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Abstract. In this article distilled water and CuO particles with volume fraction of 1%, 2% and 

4% are studied numerically. The steady state flow regime is considered laminar with Reynolds 

number of 100 and nanoparticles diameters (dp) are set in the range of 20 nm and 80 nm. The 

hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm 

respectively. The problem is solved using finite volume method with constant heat flux for two 

sides and constant temperature for one side. Convective heat transfer coefficient, Nusselt 

number and convective heat transfer coefficient distribution on walls are investigated in details. 

The fluid flow is supposed to be one phase flow. It can be observed that nanofluid leads to a 

remarkable enhancement on heat transfer coefficient pressure loss through the channel. The 

computations reveal that the size of nanoparticles has no significant influence on heat transfer 

properties. Besides, the study shows a good agreement between current results and 

experimental data in the literatures. 

1.  Introduction  

The thermal industrial equipment has experienced unprecedented improvements in enhancing heat 

transfer capabilities and this has resulted in new challenges for thermal sciences especially with the 

advancement of nanotechnology. Nanotechnology as well as nanoparticles have been used in a wide 

variety of industries. In recent years, nanofluids have become popular in heat exchanger installations 

for achieving higher heat transfer rates. Nanoparticles are suspended in a base fluid and it is called 

nanofluid [1]. Nanofluids are completely different from microfluids and they have distinctive features 

in comparison to conventional solid-liquid mixtures in which small sized particles in the range of mm 

or μm of metals and non-metals are dispersed [1]. Knowledge about nanofluids using in heat transfer 

enhancement mechanism is still in its primary. A new class of polymer nanofluids, drag-reducing 

nanofluids, aim at enhanced heat transfer as well as flow friction reduction have been studied by 

Phelan et al [2] where a wide range of active self-assembly mechanisms for nanoscale structures has 

been investigated in details. 

Khaled et al [3] studied the laminar heat transfer regime in a channel with and without 

nanoparticles. They found an obvious enhancement for the case where nanoparticles have been added 

to the base fluid. Heris et al [4] investigated a numerical method for laminar heat transfer in a channel 
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with constant heat flux on all walls. Their results clearly showed that addition of nanoparticles to the 

base fluid produces remarkable enhancement of heat transfer. Nanoparticle concentration can increase 

heat transfer coefficients and decreasing their size can enhance heat transfer coefficients as well. Wen 

et al [5] focused on the study of Al2O3-water nanofluid in the laminar flow regime with constant heat 

flux on walls of a coppery pipe. Their results showed that the increase in Reynolds number and 

nanoparticle size with 1.6% volume fraction caused 47% enhancement of Nusselt number. Several 

different numerical methods including Euilerean, one-phase and two-phase-mix methods were used by 

Lotfi et al [6] for exploring the effect of a vast variety of volume fractions of nanoparticles on heat 

transfer parameters. Ahmad et al [7] studied heat transfer in three nanofluids which nanoparticles 

Al2O3, CuO and SiO2 were suspended in the base fluid of ethylene glycol with nanoparticles 

concentrations ranged from 1 to 6% in a channel with triangular cross section numerically. Flow 

regime was considered laminar with Reynolds number of 100-800. Their results disclosed 50% rise of 

Nusselt number when Reynolds number changed from 100 to 800. In an experimental research carried 

out by Kim et al [8], the heat transfer of both laminar and turbulent nanofluid flow regimes in a 

channel with constant heat flux on walls was studied. They found that Al2O3-water nanofluid with 

volume fraction of 3%, caused 8% rise in conduction and 20% increase in convective heat transfer 

coefficients. 

In summary, the heat transfer of none-circular cross section channels is generally less than that of 

circular ones [9]. In the present work, the finite volume method has been used for simulation of water 

and CuO nanofluid with volume fraction of 0%, 1%, 2% and 4%. The steady state laminar flow 

regime with Reynolds number of 100 and nanoparticles diameters of 20 nm and 80 nm are considered. 

The convective and diffusive terms in Navier-Stokes equations have been simulated by a second order 

upwind method in all simulations meanwhile the SIMPLE procedure has been employed for the 

velocity and pressure relation. The fully developed x-velocity and uniform temperature T0=300 K is 

assumed at the tube inlet meanwhile the fully developed conditions are assumed at the tube outlet. The 

stationary wall conditions and uniform heat flux are imposed on the solid walls of tubes. The geometry 

of equilateral triangular cross section tube with hydraulic diameter of 8 mm and length of 1000 mm 

can be observed in Figure 1. 

 

Figure 1. Geometry of problem 

2.  Governing Equations and Numerical Simulation Approach 
The governing equations in single phase model are similar to those of the base liquid equations. The 

effective conservation equations including continuity, momentum and energy for steady state flow 

regime are as follow (All following symbols, subscripts and Greek letters are tabled in nomenclature 

section at the end of the paper.): 

∇. (𝜌𝑣) = 0                                                                                             (1) 

1000 

mm 

Flow X 

Y 

Z 
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∇. (𝜌𝑣𝑣) = −∇𝑝 + ∇. (𝜇∇𝑣)                                                                                        (2) 

∇. (𝜌𝑐𝑝𝑣𝑇) = ∇. (𝑘∇𝑇)                                                                                                (3) 

where thermo physical properties including 𝜇, 𝜌, 𝑘, 𝑐𝑝  in before equations should be replaced with 

effective values μeff , ρeff , keff , cp,eff respectively which are listed as below [10,11]: 

𝜇𝑒𝑓𝑓 = (123 ∅2 + 7.3 ∅ + 1)𝜇𝑓                          (4) 

𝜌𝑒𝑓𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑝                                                                                              (5) 

𝑘𝑒𝑓𝑓 = {1 + 64.7 ∅0.7460 (
𝑑𝑓

𝑑𝑝
)

0.3690

(
𝑘𝑠

𝑘𝑓
)

0.7476

Pr0.9955Re1.2321}𝑘𝑓                            (6) 

𝑐𝑝,𝑒𝑓𝑓 = (1 − ∅)𝑐𝑝,𝑓 + ∅𝑐𝑝,𝑝                                                                                        (7)                                                     

Prandtl and Reynolds numbers are described as Pr =
𝜇

𝜌𝑓𝛼𝑓
  and Re =

𝜌𝑓𝛽𝑐𝑇

3𝜋𝜇2𝐿𝑏𝑓
 respectively. 

In above equation, Lbf=0.17 nm and βc=1.3807E-23 are the mean free path of water and Boltzmann 

constant for entire tested temperature range of water respectively. Furthermore, thermal diffusivity and 

dynamic viscosity are calculated by α𝑓 = 𝑘𝑓/𝜌𝑓𝑐𝑝,𝑓 and 𝜇 = 𝑎10𝑏/(𝑇−𝑐), 𝑎 = 2.414 × 10−5
, b=247 and 

c=140, [11]. 

Diameter of water molecule is calculated by  𝑑𝑓 = 0.1 (
6M

Nπρf

)
1/3

where 𝑀 = 18 𝑔𝑟/𝑚𝑜𝑙  

Thermo physical properties of water and nanoparticles are listed in Table 1. 

Table 1. Thermo physical properties of water and nanoparticles. 

Thermo physical properties Water CuO 

𝜌 (kg/𝑚3) 997 6300 

Cp (J/kgK) 4181.7 537 

µ (Pa.s) 0.00089 - 

k (W/mK) 0.6069 17.65 

Constant heat flux and constant temperature of 320 K are considered on two sides of channel and 

horizontal side respectively. The average convective heat transfer coefficient and Nusselt number for 

constant temperature plate are defined as follow: 

ℎ̅ =
�̇�𝑐𝑝(𝑇𝑚,𝑜−𝑇𝑚,𝑖)

𝐴𝑠 ∆𝑇𝑙𝑚
                                                                                    (8) 

 𝑁𝑈̅̅ ̅̅ =
ℎ̅𝐷ℎ

𝑘𝑒𝑓𝑓
                                                                                               (9) 

where ΔTlm means LMTD and it is defined by the below relation: 

∆𝑇𝑙𝑚 =
(𝑇𝑠−𝑇𝑚,𝑜)−(𝑇𝑠−𝑇𝑚,𝑖)

ln [(𝑇𝑠−𝑇𝑚,𝑜) (𝑇𝑠−𝑇𝑚,𝑖)⁄ ]
                                                                   (10)                                                                                                                                                          

To find a proper as well as independent grid for solving the problem of heat transfer in a three 

dimensional channel, several different grid distributions have been evaluated and the average 

temperature of outlet water is computed for three different grid sizes as in Table 2. 

Table 2 Comparison of average water temperature in outlet flow for different grid sizes 

Grid size(nm) Node numbers T (K) 

1 14 × 12 × 1000 306.012 

0.8 17 × 15 × 1000 305.543 

0.6 23 × 20 × 1000 305.490 
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It can be seen that the average temperature of water in outlet flow for the grid size of 1 nm has not 

adequate accuracy, however, the grid size of 0.8 nm and 0.6 nm are much accurate and are very close 

to each other. Therefore, the grid size of 0.8 nm is chosen in order to have less calculation time. 

3.  Numerical Results 

Forced convective heat transfer in a channel with equilateral triangular cross section and CuO-water 

nanofluid for several volume fractions and two nanoparticle sizes of 20 nm and 80 nm has been 

investigated extensively. With introducing a heat flux ratio that shows heat flux relation between two 

sides of channel (rq=q2/q1). The horizontal side is considered with constant temperature of 320 K. As it 

can be seen in Figures 2 and 3 convective heat transfer coefficient and average Nusselt number versus 

heat flux ratio for different volume fractions are grown linearly. Furthermore, the rise of heat flux ratio 

leads to growth of average convective heat transfer coefficient and average Nusselt number (See 

Figures 2 and 3). This work is done for three different heat flux ratio of 0, 0.5 and 1. The Reynolds 

number for all cases is equal to Re=100 and average convective heat transfer coefficient and average 

Nusselt number are obtained for horizontal side of the tube. 

  
(a) (b) 

Figure 2. Effect of heat flux ratio on average convective heat transfer coefficient for diameter of 

nanoparticles (a) 20 nm and (b) 80 nm 

According to Figures 2 and 3, it can be found that the average convective heat transfer 

coefficient increases versus varying of nanoparticle diameter from 80 nm to 20 nm. For instance, 

average convective heat transfer coefficient of nanofluid with 4% volume fraction, heat flux ratio of 

1 and nanoparticle size of 20 nm and 80 nm rise 11.6% and 10% respectively in comparison with 

distilled water. Furthermore, average convective heat transfer coefficient of nanofluid with 4% 

volume fraction, heat flux ratio of 0 and nanoparticle size of 20 nm and 80 nm increase 18% and 

16% respectively in comparison with the distilled water. A decline in nanoparticle size from 80 nm 

to 20 nm diminishes average Nusselt number. For example, average Nusselt number of nanofluid 

with 4% volume fraction, heat flux ratio of 1 and nanoparticle size of 20 nm and 80 nm records 

1.64% and 4.1% increases respectively in comparison to the distilled water. As an another example 

average Nusselt number of nanofluid with 4% volume fraction, heat flux ratio of 0 and nanoparticle 

size of 20 nm and 80 nm show 7.8% and 9.69% growths respectively in comparison to water. 

Totally decreasing nanoparticle size leads to increasing average convective heat transfer coefficient 

and decreasing average Nusselt number. So decreasing nanoparticle size does not lead to much 

more heat transfer. For a constant nanoparticle size, by decreasing heat flux ratio from 1 to 0, 

average Nusselt number increases. So unbalancing heat fluxes on walls leads to a better convective 

heat transfer and Nusselt number as well. 
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(a) (b) 

Figure 3.  Effect of heat flux ratio on average Nusselt number for diameter of nanoparticles (a) 20 

nm and (b) 80 nm 

On the other hand, Figures 4 (a) and (b) show local convective heat transfer coefficient and Nusselt 

number on hot plate for heat flux ratio of 1 and nanoparticle size of 80 nm along the channel 

respectively. The plotted local convective heat transfer coefficient in Figure 4(a) for three volume 

fractions of nanofluid depicts the much more differences at channel inlet in comparison to that of 

outlet and becomes less with moving along the channel. 

  
(a) (b) 

Figure 4.  Local (a) convective heat transfer coefficient and (b) Nusselt number for rq=1, dp=80 nm 

4.  Conclusion 

In this paper, the influence of CuO nanoparticle on flow structure and heat transfer pattern has been 

carried out comprehensively. As a result of grid independency study, a fine as well as accurate grid 

size has been selected for achieving reliable global parameters of fluid flow and heat transfer. 

Average convective heat transfer coefficient goes up versus heat flux ratio and nanoparticle volume 

fraction meanwhile the computations reveal that the size of nanoparticles has not a significant 

influence on heat transfer properties. Moreover, average convective heat transfer and Nusselt number 

along the channel become less in comparison with that of incoming flow due to heated wall as well as 

decline of thermal boundary layer. Furthermore, in the presence of nanoparticles, a significant rise on 

heat transfer coefficient and pressure loss through the channel is observed where the maximum 

magnitude of velocity is computed at the centre of channel cross section. 
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Nomenclature 

Cp Specific heat [J/kgK] 

d Diameter [m] 

dp Nanoparticle diameter [m] 

Dh Hydraulic diameter of the triangular tube [m] 

h Convective heat transfer coefficient 

[W/m
2
K] 

k Conduction heat transfer coefficient [W/mK] 

L Length [m] 

N Avogadro’s number [= 6.022 × 1023] 

NU Nusselt number 

p Pressure [Pa] 

Pr Prandtl number 

q'' Heat flux [W/m
2
] 

Re Reynolds number 

T Temperature [K] 

Tm Fluid mean temperature [K] 

Ts Solid wall temperature [K] 

rq Heat flux ratio 

x Cartesian coordinate axis [m] 

y Cartesian coordinate axis [m] 

z Cartesian coordinate axis [m] 

Greek Letters 

α Thermal diffusivity [m
2
/s] 

μ Dynamic viscosity [kg/ms] 

ν Viscosity [m
2
/s] 

ρ Density [kg/m
3
] 

∅ Volume fraction [%] 

Subscript 

ave Average 

bf Mean free path 

eff Effective 

f Fluid 

i Inlet flow 

lm Logarithm mean temperature difference 

m Mean 

o Outlet flow 

p Nanoparticle 

s Solid wall 
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