribution optimization (HGNDO) was used to forecast the
sub-series. This model reported positive performance for 10-minute
data with 𝑀𝐴𝑃𝐸 of 7.53% vs. standalone BiLSTM (8.64%) and LSTM
(8.66%). Jaseena & Kovoor [37] used empirical WT (EWT) to denoise
the 10-minute U dataset into low and high-frequency sub-series. The
results establish that the proposed model outperformed comparative
models including standalone BiLSTM and LSTM, respectively. Review
of these BiLSTM-related studies report positive results for short-term
U forecasting. However, BiLSTM has twice the number of parameters
as LSTM. Therefore, an efficient hyperparameter optimization tool is
required for better performance.

The commonly used grid search (GS) and random search (RS) hyper-
parameter optimization tools are inefficient because every evaluation
in their iterations is independent of prior evaluations, which increases
time wastage in assessing poorly-performing regions of hyperparameter
search space [38]. Bayesian optimization (BO) is proposed in [39,40]
as an efficient framework for the global optimization of black-box
functions. BO [41] is a sequential model-based technique that aims to

locate the global optimum with the least number of trials balancing
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Fig. 2. Schematic of the proposed 3-phase hybrid model (i.e. FS-BO-BiLSTM) used for 10-minute ahead U (m s−1) forecasting.
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Fig. 3. Stage 2: RReliefF and Stage 3: Boruta-Random Forest hybridizer-based feature selection results (for Site 1 – Rakiraki as an example). The box plot shows the Z-scores
obtained by the Boruta-RF algorithm in determining the best lagged 1 time series data for 10-minute ahead U (m s−1) forecasting. ‘‘Blue’’ resembles the shadow inputs, ‘‘green’’
represents the Z-score distributions of the confirmed inputs with remarkably considerable importance and ‘‘red’’ correspond to the rejected predictor variables.
between exploration and exploitation. This helps in avoiding unneces-
sary trials needed to explore the search space. This optimizer is also
advantageous when it comes to optimizing on-line systems. During on-
line optimization of models; GS, RS and manual tuning are unable to
tune various parameters simultaneously. However, BO can scale to a
much larger number of parameters [42]. This is important for highly
parametric models like BiLSTM, where there are frequent interactions
between parameters that need optimization. BO is also preferred over
evolutionary optimizers like genetic algorithm [43]. This is because the
implementation of evolutionary optimizers requires the specification
of various parameters like population size, number of generations,
mutation rate and etc, which is difficult and relies mostly on trial
and error. Various applications of BO have been explored to show
its relevance. Few examples include optimization of: XGBoost and RF
for accurate prediction of undrained shear strength [44], echo state
network for short-term load forecasting [45] and CNN network for land-
slide susceptibility assessment [46]. BO has not been used to optimize
BiLSTM for U forecasting till date. This research gap is narrowed in
this study. Moreover, for BiLSTM architecture optimization, the type
of predictors fed as model inputs matter considerably for achieving
optimal results.

Predicting U is a challenging task, particularly in developing coun-
tries where the availability of quality data is a pressing issue [17].
In such areas, the available data from neighbouring reference stations
can be used to predict the U of a target station. The studies that have
42
used neighbouring reference station data as model inputs have shown
positive results in terms of predictive performance. Bilgili et al. [47]
estimated monthly U for eight stations in eastern Mediterranean region
of Turkey using ANN. The study selected input data of neighbouring
stations based on acceptable cross-correlation function (CCF) with tar-
get station data. Velázquez et al. [48] employed the hourly U and wind
direction data of six sites in Canary Island (e.g. data for five sites = ANN
inputs and U of sixth station = output). Currie et al. [49] evaluated
the applicability of feed-forward neural networks for estimating hourly
target station U using U and wind direction data from neighbouring
reference sites along the south coast of Newfoundland, Canada. Deo
et al. [50] devised an MLP integrated with the Firefly model optimizer
for estimating monthly U of a target station using historical U of
neighbouring reference stations in Iran. The authors suggested to assess
the model performance by incorporating other atmospheric and land-
surface data of neighbouring stations with application of an input
feature selection procedure. Extensive training data were proposed as
limited data can lead to significant biases during seasonal predictions.
These research gaps are addressed in this study. The Use of extensive
U and climate data of neighbouring stations leads to the presence
of numerous predictors that require a robust feature selection (FS)
strategy for dimensionality reduction.

For optimal predictive performance, a 3-stage FS strategy is pro-
posed. For stage 1 FS, PACF and CCF is used to select the significant
lag 1 variables. This method allows efficient selection of inputs [51],
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Fig. 4. Line plots of mean absolute percentage error (MAPE in %) and relative root
mean square error (RRMSE in %) of the proposed vs. other comparative models for
(a) Site 1: Rakiraki, (b) Site 2: Sigatoka, (c) Site 3: Navua, (d) Site 4: Yaqara, (e)
Site 5: Nadi and (f) Site 6: Ba in the testing phase.
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but variables with low correlation coefficient (as opposed by Bechrakis
& Sparis [52]) are also selected. Thus, a hybrid filter and wrapper
FS are used in stages 2 and 3, respectively. Wrapper-based Boruta-
RF [53] is a highly recommended algorithm, which uses RF as the
underlying tool. Boruta-RF has been utilized as an appropriate FS tool
in modelling soil moisture [54], wave height [55] and streamflow [51].
Although wrapper methods can enhance the accuracy of models, they
can be time-consuming. Filter methods can be used in conjunction with
wrapper methods to remove redundant features with less computa-
tional power [56]. Hence, Boruta-RF is employed in the final stage once
the majority inputs are efficiently removed by stage 2 filter method
– Regression Relief-F (RReliefF), which is an efficient instance-based
feature ranking algorithm for regression problems [57]. This 3-stage
FS strategy has not been used to forecast U with the BiLSTM predictive
model yet.

In this paper, a novel framework for near real-time U forecasting
is proposed, based on the 3-stage FS, BO and BiLSTM model. The pro-
posed approach is benchmarked against various standalone and hybrid
ML and DL models in a real case study in Fiji. The proposed model
outperforms all benchmarked models in terms of various statistical
evaluation metrics. Hence, this tool can provide highly accurate U
predictions that can be considered for near real-time control of wind
turbines and load allocation planning. Thus, this can assist in designing
a robust energy security platform in Fiji to help meet its NDC and RE
targets. The remainder of the paper has been structured in the following
way: Section 2 explains the theoretical details of the algorithms used.
Section 3 outlines the materials and method. Section 4 presents the
results and discussion. Finally, Section 5 concludes the paper.

2. Theoretical background

This section presents a description of the proposed BiLSTM network
used for near real-time U forecasting. The optimization tool used
for BiLSTM hyperparameter tuning and the 3-stage FS employed for
dimensionality reduction is also outlined.

2.1. BiLSTM network

BiLSTM is an improved version of the LSTM model. LSTM [32] uses
the concept of memory cells in the hidden layer(s) to manage long-term
dependencies to mitigate the vanishing gradient problem of a simple
RNN. The memory cells in the LSTM layer are updated at each time-step
𝑡 in a multi-step process, and the cell states 𝑐𝑡 and outputs ℎ𝑡 at time-step
𝑡 in a forward pass are computed based on the following steps [58]:

i. The LSTM layer determines the information that should be dis-
regarded in its previous cell states 𝑐𝑡−1 using the forget gate (𝑓𝑡).
The current input data 𝑥𝑡, the outputs ℎ𝑡−1 of the memory cells
at the previous time-step (𝑡− 1), the bias terms 𝑏𝑓 of the 𝑓𝑡, and
weight matrices 𝑊𝑓,𝑥 and 𝑊𝑓,ℎ are used to calculate the 𝑓𝑡 value,
given as:

𝑓𝑡 = 𝜎
(

𝑊𝑓,𝑥𝑥𝑡 +𝑊𝑓,ℎℎ𝑡−1 + 𝑏𝑓
)

(1)

ii. The LSTM layer determines the new information that needs to be
kept in the cell states (𝑐𝑡). The two computations to obtain the
input gate (𝑖𝑡) value at time-step 𝑡 and the new candidate value
(𝑐𝑡) are given as follows:

𝑖𝑡 = 𝜎
(

𝑊𝑖,𝑥𝑥𝑡 +𝑊𝑖,ℎℎ𝑡−1 + 𝑏𝑖
)

(2)

𝑐𝑡 = tanh
(

𝑊𝑐,𝑥𝑥𝑡 +𝑊𝑐,ℎℎ𝑡−1 + 𝑏𝑐
)

(3)

iii. The results obtained in the previous steps are used to compute
new 𝑐𝑡 as:

𝑐𝑡 = 𝑓𝑡◦𝑐𝑡−1 + 𝑖𝑡◦𝑐𝑡 (4)

Where ◦ depicts the Hadamard product.
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Fig. 5. Combined dot and line plots representing Willmott’s Index (𝑊 𝐼) and Nash–Sutcliffe coefficient (𝐸𝑁𝑆 ), respectively of the proposed vs. other comparative models in the
testing phase for (a) Site 1: Rakiraki, (b) Site 2: Sigatoka, (c) Site 3: Navua, (d) Site 4: Yaqara, (e) Site 5: Nadi and (f) Site 6: Ba.
iv. The output ℎ𝑡 of the memory cells of the LSTM layer is obtained
as follows:

𝑜𝑡 = 𝜎
(

𝑊𝑜,𝑥𝑥𝑡 +𝑊𝑜,ℎℎ𝑡−1 + 𝑏𝑜
)

(5)

ℎ𝑡 = 𝑜𝑡◦ tanh (𝑐𝑡) (6)

For BiLSTM, the architecture consists of both forward and back-
ward LSTM layers, where the inputs from the forward and
44
backward layers are handled simultaneously by the output layer
as follows [59]:

⃖⃖⃗ℎ𝑡 = 𝐻
(

𝑊1𝑥𝑡 +𝑊2 ⃖⃖⃖⃖⃖⃖⃗ℎ𝑡−1 + ⃖⃗𝑏
)

(7)

⃖⃖ ⃖ℎ𝑡 = 𝐻
(

𝑊3𝑥𝑡 +𝑊5⃖⃖ ⃖⃖⃖⃖⃖ℎ𝑡−1 + ⃖⃖𝑏
)

(8)

𝑦 = 𝑊 ⃖⃖⃗ℎ +𝑊 ⃖⃖⃖ℎ + 𝑏𝑦 (9)
𝑡 4 𝑡 6 𝑡
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Fig. 6. Comparison of the Legates and McCabe’s Index (LM) for the proposed 3-phase hybrid DL model against the other benchmarking models for (a) Site 1: Rakiraki, (b) Site
2: Sigatoka, (c) Site 3: Navua, (d) Site 4: Yaqara, (e) Site 5: Nadi and (f) Site 6: Ba in the testing phase.
Where ⃖⃖ ⃖ℎ𝑡, ⃖⃖⃗ℎ𝑡 and 𝑦𝑡 are the vectors for backward propagation,
forward propagation and an output layer, respectively; 𝑊1, 𝑊2,
𝑊3, 𝑊4, 𝑊5 and 𝑊6 are the corresponding weight coefficients;
⃖⃖𝑏, ⃖⃗𝑏 and 𝑏𝑦 are the corresponding bias vectors.

The theoretical details of LSTM, RNN, MLP and RF methods used
for model benchmarking are described elsewhere [30,32,60–62].

2.2. Bayesian optimization

Bayesian optimization (BO) [41] is based on Bayes’ theorem, de-
scribed as:

𝑝 (𝑤|𝐷) =
𝑝 (𝐷|𝑤) 𝑝(𝑤)

𝑝(𝐷)
(10)

Where 𝑤 indicates an unseen value, 𝑝(𝑤) refers to the preceding dis-
tribution, 𝑝 (𝐷|𝑤) indicates the probability and 𝑝 (𝑤|𝐷) denotes the
posterior distribution.

BO employs two key aspects, while selecting the next hyperparam-
eter configuration: a probabilistic surrogate model for modelling of the
objective function and an acquisition function, which explores new
45
areas in sample space and exploits areas that are already known for
optimal results [63]. This makes BO more efficient over GS and RS.

The basic steps of BO are given as [64]:

i. Build a probabilistic surrogate model of the objective function.
ii. Determine the ideal hyperparameter values on the surrogate

model.
iii. Apply these selected hyperparameter values to the real objective

function to assess them.
iv. Update the surrogate model with new results.
v. Repeat steps (ii–iv) until maximum number of iterations are

evaluated.

After each evaluation of the objective function, BO updates the
surrogate model. Common surrogate models for BO include: Gaussian
process (GP) [65], RF [66] and the tree-structured Parzen estimator
(TPE) [67]. This study has employed TPE surrogate function to model
the objective function, due to its lower time complexity [68].
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Fig. 7. Density scatter plots for forecasted 𝑈𝐹𝑂𝑅 (m s−1) vs. observed 𝑈𝑂𝐵𝑆 (m s−1) for Site 1 – Rakiraki, Site 2 – Sigatoka and Site 3 – Navua in the testing phase. Only
selected best 3 and worst 3 ranked models are shown for each site. The vertical colour bars on the right indicate the frequency of samples within the binning area. For each
panel, the coefficient of determination (𝑅2) and Kling–Gupta efficiency (KGE) are included, where highest values are considered optimal.
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Fig. 8. Histograms illustrating the probability of the absolute value of 10-minute forecasting error |𝐹𝐸| for Site 4 – Yaqara, Site 5 – Nadi and Site 6 – Ba. Only selected best
3 and worst 3 ranked models in the testing phase are shown for each site.
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Fig. 9. Flowchart of the off-line and on-line proposed FS-BO-BiLSTM model to be used in real-life application.
2.3. Hybrid 3-stage feature selection approach

2.3.1. Stage 1: Correlated lagged input selection
In the first stage of input selection, the partial auto-correlation func-

tion (PACF) is employed to ascertain the best lag of antecedent U. The
cross-correlation function (CCF) is used to retrieve the best lags of other
climate variables. These are useful as the PACF quantifies the linear
correlation between a time series (𝑦𝑡) and a lagged form of itself

(

𝑦𝑡𝐿+𝑘
)

with the removed linear dependence of
(

𝑦𝑡𝐿−1 , 𝑦𝑡𝐿−2 ,… , 𝑦𝑡𝐿−(𝑘−1)
)

,
whereas the CCF quantifies the correlation of target output time series
𝑦 with the lags of antecedent input variables 𝑋 =

[

𝑋1, 𝑋2,… , 𝑋𝑛
]

. The
variables with all lags within the 95% confidence band are considered
insignificant and are disregarded. The most significant inputs obtained
is then subject to stage 2 FS.

2.3.2. Stage 2: Regression Relief-F (RReliefF)
RReliefF algorithm (extended version of Relief and ReliefF [57,69])

is an instance-based filter FS method. Unlike the wrapper-based FS
methods, RReliefF does not evaluate the features on a specific ML
algorithm to find the optimal features. However, this efficient filter
algorithm randomly selects some instances from the training data and
then searches for the k-nearest neighbours from the same class. It
ranks the features via allocation of weights [57] and is formulated as
follows [70]:

Given a feature 𝐹 with the weight 𝑊𝐹 , where the weight is formu-
lated based on Bayesian rule, given as such:

𝑊𝐹 =

(

𝑝𝑑𝑖𝑓𝑓𝑃 |𝑑𝑖𝑓𝑓𝐹
)

𝑝𝑑𝑖𝑓𝑓𝐹
𝑝𝑑𝑖𝑓𝑓𝑃

−

(

1 − 𝑝𝑑𝑖𝑓𝑓𝑃 |𝑑𝑖𝑓𝑓𝐹
)

𝑝𝑑𝑖𝑓𝑓𝐹
1 − 𝑝𝑑𝑖𝑓𝑓𝑃

(11)

Where 𝑝 is probability, 𝑑𝑖𝑓𝑓𝐹 in 𝑝𝑑𝑖𝑓𝑓𝐹 signifies the different values
of the feature 𝐹 and 𝑑𝑖𝑓𝑓𝑃 in 𝑝𝑑𝑖𝑓𝑓𝑃 denotes the different predictions.
The probabilities 𝑝𝑑𝑖𝑓𝑓𝐹 and 𝑝𝑑𝑖𝑓𝑓𝑃 can be equated as:

𝑝𝑑𝑖𝑓𝑓𝐹 = 𝑝 (𝑑𝑖𝑓𝑓𝐹 |𝑁𝐼𝑠) (12)

𝑝𝑑𝑖𝑓𝑓𝑃 = 𝑝 (𝑑𝑖𝑓𝑓𝑃 |𝑁𝐼𝑠) (13)

Where 𝑁𝐼𝑠 represent the nearest instances. The conditional probability
𝑝𝑑𝑖𝑓𝑓𝑃 |𝑑𝑖𝑓𝑓𝐹 in Eq. (11) is given as:

𝑝 = 𝑝 𝑑𝑖𝑓𝑓𝑃 |𝐷𝐹𝑁𝐼𝑠 (14)
48

𝑑𝑖𝑓𝑓𝑃 |𝑑𝑖𝑓𝑓𝐹 ( )
Where 𝐷𝐹𝑁𝐼𝑠 denotes the 𝑑𝑖𝑓𝑓𝐹 and its 𝑁𝐼𝑠. Once the feature weight
𝑊𝐹 is obtained using Eq. (11), the results of FS can be evaluated
by feature weight ranking (e.g. a more important feature is given a
greater weight). These weights (𝑊𝐹 ) depend on the number of nearest
neighbours 𝑘. Very small 𝑘 values lead to unreliable estimates for noisy
data, and larger 𝑘 values hinder the stability of RReliefF in finding
important features [57]. For reliable results, each RReliefF experiment
is repeated 10 times and the weights are averaged as recommended
in [71]. From the 𝑘 search space of {5, 10, 15 and 20}, 10 is used
in this study (also recommended in [72]). This is because 𝑘 = 10
achieved stable and consistent results compared to other values in the
search space. The selected features undergo a third round of FS using
Boruta-RF.

2.3.3. Stage 3: Boruta-random forest (Boruta-RF)
Boruta is a wrapper-based FS method built around the RF algo-

rithm [61]. The algorithm can be briefly explained as such [73]:

i. For a given set of predictor variables (𝑋𝑡 ∈ 𝑅𝑛) and target
variable (𝑦𝑡 ∈ 𝑅), where 𝑛 is the number of input features and
𝑡 = 1, 2,… , 𝑇 with 𝑇 being the number of distinct samples; a
randomly ordered duplicated variable, 𝑋′

𝑡 (i.e. shadow feature)
is created for the respective input vector, 𝑋𝑡.

ii. The RF algorithm is utilized to predict the 𝑦𝑡 using both 𝑋′
𝑡 and

𝑋𝑡.
iii. The variance importance measure (i.e. Mean Decrease Accuracy

– 𝑀𝐷𝐴) for each 𝑋′
𝑡 and respective 𝑋𝑡 is computed using [74]:

𝑀𝐷𝐴 = 1
𝑚𝑡𝑟𝑒𝑒

𝑚𝑡𝑟𝑒𝑒
∑

𝑚=1

∑

𝑡∈𝑂𝑂𝐵 𝐼
(

𝑦𝑡 = 𝑓
(

𝑋𝑡
))

−
∑

𝑡∈𝑂𝑂𝐵 𝐼
(

𝑦𝑡 = 𝑓
(

𝑋𝑛
𝑡
))

|𝑂𝑂𝐵|

(15)

Where 𝐼(∙) is the indicator function, Out-of-Bag, 𝑂𝑂𝐵 is the
prediction error of each of the training samples, (𝑦𝑡 = 𝑓

(

𝑋𝑡
)

)
and (𝑦𝑡 = 𝑓

(

𝑋𝑛
𝑡
)

) are predicted values before and after permu-
tation, respectively. The 𝑚𝑡𝑟𝑒𝑒 parameter is the maximum number
of trees in the forest of the RF algorithm. Higher number of
trees give better performance by making the predictions more
stable [53]. From the 𝑚𝑡𝑟𝑒𝑒 search space of {100, 200, 300 and
500}, 500 is used in this study due to its robust performance.
This value is also recommended in studies [51,54].
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Table 1
Geographic location and model input data description for the six potential wind farm sites in Viti Levu, Fiji. Note that the wind speed data are
every 10-minutes over the period 01 January 2017 to 31 December 2019.

Site no. Site name Acronym Latitude Longitude Elevation
(m)

Expected
data
points

Data
missing
(%)

Training
data split
(%)

Testing
data split
(%)

1 Rakiraki RK 17.34◦ S 178.22◦ E 8.1

157,680

3.34

66.67 33.33

2 Sigatoka SG 18.14◦ S 177.50◦ E 6.7 7.95
3 Navua NV 18.22◦ S 178.17◦ E 6.2 1.84
4 Yaqara YQ 17.43◦ S 177.98◦ E 20.0 0.12
5 Nadi ND 17.76◦ S 177.44◦ E 20.7 0.67
6 Ba BA 17.54◦ S 177.67◦ E 10.0 17.82
v
a
a
t
w
U
p
m

i
P
w
t
a

(
e

f
a
n
t
T
m
1
F
R
w
m
m

iv. The importance measure, Z − scores can be calculated using
𝑀𝐷𝐴 and the standard deviation of accuracy losses, 𝑆𝐷 as
follows:

Z − score = 𝑀𝐷𝐴
𝑆𝐷

(16)

v. For input features with Z − scores > maximum Z-score (MZSA)
of shadow features are classed as ‘‘Confirmed’’, whereas input
features having Z − scores < MZSA are categorized as ‘‘Unim-
portant’’. To ensure that all features are categorized as either
‘‘Confirmed’’ or ‘‘Unimportant’’, and that no feature is left as
‘‘Tentative’’, a high iteration threshold (i.e. 𝑚𝑎𝑥𝑅𝑢𝑛𝑠) of 500 is
selected in this study from the search space of {100, 200, 300
and 500}.

3. Materials and method

3.1. Study area and meteorological data

The case study area was Fiji, a PSIDS situated in the tropical
southwest pacific between the latitudes: 15.5◦ S to 19.5◦S and longi-
tudes: 177◦E to 179◦W. The nation lies in the trade winds zone, with
a predominant southeast wind direction, and has a tropical marine
climate with austral summer (i.e. wet season: November–April) and
austral winter (i.e. dry season: May–October) seasons. The U and
other meteorological data (i.e. wind direction, minimum and maximum
temperature, humidity, mean sea level pressure, solar radiation and
rainfall) utilized for the six sites (Fig. 1) were provided by Fiji Meteoro-
logical Services (FMS) with 10-minute temporal resolution. The studied
stations were selected based on the data availability, as the other sites
(not included in this study) had over 20% of missing data. Latitude and
longitude of the studied stations vary between 17.34◦S to 18.22◦S and
177.44◦E to 178.22◦E, respectively (Table 1). The shortest distance of
≈ 21.83 km was between the sites RK and YQ and the longest distance
of ≈ 112.47 km was between the sites RK and SG. Table 2 shows the
statistical characteristics of the data used. Relative to other sites, the
lowest mean U was recorded at BA (i.e. 1.65 m s−1), whereas the site
with the windiest climate was RK (i.e. 5.86 m s−1).

3.2. Design of the proposed U predictive model

The primary goal of this research was to devise FS-BO-BiLSTM
near real-time U forecasting model. All the predictive models were
developed using Google Colaboratory (Colab). Keras [75] and Ten-
sorflow [76] libraries were used to develop the DL models. Sklearn
library [77] was used for the RF model. Hyperopt [78] library was used
for BO. The framework of the proposed model is illustrated in Fig. 2 and
the overall process is as follows:

Step 1: The original dataset had few missing values (Table 1),
which were backfilled with calendar averaged values [79]. During
data cleaning, all extreme outliers were replaced with the median
values of the respective time series. After data cleaning, the augmented
Dickey–Fuller (ADF) test [80] was used to check the stationarity of
the individual time series data used. Additionally, the Engle–Granger
49
test [81] was conducted to test the cointegration of the target U
ariable and the predictors. For more details on these tests, readers
re referred to Appendix B.1. After confirming the data stationarity
nd cointegration (Table B.1 and B.2), the primal task was to construct
he data matrix. For U forecasting of site 1, the original input matrix
as prepared to comprise the meteorological variables of site 1 plus
and meteorological variables of other 5 sites (Table 2). Data were

artitioned into two parts, where 2017–2018 data were used for FS and
odel training and 2019 data were used for model testing (Table 1).

Step 2: PACF and CCF analysis was performed to select the signif-
cant lagged inputs. Figures B.1 and B.2 (in Appendix B.2) show the
ACF and the CCF plots. Only 20 antecedent lags (i.e. past 200-minutes)
ere considered because much longer lags of U are unreliable in cap-

uring the wind gust, and wakes in particular which are very short-lived
nd stochastic events. The cross-correlation coefficient (𝑟𝑐𝑟𝑜𝑠𝑠) of other

climate indices were also seen to drop with higher antecedent lags of U
Figure B.2). The criteria for input combinations were determined by
valuating the 𝑟𝑐𝑟𝑜𝑠𝑠 of each predictor with U (for CCF) and correlation

coefficient (𝑟) of antecedent lags with U at lag 0 (for PACF). Features
with all 20 lags lying within the 95% confidence interval band were
insignificant. To keep the computational complexity of training DL
models into consideration, only the best significant lag per variable was
selected. Lag 1

(

𝑡𝐿−1
)

variable showed higher correlation compared to
higher lags. Thus, all significant lag 1 variables were selected as inputs
to forecast U at 2 steps ahead

(

𝑡𝐿+1
)

.
Step 3: The features selected in stage 1 FS, were fed to the RReliefF

ilter-based method. Based on its FS mechanism [82], the RReliefF
lgorithm (1) penalized the predictors that gave different values to
eighbours with the same response values and (2) rewarded predictors
hat gave different values to neighbours with different response values.
he penalty and rewards were weights obtained after each experi-
ental run. Therefore, the algorithm used the intermediate weights of
0 experimental runs to compute the final weights of each predictor.
ig. 3 (stage 2) shows the weights assigned to individual predictors for
K. For all sites, RReliefF FS removed all rainfall predictors and good
eights were registered for antecedent U, humidity, solar radiation and
ean sea level pressure. Since many predictors were still present, a
ore robust wrapper-based FS was performed (i.e. stage 3).

Step 4: In the final stage, Boruta-RF computed the Z − scores to
exhibit the importance of the individual predictors, as shown in Fig. 3
(stage 3 for RK). All 12 variables within the shadow Min–Max (Z − score
= 2.7 – 10.1) were rejected. The final 15 selected predictors for RK fell
within the Z-score range of 12.12–37.04. This was the acceptable range
since all the features within this range had Z-score values higher than
the maximum Z-score of the shadow features (i.e. 10.1). The predictors
confirmed through the stage 3 Boruta-RF method were selected as the
final model inputs for U prediction. This method was highly reliable
in removing all the irrelevant features as the variables were combined
for training a RF regression model that was used to calculate the
importance of each feature in form of a Z-score. Only the predictors
with Z-score being higher than the maximum Z-score were selected as
final inputs and the rest were disregarded. The removed features are
summarized in Appendix B.2.
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Table 2
Descriptive statistics of wind speed (U) (m s−1) and other selected climate variables used for all six candidate sites.

Site
acronym

Variable Acronym (units) Mean Range Standard
deviation

Skewness Kurtosis

RK

Target variable:
Wind speed U (m s−1) 5.86 14.70 2.94 0.08 −0.77

Other predictor variables:
Wind direction WD (degrees) 155.81 358.00 58.23 1.61 2.43
Max. Temp Tmax (◦C) 26.22 17.40 2.43 0.17 −0.29
Min. Temp Tmin (◦C) 25.68 20.60 2.37 0.16 −0.20
Humidity H (%) 80.10 43.50 8.85 −0.15 −0.45
Sea level pressure Pmsl (hPa) 1010.98 22.70 3.55 −0.63 0.37
Rainfall Rain (mm) 0.04 17.50 0.35 19.64 544.49
Solar radiation Radn (kW m−2) – – – – –

SG

Target variable U (m s−1) 1.96 5.70 1.28 0.58 −0.46

Other predictor variables WD (degrees) 126.02 358.00 80.77 1.27 1.27
Tmax (◦C) 24.92 22.10 3.27 −0.01 −0.26
Tmin (◦C) 24.31 21.70 3.19 −0.05 −0.22
H (%) 84.20 55.10 11.62 −0.49 −0.83
Pmsl (hPa) 1011.89 21.50 3.89 −0.43 −0.25
Rain (mm) 0.02 18.00 0.30 26.21 929.90
Radn (kW m−2) – – – – –

NV

Target variable U (m s−1) 2.95 8.90 1.78 0.42 −0.74

Other predictor variables WD (degrees) 137.67 358.00 97.67 0.93 −0.22
Tmax (◦C) 25.17 18.90 2.81 0.09 −0.05
Tmin (◦C) 24.60 18.60 2.75 0.06 −0.03
H (%) 83.20 48.50 10.21 −0.55 −0.70
Pmsl (hPa) 1011.19 45.40 6.10 −1.46 3.16
Rain (mm) 0.06 20.50 0.46 16.22 366.94
Radn (kW m−2) 0.10 0.82 0.15 1.73 2.05

YQ

Target variable U (m s−1) 3.95 9.10 1.79 0.29 −0.51

Other predictor variables WD (degrees) 152.13 358.00 61.69 0.97 3.33
Tmax (◦C) 26.85 21.70 2.98 0.31 −0.35
Tmin (◦C) 26.08 20.60 2.74 0.20 −0.26
H (%) 76.17 56.40 11.93 −0.10 −0.48
Pmsl (hPa) 1012.38 22.80 3.49 −0.49 0.17
Rain (mm) 0.03 15.50 0.30 22.08 650.44
Radn (kW m−2) 0.12 0.80 0.17 1.27 0.35

ND

Target variable U (m s−1) 2.53 6.30 1.33 0.87 −0.06

Other predictor variables WD (degrees) 164.58 360.00 84.30 0.70 −0.55
Tmax (◦C) 25.90 22.60 3.24 −0.10 −0.44
Tmin (◦C) 25.55 22.30 3.10 −0.17 −0.33
H (%) 81.83 54.80 11.57 −0.41 −0.67
Pmsl (hPa) 1009.70 25.30 3.55 −0.75 0.66
Rain (mm) 0.04 18.20 0.39 19.79 510.63
Radn (kW m−2) 0.12 0.76 0.17 1.24 0.22

BA

Target variable U (m s−1) 1.65 4.80 1.10 0.84 0.02

Other predictor variables WD (degrees) 165.05 358.00 94.24 0.37 −0.60
Tmax (◦C) 25.77 24.60 4.01 −0.12 −0.45
Tmin (◦C) 25.12 24.20 3.94 −0.14 −0.43
H (%) 82.01 64.20 15.24 −0.57 −0.97
Pmsl (hPa) 1010.65 26.90 3.62 −0.61 0.30
Rain (mm) 0.03 18.50 0.37 20.75 577.39
Radn (kW m−2) 0.11 0.77 0.16 1.27 0.41
W
𝑋

u
u
h
w
m
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Step 5: After FS using the training dataset, the data were arranged
accordingly for the testing dataset. If RK site is considered, then using
lag 𝐿, the input and output instances are created as follows:

𝑅𝐾𝑈 (𝑖𝑛𝑝𝑢𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑅𝐾𝑈 (𝑡𝐿−1) 𝑅𝐾𝑀(𝑡𝐿−1) ⋯ 𝐵𝐴𝑀(𝑡𝐿−1)
𝑅𝐾𝑈 (𝑡𝐿) 𝑅𝐾𝑀(𝑡𝐿) ⋯ 𝐵𝐴𝑀(𝑡𝐿)
𝑅𝐾𝑈 (𝑡𝐿+1) 𝑅𝐾𝑀(𝑡𝐿+1) ⋯ 𝐵𝐴𝑀(𝑡𝐿+1)

⋮ ⋮ ⋮ ⋮
𝑅𝐾𝑈 (𝑡𝑁−2) 𝑅𝐾𝑀(𝑡𝑁−2) ⋯ 𝐵𝐴𝑀(𝑡𝑁−2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(17)

𝑀 denotes other selected features like WD, Tmax, Tmin, H, Pmsl, Rain
and Radn.

𝑅𝐾𝑈 (𝑜𝑢𝑡𝑝𝑢𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

𝑅𝐾𝑈 (𝑡𝐿+1)
𝑅𝐾𝑈 (𝑡𝐿+2)
𝑅𝐾𝑈 (𝑡𝐿+3)

⋮

⎤

⎥

⎥

⎥

⎥

⎥

(18)
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⎣ 𝑅𝐾𝑈 (𝑡𝑁 ) ⎦ B
The model input data (for training and testing) were normalized in
the range (0 – 1) to minimize the overestimation of one variable to
another [83] as 𝑋𝑛:

𝑋𝑛 =
𝑋𝑎𝑐𝑡𝑢𝑎𝑙 −𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

(19)

here 𝑋𝑎𝑐𝑡𝑢𝑎𝑙 is the respective input variables (e.g. 𝑅𝐾𝑈 , etc.), 𝑋𝑚𝑖𝑛 and
𝑚𝑎𝑥 are the minimum and maximum values of the inputs, respectively.

The training data (i.e.2017–2018) fed to the BiLSTM model was
sed for hyperparameter tuning, where 20% of the training data were
sed for validation. BO with TPE surrogate algorithm was used for
yperparameter optimization. The maximum number of evaluations
as selected as 30 [84]. The hyperparameters tuned for the proposed
odel are furnished in Table 3. For visual reference, Figure B.3a (in
ppendix B.3) reveals the selected hyperparameters for the proposed

iLSTM model for RK. Figures B.3b–B.3e present the hyperparameters
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Table 3
Parameter search space assigned for Bayesian optimization (BO) used for developing the hybrid 3-phase models and default search space used
in the development of hybrid 2-phase and standalone models.

Model type Model notations Param name Param search space
3-

Ph
as

e
hy

br
id

m
od

el
s

FS-BO-BiLSTM

Layers Quantized uniform {1, 6, 1}
Hidden units Choice {64, 126, 256}
Dropout rate Uniform {0.1, 0.2}
Activation function Choice {ReLU, tanh}
Batch size 1024
Epochs 128

FS-BO-LSTM

Layers Quantized uniform {1, 6, 1}
Hidden units Choice {64, 126, 256}
Dropout rate Uniform {0.1, 0.2}
Activation function Choice {ReLU, tanh}
Batch size 1024
Epochs 128

FS-BO-RNN

Layers Quantized uniform {1, 6, 1}
Hidden units Choice {64, 126, 256}
Dropout rate Uniform {0.1, 0.2}
Activation function Choice {ReLU, tanh}
Batch size 1024
Epochs 128

FS-BO-MLP

Layers Quantized uniform {1, 6, 1}
Hidden units Choice {64, 126, 256}
Dropout rate Uniform {0.1, 0.2}
Activation function Choice {ReLU, tanh}
Batch size 1024
Epochs 128

FS-BO-RF

Number of trees in the forest [n_estimators] Choice {300, 400}
Maximum features to consider for best split
[max_features]

Choice {‘auto’, ‘sqrt’, ‘log2’, None}

Minimum number of samples required to be at leaf node
[min_samples_leaf]

Uniform {0, 0.5}

Minimum samples to split internal node
[min_samples_split]

Uniform {0, 1}

2-
Ph

as
e

H
yb

rid
an

d
St

an
da

lo
ne

M
od

el
s

FS-BiLSTM & BiLSTM

Layers 1 hidden
Hidden units 128
Dropout rate 0.05
Activation function ReLU
Batch size 1024
Epochs 128

FS-LSTM & LSTM

Layers 1 hidden
Hidden units 128
Dropout rate 0.05
Activation function ReLU
Batch size 1024
Epochs 128

FS-RNN & RNN

Layers 1 hidden
Hidden units 128
Dropout rate 0.05
Activation function ReLU
Batch size 1024
Epochs 128

FS-MLP & MLP

Layers 1 hidden
Hidden units 128
Dropout rate 0.05
Activation function ReLU
Batch size 1024
Epochs 128

FS-RF & RF

n_estimators 100
max_features ‘auto’
min_samples_leaf 1
min_samples_split 2
51
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selected for comparative models. The dense regions of the contour plots
represent that out of the 30 evaluations of BO, the majority of samples
were drawn to give the respective hyperparameter(s) on the 𝑦-axis.
The horizontal line shows the selected hyperparameter and the vertical
line shows the iteration at which it was selected. In addition, Adaptive
Moment Estimation (Adam) optimizer was used to minimize the loss
function during model training and validation.

Step 6: Finally, various performance metrics were used to evaluate
the accuracy of the proposed method against alternative comparative
models (i.e. standalone and 2-phase BiLSTM, LSTM, RNN, MLP, RF and
3-phase LSTM, RNN, MLP and RF).

3.3. Model performance criteria

For evaluation of the proposed FS-BO-BiLSTM model against oth-
ers, two categories of statistical indicators were used: Class A (ideal
value = 1) and Class B (ideal value = 0). Six Class A (Coefficient of
Determination (𝑅2), Pearson’s Correlation Coefficient (𝑟), Willmott’s
Index (𝑊 𝐼), Nash–Sutcliffe Efficiency (𝐸𝑁𝑆 ), Legates–McCabe’s Index
(𝐿𝑀) and Kling–Gupta Efficiency (𝐾𝐺𝐸)) and six Class B (Mean Ab-
solute Error (𝑀𝐴𝐸; m s−1), normalized 𝑀𝐴𝐸 (𝑁𝑀𝐴𝐸), Root Mean
quare Error (𝑅𝑀𝑆𝐸; m s−1), normalized 𝑅𝑀𝑆𝐸 (𝑁𝑅𝑀𝑆𝐸), Relative
𝑀𝑆𝐸 (𝑅𝑅𝑀𝑆𝐸; %) and Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸;

%)) indicators were used. The Class A indicators were used to test
the variance of predicted and actual U values, while the Class B error
indicators were used to study model bias. Since both bias and variance
are components of reducible error, the models were compared in terms
of achieving low bias and variance. The rationale behind selection of
these metrics and the mathematical notations are given in Appendix
B.4.

3.3.1. Global performance indicator (GPI)
The global performance indicator (𝐺𝑃𝐼) [85] was used to overcome

he issue of comparing a large variety of models to conclude the overall
erformance. Mathematically, for 𝑖th model, the 𝐺𝑃𝐼 is computed as:

𝐺𝑃𝐼 =
𝑁
∑

𝑗=1
𝛼𝑗

(

𝑦𝑗 − 𝑦𝑖𝑗
)

, (−∞ < 𝐺𝑃𝐼 < +∞) (20)

Where a larger 𝐺𝑃𝐼 indicates a more accurate model, 𝑁 is the total
number of statistical indicators used (i.e. 12 for this study), 𝛼𝑗 is −1 for
Class A indicators and +1 for Class B indicators, 𝑦𝑖𝑗 is the scaled value
of indicator (𝑗) for model (𝑖) and 𝑦𝑗 is the median of scaled values of
indicator (𝑗). The indicator 𝑦𝑖𝑗 was scaled in range (0 – 1) using:

𝑦𝑖𝑗 =
𝑥𝑖𝑗 − min

(

𝑥𝑖𝑗
)

max
(

𝑥𝑖𝑗
)

− min
(

𝑥𝑖𝑗
) (21)

Where 𝑥𝑖𝑗 is the value of indicator (𝑗) for model (𝑖), min(𝑥𝑖𝑗 ) and
ax(𝑥𝑖𝑗 ) are the minimum and maximum values, respectively of indi-

ator (𝑗) for model (𝑖). The 𝑦𝑗 of all the models considered for 𝐺𝑃𝐼𝑗
calculation of the Class A indicators (ideal value = 1) is always lower
than the 𝑦𝑖𝑗 of the proposed model (i.e. 1). Since a higher positive 𝐺𝑃𝐼
is optimal, an 𝛼𝑗 value of −1 was used to make the calculation positive
for Class A indicators. The 𝑦𝑗 of the Class B indicators (ideal value = 0)
is always higher than the 𝑦𝑖𝑗 of the proposed model (i.e. 0). Hence, an
𝛼𝑗 value of +1 was used to keep the calculation unchanged for Class B
indicators.

4. Results and discussion

In this section, empirical results of modelling experiments con-
ducted are presented. The initial evaluation of the models are based
on 𝑟 and the non-normalized 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 measures (Table 4).
The metric 𝑟 is a non-dimensional and an absolute measure, which
conjectures the strength and direction of linear association between
the observed 𝑈𝑂𝐵𝑆 and forecasted 𝑈𝐹𝑂𝑅 values. The measures 𝑀𝐴𝐸
52

𝑊

and 𝑅𝑀𝑆𝐸 are based on aggregation of residuals of 𝑈𝑂𝐵𝑆 and 𝑈𝐹𝑂𝑅

values. Table 4 shows that the proposed model obtained the highest
𝑟 (0.917–0.981), and the lowest 𝑀𝐴𝐸 (0.238–0.369) and 𝑅𝑀𝑆𝐸
(0.343–0.581) for all sites. The 𝑟 measure for three sites (SG, NV
and ND) and 𝑅𝑀𝑆𝐸 for one site (ND) showed comparable results
between the objective model and FS-BO-LSTM. Conversely, the 𝑀𝐴𝐸
at these sites were lower for the proposed model compared to FS-BO-
LSTM. This points out the supremacy of BiLSTM, where two LSTMs
are applied to the input data in both backward and forward directions.
This dual flow of information facilitated efficient learning of long-term
dependencies between the features and the target U. However, it should
be noted that nearly all DL models perform exceptionally well with
large datasets. The extensive dataset used in this study may have also
allowed the LSTM models to effectively learn the important features
in just a single flow of information for the three sites based on 𝑟 and
𝑅𝑀𝑆𝐸. Even so, 𝑟 is scale and offset invariant and can even give larger
values to mediocre models [86]. Also, the squaring of 𝑅𝑀𝑆𝐸 term
induces a bias towards high U values [87]. Thus, these two measures
are unreliable at times, especially when comparing models with similar
underlying structures. The absolute computation in 𝑀𝐴𝐸 reduces the
iases, making it reliable over 𝑟 and 𝑅𝑀𝑆𝐸 [87].

The U range of the six study sites varied (Table 2). This made
𝐴𝐸 and 𝑅𝑀𝑆𝐸 measures unreliable in assessing model performance

cross geographically disparate sites since both are expressed in abso-
ute units [88]. For this reason, the normalized and the relative error
easures were used to assess model bias. The normalized measures pre-

ented in Table 5 show that the proposed model registered the lowest
𝑀𝐴𝐸 and 𝑁𝑅𝑀𝑆𝐸 at all sites. The 𝑁𝑀𝐴𝐸 and 𝑁𝑅𝑀𝑆𝐸 measures

llow comparison of model bias amongst different sites. For instance,
he 𝑁𝑀𝐴𝐸 of the proposed model for BA (0.172) and RK (0.060)
evealed that the model bias was lower for the RK site. This further
nforms that RK site had features selected via the 3-stage FS that were
ore physically dependent to the forecasted U, making it a potentially

ood site for future wind farm commissioning. The relative measures
𝑅𝑀𝑆𝐸 and 𝑀𝐴𝑃𝐸 are easier to interpret as percentage criteria
re used to categorize the models as ‘‘Excellent’’ (𝑅𝑅𝑀𝑆𝐸∕𝑀𝐴𝑃𝐸

10%), ‘‘Good’’ (10% < 𝑅𝑅𝑀𝑆𝐸∕𝑀𝐴𝑃𝐸 < 20%), ‘‘Fair’’ (20% <
𝑅𝑅𝑀𝑆𝐸∕𝑀𝐴𝑃𝐸 < 30%) and ‘‘Poor’’ (𝑅𝑅𝑀𝑆𝐸∕𝑀𝐴𝑃𝐸 ≥ 30%) [89].

ased on this, the proposed model was categorized as: ‘‘Excellent’’ for
K, ‘‘Good’’ for SG, NV, YQ and ND, and ‘‘Fair’’ for BA (Fig. 4).

As revealed in Fig. 4, the proposed FS-BO-BiLSTM model for all
ites performed comparatively better over all the benchmarked models.
hen compared with the lowest performing standalone RF, the pro-

osed model showed percentage decrease in 𝑅𝑅𝑀𝑆𝐸|𝑀𝐴𝑃𝐸 as fol-
ows: RK (−64.16%| − 64.09%), SG (−46.29%| − 42.39%), NV
−25.63%| − 29.30%), YQ (−34.70%| − 38.88%), ND (−30.80%| − 35.86%)
nd BA (−25.91%| − 31.14%). This clarifies the potential merits of the
bjective model, where FS and BO helped improve the performance
f BiLSTM. The standalone BiLSTM also outperformed its standalone
ounterparts due to its ability to aptly capture the stochastic variation
f U data via its bidirectional processing feature [90]. Conversely, the
F model performed poorly. This is because when RF is tasked with
redicting the values not seen in the training dataset, it will predict
n average of the values seen previously [61]. The range of training
nd testing datasets for the RK site were 13.23 and 14.70 m s−1,
espectively. There were 1,360 data points in the testing dataset with
alues > 13.23 m s−1. For these values, the RF model estimated the

as ≈ 5.74 m s−1 (i.e. average U of training data). Also, RF performs
oorly with sparse features (e.g. Radn and Rain). These features altered
he performance of RF and its ability to make accurate predictions [61].
ased on these drawbacks of RF, the percentage error yielded was very
igh compared to the proposed model.

The 𝐸𝑁𝑆 [91] is a dimensionless and scaled variant of 𝑀𝑆𝐸. It
s a commonly used criterion for model evaluation, but it exaggerates
he larger values of outliers while overlooking the smaller ones [92].

𝐼 [93,94] was introduced to address this issue of 𝐸𝑁𝑆 by considering
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Table 4
Evaluation of proposed (i.e. FS-BO-BiLSTM) vs. all other comparative models in the testing phase, using the r = Pearson’s correlation coefficient, MAE (m s−1) = mean absolute
error and RMSE (m s−1) = root mean square error.

Model
type

Model
notations

Sites evaluated during testing phase

RK SG NV YQ ND BA

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE
(m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1)

3-
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s

FS-BO-BiLSTM 0.981 0.369 0.581 0.959 0.238 0.343 0.957 0.351 0.493 0.956 0.333 0.482 0.945 0.257 0.386 0.917 0.284 0.392
FS-BO-LSTM 0.980 0.372 0.582 0.959 0.240 0.345 0.957 0.353 0.496 0.955 0.346 0.486 0.945 0.258 0.386 0.916 0.286 0.394
FS-BO-RNN 0.980 0.390 0.591 0.958 0.251 0.349 0.956 0.355 0.498 0.954 0.352 0.491 0.943 0.259 0.389 0.915 0.289 0.396
FS-BO-MLP 0.980 0.402 0.594 0.958 0.252 0.350 0.957 0.354 0.496 0.954 0.351 0.489 0.944 0.258 0.387 0.915 0.289 0.397
FS-BO-RF 0.970 0.515 0.719 0.897 0.436 0.565 0.951 0.374 0.530 0.915 0.504 0.656 0.929 0.292 0.436 0.909 0.297 0.409
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FS-BiLSTM 0.979 0.422 0.607 0.955 0.259 0.358 0.955 0.363 0.506 0.952 0.369 0.502 0.941 0.267 0.397 0.914 0.292 0.399
FS-LSTM 0.978 0.424 0.611 0.955 0.263 0.360 0.955 0.364 0.509 0.951 0.373 0.506 0.942 0.265 0.395 0.914 0.292 0.399
FS-RNN 0.978 0.435 0.614 0.954 0.267 0.365 0.954 0.365 0.511 0.950 0.376 0.508 0.940 0.269 0.399 0.913 0.293 0.401
FS-MLP 0.978 0.444 0.622 0.954 0.265 0.363 0.954 0.365 0.510 0.951 0.374 0.506 0.940 0.270 0.399 0.913 0.294 0.401
FS-RF 0.965 0.563 0.779 0.912 0.375 0.503 0.945 0.400 0.562 0.901 0.540 0.720 0.915 0.328 0.480 0.898 0.324 0.433
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BiLSTM 0.974 0.488 0.684 0.948 0.280 0.385 0.952 0.373 0.525 0.946 0.393 0.529 0.937 0.278 0.410 0.908 0.304 0.413
LSTM 0.974 0.482 0.679 0.947 0.290 0.392 0.952 0.386 0.533 0.944 0.398 0.538 0.936 0.279 0.414 0.907 0.304 0.416
RNN 0.975 0.470 0.664 0.944 0.304 0.405 0.952 0.382 0.530 0.944 0.401 0.542 0.937 0.278 0.411 0.906 0.311 0.426
MLP 0.974 0.475 0.673 0.946 0.293 0.401 0.951 0.404 0.551 0.943 0.403 0.546 0.936 0.278 0.413 0.905 0.312 0.427
RF 0.840 1.196 1.620 0.850 0.479 0.638 0.924 0.488 0.663 0.895 0.555 0.737 0.889 0.378 0.558 0.850 0.390 0.529
Table 5
Evaluation of proposed (i.e. FS-BO-BiLSTM) vs. all other comparative models in the testing phase, using the NMAE = normalized mean absolute error and NRMSE
= normalized root mean square error.

Model type Model notations Sites evaluated during testing phase

RK SG NV YQ ND BA

NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE
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FS-BO-BiLSTM 0.060 0.095 0.127 0.183 0.124 0.175 0.088 0.127 0.103 0.156 0.172 0.238
FS-BO-LSTM 0.061 0.096 0.129 0.185 0.126 0.177 0.092 0.129 0.104 0.156 0.174 0.239
FS-BO-RNN 0.064 0.097 0.134 0.187 0.126 0.177 0.093 0.130 0.105 0.157 0.176 0.241
FS-BO-MLP 0.066 0.098 0.135 0.187 0.126 0.177 0.093 0.130 0.105 0.156 0.176 0.241
FS-BO-RF 0.085 0.118 0.234 0.303 0.133 0.189 0.134 0.174 0.118 0.176 0.181 0.249

2-
Ph

as
e

hy
br

id
m

od
el

s

FS-BiLSTM 0.069 0.099 0.139 0.191 0.129 0.180 0.097 0.132 0.108 0.161 0.178 0.243
FS-LSTM 0.070 0.101 0.141 0.193 0.130 0.181 0.099 0.134 0.107 0.160 0.178 0.242
FS-RNN 0.072 0.101 0.143 0.196 0.130 0.182 0.100 0.135 0.109 0.161 0.178 0.244
FS-MLP 0.073 0.102 0.142 0.194 0.130 0.182 0.099 0.134 0.109 0.162 0.179 0.244
FS-RF 0.093 0.128 0.201 0.269 0.143 0.200 0.143 0.191 0.133 0.194 0.197 0.264

St
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BiLSTM 0.080 0.113 0.150 0.207 0.133 0.187 0.104 0.140 0.112 0.166 0.185 0.251
LSTM 0.079 0.112 0.155 0.210 0.137 0.190 0.105 0.143 0.113 0.167 0.185 0.253
RNN 0.077 0.109 0.163 0.217 0.136 0.189 0.106 0.144 0.113 0.166 0.189 0.259
MLP 0.078 0.111 0.157 0.215 0.144 0.196 0.107 0.145 0.113 0.167 0.190 0.260
RF 0.197 0.267 0.257 0.342 0.174 0.236 0.147 0.195 0.153 0.226 0.237 0.322
the 𝑀𝑆𝐸 ratio instead of the differences. The results of 𝐸𝑁𝑆 and
𝐼 are presented in Fig. 5. It is evident that the Bayesian optimized

iLSTM models integrated with the 3-stage FS demonstrated a dramatic
mprovement, where both the 𝐸𝑁𝑆 and 𝑊 𝐼 were higher than the stan-

dalone models. The proposed vs. standalone BiLSTM performance in
terms of 𝐸𝑁𝑆 |𝑊 𝐼 were as follows: RK (0.961 vs. 0.946|0.991 vs. 0.986),
SG (0.920 vs. 0.899|0.979 vs. 0.973), NV (0.917 vs. 0.905|0.978 vs.
.974), YQ (0.912 vs. 0.895|0.977 vs. 0.972), ND (0.892 vs. 0.878|0.971
s. 0.967) and BA (0.840 vs. 0.823|0.957 vs. 0.950). This validates that
he hybridization based on BO and 3-stage FS enhanced the perfor-
ance of the standalone BiLSTM for all sites. However, 𝑊 𝐼 and 𝐸𝑁𝑆

re both oversensitive to peak residual values and registers relatively
igh values due to the squared values of residual terms [92,93].
𝐿𝑀 [92] is not overestimated as it considers absolute values and

ssigns appropriate weights to errors and discrepancies, being preferred
ver 𝑊 𝐼 and 𝐸𝑁𝑆 . The 𝐿𝑀 results (Fig. 6) concertedly revealed the
upremacy in the performance of the proposed FS-BO-BiLSTM model
t all six sites over other models. The proposed model at all the sites
nsued 𝐿𝑀 > 0.643, with the maximum magnitude recorded at RK
𝐿𝑀 = 0.85). Considering all six sites, the average 𝐿𝑀 index of the
roposed model showed an improvement of: 4.42%, 5.05%, 5.39%,
.71% and 32.30% over the standalone BiLSTM, LSTM, RNN, MLP and
F models, respectively.
53
To further explore the suitability of FS-BO-BiLSTM in U forecasting,
diagnostic plots were used. Fig. 7 shows the density scatter plots of
the 𝑈𝑂𝐵𝑆 and 𝑈𝐹𝑂𝑅 for sites 1 (RK), 2 (SG) and 3 (NV). For efficient
comparison, only the ‘‘Best’’ and ‘‘Worst’’ three ranked models were
plotted. In each panel, an 𝑅2 measure is used to evaluate the goodness-
of-fit between the 𝑈𝑂𝐵𝑆 and 𝑈𝐹𝑂𝑅. The plots (Fig. 7) also incorporated
the 𝐾𝐺𝐸 measure. A perfectly fitted model is ought to have an ideal
value of +1 for 𝑅2 and 𝐾𝐺𝐸. The magnitudes of 𝑅2 registered for the
optimal FS-BO-BiLSTM models were close to unity, which were 0.9612
for RK, 0.9199 for SG and 0.9165 for NV. The 𝐾𝐺𝐸 values were also in
line with the 𝑅2 values, registering 0.9797 for RK, 0.9547 for SG and
0.9414 for NV. These two measures clearly outlined that the proposed
model achieved lower variance between the 𝑈𝑂𝐵𝑆 and 𝑈𝐹𝑂𝑅 compared
to FS-BO-LSTM.

Analysis of the spread of forecasting errors (𝐹𝐸) was also imple-
mented to evaluate the competence of the proposed hybrid FS-BO-
BiLSTM model. Fig. 8 shows plots of histogram for sites 4 (YQ), 5 (ND)
and 6 (BA) revealing the probability distribution of |𝐹𝐸| computed in
error brackets of 0.25 step-sizes. Only the ‘‘Best’’ and ‘‘Worst’’ three
ranked models were plotted for better comparative evaluation. The
‘‘Best’’ three ranked models for all three sites registered very small
spreads in forecasting error that were closer to 0. A closer examination

of the probability of |𝐹𝐸| for all models further revealed the strength
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Table 6
Global Performance Index (GPI) values to rank models. The models are ranked as: (a) in relation to the phases with ranks 1–3 (i.e. standalone, 2-phase and 3-phase), (b) in relation
to all 5 models per phase with ranks 1–5 and (c) in relation to all the 15 models generated per site (ranks 1–15). Colours ‘‘green’’ represents higher ranks, while ‘‘red’’ denotes
lower performing models.

Model
Type

Model Notations Sites Evaluated for Model Ranking During Testing Phase

RK SG NV YQ ND BA
Rank Rank Rank Rank Rank Rank

GPI
a b c

GPI
a b c

GPI
a b c

GPI
a b c

GPI
a b c

GPI
a b c
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FS-BO-BiLSTM 2.841 1 1 1 0.739 1 1 1 0.547 1 1 1 1.379 1 1 1 0.744 1 1 1 -1.884 1 1 1
FS-BO-LSTM 2.820 1 2 2 0.685 1 2 2 0.502 1 2 2 1.254 1 2 2 0.731 1 2 2 -1.965 1 2 2
FS-BO-RNN 2.707 1 3 3 0.534 1 3 3 0.464 1 4 4 1.171 1 4 4 0.676 1 4 4 -2.058 1 3 3
FS-BO-MLP 2.644 1 4 4 0.494 1 4 4 0.489 1 3 3 1.195 1 3 3 0.713 1 3 3 -2.082 1 4 4
FS-BO-RF 1.581 1 5 13 -5.079 2 5 14 0.077 1 5 9 -1.504 1 5 13 -0.236 1 5 13 -2.492 1 5 9
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FS-BiLSTM 2.509 2 1 5 0.311 2 1 5 0.358 2 1 5 0.955 2 1 5 0.482 2 2 6 -2.183 2 2 6
FS-LSTM 2.481 2 2 6 0.245 2 2 6 0.312 2 2 6 0.894 2 2 6 0.525 2 1 5 -2.162 2 1 5
FS-RNN 2.412 2 3 7 0.137 2 4 8 0.285 2 4 8 0.858 2 4 8 0.435 2 3 7 -2.208 2 3 7
FS-MLP 2.346 2 4 8 0.184 2 3 7 0.299 2 3 7 0.884 2 3 7 0.421 2 4 8 -2.215 2 4 8
FS-RF 1.082 2 5 14 -2.892 1 5 13 -0.484 2 5 14 -2.307 2 5 14 -1.119 2 5 14 -3.360 2 5 14
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BiLSTM 1.782 3 4 12 -0.293 3 1 9 0.044 3 1 10 0.522 3 1 9 0.282 3 1 9 -2.568 3 1 10
LSTM 1.828 3 3 11 -0.540 3 2 10 -0.114 3 3 12 0.391 3 2 10 0.176 3 4 12 -2.772 3 2 11
RNN 1.990 3 1 9 -0.854 3 4 12 -0.060 3 2 11 0.300 3 3 11 0.258 3 2 10 -3.147 3 3 12
MLP 1.919 3 2 10 -0.680 3 3 11 -0.381 3 4 13 0.244 3 4 12 0.235 3 3 11 -3.200 3 4 13
RF -7.480 3 5 15 -6.699 3 5 15 -2.064 3 5 15 -3.147 3 5 15 -2.778 3 5 15 -6.040 3 5 15
Table 7
Seasonal evaluation of proposed (i.e. FS-BO-BiLSTM) vs. all other comparative models in the testing phase, using the RRMSE (%) – relative root mean square error.

Model type Model notations RRMSE (%) of all Sites evaluated during testing phase

RK SG NV YQ ND BA

Seasons Seasons Seasons Seasons Seasons Seasons

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet

3-
Ph

as
e

hy
br

id
m

od
el

s

FS-BO-BiLSTM 7.988 11.616 17.364 19.384 17.125 17.982 11.151 14.789 14.452 16.610 22.538 25.232
FS-BO-LSTM 8.016 11.709 17.462 19.502 17.207 18.088 11.221 14.950 14.519 16.660 22.665 25.291
FS-BO-RNN 8.173 11.781 17.684 19.713 17.283 18.207 11.403 15.046 14.585 16.840 22.707 25.559
FS-BO-MLP 8.202 11.928 17.726 19.760 17.221 18.137 11.396 14.965 14.582 16.775 22.830 25.568
FS-BO-RF 10.085 14.155 28.764 31.817 18.380 19.380 15.394 19.924 16.318 18.888 23.373 26.516
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FS-BiLSTM 8.389 12.122 18.135 20.262 17.592 18.471 11.650 15.373 14.886 17.104 22.914 25.751
FS-LSTM 8.399 12.247 18.280 20.352 17.650 18.550 11.743 15.426 14.845 17.080 22.910 25.688
FS-RNN 8.512 12.289 18.410 20.713 17.826 18.569 11.798 15.584 14.941 17.301 23.010 25.760
FS-MLP 8.574 12.454 18.377 20.513 17.729 18.562 11.771 15.521 14.973 17.311 23.092 25.822
FS-RF 10.813 15.521 25.845 28.070 19.683 20.246 17.235 21.418 17.673 21.050 24.998 27.819
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BiLSTM 9.356 13.785 19.442 21.883 18.331 19.000 12.261 16.214 15.273 17.818 23.571 26.734
LSTM 9.248 13.720 19.764 22.273 18.620 19.334 12.417 16.566 15.490 17.975 23.918 26.767
RNN 9.059 13.422 20.528 22.964 18.502 19.197 12.529 16.689 15.402 17.844 24.476 27.380
MLP 9.168 13.625 19.979 22.937 19.105 20.107 12.666 16.718 15.420 17.955 24.639 27.404
RF 23.981 30.255 33.438 34.986 22.514 24.876 17.087 22.639 19.940 24.986 30.368 34.108

Note: Fiji has two seasons — Dry between May to October and Wet between November to April.
and suitability of the proposed model, which registered the greatest
percentage of |𝐹𝐸| of 53.4%, 62.7% and 55.8% in the first bin (0
≤ FE ≤ 0.25) for YQ, ND and BA, respectively. Thus, the forecasted
error distributions also demonstrate that the integration of 3-stage FS,
BO and BiLSTM model presents a distinct advantage for 10-minute U
forecasting.

Although a wide range of evaluation metrics and diagnostic plots
were used for model comparison, it is a strenuous task to rank a
large number of models reliably based on this. Hence, a more robust
global performance indicator (𝐺𝑃𝐼) was used for this purpose. Table 6
resents the 𝐺𝑃𝐼 and the ranks of models. The 3-phase models had
uperior performance (Rank 1 ≈ 96.7%) over the 2-phase (Rank 2 ≈

96.7%) and standalone models (Rank 3 ≈ 100%). Overall, the proposed
FS-BO-BiLSTM model had the greatest 𝐺𝑃𝐼 and the best predictive
performance as Rank 1/15 model for all six sites. This is because the
3-stage FS and BO were successful in selecting the best features and
hyperparameters, respectively that boosted the forecasting accuracy of
BiLSTM over all other models.

4.1. Application of the proposed framework

Based on the promising results obtained, the proposed framework is
useful in designing a robust energy security platform for a developing
54
nation like Fiji to help meet its NDC and RE targets. Fiji has an excel-
lent wind regime with high potential for wind power production [7].
However, strategic policy and motivation is required from investors to
promote wind energy, which is somewhat hindered due to the relatively
low energy output from the present 10 MW Butoni wind farm [9]. This
is evidenced from the data [5] that shows that wind has contributed to
only 0.12% to Fiji’s electricity mix in 2020, and this was due to only 28
out of 37 functional turbines and a tropical cyclone occurring during
the wet season.

The wet season is when wind energy is severely affected due to more
wind variations because of cyclonic events. To support this claim, the
𝑅𝑅𝑀𝑆𝐸 (%) results of seasonal forecasts presented in Table 7 reveals
higher 𝑅𝑅𝑀𝑆𝐸 for the wet season amongst all sites. This is because of
the highly stochastic variations in U during the wet season. Therefore,
the failure of Butoni in Fiji, while the same wind turbine model has
proven to be successful in Vanuatu and New Caledonia [9] indicating
that Fiji’s issue is more to do with site selection and inability to
address the intermittency issues. The site selection issue can be solved
by conducting a feasibility study before the implementation of wind
energy project(s). The complex intermittency issue can be overcome by
the proposed near real-time forecasting tool developed in this study.

In real applications, the proposed framework depicted as Fig. 9 can
be used, where one system is used to separately tune and train the

off-line proposed model and the other one is used to make on-line
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predictions. The on-line system can use the pre-trained FS-BO-BiLSTM
model to make real-time predictions using new input data. Simultane-
ously, the off-line system can update the proposed model by tuning and
training the model using additional new data. The pre-trained model
will be replaced with the updated model every once in a while, to
ensure that accurate and reliable predictions are being made.

This accurate forecasting tool can provide reliable predictions to
help the grid operators make carefully planned decisions. For instance,
it can inform in advance whether the future U will be below the cut-in
U or above the cut-out U of the turbine. This information will help
prevent the frequent start-up or shut-down of wind energy converting
turbines. Hence, this will reduce the wear and tear of the gearbox,
reduce the failure rate of the turbines and increase its operational
lifespan [95]. Moreover, the predictions from the proposed model can
also help prevent the sudden increase or decrease in the capacity factor
of the wind turbines due to variations in U. This can further enhance
the stability, reliability, and the security of the electric power systems
and avoid unwarranted power brownouts [96].

5. Conclusions

To endorse novel modelling and energy simulation technologies,
that ideally monitor wind energy extraction and furnish a secured
energy distribution platform, this study aimed to assess the robustness
of a 3-phase hybrid model (FS-BO-BiLSTM) to forecast 10-minute wind
speed (U) at six target sites in Fiji. This study appends merit to previous
studies that have used neighbouring reference station data as model
inputs, by using: additional meteorological variables, a 3-stage feature
selection (FS) strategy to encapsulate the best predictors, and Bayesian
optimization (BO) for efficient hyperparameter tuning of the BiLSTM
model. The findings explicitly outline the superior predictive perfor-
mance of the proposed model attaining the highest 𝑟 (0.917 – 0.981),
𝑊 𝐼 (0.957 – 0.991) and 𝐿𝑀 (0.643 – 0.850); and the lowest 𝑅𝑅𝑀𝑆𝐸
9.556 – 23.832%) and 𝑀𝐴𝑃𝐸 (8.750 – 21.480%) for all six sites.
he proposed model also registers the largest proportion of predicted
rrors (≈ 76.6 – 84.8%) in the smallest range ≤ |0.5|ms−1 amongst
ll tested sites. Extending the scope of the proposed hybrid approach,
he following work can validate the FS-BO-BiLSTM model in other
merging areas of interest, such as forecasting solar radiation, tidal
nd wave energy, energy demand, electricity price and etc. This study
ntroduces a useful near real-time forecasting tool for wind energy
roviders to make the energy generation and distribution decisions
ffectively, in terms of smart grids and economic integration of wind
nergy, and energy management systems in Fiji Islands and related
ountries.

However, the proposed model has a few limitations, and the efforts
o overcome these challenges can be considered as potential future
esearch directions. These are as follows:

i. The proposed model has implemented a single-step U forecasting
approach. This gives limited information regarding the future U.
Hence, the model needs to be tested at different time scales prior
to being implemented in energy management systems.

ii. The single-step outputs are expressed as point forecasts. In fu-
ture, interval and probabilistic forecasting approaches should
be considered. This is because these methods can provide an
estimate of the possible future range of U and the uncertainty
in the forecasts.

iii. Model hybridization via data decomposition strategies is not
tested. It is suggested that the performance of the proposed
model can be further improved via techniques like improved
complete ensemble empirical mode decomposition with adaptive
noise (ICEEMDAN), robust local mean decomposition (RLMD),
stationary wavelet transform (SWT) and etc.

iv. Better alternatives to the 3-stage FS adopted in this study can be
tested in future by integrating the proposed model with CNN and
55

autoencoder methods to facilitate effective feature extraction. p
Table A.1
List of acronyms.

Acronym Full name

AI Artificial Intelligence
ANN Artificial Neural Network
BiLSTM Bidirectional LSTM
BO Bayesian Optimization
Boruta-RF Boruta-Random Forest Hybridizer Algorithm
CCF Cross-Correlation Function
CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep Learning
DT Decision Tree
EFL Energy Fiji Limited
𝐸𝑁𝑆 Nash–Sutcliffe Efficiency
FS Feature Selection
𝐺𝑃𝐼 Global Performance Index
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
GS Grid Search
𝐾𝐺𝐸 Kling–Gupta Efficiency
𝐿𝑀 Legates–McCabe’s Index
LSTM Long Short-Term Memory
𝑀𝐴𝐸 Mean Absolute Error
𝑀𝐴𝑃𝐸 Mean Absolute Percentage Error
ML Machine Learning
MLP Multilayer Perceptron
NDC Nationally Determined Contribution
𝑁𝑀𝐴𝐸 Normalized 𝑀𝐴𝐸
𝑁𝑅𝑀𝑆𝐸 Normalized 𝑅𝑀𝑆𝐸
PACF Partial Auto-Correlation Function
PDF Probability Distribution Function
PM Persistence Model
PSIDS Pacific Small Island Developing States
𝑟 Pearson’s Correlation Coefficient
𝑅2 Coefficient of Determination
𝑟𝑐𝑟𝑜𝑠𝑠 Cross-Correlation Coefficient
RE Renewable Energy
ReLU Rectified Linear Unit
RF Random Forest
𝑅𝑀𝑆𝐸 Root Mean Square Error
RNN Recurrent Neural Network
RReliefF Regression Relief-F
𝑅𝑅𝑀𝑆𝐸 Relative 𝑅𝑀𝑆𝐸
RS Random Search
SDG Sustainable Development Goal
𝑈 Wind Speed
𝑈𝐹𝑂𝑅 Forecasted 𝑈
𝑈𝑂𝐵𝑆 Observed 𝑈
𝑊 𝐼 Willmott’s Index

v. The FS-BO-BiLSTM model designed in this study is a black-
box model. Hence, it does not explain the influence of climate
features on U forecasts. Due to which, the physical dynamics
between the climate indices used and the U is ignored. To
resolve this, the proposed model needs to be interpreted via the
eXplainable Artificial Intelligence (XAI) techniques in future to
understand the underlying mechanism of the proposed black-box
model.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
ancho Salcedo-Sanz reports financial support was provided by Uni-
ersidad de Alcalá. Sancho Salcedo Sanz reports financial support was
rovided by Spanish Ministry of Science and Innovation (MICINN).



Renewable Energy 204 (2023) 39–58L.P. Joseph et al.
Acknowledgements

The authors would like to acknowledge the Fiji Meteorological
Services (FMS) for providing data that facilitated this study. This
study was supported by USQ International PhD Stipend and Interna-
tional PhD Tuition Fee Scholarships awarded to the first author by
the University of Southern Queensland (USQ), managed by Graduate
Research School (GRS). This research was partially supported by project
PID2020-115454GB-C21 of Spanish Ministry of Science and Innovation
(MICINN), to continually build research synergies between Professors
Ravinesh Deo (USQ, Australia) and Sancho Salcedo-Sanz (UAH, Spain).
The authors also wish to thank the anonymous reviewers and the
Editor-in-Chief for the useful comments that improved the quality of
this paper.

Appendix A. Acronyms list

See Table A.1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.renene.2022.12.123.

References

[1] F. Bilgili, E. Koçak, Ü. Bulut, S. Kuşkaya, Can biomass energy be an efficient
policy tool for sustainable development? Renew. Sustain. Energy Rev. 71 (2017)
830–845, http://dx.doi.org/10.1016/j.rser.2016.12.109.

[2] H. Lucas, S. Fifita, I. Talab, C. Marschel, L. Cabeza, Critical challenges and
capacity building needs for renewable energy deployment in Pacific small Island
developing states (Pacific SIDS), Renew. Energy 107 (2017) 42–52, http://dx.
doi.org/10.1016/j.renene.2017.01.029.

[3] C. Streck, P. Keenlyside, M. von Unger, The Paris agreement: A new beginning,
J. Eur. Environ.Plan. Law 13 (2016) 3–29, http://dx.doi.org/10.1163/18760104-
01301002.

[4] Ministry of Economy of Fiji Islands, Fiji’s Updated Nationally Determined
Contribution, Tech. rep, Ministry of Economy, Suva, Republic of Fiji, 2020, pp.
1–20.

[5] EFL, 2020 Annual Report, Tech. rep, Energy Fiji Limited, Suva, Republic of Fiji,
2020, pp. 1–96.

[6] A.S.K. Dalabeeh, Techno-economic analysis of wind power generation for selected
locations in Jordan, Renew. Energy 101 (2017) 1369–1378, http://dx.doi.org/
10.1016/j.renene.2016.10.003.

[7] K. Sharma, M.R. Ahmed, Wind energy resource assessment for the Fiji Islands:
Kadavu Island and Suva Peninsula, Renew. Energy 89 (2016) 168–180, http:
//dx.doi.org/10.1016/j.renene.2015.12.014.

[8] E. Michalena, V. Kouloumpis, J.M. Hills, Challenges for Pacific small Island
developing states in achieving their nationally determined contributions (NDC),
Energy Policy 114 (2018) 508–518, http://dx.doi.org/10.1016/j.enpol.2017.12.
022.

[9] L. Joseph, R. Prasad, Viability of commercial on-shore wind farm sites in Viti
Levu, Fiji, in: A. Singh (Ed.), Translating the Paris Agreement Into Action in the
Pacific, Springer, Switzerland, 2020, pp. 151–176, http://dx.doi.org/10.1007/
978-3-030-30211-5_7.

[10] J. Chen, G.-Q. Zeng, W. Zhou, W. Du, K.-D. Lu, Wind speed forecasting using
nonlinear-learning ensemble of deep learning time series prediction and extremal
optimization, Energy Convers. Manage. 165 (2018) 681–695, http://dx.doi.org/
10.1016/j.enconman.2018.03.098.

[11] Y. Gao, S. Ma, T. Wang, T. Wang, Y. Gong, F. Peng, A. Tsunekawa, Assessing the
wind energy potential of China in considering its variability/intermittency, En-
ergy Convers. Manage. 226 (2020) 1–13, http://dx.doi.org/10.1016/j.enconman.
2020.113580.

[12] H. Bouzgou, N. Benoudjit, Multiple architecture system for wind speed
prediction, Appl. Energy 88 (7) (2011) 2463–2471.

[13] C. Wu, J. Wang, X. Chen, P. Du, W. Yang, A novel hybrid system based on multi-
objective optimization for wind speed forecasting, Renew. Energy 146 (2020)
149–165.

[14] F. Famoso, S. Brusca, D. D’Urso, A. Galvagno, F. Chiacchio, A novel hybrid
model for the estimation of energy conversion in a wind farm combining
wake effects and stochastic dependability, Appl. Energy 280 (2020) 1–16, http:
//dx.doi.org/10.1016/j.apenergy.2020.115967.
56
[15] S. Salcedo-Sanz, Á.M. Pérez-Bellido, E.G. Ortiz-García, A. Portilla-Figueras, L.
Prieto, F. Correoso, Accurate short-term wind speed prediction by exploiting
diversity in input data using banks of artificial neural networks, Neurocomputing
72 (4–6) (2009) 1336–1341, http://dx.doi.org/10.1016/j.neucom.2008.09.010.

[16] S. Salcedo-Sanz, Á.M. Pérez-Bellido, E.G. Ortiz-García, A. Portilla-Figueras, L.
Prieto, D. Paredes, Hybridizing the fifth generation mesoscale model with
artificial neural networks for short-term wind speed prediction, Renew. Energy
34 (6) (2009) 1451–1457.

[17] R. Prasad, L. Joseph, R.C. Deo, Modeling and forecasting renewable energy
resources for sustainable power generation: Basic concepts and predictive model
results, in: A. Singh (Ed.), Translating the Paris Agreement Into Action in the
Pacific, sixty eight ed., Springer, Switzerland, 2020, pp. 59–79, http://dx.doi.
org/10.1007/978-3-030-30211-5_3.

[18] S. Salcedo-Sanz, E.G. Ortiz-Garcı, Á.M. Pérez-Bellido, A. Portilla-Figueras, L.
Prieto, et al., Short term wind speed prediction based on evolutionary support
vector regression algorithms, Expert Syst. Appl. 38 (4) (2011) 4052–4057.

[19] Q. Han, F. Meng, T. Hu, F. Chu, Non-parametric hybrid models for wind speed
forecasting, Energy Convers. Manage. 148 (2017) 554–568, http://dx.doi.org/
10.1016/j.enconman.2017.06.021.

[20] A. Troncoso, S. Salcedo-Sanz, C. Casanova-Mateo, J. Riquelme, L. Prieto, Local
models-based regression trees for very short-term wind speed prediction, Renew.
Energy 81 (2015) 589–598.

[21] A. Kusiak, Z. Zhang, Short-horizon prediction of wind power: A data-driven
approach, IEEE Trans. Energy Convers. 25 (4) (2010) 1112–1122, http://dx.doi.
org/10.1109/TEC.2010.2043436.

[22] A.T. Sergio, T.B. Ludermir, Deep learning for wind speed forecasting in north-
eastern region of Brazil, in: 2015 Brazilian Conference on Intelligent Systems,
BRACIS, IEEE, Natal, Brazil, 2015, pp. 322–327, http://dx.doi.org/10.1109/
BRACIS.2015.40.

[23] Q. Cao, B.T. Ewing, M.A. Thompson, Forecasting wind speed with recurrent
neural networks, European J. Oper. Res. 221 (2012) 148–154, http://dx.doi.
org/10.1016/j.ejor.2012.02.042.

[24] A. Kumar, A.B.M.S. Ali, Prospects of wind energy production in the western
Fiji — An empirical study using machine learning forecasting algorithms, in:
2017 Australasian Universities Power Engineering Conference, AUPEC, IEEE,
Melbourne, VIC, Australia, 2018, pp. 1–5, http://dx.doi.org/10.1109/AUPEC.
2017.8282443.

[25] H. Acikgoz, U. Budak, D. Korkmaz, C. Yildiz, WSFNet: An efficient wind speed
forecasting model using channel attention-based densely connected convolutional
neural network, Energy 233 (2021) 1–16, http://dx.doi.org/10.1016/j.energy.
2021.121121.

[26] C. Li, G. Tang, X. Xue, A. Saeed, X. Hu, Short-term wind speed interval prediction
based on ensemble GRU model, in: IEEE Transactions on Sustainable Energy,
IEEE, 2020, pp. 1370–1380, http://dx.doi.org/10.1109/TSTE.2019.2926147.

[27] X. Liao, Z. Liu, W. Deng, Short-term wind speed multistep combined forecasting
model based on two-stage decomposition and LSTM, Wind Energy (2021) 1–22,
http://dx.doi.org/10.1002/we.2613.

[28] T. Liang, Q. Zhao, Q. Lv, H. Sun, A novel wind speed prediction strategy based
on Bi-LSTM, MOOFADA and transfer learning for centralized control centers,
Energy 230 (2021) 1–16, http://dx.doi.org/10.1016/j.energy.2021.120904.

[29] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng.
22 (10) (2010) 1345–1359, http://dx.doi.org/10.1109/TKDE.2009.191.

[30] J.J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. 79 (8) (1982) 2554–2558, http:
//dx.doi.org/10.1073/pnas.79.8.2554.

[31] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio, Learning phrase representations using RNN encoder-decoder for
statistical machine translation, 2014, pp. 1–15, ArXiv Preprint arXiv:arXiv:1406.
1078.

[32] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[33] Z. Ma, H. Chen, J. Wang, X. Yang, R. Yan, J. Jia, W. Xu, Application of hybrid
model based on double decomposition, error correction and deep learning in
short-term wind speed prediction, Energy Convers. Manage. 205 (2020) 1–17,
http://dx.doi.org/10.1016/j.enconman.2019.112345.

[34] A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional
LSTM and other neural network architectures, Neural Netw. 18 (5–6) (2005)
602–610, http://dx.doi.org/10.1016/j.neunet.2005.06.042.

[35] J. Xiang, Z. Qiu, Q. Hao, H. Cao, Multi-time scale wind speed prediction based
on WT-bi-LSTM, in: MATEC Web of Conferences, Vol. 309, 2020, pp. 1–12,
http://dx.doi.org/10.1051/matecconf/202030905011.

[36] M. Neshat, M.M. Nezhad, E. Abbasnejad, S. Mirjalili, L.B. Tjernberg, D.A.
Garcia, B. Alexander, M. Wagner, A deep learning-based evolutionary model for
short-term wind speed forecasting: A case study of the lillgrund offshore wind
farm, Energy Convers. Manage. 236 (2021) 1–25, http://dx.doi.org/10.1016/j.
enconman.2021.114002.

[37] K. Jaseena, B.C. Kovoor, Decomposition-based hybrid wind speed forecasting
model using deep bidirectional LSTM networks, Energy Convers. Manage. 234
(2021) 1–26, http://dx.doi.org/10.1016/j.enconman.2021.113944.

https://doi.org/10.1016/j.renene.2022.12.123
http://dx.doi.org/10.1016/j.rser.2016.12.109
http://dx.doi.org/10.1016/j.renene.2017.01.029
http://dx.doi.org/10.1016/j.renene.2017.01.029
http://dx.doi.org/10.1016/j.renene.2017.01.029
http://dx.doi.org/10.1163/18760104-01301002
http://dx.doi.org/10.1163/18760104-01301002
http://dx.doi.org/10.1163/18760104-01301002
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb4
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb4
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb4
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb4
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb4
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb5
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb5
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb5
http://dx.doi.org/10.1016/j.renene.2016.10.003
http://dx.doi.org/10.1016/j.renene.2016.10.003
http://dx.doi.org/10.1016/j.renene.2016.10.003
http://dx.doi.org/10.1016/j.renene.2015.12.014
http://dx.doi.org/10.1016/j.renene.2015.12.014
http://dx.doi.org/10.1016/j.renene.2015.12.014
http://dx.doi.org/10.1016/j.enpol.2017.12.022
http://dx.doi.org/10.1016/j.enpol.2017.12.022
http://dx.doi.org/10.1016/j.enpol.2017.12.022
http://dx.doi.org/10.1007/978-3-030-30211-5_7
http://dx.doi.org/10.1007/978-3-030-30211-5_7
http://dx.doi.org/10.1007/978-3-030-30211-5_7
http://dx.doi.org/10.1016/j.enconman.2018.03.098
http://dx.doi.org/10.1016/j.enconman.2018.03.098
http://dx.doi.org/10.1016/j.enconman.2018.03.098
http://dx.doi.org/10.1016/j.enconman.2020.113580
http://dx.doi.org/10.1016/j.enconman.2020.113580
http://dx.doi.org/10.1016/j.enconman.2020.113580
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb12
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb12
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb12
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb13
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb13
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb13
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb13
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb13
http://dx.doi.org/10.1016/j.apenergy.2020.115967
http://dx.doi.org/10.1016/j.apenergy.2020.115967
http://dx.doi.org/10.1016/j.apenergy.2020.115967
http://dx.doi.org/10.1016/j.neucom.2008.09.010
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb16
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb16
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb16
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb16
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb16
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb16
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb16
http://dx.doi.org/10.1007/978-3-030-30211-5_3
http://dx.doi.org/10.1007/978-3-030-30211-5_3
http://dx.doi.org/10.1007/978-3-030-30211-5_3
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb18
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb18
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb18
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb18
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb18
http://dx.doi.org/10.1016/j.enconman.2017.06.021
http://dx.doi.org/10.1016/j.enconman.2017.06.021
http://dx.doi.org/10.1016/j.enconman.2017.06.021
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb20
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb20
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb20
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb20
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb20
http://dx.doi.org/10.1109/TEC.2010.2043436
http://dx.doi.org/10.1109/TEC.2010.2043436
http://dx.doi.org/10.1109/TEC.2010.2043436
http://dx.doi.org/10.1109/BRACIS.2015.40
http://dx.doi.org/10.1109/BRACIS.2015.40
http://dx.doi.org/10.1109/BRACIS.2015.40
http://dx.doi.org/10.1016/j.ejor.2012.02.042
http://dx.doi.org/10.1016/j.ejor.2012.02.042
http://dx.doi.org/10.1016/j.ejor.2012.02.042
http://dx.doi.org/10.1109/AUPEC.2017.8282443
http://dx.doi.org/10.1109/AUPEC.2017.8282443
http://dx.doi.org/10.1109/AUPEC.2017.8282443
http://dx.doi.org/10.1016/j.energy.2021.121121
http://dx.doi.org/10.1016/j.energy.2021.121121
http://dx.doi.org/10.1016/j.energy.2021.121121
http://dx.doi.org/10.1109/TSTE.2019.2926147
http://dx.doi.org/10.1002/we.2613
http://dx.doi.org/10.1016/j.energy.2021.120904
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1073/pnas.79.8.2554
http://arxiv.org/abs/arXiv:1406.1078
http://arxiv.org/abs/arXiv:1406.1078
http://arxiv.org/abs/arXiv:1406.1078
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.enconman.2019.112345
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1051/matecconf/202030905011
http://dx.doi.org/10.1016/j.enconman.2021.114002
http://dx.doi.org/10.1016/j.enconman.2021.114002
http://dx.doi.org/10.1016/j.enconman.2021.114002
http://dx.doi.org/10.1016/j.enconman.2021.113944


Renewable Energy 204 (2023) 39–58L.P. Joseph et al.
[38] M.-A. Zöller, M.F. Huber, Benchmark and survey of automated machine learning
frameworks, J. Artificial Intelligence Res. 70 (2021) 409–472, http://dx.doi.org/
10.1613/jair.1.11854.

[39] L. Cornejo-Bueno, E.C. Garrido-Merchán, D. Hernández-Lobato, S. Salcedo-Sanz,
Bayesian optimization of a hybrid system for robust ocean wave features
prediction, Neurocomputing 275 (2018) 818–828.

[40] M.S. Alam, N. Sultana, S.Z. Hossain, Bayesian optimization algorithm based
support vector regression analysis for estimation of shear capacity of FRP
reinforced concrete members, Appl. Soft Comput. 105 (2021) 1–11, http://dx.
doi.org/10.1016/j.asoc.2021.107281.

[41] J. Močkus, On Bayesian methods for seeking the extremum, in: G.I. Marchuk
(Ed.), Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7,
1974, in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1975,
pp. 400–404, http://dx.doi.org/10.1007/3-540-07165-2_55.

[42] A. Verma, Z. Dai, B.K.H. Low, Bayesian optimization under stochastic delayed
feedback, in: International Conference on Machine Learning, PMLR, 2022, pp.
22145–22167.

[43] A.D. Bethke, Genetic Algorithms As Function Optimizers, University of Michigan,
1980.

[44] W. Zhang, C. Wu, H. Zhong, Y. Li, L. Wang, Prediction of undrained shear
strength using extreme gradient boosting and random forest based on Bayesian
optimization, Geosci. Front. 12 (2021) 469–477, http://dx.doi.org/10.1016/j.gsf.
2020.03.007.

[45] G.T. Ribeiro, J.G. Sauer, N. Fraccanabbia, V.C. Mariani, L.d.S. Coelho, Bayesian
optimized echo state network applied to short-term load forecasting, Energies 13
(9) (2020) 1–19, http://dx.doi.org/10.3390/en13092390.

[46] M.I. Sameen, B. Pradhan, S. Lee, Application of convolutional neural networks
featuring Bayesian optimization for landslide susceptibility assessment, CATENA
186 (2020) 1–13, http://dx.doi.org/10.1016/j.catena.2019.104249.

[47] M. Bilgili, B. Sahin, A. Yasar, Application of artificial neural networks for the
wind speed prediction of target station using reference stations data, Renew.
Energy 32 (14) (2007) 2350–2360, http://dx.doi.org/10.1016/j.renene.2006.12.
001.

[48] S. Velázquez, J.A. Carta, J. Matías, Comparison between ANNs and linear MCP
algorithms in the long-term estimation of the cost per kW h produced by a wind
turbine at a candidate site: A case study in the Canary Islands, Appl. Energy 88
(11) (2011) 3869–3881, http://dx.doi.org/10.1016/j.apenergy.2011.05.007.

[49] J.J. Currie, P.J. Goulet, A.W. Ratsimandresy, Wind conditions in a Fjordlike
bay and predictions of wind speed using neighboring stations employing neural
network models, J. Appl. Meteorol. Climatol. 53 (6) (2014) 1525–1537, http:
//dx.doi.org/10.1175/JAMC-D-12-0339.1.

[50] R.C. Deo, M.A. Ghorbani, S. Samadianfard, T. Maraseni, M. Bilgili, M. Biazar,
Multi-layer perceptron hybrid model integrated with the firefly optimizer algo-
rithm for windspeed prediction of target site using a limited set of neighboring
reference station data, Renew. Energy 116 (Part A) (2018) 309–323, http:
//dx.doi.org/10.1016/j.renene.2017.09.078.

[51] A.M. Ahmed, R.C. Deo, Q. Feng, A. Ghahramani, N. Raj, Z. Yin, L. Yang,
Deep learning hybrid model with Boruta-random forest optimiser algorithm for
streamflow forecasting with climate mode indices, rainfall, and periodicity, J.
Hydrol. 599 (2021) 1–23, http://dx.doi.org/10.1016/j.jhydrol.2021.126350.

[52] D. Bechrakis, P. Sparis, Correlation of wind speed between neighboring mea-
suring stations, IEEE Trans. Energy Convers. 19 (2) (2004) 400–406, http:
//dx.doi.org/10.1109/TEC.2004.827040.

[53] M.B. Kursa, A. Jankowski, W.R. Rudnicki, Boruta – A system for feature selection,
Fund. Inform. 101 (4) (2010) 271–285, http://dx.doi.org/10.3233/FI-2010-288.

[54] A.M. Ahmed, R.C. Deo, A. Ghahramani, N. Raj, Q. Feng, Z. Yin, L. Yang,
LSTM integrated with Boruta-random forest optimiser for soil moisture estimation
under RCP4.5 and RCP8.5 global warming scenarios, Stoch. Environ. Res. Risk
Assess. 35 (2021) 1851–1881, http://dx.doi.org/10.1007/s00477-021-01969-3.

[55] N. Raj, J. Brown, An EEMD-BiLSTM algorithm integrated with Boruta random
forest optimiser for significant wave height forecasting along coastal areas of
Queensland, Australia, Remote Sens. 13 (8) (2021) 1–20, http://dx.doi.org/10.
3390/rs13081456.

[56] R.J. Urbanowicz, R.S. Olson, P. Schmitt, M. Meeker, J.H. Moore, Benchmarking
relief-based feature selection methods for bioinformatics data mining, J. Biomed.
Inform. 85 (2018) 168–188, http://dx.doi.org/10.1016/j.jbi.2018.07.015.

[57] M. Robnik-Šikonja, I. Kononenko, Theoretical and empirical analysis of relieff
and RReliefF, Mach. Learn. 53 (2003) 23–69, http://dx.doi.org/10.1023/A:
1025667309714.

[58] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for
financial market predictions, European J. Oper. Res. 270 (2) (2018) 654–669,
http://dx.doi.org/10.1016/j.ejor.2017.11.054.

[59] Ö. Yildirim, A novel wavelet sequence based on deep bidirectional LSTM network
model for ECG signal classification, Comput. Biol. Med. 96 (2018) 189–202,
http://dx.doi.org/10.1016/j.compbiomed.2018.03.016.

[60] D.E. Rumelhart, J.L. McClelland, Learning internal representations by error prop-
agation, in: Parallel Distributed Processing: Explorations in the Microstructure of
Cognition: Foundations, MIT Press, 1987, pp. 318–362.

[61] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, http://dx.doi.org/10.
1023/A:1010933404324.
57
[62] F. Rosenblatt, The perceptron: A probabilistic model for information storage
and organization in the brain, Psychol. Rev. 65 (6) (1958) 386–408, http:
//dx.doi.org/10.1037/h0042519.

[63] M. Injadat, F. Salo, A.B. Nassif, A. Essex, A. Shami, Bayesian optimization
with machine learning algorithms towards anomaly detection, in: 2018 IEEE
Global Communications Conference, GLOBECOM, IEEE, Abu Dhabi, United Arab
Emirates, 2018, pp. 1–6, http://dx.doi.org/10.1109/GLOCOM.2018.8647714.

[64] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine
learning algorithms, in: F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.),
Advances in Neural Information Processing Systems, Twentyfifith ed., NeurIPS
Proceedings, 2012, pp. 1–9, URL https://proceedings.neurips.cc/paper/2012/
file/05311655a15b75fab86956663e1819cd-Paper.pdf.

[65] M. Seeger, Gaussian processes for machine learning, Int. J. Neural Syst. 14 (2)
(2004) 69–106, http://dx.doi.org/10.1142/S0129065704001899.

[66] F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for
general algorithm configuration, in: C.A.C. Coello (Ed.), Learning and Intelligent
Optimization, Six thousand six hundred eight-two ed., LION 2011, in: Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 507–523,
http://dx.doi.org/10.1007/978-3-642-25566-3_40.

[67] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter
optimization, in: J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, K.Q.
Weinberger (Eds.), Advances in Neural Information Processing Systems, Twenty
four ed., Curran Associates Inc., 2011, pp. 2546–2554, URL https://proceedings.
neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

[68] R. Elshawi, M. Maher, S. Sakr, Automated machine learning: State-of-the-art and
open challenges, 2019, pp. 1–23, ArXiv Preprint arXiv:1906.02287.

[69] I. Koprinska, M. Rana, V.G. Agelidis, Correlation and instance based feature
selection for electricity load forecasting, Knowl.-Based Syst. 82 (2015) 29–40,
http://dx.doi.org/10.1016/j.knosys.2015.02.017.

[70] M. Robnik-Sikonja, I. Kononenko, An adaptation of relief for attribute estima-
tion in regression, in: ICML ’97: Proceedings of the Fourteenth International
Conference on Machine Learning, 1997, pp. 296–304.

[71] M.A. Ferraciolli, F.F. Bocca, L.H.A. Rodrigues, Neglecting spatial autocorrelation
causes underestimation of the error of sugarcane yield models, Comput. Electron.
Agric. 161 (2019) 233–240, http://dx.doi.org/10.1016/j.compag.2018.09.003.

[72] A. Rafati, M. Joorabian, E. Mashhour, An efficient hour-ahead electrical load
forecasting method based on innovative features, Energy 201 (2020) 1–13,
http://dx.doi.org/10.1016/j.energy.2020.117511.

[73] M.B. Kursa, W.R. Rudnicki, Feature selection with the Boruta package, J. Stat.
Softw. 36 (11) (2010) 1–13, http://dx.doi.org/10.18637/jss.v036.i11.

[74] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, A. Zeileis, Conditional variable
importance for random forests, BMC Bioinformatics 9 (307) (2008) 1–11, http:
//dx.doi.org/10.1186/1471-2105-9-307.

[75] F. Chollet, et al., Keras, GitHub, 2015, http://github.com/fchollet/keras.
[76] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, et al., TensorFlow:

A system for large-scale machine learning, 2016, pp. 1–18, ArXiv Preprint
arXiv:1605.08695.

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et
al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011)
2825–2830, http://dx.doi.org/10.5555/1953048.2078195.

[78] J. Bergstra, D. Yamins, D. Cox, Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures, in: S.
Dasgupta, D. McAllester (Eds.), Proceedings of the 30th International Conference
on Machine Learning, Twenty eight ed., PMLR, Atlanta, Georgia, USA, 2013, pp.
115–123, URL https://proceedings.mlr.press/v28/bergstra13.html.

[79] R.C. Deo, X. Wen, X. Wen, F. Qi, A wavelet-coupled support vector machine
model for forecasting global incident solar radiation using limited meteoro-
logical dataset, Appl. Energy 168 (2016) 568–593, http://dx.doi.org/10.1016/
j.apenergy.2016.01.130.

[80] D.A. Dickey, W.A. Fuller, Distribution of the estimators for autoregressive time
series with a unit root, J. Amer. Statist. Assoc. 74 (366a) (1979) 427–431.

[81] R.F. Engle, C.W. Granger, Co-integration and error correction: Representation,
estimation, and testing, Econometrica (1987) 251–276.

[82] S.P. Kumar, D. Lopez, Feature selection used for wind speed forecasting with
data driven approaches, J. Eng. Sci. Technol. Rev. 8 (5) (2015) 124–127.

[83] S. Ghimire, R.C. Deo, N. Raj, J. Mi, Deep solar radiation forecasting with convo-
lutional neural network and long short-term memory network algorithms, Appl.
Energy 253 (2019) 1–20, http://dx.doi.org/10.1016/j.apenergy.2019.113541.

[84] T.T. Joy, S. Rana, S. Gupta, S. Venkatesh, Batch Bayesian optimization using
multi-scale search, Knowl.-Based Syst. 187 (2020) 1–11, http://dx.doi.org/10.
1016/j.knosys.2019.06.026.

[85] O. Behar, A. Khellaf, K. Mohammedi, Comparison of solar radiation models and
their validation under Algerian climate – the case of direct irradiance, Energy
Convers. Manage. 98 (2015) 236–251, http://dx.doi.org/10.1016/j.enconman.
2015.03.067.

[86] R. Prasad, R.C. Deo, Y. Li, T. Maraseni, Ensemble committee-based data
intelligent approach for generating soil moisture forecasts with multivariate
hydro-meteorological predictors, Soil Tillage Res. 181 (2018) 63–81, http://dx.
doi.org/10.1016/j.still.2018.03.021.

http://dx.doi.org/10.1613/jair.1.11854
http://dx.doi.org/10.1613/jair.1.11854
http://dx.doi.org/10.1613/jair.1.11854
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb39
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb39
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb39
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb39
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb39
http://dx.doi.org/10.1016/j.asoc.2021.107281
http://dx.doi.org/10.1016/j.asoc.2021.107281
http://dx.doi.org/10.1016/j.asoc.2021.107281
http://dx.doi.org/10.1007/3-540-07165-2_55
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb42
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb42
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb42
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb42
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb42
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb43
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb43
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb43
http://dx.doi.org/10.1016/j.gsf.2020.03.007
http://dx.doi.org/10.1016/j.gsf.2020.03.007
http://dx.doi.org/10.1016/j.gsf.2020.03.007
http://dx.doi.org/10.3390/en13092390
http://dx.doi.org/10.1016/j.catena.2019.104249
http://dx.doi.org/10.1016/j.renene.2006.12.001
http://dx.doi.org/10.1016/j.renene.2006.12.001
http://dx.doi.org/10.1016/j.renene.2006.12.001
http://dx.doi.org/10.1016/j.apenergy.2011.05.007
http://dx.doi.org/10.1175/JAMC-D-12-0339.1
http://dx.doi.org/10.1175/JAMC-D-12-0339.1
http://dx.doi.org/10.1175/JAMC-D-12-0339.1
http://dx.doi.org/10.1016/j.renene.2017.09.078
http://dx.doi.org/10.1016/j.renene.2017.09.078
http://dx.doi.org/10.1016/j.renene.2017.09.078
http://dx.doi.org/10.1016/j.jhydrol.2021.126350
http://dx.doi.org/10.1109/TEC.2004.827040
http://dx.doi.org/10.1109/TEC.2004.827040
http://dx.doi.org/10.1109/TEC.2004.827040
http://dx.doi.org/10.3233/FI-2010-288
http://dx.doi.org/10.1007/s00477-021-01969-3
http://dx.doi.org/10.3390/rs13081456
http://dx.doi.org/10.3390/rs13081456
http://dx.doi.org/10.3390/rs13081456
http://dx.doi.org/10.1016/j.jbi.2018.07.015
http://dx.doi.org/10.1023/A:1025667309714
http://dx.doi.org/10.1023/A:1025667309714
http://dx.doi.org/10.1023/A:1025667309714
http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.1016/j.compbiomed.2018.03.016
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb60
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb60
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb60
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb60
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb60
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1109/GLOCOM.2018.8647714
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
http://dx.doi.org/10.1142/S0129065704001899
http://dx.doi.org/10.1007/978-3-642-25566-3_40
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
http://arxiv.org/abs/1906.02287
http://dx.doi.org/10.1016/j.knosys.2015.02.017
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb70
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb70
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb70
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb70
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb70
http://dx.doi.org/10.1016/j.compag.2018.09.003
http://dx.doi.org/10.1016/j.energy.2020.117511
http://dx.doi.org/10.18637/jss.v036.i11
http://dx.doi.org/10.1186/1471-2105-9-307
http://dx.doi.org/10.1186/1471-2105-9-307
http://dx.doi.org/10.1186/1471-2105-9-307
http://github.com/fchollet/keras
http://arxiv.org/abs/1605.08695
http://dx.doi.org/10.5555/1953048.2078195
https://proceedings.mlr.press/v28/bergstra13.html
http://dx.doi.org/10.1016/j.apenergy.2016.01.130
http://dx.doi.org/10.1016/j.apenergy.2016.01.130
http://dx.doi.org/10.1016/j.apenergy.2016.01.130
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb80
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb80
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb80
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb81
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb81
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb81
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb82
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb82
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb82
http://dx.doi.org/10.1016/j.apenergy.2019.113541
http://dx.doi.org/10.1016/j.knosys.2019.06.026
http://dx.doi.org/10.1016/j.knosys.2019.06.026
http://dx.doi.org/10.1016/j.knosys.2019.06.026
http://dx.doi.org/10.1016/j.enconman.2015.03.067
http://dx.doi.org/10.1016/j.enconman.2015.03.067
http://dx.doi.org/10.1016/j.enconman.2015.03.067
http://dx.doi.org/10.1016/j.still.2018.03.021
http://dx.doi.org/10.1016/j.still.2018.03.021
http://dx.doi.org/10.1016/j.still.2018.03.021


Renewable Energy 204 (2023) 39–58L.P. Joseph et al.
[87] T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error
(MAE)?–arguments against avoiding RMSE in the literature, Geosci. Model Dev.
7 (3) (2014) 1247–1250.

[88] J. Hora, P. Campos, A review of performance criteria to validate simulation
models, Expert Syst. 32 (2015) 578–595, http://dx.doi.org/10.1111/exsy.12111.

[89] M.-F. Li, X.-P. Tang, W. Wu, H.-B. Liu, General models for estimating daily global
solar radiation for different solar radiation zones in mainland China, Energy
Convers. Manage. 70 (2013) 139–148, http://dx.doi.org/10.1016/j.enconman.
2013.03.004.

[90] A. Saeed, C. Li, M. Danish, S. Rubaiee, G. Tang, Z. Gan, A. Ahmed, Hybrid bidi-
rectional LSTM model for short-term wind speed interval prediction, IEEE Access
8 (2020) 182283–182294, http://dx.doi.org/10.1109/ACCESS.2020.3027977.

[91] J. Nash, J. Sutcliffe, River flow forecasting through conceptual models part I —
A discussion of principles, J. Hydrol. 10 (3) (1970) 282–290, http://dx.doi.org/
10.1016/0022-1694(70)90255-6.

[92] D.R. Legates, G.J. McCabe., Evaluating the use of ‘‘goodness-of-fit’’ measures in
hydrologic and hydroclimatic model validation, Water Resour. Res. 35 (1999)
233–241, http://dx.doi.org/10.1029/1998WR900018.
58
[93] C.J. Willmott, On the validation of models, Phys. Geogr. 2 (2) (1981) 184–194,
http://dx.doi.org/10.1080/02723646.1981.10642213.

[94] C.J. Willmott, On the evaluation of model performance in physical geography,
in: G.L. Gaile, C.J. Willmott (Eds.), Spatial Statistics and Models, forty ed.,
Springer, Dordrecht, 1984, pp. 443–460, http://dx.doi.org/10.1007/978-94-017-
3048-8_23.

[95] U. Bhardwaj, A. Teixeira, C.G. Soares, Reliability prediction of an offshore
wind turbine gearbox, Renew. Energy 141 (2019) 693–706, http://dx.doi.org/
10.1016/j.renene.2019.03.136.

[96] A.M. Foley, P.G. Leahy, A. Marvuglia, E.J. McKeogh, Current methods and
advances in forecasting of wind power generation, Renew. Energy 37 (2012)
1–8, http://dx.doi.org/10.1016/j.renene.2011.05.033.

http://refhub.elsevier.com/S0960-1481(22)01916-4/sb87
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb87
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb87
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb87
http://refhub.elsevier.com/S0960-1481(22)01916-4/sb87
http://dx.doi.org/10.1111/exsy.12111
http://dx.doi.org/10.1016/j.enconman.2013.03.004
http://dx.doi.org/10.1016/j.enconman.2013.03.004
http://dx.doi.org/10.1016/j.enconman.2013.03.004
http://dx.doi.org/10.1109/ACCESS.2020.3027977
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1029/1998WR900018
http://dx.doi.org/10.1080/02723646.1981.10642213
http://dx.doi.org/10.1007/978-94-017-3048-8_23
http://dx.doi.org/10.1007/978-94-017-3048-8_23
http://dx.doi.org/10.1007/978-94-017-3048-8_23
http://dx.doi.org/10.1016/j.renene.2019.03.136
http://dx.doi.org/10.1016/j.renene.2019.03.136
http://dx.doi.org/10.1016/j.renene.2019.03.136
http://dx.doi.org/10.1016/j.renene.2011.05.033

	Near real-time wind speed forecast model with bidirectional LSTM networks
	Introduction
	Theoretical background
	BiLSTM Network
	Bayesian optimization
	Hybrid 3-stage feature selection approach
	Stage 1: Correlated lagged input selection
	Stage 2: Regression Relief-F (RReliefF)
	Stage 3: Boruta-Random Forest (Boruta-RF)


	Materials and method
	Study area and meteorological data
	Design of the proposed U predictive model
	Model performance criteria
	Global performance indicator (GPI)


	Results and discussion
	Application of the proposed framework

	Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A. Acronyms list
	Appendix B. Supplementary data
	References


