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ABSTRACT

The estimation of the slope parameter of a simple linear regression
model in the presence of nonsample prior information under the
reflected normal loss function is considered. Usually, the traditional
estimation methods such as the least squared (LS) error are used to
estimate the slope parameter. Sometimes the researcher has infor-
mation about the unknown slope parameter from experience as a
point guess, the nonsample prior information. In this paper, the
shrinkage pretest estimators are introduced and their risk functions
are derived under the reflected normal loss function. Several meth-
ods of finding distrust coefficient of the shrinkage pretest estimators
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are proposed. The behavior of the estimators are compared using a
simulation study. The results show that the shrinkage pretest estima-
tor outperforms the LS estimator when nonsample prior information
is close to the real value. A real data set is analyzed for illustrating
the results.

1. Introduction

The squared error loss (SEL) function is popularly used for estimating the unknown
parameter in decision theory because of its mathematical and interpretational conveni-
ence. Due to the symmetric nature, the use of SEL function may not be appropriate,
when positive and negative errors have different consequences. Varian (1975) and
Zellner (1986) proposed an asymmetric loss function known as the LINEX loss func-
tion. This loss function assign unequal weights to the underestimation and overesti-
mation by assigning an appropriate value of the shape parameter (Hoque, Wesolowski,
and Hossain 2018).

The SEL and LINEX loss functions are symmetric and asymmetric loss functions,
respectively, but both are unbounded. Sometimes in practice it is necessary to use
bounded loss functions to estimate parameters. The first motivation for the reflected
normal loss (RNL) function based estimation came from Taguchi (1986) who used a
quadratic loss function to motivate and illustrate losses to society associated with depar-
tures from the target in industrial applications. Spiring (1993) modified this loss func-
tion approach using an inverted normal probability density function in an attempt to
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Figure 1. Plot of the reflected normal loss function for different values y = 0.5, 1,5, 10.

provide a more reasonable assessment of economic loss. The RNL function provides an
alternative representation of the loss associated with the quality characteristic. An interesting
aspect of the RNL function is its shape parameter, which is used much like the intersection
point in the modified quadratic loss function that permits a smooth function rather than a
piecewise function. Also, The SEL and LINEX loss functions have an infinite maximum
value which isn’t always appropriate. So we used the reflected normal loss function to esti-
mate parameters, which is the bounded loss function. Spiring (1993) and Spiring and
Yeung (1998) proposed the reflected normal loss (RNL) function of the form

L(D) = k(l - [53722), (1)

where D = 0 — 0, 0 is an estimator of parameter 0, k > 0 is the maximum loss and y >
0 is the shape parameter. The loss function (1) is bounded function of D, and is essen-
tially a normal density flipped upside down, whence its name. Figure 1 shows the
reflected normal loss function for k=1 and the different values of y = 0.5, 1,5,10. The
features of the loss function (1) are:

1. L(D) is boundary function.

2. L(D) is infinitely derivative and therefore continuous.

3. L(D) has a minimum of zero in D=0 and in the interval (—o00,0) is an descending
function and in the interval (0, 00) is a ascending function. Also limp_,+,, L(D) = k.

4. Loss function (1) is special mode of Hellinger distance by

2 f(x10)

where k=1 and y = 20 and f(-|0) is the probability density function (p.d.f) of N(6,?).
The loss function (1) is investigated by Towhidi and Behoodian (2001), Naghizadeh
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Qomi, Nematollahi, and Parsian (2012), and Naghizadeh Qomi and Kiapour (2016) for
various problems of estimation. Clearly the value of k > 0 does not have any influence
on our results, therefore without loss of generality, we shall set k=1 in the rest of
the article.

In some situations, the experimenter has some prior information about the parameter
of interest in the form of a point guess value. To utilize this guess value, some shrunken
techniques are proposed. For some works in estimation of unknown parameter, see
Khan and Saleh (2001), Prakash and Singh (2008), and Kiapour and Naghizadeh Qomi
(2016), among others. In the problem of the parameter estimation in linear regression
model using nonsample information, Khan, Hoque, and Saleh (2002, 2005) investigate
the estimation of the slope and intercept parameters using shrinkage pretest estimator
(SPE) under the SEL function. Hoque, Khan, and Wesolowski (2009) and Hoque and
Hossain (2012) studied the performance of the preliminary test estimator (PTE) of the
slope and intercept parameters under the LINEX loss function, respectively. Hoque,
Wesolowski, and Hossain (2018) studied the performance of the shrinkage estimators
under the LINEX loss function.

In this paper, we use the RNL function for estimation of the slope parameter of a
simple linear regression model. The paper is organized as follows. The RNL is discussed
in Section 1. The model and preliminaries are presented in Section 2. The SPE of the
slope parameter is presented in Section 3. Various methods are applied to obtain SPEs
in Section 4. The risk functions of the proposed estimators are calculated under the
RNL function in Section 5. The numerical comparison of the risk functions of the esti-
mators is performed using a simulation study in Section 6. A real data set is used for
illustration of the results in Section 7. Finally, some concluding remarks and discussions
are presented in Section 8.

2. The model and preliminaries

Consider the simple linear regression model
YVi = ﬁ0+ﬂlxi+8i, i= 1,2,..,n, (3)

where y; is the response variable, x; is predictor, f§, and f; are the unknown intercept
and slope parameters respectively, and ¢&s are iid. random variables distributed as
N(0,0?). Classical methods such as the least squared error method are usually estimate
regression coefficients using exclusive sample information. The least square (LS) estima-
tor of f; is f; = S,/ Sy, where Sy =21 (x; — 5c)2 and Sy, = X (x; —X)(yi — ). B, is
an unbiased estimator of f; and the sampling distribution of B, is normal with mean
B, and variance E(f, — f,)* = % Assume that uncertain nonsample prior information
about the value of the slope, fy, is available either from previous study or from prac-
tical experience of researchers or experts. Nonsample prior information can be tested by
testing the null hypothesis Hy : §; = f;, against H; : ff; # f;, to remove uncertainty.
The likelihood ratio test (LRT) for testing the null hypothesis is given by the test statistic

VSa(By = Bro)
Sn ’

T, = (4)
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where $2 = L %" (y;—7,)” is an unbiased estimator of ¢> in which j, = B, + Bix;
and Bo = % + g is the least square (LS) estimator of fi; and T, has a Student’s t distri-
bution with v = n — 2 degrees of freedom. Under Hj, it follows a noncentral Student’s t
distribution with v degrees of freedom and the non-centrality parameter 1 A*>, where

A2 — Sxx(ﬁl B ﬁlo)z .

a2

(5)

3. Shrinkage pretest estimator of the slope

Following Thompson (1968) we consider a point shrinkage estimator of f3; as

Bi(d) =dB, + (1 —d)Bio (6)
where 0 < d <1 is the shrinkage factor representing the degree of distrust in the null
hypothesis, Hy : f; = f,, which is specified by the experimenter according to his belief
in 5. If d=1 (complete distrust), then we use the sample data, while for d =0, we use
the nonsample information only. The value (1 — d) is proportional to the experimenters
confidence in f;,. If 0 < d <1, the degree of distrust is an intermediate value which
results in an interpolated value between f3,, and B 1-

Following Bancroft (1944) we consider a SPE of the slope parameter as

~ SPE p.(d) F, <F,
d)=<"
A ) {ﬂl F., > F, (7)

= Bl - (1 - d)(Bl - ﬂw)I(Fl,V < Foc)’

where F; , = Tﬁ follows a F distribution with (1,v) degrees of freedom, F, is the o
quantile of a central F distribution with (1,v) degrees of freedom and I(.) is the indica-
tor function assigning 0 or 1. For d=0, the SPE reduces to PTE proposed by Hoque,
Khan, and Wesolowski (2009). Note that Tﬁ under H;, follows a non-central F distribu-

tion with (1,v) degrees of freedom and the non-centrality parameter %Az.

4, Different SPEs of f,

An important issue for the pretest estimator is the proper selection of the distrust coef-
ficient, d. In this section, we apply several methods for finding the distrust coefficient to
obtain SPEs.

The first SPE of f; is BffE = B?PE(dl), where d; is found by minimizing the risk
function of SPE, i.e.,

. ~ SPE
di = arg min R(B,

(d). By). (8)
The critical region for testing the null hypothesis Hy : f; = f,, versus Hy : §; # B0

is |t| > t,,, where t = W is the observed value of T, under the null hypothesis.

The significance value (p-value) of this test indicates how much the null hypothesis is
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supported by the data. A large value of the p-value indicates that f8; is close to f,.
Also the two-sided p-value is calculated as
p — value = 2min{P(T, > t|H,), P(T, < t|Hp)}

=2min{H,(t),1 — H,(t)}, ®)

where H,(.) is the cumulative distribution function (c.d.f) of the Student’s t distribution

with v degrees of freedom. The second SPE is BT;DE = B?PE(dz) where d, =1 — p — value.

Notice that p-value tends to zero with increasing n. In other words, d, is close to 1. The

idea of using this method is to put more weight on 8, when more data is available.
We can use the square root of p-value for stronger support of f3,, and find the third

SPE as B?;E = BfPE(d3), where d; = 1 — /p — value.

The value of d can be calculated using mathematical expectation of p-value. We con-
sider the significant value of the hypothesis test as p = 2min{H(t),1 — H(t)}. Since in
repeated random sampling the p-value is a random variable, so the observed value p
can be considered to be a value of a random variable

P = 2min{H(T),1 — H(T)}, (10)

where T = (13’1*[2:)\/87 =A+ (Blfféln)‘/g, and T — A ~ t,. To find the p.d.f of P we first
note the c.d.f.

Gp, (p) = Py, (P < p) = P, (2min{H, (1), 1 — H,(t)} < p)
=1 Py, (2min{H,(1),1 — H,(1)} > p)

=1—P51(‘;—’<Hy(t) <1—§>

:1+HD<H;1<§> —A) —HV<H;1<1—§> —A).

Therefore, the p.d.f of P is given by

g,(p) = hu (Hﬂ(%’) - A) (H:/ E};)) h, (Hy1<1 —§> - A) (ﬁ)

where h,(.) is the pdf of a Student’s t distribution with v degrees of freedom. Then the
mathematical expectation of the random p-value is

E(P) = / p g(p)dp.

So, the fourth SPE is BfZE = BTPE(dAx), where d; = 1 — E(P).
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Another form of estimator is obtained using the square root of mathematical expect-

ation of the random p-value, say ds =1 — \/E(P). Therefore, the fifth SPE is Bng =
~ SPE
py - (ds).

5. Risk of estimators

In this section, we calculate the risk functions of the LS and SPE under the RNL func-
tion. To derive the risk functions we need the following lemmas.

Lemma 1. If Z ~ N(0,1), and Z and S ~ y; are independent, then for any Borel measur-
able function ¢ : R x (0,00) — R and for any ¢ < 0.5,

Elexp (cZ*)¢(2,8)] = \/11__2613{4)(%3)} (11)

Proof. By definition,
Elexp (cZ)$(2.5)] = E[E[exp (c22)9(Z.5)\8]]

[ oo )
=E / e‘zz(i)(z,s)\/%_neadz]

[ oo 1 2
=E P(z,5) ——e 717294z

I +00 1 . 5
—E $(z,s) Nir e i(3V1=20) dz]

1 E /+°°¢ u 1 oy
= S e zau|,
v1-—2c —0 <\/1 - 2c ) V2n
where U = Z+/1 — 2c. The Jacobian of the transformation is |J| = \/11_7 Therefore,

Elexp (cZ20(2,5))] = ;Q}P<ﬁizsﬂ.

Lemma 2. If Z ~ N(0,1), and Z and S ~ y; are independent, then for any Borel measur-
able function ¢ : R x (0,00) — R and for any c € R,

Elexp (c2)$(Z,S)] = ¢SE[¢(Z + ¢, S)]. (12)

Proof. The proof of Lemma 2 is given by Hoque and Hossain (2012).

The risk function of the B , under the loss function (1) is

R B1) = E[L(Bu )] =1~ Eles 07,

using the fact Z = /S, (B, — B,)o~" ~ N(0,1), we have (5, — §,)* = ZSZ"Z. Therefore,
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7242

R(Bl’ﬁl) =1- E[‘;#(W)} — 1 — Ele],

where a = 2)’{27;.(' Applying Lemma 1 with ¢ =1 and ¢ = —a, we get
~ 1 -1
R(py» =]1l——x—==1—-(142a) 2
(Bl Bl) \/l—f——Za ( )

Now, the risk function of the shrinkage estimator, f,(d) under the loss function (1) is
R(Bu(@.B,) = E[1 - 0@

=1—E :e_#(dﬁﬁ-(l—d)ﬁm—/jl)z}

[ _#(d(/%_ﬁ1+ﬁ1_ﬁ10)+(ﬁ10—ﬁ1))2}

|
—_
|
t
o

R L I ) ]

do Z_(l—d)Aa)Z

— 1_E_e_ﬁ\/§; Sxx ]

— ] _ o (1-d)"al’ p[ ,~ad’Z? ,(20d(1-d)A)Z]
Applying Lemma 1 with ¢ = —ad? and ¢(Z,S) = e?*(1-DNZ | ywe get

. 1 2 2ad(1-d)
() =1Lty
Fildh By V1+ 2ad2
oL ey 2ad(1 — d)A
V1 + 2ad? V1 4+ 2ad?
1 ef(1fd)2aA2(1f 20 )’

—_— 1+2ad?
V14 2ad?

where My(+) is the moment generating function. Note that, the risk function of the two
estimators is a function of A. The efficiency of the estimators change with the change

in the value of A. Under the null hypothesis, the risk function of B 1(d) is equal to

- 1 ~ 1
R d),A=0)=1——————-—2<R =1 .
Thus, at A = 0, 8,(d) is better than f,.
The risk function of ETPE under the RNL function is given by
RGBT ) = E[1 = 008
. E[e—#wlw)—mz I(Fy, < Fa)} (13)

The first expectation of the left hand side can be written as



5806 . Z. MAHDIZADEH ET AL.

E|:€ zl(ﬁ (d)— ﬁl) I(FI,V < F(x):| E[e_ﬁ(dﬁﬁ-(l—d)ﬁ]o_/jl) I(Fl)y < Fa)i|

7%(LZ7(1 d)Arr)
=Ele "\V* V& IR, <F)

2
_ o (-dlarg ledzaZZeZad(ld)AZI <(Z +4) < Fm>] ’
S/v

where  S=vS8*/c>. Applying Lemma 1 with c¢=—-ad® and ¢(ZS) =

2ad(1- d)AzI((Z+/A> < F1>, we get

E[e‘#(’“(‘”‘ﬁl) I(Fy, < Fx)}

B 2
—(1—d)*aA? ad(1—d)A <—/Z— + A)
= eiE eZ\/IJIrZadZZI % < sz
V1+2ad?> | S/v
—(1-d)*an? i ad(1-d)A 2
e i v 8 (z + V171 2adA)’ < (14 2a)E, | |
12k | S/v aadt by

Using Lemma 2 with ¢ = Zf/% and ¢(Z,S) = I((Z+ lsﬁadzA) < (14 2ad*)F,), we

obtain

Bl 08 5, | < Ry

—(1-d)aA? 7A)?
e 3Ell<(z+c+\/1+2ad A) <(1+2ad2)F“>]

= ——¢

V1T 2ad S/

—(l—d)zaA2+c2/2 7 1 2adZA 2
=¢ P (Z+ ¢+ VIt2adA) < (14 2ad®)F,

it 2ad gp

—(l—d)ZaA2+cz/2 2

= ﬁGLU((I + Zadz)Fa, (C + V 1 + ZadzA) >,
a

where G; j(q,0) is the c.d.f. of a noncentral F distribution with (i, j) degrees of freedom
and non-centrality parameter 0, and evaluated at g. The second expectation of Equation
(13) can be calculated as

N 2
Ele =P (e, > )| = Bl 1R, > B

(14)
| (218
o5 )

Using Lemma 1 with ¢ = —a and ¢(Z,S) = I( ST LY Fa), we get




COMMUNICATIONS IN STATISTICS—THEORY AND METHODS ‘ 5807

V1+2a S/v
2
1 Z ++/1-+2aA 15
- p( £+ vIT2an) > (1+2a)F_, (15)
V1+2a S/v
1
= 1 — Gy, ((1+2a)F, (14 2a)A%)).
\/1—1——211( 1, (( + a) ( + a) ))
Combining Equations (14) and (15), the risk of ﬁfPE(d) is
—(l—d)ZuA2+c2/2
- SPE e 2
R d)) =1——n——Gy \(1 +2ad®)E,, (c + V1 + 2ad2A
(5 () — 6. (c+ Vit 2adA)’) »
1

Ny (1 - Gu,((1 4 2a)F,, (1 + 2a)A2)).

Under the null hypothesis A = 0, we have

~ SPE

R(B(@),a=0)
1 1
V14+2a 1+ 2ad?

Gy, ((1 +2ad?)F,,0) + Gr.,((1+24)F,,0)

1
V14 2a

. 1 " 1
=R(B,) _WGI,V((I + 2ad?*)F,,0) + \/H—chGI’V((l + 2a)F,,0)
<R(B1)~

Therefore, at A =0 the risk of ﬁfPE(d) is less than of LS, Bl. As o —0,

Gy, ((1 +2ad?)F,,0) — 1 and Gy, ((1 + 2a)F,,0) — 1, then

~ SPE 1

which is the risk of shrinkage estimator, Bl(d) at A = 0. On the other hand, if F, — 0, then

~ SPE 1 ~
R(ﬁl (d),A = 0) — 1 —m: R(ﬁ])a

which is the risk of LS, f8,. As A — o0, Gy, (-, A) — 0 then R(BTTE(UZ)) — R(B,).

6. Simulation study

In this section, we conduct a simulation study for comparison of SPEs and the LS. The
dependent variable (y;) is computed from the equation y; = f, + f,x; + ¢, for f, =3
and 5, = 2 where x; were generated from U(0, 1) and the errors (¢;) are generated from

. ~k ~SPE
N(0, 1) for sample sizes n = 10,25,40,60. Let f5,, k =1,2,3,4,5,6 stands for f5,, , i =
1,2,3,4,5 and LS (Zil), respectively. For oo = 0.05 and y =2, repeat these tasks 10,000
times and calculate the value of Estimated Risk (ER) using the following formula
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Figure 2. Plots of estimated risk of SPEi = ﬁfE, i=1,2,3,4,5 and LS for different values of n =
10, 25,40,60, o = 0.05, and y=2.

K 1 10000( . (Bk 5 )2>
BR(F) =3 li—emlin)), 17
$1) = Too00 ; ‘ (17)

The graphs for the risk function of the estimators are plotted in Figure 2 as a function

of A. We observe from Figure 2 that the estimators fofE and B?;E have smaller risk
than other estimators in neighborhood of null hypothesis. All SPEs are better than LS
in the neighborhood of null hypothesis. Also, the risk of the estimators decreases as the
sample size increases.

For any nonzero value of A, the risk function of the SPE of f8; can be written as

RIB@) 8] = RIBu ] +g(4), (18)

where
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Figure 3. Plots of relative efficiency of ,, and f,; relative to LS for different values of «, and
n=25y=2.

g(A) = =Gy ((1+2a)F, (1+24)A%)

1
V142
ef(lfd)zaA2+cz/2

1+ 2ad

Therefore, the relative efficiency between SPE and LS can be written as

61, (1 + 2ad)E,, (c + VI T 2aA)’).

1
2

Eff[ﬁfPE(d),BJ _ R[ﬁpﬁl] _ 1 —(1+2a) (19)

R[EE @), p] 1-(+20) tg(a)

Under Hy : A = 0 we have

1 1
g(A) = \/ﬁGl’y((l + Za)Fg(,O) - WGLV((I + Zadz)Fa,O) < 0.

Therefore, at A =0 the SPE is more efficient than the LS.

~ SPE « SPE ~
Figure 3 shows the relative efficiency between f,, and f,; relative to f, against A
for selected values of o = 0.01,0.05,0.1,0.2 and n=25. The SPEs are more efficient

than f3, in neighborhood of null hypothesis (A = 0). Also, the SPE with smaller level of
significance has higher efficiency.

The effective intervals (the range of A values in which BTPE(d) is more efficient than

Bl) are summarized in Table 1 for selected values of o = 0.01,0.05,0.1,0.2, d =
0.2,0.4,0.6,0.8, n = 10,20, 30,50 and y=2.

The risk function of SPE depends on the level of significance o of the test of null
hypothesis, the departure parameter A and shape parameter of the RNL function, y. We
are interested in knowing the amount of « that is used for constructing the SPEs. For
this purpose, we consider the relative efficiency given in Equation (19) as a function of
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Table 1. A range of A values where BfPE(d) is more efficient than .

o

n d 0.01 0.05 0.1 0.2
10 0.2 1240,1.1240 0096, 1.0096 0.9455,0.9455 —0.8781,0.8781

(-1 ) (-1 ) (- ) ( )

0.4 (—1.3397,1.3397) (—1.1584,1.1584) (—1.0653,1.0653) (—0.9722,0.9722)

0.6 (—1.6087,1.6087) (—1.3235,1.3235) (—1.1919,1.1919) (—1.0667,1.0667)

0.8 (—1.9561,1.9561) (—1.5104,1.5104) (—1.3273,1.3273) (—1.1624,1.1624)

20 0.2 (—=1.0919,1.0919) (—0.9787,0.9787) (—0.9213,0.9213) (—0.8635,0.8635)
0.4 (—1.2799,1.2799) (—1.1103,1.1103) (—1.0299,1.0299) (—0.9518,0.9518)

0.6 (—1.4984,1.4984) (—1.2507,1.2507) (—1.1415,1.1415) (—1.0392,1.0392)

0.8 (—1.7555,1.7555) (—1.4024, 1.4024) (—1.2575,1.2575) (—1.1264,1.1264)

30 0.2 (—1.0805, 1.0805) (—0.9694, 0.9694) (—0.9143,0.9143) (—0.8593,0.8593)
0.4 (—1.2601,1.2601) (—1.0962,1.0962) (—1.0198,1.0198) (—0.9462,0.9462)

0.6 (—1.4648,1.4648) (—1.2301,1.2301) (—1.1275,1.1275) (—1.0316,1.0316)

0.8 (—1.7000, 1.7000) (—1.3732,1.3732) (—1.2386,1.2386) (—1.1166, 1.1166)

50 0.2 (—=1.0715,1.0715) (—0.9648,0.9648) (—0.9109,0.9109) (—0.8574,0.8574)
0.4 (—1.2446,1.2446) (—1.0895,1.0895) (—1.0151,1.0151) (—0.9435,0.9435)

0.6 (—1.4392,1.4392) (—1.2205,1.2205) (—1.1210,1.1210) (—1.0281,1.0281)

0.8 (—1.6591,1.6591) (—1.3596, 1.3596) (—1.2298,1.2298) (—1.1121,1.1121)

o and y as Eff [ﬁfPE(d); o, A}. From the analyze of the relative efficiency function of the
SPE, it is evident that the SPE does not have uniform domination over the LS for all
values of A. Also, the value of A is usually unknown for the experimenter. Thus, we
preassign a value of the relative efficiency, say Eff,, that we are willing to accept. Then,
consider the set

SPE

A, = (oc | Eff[ﬁ1 (d); AD > Eff). (20)

An estimator BfPE(d) is chosen which maximizes Eff [BTPE(d); o, A}, for all « € A, and
A. The solution of the following equation for a

max min Eff [BfPE(d); % A} — Eff,, (21)

provides the maximum and minimum relative efficiencies of the SPE relative to the LS,
for selected values of n and A. The maximum relative efficiency (Eff*) and minimum
relative efficiency (Effy) of the SPE relative to the LS, and the value of A(Aq) at which
Effy, occurs are calculated and summarized in Table 2 for selected values of n =
10,20, 30, 40, 50, o = 0.05,0.1,0.5,0.2,0.3, d=0.5 and y=2. For example, if y=2,
d=0.5 and n=20, and the experimenter wishes to achieve the minimum relative effi-
ciency 0.7711 of the SPE of f3,, the recommended value of o is 0.15. This minimum
relative efficiency attains at Ag = 2.0674.

7. A numerical example

In this section, a numerical example is provided to illustrate the proposed estimators.
Data related to the propulsion system of a rocket motor from Montgomery et al. (2012)
that the dependence of shear strength as a response variable on the age in weeks of the
batch of propellant as a predictor variable was investigated. Twenty observations on
shear strength (SS) and the age of propellant (AP) have been collected and are shown
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Table 2. Maximum and minimum efficiencies of SPE relative to the LS.

n

o 10 20 30 40 50
0.05 Eff* 2.3698 2.2678 2.2378 2.2235 2.2152
Effo 0.5860 0.6204 0.6299 0.6343 0.6369
Ao 2.6582 2.440535 2.3839 2.3578 2.342912
0.10 Eff* 1.8586 1.7875 1.7672 1.7576 1.7520
Effo 0.6854 0.7105 0.7175 0.7208 0.7227
Ao 2.3429 2.2015 2.1641 1.7576 2.1368
0.15 Eff* 1.5905 1.5401 1.5258 15191 1.5152
Effo 0.7513 0.7711 0.7766 0.7792 0.7807
Ao 2.1705 2.0674 2.0398 2.0270 2.0197
0.20 Eff* 1.4243 1.3876 13773 13725 1.3696
Effo 0.8014 0.8173 0.8218 0.8239 0.8251
Ao 2.0557 -1.9768 1.9556 1.9458 1.9401
0.30 Eff* 1.2316 1.2113 1.2057 1.2030 1.2015
Effo 0.8743 0.8847 0.8876 0.8890 0.8898
Ao —1.9081 —1.8591 1.8458 1.8397 1.8361

Table 3. Data for numerical examples.

Observation SS AP Observation SS AP

i Vi Xi i Yi Xi

1 2158.70 15.50 1 2156.20 13.00
2 1678.15 23.75 12 2399.55 3.75
3 2316.00 8.00 13 1779.82 25.00
4 2061.30 17.00 14 2336.75 9.75
5 2207.50 5.5 15 1765.30 22.00
6 1708.30 19.00 16 2053.50 18.00
7 1784.70 24.00 17 2414.40 6.00
8 2575.00 2.50 18 2200.50 12.50
9 2357.90 7.50 19 2654.20 2.00
10 2265.70 11.00 20 1753.70 21.50

in Table 3. The reviewed results confirm the appropriate assumptions of the model. The

least squares estimation of the slope parameter is Bl = —37.15. Shrinkage pretest esti-

mators BffE, i=1,2,3,4,5 are computed for selected values of guess value f3;, and
summarized in Table 4.

For example, in the first row of Table 4, we consider the estimation of 5, when the
guessed value is f§;, = —30. For testing the null hypothesis Hy : f; = —30 against H; :
p1 # —30, the test statistic is

Sxx (Bl B ﬁlo)2
s2

n

Fiis = = 6.124. (22)

Since Fy 138 > Foos,1,18 = 4.413, then the null hypothesis is rejected at the 0.05 level,

therefore the SPE is equal to BffE =B, =—37.15,i =1,...,5. If the guessed value is
pro = —35 then Fj 13 =0.5537 < Fys,1,18 = 4.413, therefore, the null hypothesis is
accepted. We obtain the value of d; =0.531 by minimizing the risk function of
SPE, d, =1 — p — value = 0.533, d3 = 1 — /p — value = 0.317, d; = E(P) = 0.422, the
mathematical expectation of the random p-value and ds = 1 — \/E(P) = 0.350. So the
SPE’s are obtained as
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Table 4. Estimated values of the slope parameter.

Bro B P P B Bre Prs

-30 —37.15 —37.15 -37.15 -37.15 -37.15 —37.15
—40 —37.15 —37.96 —38.11 —38.80 —38.94 —38.89
-35 —37.15 —36.14 —36.15 —35.68 —35.90 —35.75
—45 —37.15 —37.15 —37.15 —37.15 —37.15 —37.15

B, =0.531(—37.15) + (1 — 0.531)(—35) = —36.14,
Bk =0.533(—37.15) + (1 — 0.533)(—35) = —36.15,
BfﬁEfozm( 37.15) + (1 — 0.317)(—=35) = —35.68,
ﬁM =0.422(—37.15) + (1 — 0.422)(—35) = —35.90,

ﬂls = 0.35(—37.15) + (1 — 0.35)(—35) = —35.75.

Also, according to the max-min method if n=20 and d = 0.5 is considered, then to
achieve a relative efficiency of at least 0.7105, from Table 2, the optimal value of the
level of significance is o = 0.10. So we test the null Hy : f; = —35 against H; : f§; #
—35 at the level of significant o = 0.1. Since Fj 13 = 0.5537 < Fys,1,18 = 3.0069, then
the null hypothesis is accepted and the shrinkage pretest estimate is equal to

B5(0.5) = 0.5(=37.15) + (1 — 0.5)(—35) = —36.75.

8. Concluding remarks

In this paper, five shrinkage pretest estimators of slope parameter are proposed. The
risk functions of LS and SPEs are calculated under RNL function. A simulation study is
performed for comparing the proposed SPEs with the LS. The results show that the
SPEs outperform the LS. In comparison between the SPEs, our findings show that the

- SPE ~ SPE
estimators f§; and ff,; are better than other SPEs. Also, the range of A values in

which B?PE(d) is more efficient than 8, are calculated. The optimal value of level of sig-
nificance was obtained using max-min method in Table 2. Finally, a real data is ana-
lyzed for illustrating the results.
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