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Abstract: When dealing with high-dimensional data, such as in biometric, e-commerce, or industrial
applications, it is extremely hard to capture the abnormalities in full space due to the curse of
dimensionality. Furthermore, it is becoming increasingly complicated but essential to provide
interpretations for outlier detection results in high-dimensional space as a consequence of the large
number of features. To alleviate these issues, we propose a new model based on a Variational
AutoEncoder and Genetic Algorithm (VAEGA) for detecting outliers in subspaces of high-dimensional
data. The proposed model employs a neural network to create a probabilistic dimensionality reduction
variational autoencoder (VAE) that applies its low-dimensional hidden space to characterize the
high-dimensional inputs. Then, the hidden vector is sampled randomly from the hidden space
to reconstruct the data so that it closely matches the input data. The reconstruction error is then
computed to determine an outlier score, and samples exceeding the threshold are tentatively identified
as outliers. In the second step, a genetic algorithm (GA) is used as a basis for examining and analyzing
the abnormal subspace of the outlier set obtained by the VAE layer. After encoding the outlier dataset’s
subspaces, the degree of anomaly for the detected subspaces is calculated using the redefined fitness
function. Finally, the abnormal subspace is calculated for the detected point by selecting the subspace
with the highest degree of anomaly. The clustering of abnormal subspaces helps filter outliers that
are mislabeled (false positives), and the VAE layer adjusts the network weights based on the false
positives. When compared to other methods using five public datasets, the VAEGA outlier detection
model results are highly interpretable and outperform or have competitive performance compared to
current contemporary methods.

Keywords: outlier detection; variational autoencoder; genetic algorithm; abnormal subspace

1. Introduction

Hawkins defined the notion of an outlier as an observation that diverges greatly from
the other observations so as to trigger suspicions that it was generated by a separate mech-
anism [1]. Detecting outliers is the process of determining whether the data have input
errors and detecting unusual patterns that are substantially different from the bulk of the
data. The detection of outliers is a critical step in data analysis that needs to be prioritized
with meticulous attention as data containing outliers can negatively influence the accuracy
of a model [2], increase the likelihood of false positives [3], lead to wrong decisions [4],
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and make the model computationally costly [5]. Thus, it is imperative to pay close con-
sideration to the outliers in the data and analyze their causes to provide opportunities
to discover problems and strengthen the decision-making [6]. Outlier detection has been
extensively used in a multitude of fields, such as fraud detection [7], network intrusion
detection [8], medical diagnosis [9], video surveillance [10], and fault diagnosis [11] etc.

As high-dimensional data continues to grow exponentially, it enables data sharing and
provides a solid basis for analysis and prediction. Nonetheless, it poses great challenges to
the processing and detection of outlier detection methods. One of the most notable problems
is the curse of dimensionality [12]. The large number of dimensions for high-dimensional
data makes the concepts of distance and proximity calculations in high-dimensional space
unreliable. Therefore, they are unsuitable to be used as an effective indicator for abnormality
measurement. The sparsity between the dimensions makes almost every point depict an
anomalous characteristic. In addition, it is exceedingly expensive to search through the full
space of high-dimensional data to obtain abnormal subspace features. Furthermore, some
existing outlier detection methods are prone to a high false positive rate. That is, the major
portion of the detected outliers are not actually anomalies in the actual application domains.
Finally, it is becoming increasingly complicated but essential to provide interpretations for
outlier detection results in high-dimensional space as a consequence of the large number
of features.

In order to improve the interpretation of high-dimensional outliers and alleviate the
challenges related to high-dimensional data, we propose an unsupervised outlier detection
method for high-dimensional datasets based on variational autoencoders and genetic
algorithms (VAEGA). The model is divided into two parts. In the first part, we build a
variational encoder and decoder layer with a neural network. This is attained by feeding
normal unlabeled data as input for training and iteratively learning the best encoding–
decoding strategy to effectively represent the high-dimensional data distribution. Using the
probability distribution of the VAE’s hidden space, hidden vectors are randomly sampled
to reconstruct the data. Next, the reconstruction error of the data is calculated, and outliers
are identified among the test samples whose values transcend the model’s threshold value.
Even though the variational encoder and decoder layers are capable of effectively detecting
the outliers, despite the curse of dimensionality, the results are prone to false positives and
lack of desired interpretability.

In order to address and propose a solution to such a defect, we apply a genetic
algorithm (GA) in the second part of our model. We train the genetic algorithm (GA) layer,
and it searches for the abnormal subspace of the outliers that we observed in the first part.
Each subspace has a fitness function that measures the degree of abnormality of each outlier
detected in that subspace. The abnormal subspace of the training dataset is utilized to
effectively filter false positives. The top abnormal subspace also provides insightful and
explanatory interpretations for the context where the outliers are detected.

Specifically, in this paper, the main contributions are extensions of our conference
work [13], and they are summarized as follows:

1. We propose a model based on variational autoencoders and genetic algorithms
(VAEGA) that is designed to effectively identify high-dimensional outliers and to
provide accurate interpretations of the subspaces where these outliers are located.

2. We utilize a VAE to effectively compress the high-dimensional data into a hidden
space. After that, the hidden vectors are decoded based on the probability distribution
of the hidden space, and the reconstruction errors are calculated. We integrate the low-
dimensional hidden space distribution and the reconstruction errors as anomalous
scores to promptly detect the outliers in the high-dimensional data.

3. We apply the GA layer using an improved subspace search heuristic algorithm in the
model to search for the abnormal subspaces of high-dimensional outliers. In addition,
providing an intuitive and informative interpretation, we utilized the abnormal sub-
spaces to provide insight into the context within which the outliers are found, which
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can shed light on the reasons for the anomaly, as they represent the features under
which the outliers are identified.

4. We also give an intuitive and informative interpretation through the abnormal sub-
spaces, allowing us to give insight into the context within which outliers are located.
This gives insight into the reasons for the anomaly, as these are the characteristics
under which outliers are identified.

5. We validate the effectiveness of the proposed method using five datasets. Experi-
mental results indicate that the proposed model is highly effective and accurate in
detecting anomalous subspace outliers.

The remainder of this paper is structured as follows. In Section 2, we quickly review
the related work. In Section 3, we present, in detail, a novel high-dimensional outlier
detection model, VAEGA, that is based on a variational autoencoder and genetic algorithm.
Sections 4 and 5 evaluate the performance of the proposed model through comprehensive
experiments and discuss the results. In Section 6, we conclude this paper and highlight
some possible future work directions.

2. Related Work

Full-spatial outlier detection techniques based on statistics, clustering and classifica-
tion have been extensively studied recently with implementation in algorithms such as
Gaussian mixture model (GMM) [14], k-nearest neighbor (KNN) [15], local outlier factor
algorithms (LOF) [16], cluster-based intelligence ensemble learning (CIEL) [17], one-class
support vector machine (OC-SVM) [18] etc. In theory, conventional full-spatial outlier
analysis can provide a suitable method for dealing with high-dimensional data. However,
when considered in practice, with increasing dataset and dimension, the complexity in
computation and time increases exponentially, which drastically decreases performance.

Another set of algorithms available for high-dimensional data outlier detection is
mostly concerned with methods of overcoming the limitations that exist in high-dimensional
datasets. These outlier detection methods focus on subspace selection, data dimensionality
reduction, and reconstruction. The methods can be categorized into two types: feature
selection-based and feature transformation-based [19]. The feature selection method, also
referred to as subspace outlier detection [20], is based on detecting outliers in a certain fea-
ture subset. The integrated strategy HiCS method in [21] identifies outliers by finding the
high-contrast subspace projection of data and summarizing the outliers in each subspace.
It involves the selection of subspaces along with calculating the outlier degree. This poses
a computational challenge with exponential growth in the number of subspaces and, as a
result, has a severe limitation in practical applications.

The approach based on feature transformation, also referred to as dimensionality
reduction, is typically employed to alleviate the issues related to the curse of dimensionality.
Two approaches are used to tackle this issue. The first approach is to map the high-
dimensional data to a lower dimension and then apply a conventional full-space outlier
detection method to identify outliers. The second approach is to provide an effective way
to reconstruct outliers from low-dimensional projections and to provide a way to capture
the normal patterns. This allows for the separation of outliers and inliers by using the
feature space of different dimensions effectively. Several outlier detection methods have
been proposed utilizing this idea. A multivariate scheme for network anomaly detection
based on principal component analysis (PCA) was proposed by Camacho [22]. PCA has
a high time and calculation cost in calculating the covariant matrix and so can be limited
to a linear transformation. Steinwart et al. [23] used a support vector machine (SVM) to
learn to distinguish the boundary between a high-density distribution and a low-density
distribution and used the low-density distribution area data as outliers because of the
difficulty in obtaining labeled outlier samples. Khan and Tax, respectively, proposed
methods based on one-class support vector machine (OC-SVM) [18] and support vector
data description (SVDD) [24], making full use of normal data labeled for outlier detection.
Some major challenges in this approach are finding parameter values to measure the
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size of the normal data area boundary in the feature space and to reduce the intensive
computational cost associated with the kernel function calculation.

A method that does not use linear combination was proposed by Sakurada et al. [25],
in which an autoencoder (AE) derived from nonlinear dimensionality reduction is used
to detect outliers. As can be seen in Figure 1, the effects of AE and PCA show similar
results, with AE showing better performance with nonlinear activation function. Therefore,
in 2014, a method using a variation autoencoder was proposed by Kingma and Welling [26].
Here, a variational inference is used to provide restrictions during the encoding stage to
ensure that the generated vector follows a standard normal distribution. VAE is easier to
generalize than AE [27]. An and Cho [28] proposed methods based on variational encoders
used for high-dimensional data outlier detection. Here, a hidden space probability and a
reconstruction error probability are combined to produce an outlier score, and a binary
clustering method is used to separate potential normal instances from outliers. VAE has
been used in a wide range of applications to deal with outlier detection problems, and [29]
is one example in which detecting high-dimensional false news information was tackled
with the use of the latent space of a variational autoencoder. Another application involved
using a different recurrent neural network and variational autoencoder network (RNN-
VAE) architecture [30] to identify outliers in time series data. VAE has also been widely
adopted for intrusion detection and internet monitoring [31]. Image and video outlier
detection problems [32] can also employ VAE successfully in their applications.

 

— AE 

— PCA 

Figure 1. A comparison of linear and nonlinear dimension reduction.

In practical applications, to realize a better interpretation of the detected outliers, it
is vital to identify and obtain abnormal information about the outliers. The autoencoder
deep neural network (ADNN) model [33] is based on the multi-objective autoencoder
to extract the information features of high-order data for fault detection. Their ADNN-
based, multi-objective autoencoder model extracts the information features of high-order
data for fault detection. Another model in [33] utilizes k-nearest neighbors to capture
anomalous locations for each row of output scores and utilizes abnormal scores to assess
the intensity of the damage. However, capturing abnormal regions using full space traversal
is exceedingly expensive, and an efficient method is required. Thus, genetic algorithms,
a popular heuristic approach, have been employed to efficiently search for abnormal
subspaces for each detected outlier by simulating biological or natural principles [34–37].
Hu et al. [38] proposed a genetic algorithm-based technique to identify outliers embedded
in the subspace and use the bit freezing method to accelerate convergence. The GA-
OCSTuM model proposed in [39] is used for intelligent outlier detection in the Internet of
Things, in which GA is used to optimize the selection of parameters during the training
of the outlier detection model. Khan et al. [40] propose an incremental outlier detection
method and use a genetic algorithm to optimize the training parameters in order to improve
DAE classification accuracy. A genetic algorithm is used in these methods to optimize and
improve the outlier detection model. However, it does not significantly improve outlier
detection and interpretation.
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While most of these methods have their advantages and can detect outliers, our
approach provides an alternative solution to address some of the shortcomings stated in the
existing methods in order to detect outliers not only effectively but with good interpretation.
For instance, with an increasing dataset and dimension, some of the methods decrease
in performance. Furthermore, exponential growth in the number of subspaces results
in severe limitations in practical applications. The technique that adopts GA to tackle
outlier detection and interpretation could not significantly show better interpretation when
compared to our method. In this paper, we have combined VAE and GA to collectively
leverage their advantages in detecting outliers effectively and offer good interpretations of
the outlier detection results through abnormal subspace detection.

3. Proposed Method

In this section, we first introduce the variational autoencoder and genetic algorithm
and then describe the proposed VAEGA model.

3.1. Variational Autoencoder

In neural networks, VAEs are feedforward acyclic neural networks. They are an
unsupervised machine learning method. They can effectively extract very good data
features and reduce the dimension of high-dimensional data. As opposed to AE, VAE’s
latent space consists of a probability distribution of approximate data, while AE’s consists
of a specific encoding of the input data. Figure 2 shows a sample of a prior distribution in
Euclidean space of VAE latent vectors.
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Figure 2. Data density distribution in hidden space for normal and abnormal data.

VAE’s structure resembles classic autoencoders with encoders, decoders, and latent
spaces. The network structure of VAE is shown in Figure 3.
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Figure 3. The VAE structure.
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From Figure 3, pθ(z|x) is the inferred network model known as the encoder. The origi-
nal input data X = {x1, x2, ..., xn} is mapped from the current space Rn to the hidden space
Rh to obtain the variational probability distribution of the hidden layer z. As input x and
hidden space Z are connected, the inferred model learns the joint probability distribution
between them. qφ(x|z) is the generative network model, that is, the decoder. It performs
sampling from the probability distribution qφ(z|x) of the hidden layer Z, and after sampling
the hidden vector, z is decoded to produce an approximation of the target distribution X̃.

We applied the Bayesian formula as in Equation (1) to compute the probability distri-
bution pθ(z|x) of the hidden variable Z given the data X.

p(z|x) = p(x|z)p(z)
p(x)

(1)

We applied variational inference to approximate an unresolvable conditional probabil-
ity distribution qφ(z|x) with a solvable distribution pθ(z|x) since the input data distribution
p(x) is not computed as the dimensionality increases. We fitted the probability distributions
pθ(z|x) and qφ(z|x), applying KL divergence to determine the disparity between them and
to minimize the difference as best as possible. As shown in Equation (2),

KL
(
qφ(z|x)||pθ(z|x)

)
= logp(x) + E

[
logqφ(z|x)

]
− E[logpθ(z|x)]

= logp(x) + E
[
logqφ(z|x)

]
− E[logpθ(z, x)] (2)

The model parameters are trained by minimizing the difference between the two
probability distributions. A smaller difference shows better parameters are obtained from
training the VAE. Since X is certain, the first term in the equation logp(x) is a fixed value, so
the training objective becomes to minimize the last two items E

[
logqφ(z|x)

]
− E[logpθ(z, x)]

of the equation, which is denoted as L. Then −L represents the lower bound of evidence
p(x). Here, minimizing L gives the maximized lower bound of evidence (ELBO), as shown
in Equation (3):

Max[−L(θ, φ)] = Ez∼qφ(z|x)[logpθ(x|z)]− KL
(
qφ(z|x)||p(z)

)
(3)

The first term of the equation is: Ez∼qφ(z|x)[logpθ(x|z)], which indicates the continuous
random samples of the probability distribution of the hidden space z. The second term
reveals that the latent vector z is continuously sampled to ascertain that the probability of
reconstructing the sample x is maximized, so that the post-validation distribution pθ(z|x)
and the prior distribution of qφ(z|x) are as close as possible. In order to construct the loss
function of the model from this, we first consider the similarity between the input and
the output and then make use of reconstruction loss to measure the difference between
them. Secondly, due to the peculiarity of its coding layer, the variational autoencoder uses
the latent loss to measure the “fitness” between the true probability distribution and the
standard normal distribution. Consequently, the loss function of VAE ultimately consists of
two items, as shown in Equation (4):

Loss = ReconstructionLoss + LatentLoss

Loss(θ, φ) = −Ez∼qφ(z|x)[logpθ(x|z)] + KL
(
qφ(z|x)||p(z)

)
(4)

3.2. Genetic Algorithm

Genetic algorithm is considered a sort of heuristic randomized search technique
that has natural selection and strong global optimization capabilities. Generally, it is
carried out over multiple generations, where individuals evolve in a population until it is
eventually capable of obtaining the optimal solution based on the fitness function. Figure 4
demonstrates the architectural diagram of the genetic algorithm, which comprises the
following operations:
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i. Chromosome coding. The chromosome describes the subspace feature string of the
outliers to be tested. We use the standard binary individual coding rules to code
the subspace of the solved outliers. Each bit in the individual will take the binary
numbers {0,1}, indicating whether its corresponding feature component is selected.

ii. Fitness function. The genetic algorithm will perform N iterations during its operation,
and each iteration will generate several chromosomes. Each chromosome gener-
ated in this iteration will receive a fitness score based on the fitness function. Then,
only the chromosomes with high fitness are saved, and those with lower fitness are
deleted. After the iterations, the chromosome quality will improve over time as the
iterations continue.

iii. Genetic operator. The use of genetic operators gives genetic algorithms the ability to
evolve, including selection, crossover, and mutation operations. Individuals of the
new generation are mostly produced by selection and mutation, while mutation is
used to alter some gene positions in order to maintain diversity in the population and
prevent premature convergence.

iv. Evolution Termination. If the population converges, that is, no offspring with huge
differences from the previous generations are generated, or the number of iterations
reaches the upper limit specified, the evolution of the genetic algorithm will be
terminated, and a set of solutions to the current problem will be obtained.

Initialize Population M Randomly

Calculate the Fitness Function of all 

individuals in the Current Population

Generate a New Generation

001001��101

     ��

101100��001

100010��111

Have the Conditions for 

Termination been Met? 

Output Abnormal subspace of 

The Outlier

 

  

  

Yes

No

Select according to

 

Roulette Algorithm

  

Crossover

 

According to

 

Pc

  

Mutation

 

According to

 

Pm

 

Figure 4. Genetic algorithm process.

3.3. The Proposed VAEGA Model

This section presents our proposed VAEGA model in detail. The model is applied to
reduce the dimensionality challenges encountered by outlier detection in high-dimensional
data. While focusing on improving the effectiveness of the outlier detection model from
the perspective of data subspace, the heuristic optimization algorithm is used to obtain the
abnormal subspace of outliers to solve the problem that high-dimensional outlier detection
models generally lack interpretability.

The VAEGA model is defined as a model that combines a variational autoencoder
and a genetic algorithm for the purpose of detecting outliers in high-dimensional data and
searching for abnormal subspaces. Figure 5 shows the framework of the model.
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Figure 5. VAEGA model framework.

The VAEGA model is divided into two modules. The first part is the VAE model,
which executes the process of quickly filtering out the outliers. In the training phase,
the VAE module uses a neural network to build a variational encoder pθ(z|x) and decoder
qφ(x|z). The unlabeled data are used as input for iterative optimization to learn the best
encoding and decoding scheme and obtain the mean µ, and standard deviation σ, of the
input data x. This step effectively represents the distribution of high-dimensional input data
and ameliorates the representation of the high-dimensional data. For real-valued sample
data, assuming that the distribution function is a multi-dimensional Gaussian distribution,
its indicators are shown in Equations (5)–(7) as follows:

p(z) = N(0, I) (5)

qφ(z|x) = N(µe, σ2
e ) (6)

pθ(x|z) = N(µd, σ2
d ) (7)

To optimize the weight parameters, we fit the data’s true probability distribution
with a standard normal distribution. Through the use of stochastic gradient descent and
backpropagation, the loss function of the model converged to a stable minimum value.
The loss function of the VAE neural network is shown in Equation (8), and Equation (9)
shows the KL divergence used to measure the two probability distributions.

L(θ, φ) = −‖x− µd‖2 + KL(N(µe, σe)||N(0, I)) (8)

KL(N(X)||ε) = 1
2

(
tr
[
σ2

e + µT
e µe − Rd − log

∣∣∣σ2
e

∣∣∣]) (9)

where a random variable X is normally distributed with a mean µe and standard deviation
σe , ε = N(0, I), tr is the trace of the matrix, and Rd is the input data dimension. In Equa-
tion (8), the first item depicts the space between the reconstructed data and the input
data. As a “reconstruction item” it tends to produce high performance in the encoding
and decoding schemes. Regarding the second item, the KL divergence can be viewed as a
penalty that regulates the hidden space.
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It is important that we sample the latent vector z from qφ(z|x), which obeys the
Gaussian distribution z ∼ qφ(z|x) = N(µ, σ2). The mean µ and variance σ of z can be
computed by the model, and the neural network relies on this sampling process to reverse
optimize the variational autoencoder model. In this case, backpropagation for the model is
impossible because sampling is not derivable. We then take into account that the results of
sampling are derivable, which can be overcome by employing the reparameterization trick.
The random variable z is sampled from the standard normal distribution N(0, 1) instead of
the original distribution, and then the random variable qφ(z|x) undergoes the following
transformation, as shown in Equation (10).

z = hφ(ε, x) (10)

From ε to z involves linear operations, which are derivable. The distribution of ε is
deterministic and does not need to be learned. The sampled value of ε participates in the
gradient descent, while the operation of sampling ε does not.

Using the trained VAE network model, we input the test data. The feature information
of the normal data can be represented by latent vectors in latent space and reconstructed
with minimal loss. However, outliers are difficult to represent in the latent space, resulting
in huge errors between the reconstructed data and the original input data. Therefore, we
can combine the reconstruction probability error and latent space information as a measure
of the outlier degree of the data, denoted as RPi, as shown in Equation (11).

RPi =
1
M

M

∑
m=1

N(xi|µd[i, m], σd[i, m]) (11)

For comparability, we normalize the anomaly score RPi of each point to the range [0,1]
and re-denote it as RP_scorei, as shown in Equation (12). As the anomaly score approaches
1, the abnormality of the data increases, making it more likely that it is an outlier. On the
contrary, it indicates that the characteristics of the data are more normal.

RP_scorei =
RPi −minRPi

MaxRPi −minRPi
(12)

It is then compared to a threshold ε, where ε is a metric used to control the model’s
sensitivity to outliers. If the abnormal score RP_scorei of the candidate data is less than the
threshold ε, it means that the candidate data has a high degree of similarity with the normal
sample and is marked as a normal value. If the abnormal score RP_scorei of the candidate
data is greater than or equal to the threshold ε, it means that the difference between the
current data to be tested and the normal sample is large. This is then recorded as an outlier.

The second part of the model is the GA module, which takes as input the high-
dimensional abnormal data obtained by the previous module and trains the genetic al-
gorithm to search the abnormal subspace of high-dimensional outliers. The abnormal
subspace of the outliers can provide the basis for the analysis of abnormal causes. Figure 4
shows the flow of its search algorithm.

By analyzing the subspace of the outliers, we found that there are only two states of
the subspace feature components, so the binary encoding rules were chosen to establish
the mapping relationship between data subspaces and encoding strings. The problem of
solving the abnormal subspace of data is transformed into the problem of searching for the
optimal individual through genetic algorithm. Firstly, NGen individuals containing Ndim
genes are randomly generated to form an initial population representing feasible solutions
of the abnormal subspace, where NGen is the population size and Ndim is the dimension
of the full data space. Each chromosome consists of {0,1}, where 1 means that the feature
component was selected. The initial population generation is shown in Figure 6.
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Figure 6. Initial population of NGen individuals.

To determine the fitness function for the target problem, the second part analyzes the
target problem. We redefine the metric to be the fitness function of the genetic algorithm
since our goal is to obtain the anomalies of the current candidate subspace to determine
whether it has been eliminated.

Definition 1. Subspace Outlying Degree, SOD. In this work, Dk (the distance between the point to
be measured and the k-th nearest neighbor) is used as an outlier metric, which is called the subspace
outlying degree. Since there is likely to be a high numerical outlier distance within a subspace, it is
difficult to compare outliers between different subspaces. Therefore, to improve the comparability of
the abnormal subspace SOD, the subspace abnormality SOD is defined as the ratio of Dk

s (p) at a
given point p to the average(avg) Dk

s (Data) in the data set denoted as Data in the same subspace s,
as shown below:

SOD(s.p) =
Dk

s (p)
avg
(

Dk
s (Data)

) . (13)

The higher the ratio, the higher the Dk for the point sample p compared to other points,
so the higher the outlier value of p, and vice versa. Our definition of SOD derives from the
definition of the outlier subspace. Given the input data set denoted as Data, the parameter
denoted as n is the dimension of the data set, and k is the number of adjacent data points.
If there is no subspace s’, such that SOD(s’, p) > SOD(s, p), then the abnormal subspace of a
given data point p is s.

The fitness function SOD is calculated for all individuals in the current population
and sorted by size. Determine whether the chromosome corresponding to SODtop in the
current generation population satisfies the stopping condition. If so, decode the chro-
mosome to obtain the abnormal subspace of candidate outliers. Otherwise, the VAEGA
model will utilize genetic operators to generate a new generation of subspace populations.
The specific steps are as follows. We calculate the fitness function SOD of each chromosome
and then use the current ratio of each individual’s SODi value to the sum SODsum as the
individual’s selection probability Pvi , as shown in Equation (14).

Pvi =
SODi

SODsum
(14)

The larger the value, the higher the abnormal degree of the candidate outlier in the
current subspace, and the higher the probability of the individual being selected to be
inherited by the next generation.

The selection of individuals is a random process, which means individuals with high
SOD values may be lost in the selection process. Hence, we add a mechanism for optimal
retention selection, which directs the top N outstanding individuals with SOD values in
the previous generation into the new generation population.

Then we use the non-replacement remainder rule to select population N chromosomes
to inherit into the next generation population. In the new generation population, our work
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randomly selects an even number of parent chromosomes without repetition and performs
a uniform crossover operation according to the crossover probability Pc. The resulting
child chromosomes will be put into a new generation of populations. The binary uniform
crossover operation is shown in Figure 7.

Gene on parent chromosome 1: 

1 0 0 1 1 1 0 1 1 0 

Gene on parent chromosome 2: 

1 1 1 0 0 1 0 1 0 1 

 
Figure 7. Chromosomes before uniform crossover.

It is assumed that the random probability of genes at positions 2, 3, 5, 8, and 9 is
greater than the crossover probability Pc. Then, the genes at positions 2, 3, 5, 8, and 9 are
exchanged to form two new child chromosomes in Figure 8.

Gene on child chromosome 1: 

1 1 1 1 0 1 0 1 0 0 

Gene on child chromosome 2: 

1 0 0 0 1 1 0 1 1 1 

 
Figure 8. Chromosomes after uniform crossover.

To generate distinct evolutionary directions for populations, some children chromo-
somes are picked at random for single point mutations based on mutation probability Pm.
The new generated population continues to repeat the above process until the algorithm
converges or the stopping condition is satisfied.

By doing so, an optimal abnormal subspace solution that meets the search objective
is obtained.

The most challenging step in using the genetic algorithm to search for anomalous
subspaces is to calculate the fitness of each individual subspace. When we calculate the
fitness SOD of candidate values in the current subspace, we need to scan the entire dataset,
but the scale of high-dimensional datasets is usually large. For severely imbalanced datasets,
we use a random multiple sampling technique, replacing the entire dataset with a randomly
sampled dataset. By using random multiple sampling, the subjective bias of the samples
obtained by single sampling can be reduced to a certain extent, so that the sample subset
can represent the entire data set. By applying the random sampling method, it is possible
to more efficiently calculate the abnormality degree of the current abnormal point subspace
to measure and evaluate fitness more quickly. Nevertheless, we expect that the quality of
the search results may be slightly affected, as will be verified in the experimental section.

3.4. False Positives Feedback Mechanism

In order to refine the interpretability of the VAEGA model results, we subclassify
the outliers according to the set of anomaly subspaces searched by the GA layer (see
Algorithm 1). The structure diagram of this mechanism is shown in Figure 9.



Algorithms 2022, 15, 429 12 of 22

Algorithm 1 Search Subspace Process

Require: Outlier dataset O = {o1, o2, ..., on};
Ensure: Abnormal subspace set AS = {(as)1, (as)2, ..., (as)n};

1: Initialize the population Gen, the number of individuals is NGen, and set the crossover
probability Pc and mutation probability Pm;

2: for i = 1 to n do
3: Epoch = 1
4: while Epoch < MaxEpoch do
5: Calculate the fitness function for each chromosome
6: if SODtop satisfies the optimal solution then
7: asi = individual v_(SODtop) decoded into abnormal subspace representation
8: else
9: Calculate the probability of selection of a chromosome

10: Use the best retention to select the value of pvi the top NBest chromosomes
into the next generation

11: Select Nk chromosomes using no-replacement remainder selection rule among the
remaining chromosomes

12: for j = 1 to (NGen − NBest − Nk) do
13: Randomly select two parent chromosomes
14: Perform gene crossover according to Pc and uniform crossover rules to form two

new chromosomes and join the cenozoic population
15: end for
16: Perform mutation operation on random m chromosomes in the population according

to Pm
17: Epoch = Epoch+1
18: end while
19: end for
20: return Abnormal subspace set AS and weight values

Outliers with the 

Corresponding Abnormal 

Subspaces

 Classification Based on 

Abnormal Subspaces

Categorie 1 Categorie 2

Categorie n

Output the Categories of Outliers

VAE Model

Special Categorie 

Inliers

 

Figure 9. Outlier sub-classification and false positive feedback process based on abnormal subspaces.
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The first step is to match candidate outliers’ abnormal subspace features with those
of existing outlier classes. A point will be assigned to the outlier class if it has the same
abnormal features in its subspace. Otherwise, a new outlier subclass will be generated.
This step will continue until all outliers are classified. We merge subclasses that contain
only one outlier into a special class.

In the second step, we focus on examining the special classes based on the subclassifi-
cation results above. The points in the abnormal subspace in which each feature component
is within its normal range are screened out, that is, those points whose abnormal feature val-
ues are within ±3σ of the corresponding feature data distribution. The selected points are
deemed as misjudgments of the model and form a set of false positive points. After that, we
use the set of false positive points to optimize the parameters of the VAE outlier detection
module in order to reduce the false positive rate of the VAEGA model.

In the final step, special filtered classes and other subclasses will be used to analyze
the causes of anomalies. Often, outliers that occur in a special class can be more informative
since they often result from the properties of the data themselves. People may be able to
avoid substantial losses by paying attention to special outliers and taking action to remedy
them as soon as possible.

4. Experimental Design

In this section, we will assess the performance of the VAEGA model proposed in this
paper based on experiments. The section will include an introduction to the real data set
and comparative benchmark models used in the experiment, as well as verification of the
accuracy of the VAEGA model in unsupervised outlier detection and the ability to search
for abnormal subspace.

4.1. Datasets

To evaluate the performance of the method proposed in this work, we used five real
high-dimensional datasets: (1) Cardio; (2) Creditcard; (3) Satellite; (4) MUSK; (5) Arrhythmia.

The Creditcard fraud dataset comes from Kaggle, and the other four datasets come
from the ODDS library (http://odds.cs.stonybrook.edu/ accessed date: 20 October 2021).
The detailed information about the datasets is presented as follows. Some key statistics of
the datasets are also given in Table 1.

Table 1. Dataset information.

Dataset N Dim Outliers (%)

Cardio 1831 21 176 (9.6%)
Creditcard 284,807 32 492 (0.17%)

Satellite 5100 36 77 (1.5%)
Arrhythmia 452 279 66 (15%)

MUSK 3062 166 97 (3.2%)

Cardio: The Cardio dataset is a 21-dimensional measurement dataset containing fetal
heart rate signature (FHR) and maternal uterine contraction signature (UC) in the medical
field ECG, which has been labeled by obstetric experts. Among them, the pathological class
is used as the abnormal class of the dataset, with 176 data points. Except for the suspicious
data class, which is removed, other data classes in the dataset are used as normal samples
for training.

Creditcard: Kaggle provided two-day credit card transaction information for European
cardholders in September 2013. The data set contains 32 attributes, of which 492 out of
284,807 transactions were stolen. The data set is very unbalanced, with outliers accounting
for 0.172% of all transaction data.

Satellite: The Satellite dataset is an Earth resource satellite dataset containing
36 attributes. Since the data proportions of the three categories 2, 3, and 4 are the smallest,

http://odds.cs.stonybrook.edu/
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they can be combined into anomalous categories, and other categories are used as normal
samples for training.

Arrhythmia: The dataset is a multi-class classification dataset with a dimension of 279.
The smallest categories, namely 3, 4, 5, 7, 8, 9, 14, 15, are merged to form an outlier category,
and the remaining categories are merged to form a normal category.

MUSK: There are 166 dimensions in the Musk dataset, and there are both Musk
datasets and non-Musk datasets. Inliers consist of the non-musk classes j146, j147, and j252,
while outliers consist of the musk classes 213 and 211.

After we preprocessed the data, there were no missing values in all the datasets, and all
the datasets were scaled to [0, 1].

4.2. Experimental Settings

In order to create the model, we used Tensorflow 1.14.0 and Python 3.7. We randomly
selected 80% of the data to be the training set and 20% for the testing set. For the training
phase, we set the hidden space Z of the VAE to two and the input dimension of the neuron
unit of the hidden layer h to half. We apply the ReLU max(x, 0.1x) activation function and
SGD optimizer to train the VAE. For the other parameters of the autoencoder, we use the
default values. As described in Section 3.3, the anomaly score is determined in the testing
phase, and the threshold is 95% of the root mean square error.

Our experiments compare VAEGA with 9 outlier detection benchmark models, includ-
ing OC-SVM [18], PCA [22], ABOD [41], HBOS [42], GAN [43], MOGAAL [44], DSEBM [28],
AE [25], and pure VAE. PCA and OC-SVM are traditional outlier detection methods, ABOD
and HBOS are distance-based methods to reflect the limitations of the distance of high-
dimensional data space, and GAN and MOGAAL are outlier detection models based on
generative adversarial networks. DSEBM, AE, and pure VAE are reconstruction-based
outlier detection methods. For traditional methods such as PCA and OC-SVM, we use
Scikit-Learn in TensorFlow to implement. For other methods besides the proposed VAEGA
model, we use Tensorflow and python to implement them. The optimizer, learning rate,
batch size and number of iterations used by the other methods are the same as those of the
VAEGA model, except that the parameters of MOGAAL refer to the recommended settings
of [1]. For comparability, AE, pure VAE and DSEBM share the same network structure and
the same hidden layer units as VAEGA. The details of the baseline model are as follows:

(1) Traditional outlier detection methods: The OC-SVM method is a well-known kernel-
based outlier detection method. Our experimental task uses the radial basis function
(RBF) kernel, the abnormal rate ν is set to 0.05, and uses the technique proposed
by [18] to adjust the Gaussian kernel parameter σ. PCA is a linear dimensionality
reduction method that can be used to extract the main feature components of the
data. The eigenvector matrix is compressed into h dimension, which is the same as
the hidden space dimension of the VAE layer in the proposed method. PCA uses
reconstruction error as an abnormal score.

(2) Distance-based: The ABOD performance of the probabilistic method is significantly
affected by the neighborhood size, and we set its parameter to 16 in comparative ex-
periments. The HBOS method selects the number of commonly used neighbors as 10.

(3) Generative adversarial network-based methods: In the comparative experiment,
the GAN and VAEGA models basically have the same network structure, but the
output layer of the discriminator in GAN is set to a one-dimensional structure. The
configuration of MOGAAL can be found in [44]

(4) Reconstruction-based methods: DSEBM is a deep-structured energy-based model,
which is one of the recent deep-learning methods for unsupervised outlier detection.
In DSEBM, the energy-based models (EBM) energy score of a sample is used as a
criterion for detecting outliers. Autoencoder is an unsupervised nonlinear learning
algorithm for data dimensionality reduction. The neural network parameters of
the training encoder and decoder are the same. AE uses the error before and after
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reconstruction as an abnormality criterion. The training method, parameters, and the
number of hidden layer units of pure VAE are the same as those of the VAEGA model.

In the experiment, we search for abnormal subspaces using the Creditcard dataset,
which has perfect data preprocessing for further evaluation of the model. The input of
the GA layer is the set of outliers obtained through the outlier detection of the VAE layer.
The GA layer starts with a population of 100, and the distance encoding is determined by
the input dimension dim of the outlier. The fitness function calculates the SOD for each
subspace. To identify individuals with better performance in the existing generation and
position them in the next generation, the selection operator uses the remainder nonreplace-
ment selection method and the optimal retention method. We set the crossover probability
Pc to 0.6 and the mutation probability Pm to 0.01. Using the random module function, we
can achieve multi-sample random samples.

5. Results and Discussions
5.1. Experimental Evaluation

In order to evaluate the model’s performance and the benchmark models, we consider
the following five indicators in our experiment: accuracy, recall rate, F1 score and the
AUC. Each indicator’s best results are highlighted in bold. Tables 2–5 show the results of
the experiment.

Table 2. Accuracy results of outlier detection for 10 models on 5 datasets.

Methods Cardio Credit Card Satellite MUSK Arrhythmia

PCA 0.886 0.831 0.683 0.892 0.808
OC-SVM 0.927 0.811 0.710 0.90 0.809
ABOD 0.923 0.907 0.745 0.735 0.647
HBOS 0.854 0.862 0.746 0.716 0.698
GAN 0.697 0.659 0.427 0.796 0.656
MOGAAL 0.730 0.734 0.797 0.814 0.702
DSEBM 0.837 0.883 0.705 0.899 0.773
AE 0.798 0.867 0.764 0.931 0.816
VAE 0.803 0.901 0.766 0.969 0.895
VAEGA 0.851 0.950 0.792 0.961 0.879

Table 3. AUC of 10 models for outlier detection on 5 datasets.

Methods Cardio Credit Card Satellite MUSK Arrhythmia

PCA 0.832 0.892 0.675 0.881 0.805
OC-SVM 0.975 0.878 0.893 0.866 0.808
ABOD 0.948 0.562 0.972 0.726 0.801
HBOS 0.899 0.913 0.895 0.869 0.847
GAN 0.618 0.752 0.776 0.767 0.776
MOGAAL 0.792 0.854 0.971 0.880 0.854
DSEBM 0.942 0.84 0.6375 0.847 0.762
AE 0.840 0.922 0.950 0.922 0.812
VAE 0.840 0.958 0.962 0.933 0.871
VAEGA 0.966 0.966 0.970 0.957 0.863
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Table 4. F1 scores of 10 models for outlier detection on 5 datasets.

Methods Cardio Credit Card Satellite MUSK Arrhythmia

PCA 0.861 0.831 0.723 0.819 0.753
OC-SVM 0.898 0.812 0.439 0.799 0.795
ABOD 0.647 0.689 0.657 0.703 0.718
HBOS 0.703 0.770 0.490 0.763 0.762
GAN 0.500 0.791 0.226 0.795 0.700
MOGAAL 0.578 0.677 0.627 0.731 0.688
DSEBM 0.909 0.782 0.732 0.782 0.742
AE 0.661 0.872 0.589 0.861 0.741
VAE 0.820 0.901 0.817 0.916 0.831
VAEGA 0.805 0.927 0.827 0.940 0.813

Table 5. Recall of 10 models for outlier detection on 5 datasets.

Methods Cardio Credit Card Satellite MUSK Arrhythmia

PCA 0.890 0.830 0.768 0.829 0.751
OC-SVM 0.957 0.827 0.773 0.800 0.852
ABOD 0.983 0.895 0.893 0.797 0.805
HBOS 0.625 0.675 0.853 0.816 0.830
GAN 0.903 0.895 0.747 0.799 0.753
MOGAAL 0.455 0.543 0.493 0.674 0.682
DSEBM 0.869 0.781 0.758 0.782 0.747
AE 0.830 0.878 0.840 0.867 0.739
VAE 0.801 0.905 0.897 0.917 0.780
VAEGA 0.938 0.936 0.853 0.924 0.773

In order to determine the capability of searching abnormal subspace using the trained
GA layer based on the outlier detection model, we compare it to the ground truth for
the outliers detected by the outlier detection model. Obtaining the ground truth requires
traversing all low-dimensional subspaces in the dataset and sorting the outlier degrees.
Outlier degrees correspond to accurate abnormal subspaces and are given by the outlier
degree in the top 1. In Table 5, a subspace in the ground truth of abnormal subspaces
is shown. Table 5 shows the three-dimensional subspace component [V4, V5, V10]. A
relatively high outlier degree in the data with serial number of 86 suggests an abnormality
may exist in the V4, V5, and V10 feature subspace. In Table 6, a comparison of the accuracy
is made between the ground truth and the abnormal subspaces of the outliers set searched
by the genetic algorithm.

Table 6. An example: abnormal subspace ‘V4,V5,V10’ in the ground truth of the abnormal subspaces
for the dataset.

Outlier Data Outlier Degree Data Serial Number

1 [4, 5, 10] 9.10 86
2 [1, 2, 7] 4.33 112
3 [0, 1, 15] 4.02 302
4 [1, 3, 22] 3.56 29
5 [0, 1, 5] 3.41 54

5.2. Experiment Analysis

From Tables 2–5, the results from our experiments show that the VAEGA model
surpasses the other benchmark models, particularly in terms of accuracy on all five datasets.
Our VAEGA model utilizes a variational method that offers better flexibility for underlying
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generative models. It employs latent variables with a small amount of noise to generate
data more reasonably in order to make the VAEGA model more effective. We found that on
datasets with low outlier rates (such as the credit card fraud dataset), the model maintains
good performance. By contrast, PCA’s performance in detecting linear outliers is generally
lower than other benchmark models, indicating that it is difficult to determine the intrinsic
relationship between data points. The “curse of dimensionality” limits the outlier detection
capability of OC-SVM. It performs well on the Cardio, CreditCard, and Satellite datasets
but produces inferior results on the high-dimensional Arrhythmia dataset. Distance-based
ABOD and HBOS perform slightly better, but they also suffer from dimensionality problems.
Another reason for unstable performance is that such methods usually pre-end the training
data with prior knowledge. The performance of these algorithms may be adversely affected
by high-dimensional data or by data that have a distribution that is inconsistent with
their prior knowledge. In contrast, the remaining five neural network-based methods
do not demand strict distribution assumptions; therefore, they can perform better with
high-dimensional datasets or datasets whose distributions are very different.

OC-SVM, on the other hand, has limited performance because of the curse of dimen-
sionality. The AE model with low-dimensional information and dimensionality reduction
reconstruction error and the energy-based DSEBM-e model perform well on multiple data
sets. From the results, the methods based on dimensionality reduction perform much better.
In VAEGA, the VAE layer utilizes the variational approach, which offers higher flexibility
in the potential generation model, thereby improving outlier detection. Compared to the
unimproved pure VAE, the VAEGA model achieves an average performance improvement
of around 3%. We observe that on datasets with low outlier rates (such as credit card fraud)
the model performs well. Furthermore, unlike other benchmark models, our proposed
method can identify outlier features and evaluate the causes of data anomalies.

Based on the analysis of the experimental results from multiple datasets, the adversar-
ial network-based methods—GAN and MOGAAL—showed to be less effective in detecting
outliers compared to reconstruction-based methods, such as DSEBM, AE, VAE and VAEGA.
The analysis showed that GANs lack reasoning about the training data in the hidden space,
so they learn an incomplete data distribution, which leads to mode collapse. In addition,
the GAN mislabels normal data as abnormal data, resulting in false positives in outlier
detection results. The MOGAAL method, on the other hand, tries to elude the mode col-
lapse by stopping the optimization of the generator before convergence to better learn the
distribution of normal data and extends the network structure to multiple generators with
different objectives from the initial single generator. Consequently, MOGAAL’s detection
results outperform the ordinary GANs; however, the caveat is that it is difficult to know for
certain what the model has learned, which leads to uncertain experimental results. Thus,
there is still a performance gap compared with the reconstruction-based neural network
models AE, VAE, and DSEBM. This is because reconstruction-based methods combine
latent space information and reconstruction error to detect outliers.

Unsupervised outlier detection will, however, generate some misjudgment points if
the threshold is set too high. Our improved VAEGA model establishes a genetic algorithm
to search the abnormal subspace for the outlier set containing the misjudged points and
classify the outliers in accordance with the abnormal subspace. Misjudged points are
considered outliers that cannot form clusters in the classification results. In order to
improve the model’s performance, the VAEGA model feeds the detected misjudgment
points to the VAE layer for parameter adjustment. The reason for the slight improvement
is that we cannot eliminate all misjudgment points through a unified standard when
classifying outliers based on abnormal subspaces. Filtering out too few false positives
or removing some of the features of false positives will have little effect on the weight
adjustment of upper-layer feedback, which will result in an insufficient improvement in
model performance. As a result, when training the model, we should use a large amount
of data to ensure that important outliers are not isolated cases before formulating more
effective criteria to filter false positives. Our proposed VAEGA model can output abnormal
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subspace features for analyzing data anomalies, whereas other benchmark models lack the
ability to locate outliers.

In GA, the search for abnormal subspaces uses a heuristic search instead of traversing
all the possible subspaces, which can save time and memory. As shown in Table 7, 85.95%
accuracy can be achieved when comparing the abnormal subspaces obtained using the
genetic algorithm with the standard set. The results demonstrate that our proposed method
can obtain abnormal subspace features much more quickly since the search cost is greatly
reduced. In addition, the fitness function of the GA for calculating the subspace fitness in
the VAEGA experiment makes use of the redefined SOD measurement. A subspace with
the highest SOD value is returned as the abnormal subspace for each detected outlier. This
increases the comparability of the outlier measure in comparison to simply calculating
the outlier degree. Furthermore, with the progress of evolution, we can see in the three
datasets an increase in the number of individuals with high fitness, which indicates that our
approach features good convergence. By taking advantage of this good convergence, we
are able to find the abnormal subspaces of the detected outliers without having to explore a
large number of subspaces.

Table 7. An analysis of the calculated SOD results before and after random sampling was used.

Scope of Data Accuracy

Complete sample dataset 0.859
Random sample sub dataset 0.823

Additionally, we use a random sampling method in our work to speed up the calcu-
lation of fitness functions of subspaces in the genetic algorithm. As illustrated in Table 7,
the accuracy of searching the abnormal subspace only decreased by 0.036. Hence, it shows
that the random sampling of the dataset has little impact on the final search results, but it
saves running time and minimizes the calculation cost. For this reason, it is feasible to use
randomly sampled samples as an alternative to the entire subspace data.

5.3. Sensitivity Analysis

The hidden layer of the VAEGA model is critical for training the model. It relies
on the outlier detection module to compress the original high-dimensional data into the
latent space. We retrain the VAEGA model by adjusting the dimension dim of the hidden
layer z to half and twice. It can be seen from Figure 10a that reducing the dimensionality
of the hidden layers to half of the experimental setting results in a decrease in outlier
detection accuracy. The performance of outlier detection results on other datasets does
not substantially improve with doubling the hidden layer dimension z, except for the
Arrhythmia dataset of dimension 275. This is due to the data being prone to overfitting
as a result of the high dimensionality of the hidden layer. The model’s performance will
decrease if it is too low since the hidden layer will not learn enough from the input data.
In addition, we progressively adjust the number of hidden layers from two to six in the
VAEGA model. Figure 10b illustrates how the outlier detection performance is poor when
there are just two hidden layers in the VAEGA model but improves as more layers are
added. This is because the network layers do not suffice to fully learn the information
contained in the training data. Generally, the number of layers and the size of the latent
space do not have a significant effect on the results as long as the neural network is large
enough. Thus, a reasonable setting of the neural network size of the model can lead to a
robust network structure.

In the VAEGA model, VAEGA’s ε threshold is determined by the proportion of out-
liers in the dataset. Observing Figure 10c, it is seen that the higher the threshold ε is
set, the higher the detection accuracy of the model, and the relative recall rate will be
greatly reduced. Based on Figure 10c, it can be observed that the higher the threshold
is set, the higher the model’s detection accuracy, and the lower the relative recall rate.
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Nevertheless, after exceeding the 99% threshold, the accuracy will fluctuate. When the
threshold is set to 99%, the limit of outlier detection is higher, and only outliers with obvious
anomalous characteristics (high anomaly scores) will be detected. Although this will lead to
fewer errors in the model, it will leave most outliers unidentified. Increasing the threshold
setting in the model to 85% will result in a higher rate of false positives. Therefore, setting
the thresholds to 90% and 95% anomaly percentages is reasonable for the VAEGA model.
However, because of the low outlier rate in the selected data set, the threshold is set at 95%
in order to maintain the indicators in a more balanced position and minimize the impact of
human factors on the model’s performance.
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Figure 10. The effect of tuning important parameters on model accuracy.

Additionally, we verify the influence of the training data size on the VAEGA model
performance on the Creditcard dataset, which consists of 200,000 records. As can be seen in
Figure 10d, the higher the number of training samples, the higher the learning ability and
accuracy of the outlier detection model. In this sense, a sufficient amount of training data
are needed to ensure that the learning task performs robustly and achieves better results.
A crucial hyperparameter in the VAEGA model is lambda, which is obtained from training
the VAE, and the value of gamma is fixed at 0.01. From Figure 10e, it can be seen that the
anomaly detection model performs best when lambda = 0.01, and its accuracy decreases
below this value.

To test the model’s sensitivity when the data are polluted, we retrain the model using
training data containing varying levels of noise. In Figure 10f, the drop in the curve
shows that contaminated training data negatively impacts detection accuracy, with larger
impacts on the model as contamination rates increase. It should be noted, however, that
the OCSVM is more robust to tainted input data than any of the other three methods,
while reconstruction-based models are also susceptible to tainted input. This is because
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the OCSVM model ignores a certain amount of noise when learning the boundaries of
training data, whereas the AE and VAEGA models work alongside noise to reduce the
reconstruction error across the whole set of training data. In practice, because data labels
are costly to acquire, it is difficult to obtain completely clean data for outlier detection.
In addition, high-dimensional data is usually unbalanced. Since there is a large amount of
normal data compared to the abnormal data within the data set, the pollution rate is lower
and the learning ability of the model is less impacted.

6. Conclusions

This paper proposed a method for detecting outliers in high-dimensional space and
for searching abnormal subspaces in high-dimensional space. For high-dimensional data
with dimensionality challenges, a variational autoencoder was used as an effective dimen-
sionality reduction technique. Then, a genetic algorithm (GA) was used to detect outliers by
searching subspaces for the detected outliers by the variation autoencoder. To accelerate the
computation significantly, the SOD function was redefined as the fitness function to assess
the degree of abnormality of subspaces in the genetic algorithm, and random sampling
was used to improve the performance. After classifying the detected outlier by using the
searched abnormal subspaces, false positives are able to be detected. The autoencoder then
uses these data to further improve its detection capabilities. The results of experiments car-
ried out on several benchmark datasets with high dimensions revealed that our proposed
model can effectively detect outliers in high-dimensional data. When compared to other
state-of-the-art methods, our model achieved an accurate abnormal subspace for outliers.
In our future research work, we will concentrate on the abnormal subspaces of outliers and
classify the outliers using clustering methods to classify the abnormal subspaces. In addi-
tion, we plan to vary the number of outliers and try different types of distribution models
to observe the effect on the model. We also plan to explore the causes of the abnormalities
and increase their interpretability.
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