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Abstract

This research project is concerned with the development of compact local inte-
grated radial basis function (CLIRBF) stencils and its verification in the simula-
tion of Newtonian and non-Newtonian fluid flows governed by the streamfunction-
vorticity formulation. In the CLIRBF stencils, nodal values of the governing
equations at selected nodes on a stencil are also incorporated into the IRBF ap-
proximations with the help of integration constants to enhance their accuracy.
The proposed CLIRBF stencils overcome some of the weaknesses of the local
RBF stencils (low order accuracy) and the global RBF approximations (full sys-
tem matrices).

Four main research tasks are carried out

• Development of CLIRBF stencils for approximating the field variables and
their derivatives.

• Incorporation of CLIRBF stencils into two formulations for discretisation
of ordinary/partial differential equation (ODEs/PDEs), namely point col-
location and subregion collocation.

• Discretisation of fourth-order elliptic ODEs/PDEs, sets of two second-order
PDEs representing fourth-order PDEs, and second-order ODEs/PDEs.

• Discretisation of transient problems, where time derivatives are approxi-
mated using the Crank-Nicolson/Adams Bashforth scheme.

The proposed CLIRBF stencils are verified in a wide range of problems: (i)
ODEs/PDEs with analytic solutions; (ii) heat transfer problems; (iii) Newto-
nian fluid flows (Burger’s equations, lid-driven cavity flows, natural convection in
rectangular and nonrectangular domains); and viscoelastic fluid flows (Poiseuille
flows and corrugated tube flows of Oldroyd-B fluid).

Numerical verifications show that (i) compact local forms are generally much
more accurate than local forms and much more efficient than global forms; and
(ii) the CLIRBF-based point/subregion collocation methods yield highly accurate
results using relatively coarse grids.
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Chapter 1

Introduction

This chapter aims to give an introduction to the present thesis. It starts with the
motivation of the proposed research. Then, brief overviews of the basic equations
governing the motion of Newtonian and non-Newtonian fluids, and numerical
schemes used for the simulation of fluid flows are given. Next, we review inte-
grated radial basis functions (IRBF), which are used to construct the proposed
compact stencils, and present the main objectives of the research. The chapter
will end with an outline of the thesis.

1.1 Motivation

Computational Fluid Dynamics (CFD) deals with the computer simulation of
fluid flows, where the motion of a fluid is described mathematically, e.g., in the
form of ODEs and PDEs. A physical/engineering process can be investigated
theoretically, experimentally and by computer simulations. Doing experiments
and measurements is a traditional approach, and it has been widely used with
varying degrees of success. However, this approach suffers from time consuming,
high cost, large measurement error, etc. and has limitations - for examples, the
size of problems should be small and the obtained information is rather limited.
These drawbacks are eliminated in computer simulations (e.g. the problem can
now be of small or large size, etc.). Since the late 1960s, the development and
application of CFD to all aspects of fluid dynamics have been growing massively
(Moin and Kim, 1997). The quality of simulation results depends on the accuracy
of the numerical method used. There are numerous numerical methods developed,
which can be classified into low order and high order methods, or finite-element-
based and meshless/grid-based methods. Each group has its own strengths and
weaknesses. High-order methods have the ability to produce accurate results
using relatively coarse discretisations, while low-order methods result in sparse
system matrices that can be solved efficiently. Meshless/grid-based methods are
much more efficient in modelling complex geometries than finite-element-based
methods.

Radial basis function networks (RBFNs) have emerged as a powerful tool in nu-
merical analysis. It has been proved that RBFNs have an universal approximation
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capability (Park and Sandberg, 1991). Originally, RBFNs were used for function
approximation and classification. Then, RBFNs were extended to a variety of ap-
plications, e.g. the solution of ordinary differential equations/ partial differential
equations (ODEs/PDEs) (Kansa and Hon, 2000). They have been used with suc-
cess in solving heat transfer problems (Zerroukat et al., 1998), fluid flow problems
(Sadat and Couturier, 2000; Kosec and Sarler, 2011), time-dependent problems
(Kansa et al., 2004), fluid-structure interaction analyses (Ngo-Cong et al., 2012b),
Darcy flows (Kosec and Sarler, 2008), hyperbolic problems (Islam et al., 2013),
etc. - this list is not meant to be exhaustive. RBFNs are a flexible simulation
method as they can be used with Cartesian grids or meshless discretisations, and
employed in local or global forms derived from the differentiation or integration
process. We will develop approximation stencils based on RBFNs for fluid flows,
where the benefits of low cost (by means of Cartesian grids), sparse system matri-
ces (using small stencils) and high order accuracy (integrated RBFs and compact
form) of the existing numerical schemes are exploited.

1.2 Governing equations

1.2.1 Newtonian and non-Newtonian fluids

Fluids are substances whose deformation easily occurs under external shear forces.
Indeed, applying a very small force is able to result in the fluid motion. Fluids
can be recognised everywhere in human life, e.g. breathing, blood, wind, rain,
etc., and also in many industrial disciplines, such as aerospace, automotive, food
processing and chemical processing. An understanding of the behaviour of fluids
allows us to control effectively their effects in flow processes.

Fluids can be divided into Newtonian and non-Newtonian. If the behaviour of
a fluid is linear, one has a Newtonian fluid; otherwise, a non-Newtonian fluid.
Viscoelastic is the term used to describe the coexistence of elastic and viscous
properties in a fluid. Viscoelastic fluid is an example of non-Newtonian fluids.
Because of the mixture, viscoelastic fluids exhibit many interesting phenomena,
which are totally different from those associated with Newtonian fluids.

There are different fluid flow regimes, ranging from creeping, through laminar to
turbulent. The laminar regime is characterised by the smooth motion of a fluid,
while the turbulent regime tends to produce chaotic eddies, vortices and other
flow instabilities. At speeds that are low enough, the creeping flow is observed.
As the speed is increased, the flow is then said to be laminar. Further increases
in speed may cause the instability in the fluid, which corresponds to a turbulent
regime. A dimensionless quantity, called the Reynolds number Re, can be used
to characterise these regimes. Creeping flow is the flow at Re = 0, laminar flow
occurs at low Reynolds numbers, and turbulent flow occurs at high Reynolds
numbers. When dealing with the flow at high Reynolds numbers, the non-linear
term in the governing equation will be dominant, which makes the numerical
solution difficult to converge, and special care is needed.

It has been recognised that the simulation of non-Newtonian fluid flows is much
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more challenging than that of Newtonian fluid flows (Keunings, 1990; Walters
and Webster, 2003). Constitutive equations relating stress to rate of strain are
nonlinear for non-Newtonian fluids, and consequently, their solutions are obtained
normally in a more complex manner than those associated with the Newtonian
case (Walters and Webster, 2003; Barnes et al., 1989; Macosko, 1994; Grillet et al.,
1999). For viscoelatic fluids, a dimensionless quantity, called the Weissenberg
number We, is used to measure the relative importance of the elastic and viscous
effects.

1.2.2 Conservation laws

The motion of any fluid is described by the equations of conservation of mass, mo-
mentum and energy. Consider an incompressible fluid, whose density is constant.
The conservation of mass can be described as

∇ · v = 0, x ∈ Ω, (1.1)

where v is the velocity vector, x the position vector, and Ω the domain of interest.

The conservation of momentum (equation of motion) is given by

ρ
Dv

Dt
= (∇ · σ) + ρg, x ∈ Ω, (1.2)

where t is the time, ρ the density, σ the total stress tensor, g the force per unit
mass due to gravity, and D/Dt the material or substantial derivative (Tanner,
2000; Reddy and Gartling, 1994),

D

Dt
=

∂

∂t
+ v · ∇ (1.3)

The total stress tensor σ for a fluid at rest is σ = −pI, in which p is called the
hydrostatic pressure, and I is the identity tensor. When dealing with fluids in
motion, the total stress tensor is decomposed into two parts: σ = −pI+τ , where
τ is the extra stress tensor. Equation (1.2) can thus be rewritten as

ρ
Dv

Dt
= −∇p+ (∇ · τ ) + ρg, x ∈ Ω. (1.4)

For simplicity, without loss of generality, one may combine the pressure and
gravity terms into the so-called “modified pressure”: ∇P = ∇p− ρg.

1.2.3 Constitutive equations

The constitutive equation describes the relation between force and deformation
in fluid. Constitutive equations are usually written in terms of extra stress tensor
τ and strain rate tensor. The simplest constitutive equation is in the case of
Newtonian fluids

τ = 2η0D, (1.5)
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where η0 is the constant viscosity, and 2D is the rate of deformation tensor,
defined as 2D =

(
∇vT +∇v

)
.

Many differential constitutive models have been developed. Below is a brief review
of some constitutive models.

Upper-Convected Maxwell (UCM) model

τ + λ1
∇
τ = 2η0D, (1.6)

where λ1 is the characteristic relaxation time of the fluid and the upper-convected

derivative
∇

[] is defined as

∇

[] =
∂[]

∂t
+ v · ∇[]− (∇v)T · []− [] · ∇v. (1.7)

Oldroyd-B model

τ + λ1
∇
τ = 2η0

(
D+ λ2

∇

D

)
, (1.8)

where λ2 is the characteristic retardation time of the fluid. Let α be the ratio of
the retardation time to the relaxation time (α = λ2/λ1). The Oldroyd-B model
will reduce to UCM when α = 0.

The extra stress tensor τ can also be decomposed into two components, namely
solvent and polymeric contributions

τ = 2ηsD+ τ v, (1.9)

where ηs is the solvent viscosity and τ v is the elastic stress

τ v + λ1
∇
τ v = 2ηpD, (1.10)

in which ηp is the polymeric viscosity. Note that η0 = ηs + ηp, ηs = αη0, and
ηp = (1 − α)η0. If the value of ηs in equation (1.9) is set to zero (i.e. τ = τ v),
the Oldroyd-B model reduces to a UCM model. Further details can be found in
(Covas et al., 1995) and (Phan-Thien and Tanner, 1977).

Giesekus-Leonov model

τ v + λ1
∇
τ v −

λ1
2ηp

{τ v · τ v} = 2ηpD. (1.11)

Phan-Thien Tanner (PTT) model 1

exp

(
λ1ε

ηp
tr(τ v)

)
τ v + λ1

∇
τ v +ξλ1{D · τ v + τ v ·D} = 2ηpD, (1.12)

where ε and ξ are the material parameters, and ‘tr’ denotes the trace operation.

Phan-Thien Tanner (PTT) model 2

(
1 +

λ1ε

ηp
tr(τ v)

)
τ v + λ1

∇
τ v +ξλ1{D · τ v + τ v ·D} = 2ηpD. (1.13)
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In this project, we restrict our attention to Newtonian fluids and Oldroyd-B
fluids in two dimensional flows. There are three popular forms of the governing
equations, based either on velocity-pressure, or streamfunction-vorticity (ψ − ω)
or streamfunction (ψ). Advantages of the (ψ − ω) formulation over the (v − p)
one are that (i) the number of equations to be solved are reduced due to the
elimination of the pressure variable, and thus reducing the computational effort;
and (ii) the continuity equation is automatically satisfied. However, one needs
to derive a boundary condition for ω from the given boundary conditions, and
also to compute the velocities and pressure after solving the system of discrete
equations. Advantages of the (ψ) formulation over the (ψ−ω) one are that (i) the
number of equations are further reduced; and (ii) there is no intermediate variable.
However, one needs to deal with the approximation of high-order derivatives and
the imposition of double boundary conditions. Further details can be found in
(Quartapelle, 1993). Some detailed forms of the governing equations are given
below, with our focus on the streamfunction-vorticity formulation which is mainly
used in the following chapters.

Newtonian fluids:

In Cartesian coordinates, the governing equations for Newtonian fluids take the
form

∂vx
∂x

+
∂vy
∂y

= 0, (1.14)

ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

)
= −∂P

∂x
+ η0

(
∂2vx
∂x2

+
∂2vx
∂y2

)
, (1.15)

ρ

(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

)
= −∂P

∂y
+ η0

(
∂2vy
∂x2

+
∂2vy
∂y2

)
. (1.16)

By introducing

x∗ =
x

L
, y∗ =

y

L
, t∗ =

t

L/V
,

p∗ =
P

ρV 2
, v∗x =

vx
V
, v∗y =

vy
V
,

where L and V are the flow characteristic length and velocity, respectively, the
governing equations in dimensionless form are obtained

∂v∗x
∂x∗

+
∂v∗y
∂y∗

= 0, (1.17)

∂v∗x
∂t∗

+ v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

= −∂p
∗

∂x∗
+

1

Re

(
∂2v∗x
∂x∗2

+
∂2v∗x
∂y∗2

)
, (1.18)

∂v∗y
∂t∗

+ v∗x
∂v∗y
∂x∗

+ v∗y
∂v∗y
∂y∗

= −∂p
∗

∂y∗
+

1

Re

(
∂2v∗y
∂x∗2

+
∂2v∗y
∂y∗2

)
, (1.19)

in which Re = ρV L/η0 is the Reynolds number.

They can be reformulated to produce the following streamfunction-vorticity for-
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mulation

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (1.20)

∂ω

∂t
+

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (1.21)

where the streamfunction ψ(x, y, t) is defined with the property: vx =
∂ψ

∂y
and

vy = −∂ψ
∂x

, and ω is the vorticity, ω =
∂vy
∂x

− ∂vx
∂y

.

In cylindrical coordinates (axi-symmetric), the governing equations for Newtonian
fluids are of the form

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0, (1.22)

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

)
= −∂p

∂r
+ η0

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

]
, (1.23)

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

)
= −∂p

∂z
+ η0

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

]
. (1.24)

Their dimensionless form is

1

r∗
∂

∂r∗
(r∗v∗r ) +

∂v∗z
∂z∗

= 0, (1.25)

πRe

2

(
∂v∗r
∂t∗

+ v∗r
∂v∗r
∂r∗

+ v∗z
∂v∗r
∂z∗

)
= −∂p

∗

∂r∗
+

[
∂

∂r∗

(
1

r∗
∂

∂r∗
(r∗v∗r)

)
+
∂2v∗r
∂z∗2

]
,

(1.26)

πRe

2

(
∂v∗r
∂t∗

+ v∗r
∂v∗z
∂r∗

+ v∗z
∂v∗z
∂z∗

)
= −∂p

∗

∂z∗
+

[
1

r∗
∂

∂r∗

(
r∗
∂v∗z
∂r∗

)
+
∂2v∗z
∂z∗2

]
. (1.27)

where

r∗ =
r

R
, z∗ =

z

R
, t∗ =

t

Q/R3
,

p∗ =
P

η0Q/R3
, v∗r =

vr
Q/R2

, v∗z =
vz

Q/R2
,

and Re =
2ρQ

πRη0
is the Reynolds number.

The streamfunction-vorticity formulation in cylindrical coordinates becomes

1

r

(
∂2ψ

∂r2
+
∂2ψ

∂z2
− 1

r

∂ψ

∂r

)
= −ω, (1.28)

πRe

2

(
∂ω

∂t
+ vz

∂ω

∂z
+ vr

∂ω

∂r
− vr

r
ω

)
=
∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2
+
∂2ω

∂z2
, (1.29)

where vr = −1

r

∂ψ

∂z
and vz =

1

r

∂ψ

∂r
, and ω =

∂vr
∂z

− ∂vz
∂r

.

Hereafter, to simplify the notation, we will drop the superscript ‘∗’ in the dimen-
sionless equations.
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Oldroyd-B fluids:

In Cartesian coordinates, the dimensionless form of the governing equations for
Oldroyd-B fluids is

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω = 0, (1.30)

Re

(
∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y

)
=

(
∂2τxy
∂x2

− ∂2τxy
∂y2

− ∂2 (τxx − τyy)

∂x∂y

)

+ α

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (1.31)

τxx +We

(
∂τxx
∂t

+ vx
∂τxx
∂x

+ vy
∂τxx
∂y

− 2
∂vx
∂x

τxx − 2
∂vx
∂y

τxy

)

= 2(1− α)
∂vx
∂x

, (1.32)

τxy +We

(
∂τxy
∂t

+ vx
∂τxy
∂x

+ vy
∂τxy
∂y

− ∂vx
∂y

τyy −
∂vy
∂x

τxx

)

= (1− α)

(
∂vx
∂y

+
∂vy
∂x

)
, (1.33)

τyy +We

(
∂τyy
∂t

+ vx
∂τyy
∂x

+ vy
∂τyy
∂y

− 2
∂vy
∂x

τxy − 2
∂vy
∂y

τyy

)

= 2(1− α)
∂vy
∂y

, (1.34)

where Re =
ρV L

η0
is the Reynolds number,We = λ1

V

L
is the Weissenberg number,

and L and V are the flow characteristic length and velocity, respectively.

In cylindrical coordinates, the dimensionless form of the governing equations for
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Oldroyd-B fluids, flowing in a tube with circular cross sections, is

1

r

(
∂2ψ

∂r2
+
∂2ψ

∂z2
− 1

r

∂ψ

∂r

)
+ ω = 0, (1.35)

πRe

2

(
∂ω

∂t
+ vz

∂ω

∂z
+ vr

∂ω

∂r
− vr

r
ω

)
= α

(
∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2
+
∂2ω

∂z2

)

+
∂2τrr
∂r∂z

− ∂2τrz
∂r2

+
∂2τrz
∂z2

+
1

r

(
∂τrr
∂z

− ∂τθθ
∂z

)
− ∂2τzz
∂r∂z

+
1

r2
τrz −

1

r

∂τrz
∂r

, (1.36)

τrr +We

(
∂τrr
∂t

+ vr
∂τrr
∂r

+ vz
∂τrr
∂z

− 2
∂vr
∂r

τrr − 2
∂vr
∂z

τrz

)

= 2(1− α)
∂vr
∂r

, (1.37)

τrz +We

(
∂τrz
∂t

+ vr
∂τrz
∂r

+ vz
∂τrz
∂z

+
vr
r
τrz −

∂vz
∂r

τrr −
∂vr
∂z

τzz

)

= (1− α)

(
∂vr
∂z

+
∂vz
∂r

)
, (1.38)

τzz +We

(
∂τzz
∂t

+ vr
∂τzz
∂r

+ vz
∂τzz
∂z

− 2
∂vz
∂r

τrz − 2
∂vz
∂z

τzz

)

= 2(1− α)
∂vz
∂z

, (1.39)

τθθ +We

(
∂τθθ
∂t

+ vr
∂τθθ
∂r

+ vz
∂τθθ
∂z

− 2
vr
r
τθθ

)
= 2(1− α)

vr
r
, (1.40)

where Re =
2ρQ

πRη0
andWe = λ1

Q

R3
are the Reynolds number and theWeissenberg

number, respectively, R is the radius of the tube and Q is the flow rate.

1.3 Conventional simulation methods

Solving the governing equations in fluid mechanics is very challenging. Only a few
simple fluid flows can be solved analytically/exactly. Using discretisation methods
appears to be a practical way to obtain a solution. Techniques used include finite-
difference methods (FDMs), finite-element methods (FEMs), boundary-element
methods (BEMs), finite-volume methods (FVMs), spectral methods (SMs), differ-
ential quadrature methods (DQMs), and radial basis function networks (RBFNs).
FDMs are considered as the oldest discretisation scheme. They were applied to
simulate fluid flows as early as 1933 (Thom, 1933). The methods are easy to set
up and produce sparse system matrices (Conte and Dames, 1958; Smith, 1985;
Gupta and Manohar, 1979; Bjrstad, 1983). The main drawback of FDMs lies
in the handling of non-rectangular domains. If one uses “irregular” boundary
nodes in the FD formulations, it will significantly deteriorate the accuracy of
their approximations (Osswald and Hernandez-Ortiz, 2006). If one uses coordi-
nate transformations to obtain a computational domain of rectangular shape, the
solution procedure becomes complicated - it is impossible to conduct it for flows
with free surfaces or similar complex geometries. FDM simulations reported in
the literature are mainly concerned with Newtonian fluids. There are relatively
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few FDM publications in Computational Rheology, where only flows with simple
geometries are considered. On the other hand, FEMs, BEMs and FVMs can
accurately handle problems with complex geometries. For these techniques, gen-
erating a mesh and re-meshing are known to be a time-consuming process (Pastor
et al., 1991) and the solution appears to converge very slowly in high gradient
regions (Emdadi et al., 2008). FEMs have been used in solving transient prob-
lems (Bishko et al., 1999; Wapperom et al., 2000), and non-Newtonian fluid flows
(Rasmussen, 1999; Yurun and Crochet, 1995; Fan et al., 1999; Sun et al., 1999).
In FVMs, physical quantities such as mass, momentum and energy are exactly
conserved over any control volume, and thus over the whole domain of interest.
Therefore, even with a coarse grid, FVMs can give a solution that exhibits the ex-
act integral balance (Eymard et al., 2000). BEMs can be used to solve linear and
nonlinear problems, where one can avoid taking the variables at interior nodes as
the unknowns in the discretisation system. This feature comes straightforwardly
for solving linear problems, but for non-linear problems, to make it occur, some
extra treatments need be implemented. BEMs generate a full matrix and do not
work well for highly nonlinear flows (Tanner and Xue, 2002).

Based on their order of convergence, numerical methods can be classified into
low order and high order. Low-order methods are referred to as methods of first
and second orders of convergence, e.g. traditional FDMs, FEMs, FVMs, and
BEMs. Their approximations are widely based on linear functions. The main
advantages of these methods are their simplicity, which results in fast implemen-
tation, and robustness (the robustness means that one can always get a solution,
even though it may not be very accurate). However, one needs to use a large
number of grid points to represent the approximate solution and thus requiring
large computational resources. Most of problems in practice are large scale; low
rates of convergence may hinder low-order methods from being useful.

Numerical methods with accuracy better than O(h2) are called high-order meth-
ods. High-order methods have been increasingly used in CFD to effectively re-
solve complex flow features. Apart from the well-known spectral methods, many
other high-order methods have been proposed - examples include DQMs, compact
FD schemes (Lele, 1992), spectral volume (SV) methods (Wang, 2002), spectral
difference (SD) methods (Liu et al., 2006), weighted essentially non-oscillatory
(WENO) schemes (Liu et al., 1994), discontinuous Galerkin method (Persson,
2013) and RBFNs (Kansa, 1990; Haykin, 1999). These methods are capable
of providing high accuracy with relatively coarse grids. Therefore, to obtain a
similar level of accuracy, high-order methods normally require much less compu-
tational cost than low-order methods. On the other hand, high order methods
are often complicated to understand and code, and are less robust in compar-
ison with low-order methods. Applications of high-order methods for flows in
complex geometries are still limited. Take SMs, which have become more pop-
ular in the computation of continuum mechanics problems in recent years, for
example. SMs have the ability to provide an exponential rate of convergence in
solving problems whose solutions are sufficiently smooth and their domains are of
rectangular shape. Pilitsis and Beris (Pilitsis and Beris, 1989) have developed a
mixed pseudospectral finite difference method for the solution of non-Newtonian
fluid flows. In (Momeni-Masuleh and Phillips, 2004), the spectral technique has
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been presented for the flow of viscoelastic fluids through an undulating tube in
the transformed coordinates system, and highly accurate results are obtained.
There are several ways proposed in the literature to handle irregularly shaped
domains, including domain decompositions, coordinate transformations, fictitious
domains and meshless approximations (Bueno-Orovio et al., 2006). It is noted
that the access of nodes in meshless approximations and Cartesian-grid-based
approximations are much faster than the node access in approximations based on
unstructured meshes (Liu et al., 2006).

Numerical methods can also be classified into global and local. For the former, the
value of a derivative at a point is computed from the values of the field variable
at all nodes in the domain. Such approximations can result in better accuracy,
as shown in spectral methods, DQMs and RBFNs. However, global methods
are geometrically less flexible and more complicated to implement. They provide
dense matrices whose condition numbers grow rapidly as the number of nodes are
increased. Handling the fully populated matrices becomes very costly in the case
of large scale problems. For local methods, such as FDMs, FEMs and FVMs,
the approximation of a derivative at a point involves the neighbouring nodal
points only. They can provide resultant sparse coefficient matrices, and thus,
their solution are more efficient. Local methods, on the other hand, converge
slowly with grid/mesh refinement and cannot yield highly accurate results. Many
efforts have been put in the improvement of accuracy for local methods. Using
local approximations compactly is an attractive prospect.

1.4 Integrated radial basis function methods

Radial basis function networks are a powerful concept, which is essential to this
project. Derived from the biological sciences, they can be considered as univer-
sal approximation schemes (Haykin, 1999). The application of RBFNs for the
numerical solution of partial differential equations (PDEs) was first reported by
Kansa (1990) (Kansa, 1990). A function f(x) can be represented by RBFs as

f(x) =

N∑

i=1

wigi(x), (1.41)

where x is the position vector, N is the number of RBFs, {wi}Ni=1 is the set of

network weights, and {gi(x)}Ni=1 is the set of RBFs. The RBFs can be written in
a general form as gi(x) = gi (‖x− ci‖), where ‖ · ‖ denotes the Euclidean norm
and {ci}Ni=1 is a set of the RBF centers. There are some common types of RBFs,
including

• Multiquadrics function (MQ)

gi(x) =
√
r2 + a2i , ai > 0, (1.42)

• Inverse multiquadrics function

gi(x) =
1√

r2 + a2i
, ai > 0, (1.43)
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• Gaussians function

gi(x) = exp

(
−r

2

a2i

)
, ai > 0, (1.44)

where ai is usually referred to as the width of the ith basis function and r =
‖x− ci‖ =

√
(x− ci) · (x− ci).

Some RBFs, such as the above mentioned, are shown to possess spectral conver-
gence rate. Thus, they fall into a class of high order methods. RBF collocation
methods need only a set of discrete points – instead of a set of elements – through-
out a volume to approximate the field variables. Thus, they can be regarded as
truly meshless methods. Originally, RBF approximations were constructed glob-
ally. Advantages of global RBF schemes include (i) fast convergence (spectral
accuracy for some RBFs such as the multiquadric and Gaussian functions); (ii)
meshless nature and (iii) simple implementation. Unlike other high order meth-
ods, RBFNs are capable of handling domains with non-rectangular boundaries.
To overcome the problem of fully populated matrices and their high condition
numbers of global methods, local RBF methods were developed (Franke, 1982;
Shu et al., 2003; Kosec and Sarler, 2008; Bourantas et al., 2010). A much larger
number of nodes can be now employed; but, their solution accuracy is significantly
reduced (Lee et al., 2003). Compact local RBF schemes have been implemented,
e.g. (Mai-Duy and Tran-Cong, 2011), to enhance the numerical accuracy of local
forms.

RBF approximations can be obtained from the differentiation process (differenti-
ated RBFs (DRBFs)) or the integration process (integrated RBFs (IRBFs)). In
DRBFs, the function to be approximated is first decomposed into RBFs, and its
derivatives are then calculated by differentiating RBFs

u(x) =
N∑

i=1

wigi(x), (1.45)

∂ku(x)

∂ηk
=

N∑

i=1

w
[η]
i h

(k)
[η]i(x), (1.46)

where η denotes a component of the position vector x (e.g. η can be x for 1D
problems, and x or y for 2D problems), superscript (k) denotes the order of the

derivatives of u, and h
(k)
[η]i(x) =

∂kgi(x)

∂ηk
.

In IRBFs (Mai-Duy and Tran-Cong, 2001), highest-order derivative(s) in the
ODE/PDE are approximated by RBFs, and lower-order derivatives and the de-
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pendent variable itself are then obtained by integrating RBFs

∂ku(x)

∂ηk
=

N∑

i=1

w
[η]
i gi(x) =

N∑

i=1

w
[η]
i I

(k)
[η]i(x), (1.47)

∂k−1u(x)

∂ηk−1
=

N∑

i=1

w
[η]
i I

(k−1)
[η]i (x) + C

[η]
1 , (1.48)

· · ·

u(x) =

N∑

i=1

w
[η]
i I

(0)
[η]i(x) +

ηk−1

(k − 1)!
C

[η]
1 +

ηk−2

(k − 2)!
C

[η]
2 + · · ·+ C

[η]
k , (1.49)

where I
(k−1)
[η]i (x) =

∫
I
(k)
[η]i(x)dη, · · · , I

(0)
[η]i(x) =

∫
I
(1)
[η]i(x)dη; and C

[η]
1 , C

[η]
2 , · · · , C [η]

k

are the “constants” of integration, which will be constants for 1D problems, func-
tions in one variable for 2D problems, and in two variables for 3D problems.
These functions are unknown and can be approximated as linear combinations of
basis functions.

The purposes of using integration (a smoothing operator) to construct the approx-
imants are to avoid the reduction in convergence rate caused by differentiation
and to improve the numerical stability of a discrete solution. It has been found
that the integration constants are very helpful in the implementation of multiple
boundary conditions (Mai-Duy, 2005; Mai-Duy and Tanner, 2005b; Mai-Duy and
Tran-Cong, 2006) and non-overlapping domain decompositions (Mai-Duy and
Tran-Cong, 2008b). Numerical results showed that IRBFs yield better accuracy
than DRBFs (Mai-Duy and Tran-Cong, 2001, 2003; Mai-Duy, 2005; Mai-Duy and
Tanner, 2005b).

1.5 Objectives of the research

This research project is concerned with the development of powerful approxima-
tion stencils for the discretisation of partial differential equations (PDEs) gov-
erning the motion of fluids. The proposed stencils are based on several recent
advances in computational fluid dynamics and computational mechanics, includ-
ing the integral approximation formulation, radial basis functions (RBFs) and
compact approximations. The main objectives of this research are

• to build up compact local integrated RBF (CLIRBF) stencils for the ap-
proximation of a function and its derivatives up to fourth order

• to introduce CLIRBF stencils into the point collocation formulation for the
discretisation of second-order elliptic equations and biharmonic equations

• to introduce CLIRBF stencils into the sub-region collocation formulation
for the discretisation of second-order elliptic equations

• to build up a numerical procedure based on CLIRBF stencils and point
collocation for the simulation of Newtonian fluid flows

• to build up a numerical procedure based on CLIRBF stencils and sub-region
collocation for the simulation of Newtonian fluid flows



1.6. Outline of the Thesis 13

• to build up a numerical procedure based on CLIRBF stencils and point
collocation for the simulation of viscoelastic fluid flows

1.6 Outline of the Thesis

The remaining of the thesis is organised as follows.

• Chapter 2 deals with the development of several CLIRBF stencils for solving
fourth-order ODEs and PDEs in point collocation. Test problems, governed
by the biharmonic equation and its equivalent set of two Poisson equations,
are considered.

• Chapter 3 deals with the incorporation of CLIRBF stencils into the point-
collocation formulation for the simulation of flows of a Newtonian fluid.
Test problems, whose solutions involve very steep gradients, are considered.
Governing equations employed are the convection-diffusion equation and the
streamfunction-vorticity formulation.

• Chapter 4 deals with the incorporation of CLIRBF stencils into the subregion-
collocation formulation for the simulation of flows of a Newtonian fluid.
Two numerical integration schemes to evaluate volume integrals, namely
the middle point rule and 3-point Gaussian quadrature rule, are employed.
Several test problems including natural convection in an annulus, where the
governing equations are taken in the streamfunction-vorticity formulation,
are considered.

• Chapter 5 is concerned with the application of CLIRBF stencils for simu-
lating steady state viscoelastic flows. Poiseuille flows and corrugated tube
flows of Oldroyd-B fluids are considered.

• Chapter 6 is concerned with the use of CLIRBF stencils in transient prob-
lems. Hyperbolic and parabolic equations are considered.

• Chapter 7 concludes the thesis with a summary and possible directions for
future research.



Chapter 2

Compact local IRBF stencils and point
collocation for high-order differential
problems

Our first concern is about high-order ODEs/PDEs, which govern many applica-
tions in engineering. New compact local stencils based on IRBFs for the discreti-
sation of fourth-order ODEs and PDEs will be presented in this chapter. Five
types of compact stencils - 3-node and 5-node for 1D problems and 5 × 5-node,
13-node and 3×3 -node for 2D problems - are implemented. In the case of 3-node
stencil and 3 × 3-node stencil, nodal values of the first derivative(s) of the field
variable are treated as additional unknowns (i.e. 2 unknowns per node for 3-node
stencil and 3 unknowns per node for 3×3-node stencil). The integration constants
arising from the construction of IRBFs are exploited to incorporate into the local
IRBF approximations (i) values of the governing equation (GE) at selected nodes
for the case of 5-, 5 × 5- and 13-node stencils, and (ii) not only nodal values of
the governing equation but also nodal values of the first derivative(s) for the case
of 3-node stencil and 3×3-node stencil. There are no special treatments required
for grid nodes near the boundary for 3-node stencil and 3 × 3-node stencil. The
proposed stencils, which lead to sparse system matrices, are numerically verified
through the solution of several test problems.

2.1 Introduction

Fourth-order differential problems occur widely in practice. Typical examples
include the deformation of thin plates, the equilibrium of an elastic rectangular
plate, and the solution of Stokes flow of a viscous fluid; they are governed by the
biharmonic equation. Various numerical methods have been developed for solv-
ing the fourth-order problems, such as finite-difference-based methods (Conte and
Dames, 1958; Gupta and Manohar, 1979; Bjrstad, 1983; Altas et al., 1998), spec-
tral methods (Bernardi et al., 1992; Heinrichs, 1992; Bialecki and Karageorghis,
2010), global and local RBF methods (Chantasiriwan, 2007), and global inte-
grated RBFs/Chebyshev polynomials methods (Mai-Duy and Tanner, 2005b;
Mai-Duy and Tran-Cong, 2006; Mai-Duy and Tanner, 2007; Mai-Duy et al.,
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2009b), and Galerkin schemes (Mai-Duy et al., 2009a). Global RBF methods
are more accurate but less efficient than local RBF methods (please see Section
1.4 for a detailed discussion).

This chapter is concerned with the development of local IRBF stencils in com-
pact form for the solution of fourth-order ODEs and PDEs. The following two
strategies (e.g. (Stephenson, 1984; Altas et al., 1998)) are studied in the context
of local compact IRBF stencils.

The first strategy employs relatively large stencils (i.e. 5 nodes for 1D fourth-
order problems, and 13 nodes or 5× 5 nodes for 2D fourth-order problems). For
this approach, only nodal values of the field variable on a stencil are treated as
unknowns. It is noted that, when compared with second-order problems, there
are more nodes used on a stencil (i.e. 2 additional nodes for 1D problems, and 4
and 16 additional nodes for 2D problems).

The second strategy employs relatively small stencils (i.e. 3 nodes for 1D problems
and 3 × 3 nodes for 2D problems). For this approach, not only nodal values
of the field variable on a stencil but also nodal values of its first derivative at
selected nodes are treated as unknowns. Advantages of this strategy include (i)
the number of nodes employed here does not increase when compared with the
case of second-order problems; (ii) there are no special treatments required for
grid nodes near the boundary; (iii) boundary derivative values can be imposed
easily and accurately; and (iv) first derivative values are obtained directly from
the final system of algebraic equations.

Furthermore, in both strategies, we also incorporate nodal values of the governing
equation at selected nodes on a stencil into the IRBF approximations. Numerical
results will show that such an incorporation can significantly enhance the solution
accuracy.

The remainder of the chapter is organised as follows. Section 2 is a brief review
of IRBFs. The proposed compact local stencils based on IRBFs are presented
for 1D problems in Section 3 and for 2D problems in Section 4. Numerical
examples, including the simulation of lid-driven cavity flows, are given in Section
5 to demonstrate the attractiveness of the proposed stencils. Section 6 concludes
the chapter.

2.2 Brief review of integrated RBFs

Consider a continuous function u(x) where x is the position vector. Such a
function can be approximated using IRBF schemes of second and fourth orders.
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2.2.1 Second-order integrated RBF scheme

In this scheme, the second-order derivatives of the function u are decomposed
into a set of RBFs

∂2u(x)

∂η2
=

N∑

i=1

w
[η]
i I

(2)
[η]i(x), (2.1)

where η denotes a component of the position vector x (e.g. η can be x for 1D
problems, and x or y for 2D problems), {wi}Ni=1 is the set of RBF coefficients

which are unknown, and
{
I
(2)
i (x)

}N

i=1
is the set of RBFs. Expression (2.1) is

then integrated to obtain approximate expressions for lower order derivatives
and the function itself as follows.

∂u(x)

∂η
=

N∑

i=1

w
[η]
i I

(1)
[η]i(x) + C1, (2.2)

u(x) =

N∑

i=1

w
[η]
i I

(0)
[η]i(x) + ηC1 + C2, (2.3)

where C1 and C2 are “constants of integration” with respect to η, which are to
be treated as the additional RBF coefficients. In (2.1)-(2.3), the superscript (.)
is used to indicate the associated derivative order.

Collocating (2.1)-(2.3) at a set of nodal points {xi}Ni=1 yields

∂̂2u

∂η2
= H(2)

η ŵη, (2.4)

∂̂u

∂η
= H(1)

η ŵη, (2.5)

û = H(0)
η ŵη, (2.6)

where the notation ‘̂ ’ is used to denote a vector, H(.) is the RBF coefficient
matrix in the RBF space and ŵη is the RBF vector of coefficients, including the
integration constants.

2.2.2 Fourth-order integrated RBF scheme

In this scheme, the fourth-order derivatives of the function u are decomposed into
a set of RBFs as

∂4u(x)

∂η4
=

N∑

i=1

w
[η]
i I

(4)
[η]i(x). (2.7)

Approximate expressions for lower order derivatives and the function itself are
then obtained through integration as
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∂3u(x)

∂η3
=

N∑

i=1

w
[η]
i I

(3)
[η]i(x) + C1, (2.8)

∂2u(x)

∂η2
=

N∑

i=1

w
[η]
i I

(2)
[η]i(x) + ηC1 + C2, (2.9)

∂u(x)

∂η
=

N∑

i=1

w
[η]
i I

(1)
[η]i(x) +

η2

2
C1 + ηC2 + C3, (2.10)

u(x) =

N∑

i=1

w
[η]
i I

(0)
[η]i(x) +

η3

6
C1 +

η2

2
C2 + ηC3 + C4. (2.11)

Collocating (2.7)-(2.11) at a set of nodal points {xi}Ni=1 yields

∂̂4u

∂η4
= H(4)

η ŵη, (2.12)

∂̂3u

∂η3
= H(3)

η ŵη, (2.13)

∂̂2u

∂η2
= H(2)

η ŵη, (2.14)

∂̂u

∂η
= H(1)

η ŵη, (2.15)

û = H(0)
η ŵη. (2.16)

For the approximations of integration constants used in (2.1)-(2.3) and (2.7)-
(2.11), the reader is referred to (Mai-Duy and Tran-Cong, 2003, 2010) for further
details.

In this study, the multiquadric (MQ) function is chosen as the basis function as

I
(4)
i (x) =

√
(x− ci)2 + a2i for 1D problems, (2.17)

I
(4)
i (x) =

√
(x− cix)2 + (y − ciy)2 + a2i for 2D problems, (2.18)

where ci (for 1D problems) or (cix, ciy)
T (for 2D problems) and ai are the MQ

centre and width, respectively. The width of the ith MQ can be determined
according to the following relation

ai = βdi, (2.19)

where β is a factor (β > 0) and di is the distance from the ith centre to the nearest
neighbour. It was observed in (Kansa, 1990) that, as the RBF width increases,
the numerical error of the RBF solution reduces and the condition number of the
interpolant grows. At large values of β, one needs to pay special attention as
the solution becomes unstable. Reported values of β vary from, typically, 1 for
global IRBF methods to a wide range of 2−200 for local and compact local IRBF
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methods. For the latter, one can vary the value of β and/or refine the spatial
discretisation to enhance the solution accuracy.

In the following sections, to simplify the notations, we will drop the subscript
η used in (2.12)-(2.16) for 1D problems, and use (i, j) to represent a grid node
located at (xi, yj) in a global 2D grid, xk to represent a grid node k in a local 2D
stencil, and M(i, :) to denote the ith row of the matrix M.

2.3 Proposed compact local IRBF stencils for fourth-order
ODEs

Our sample of fourth-order ODEs is taken as

d4u

dx4
+
d2u

dx2
= f(x), (2.20)

where xA ≤ x ≤ xB and f(x) is some given function. The boundary conditions
prescribed here are of Dirichlet type, i.e. u and du/dx given at both xA and xB.

We discretise the problem domain using a set of N discrete nodes {xi}Ni=1, and
utilise fourth-order IRBF schemes to represent the field variable u.

2.3.1 Compact local 5-node stencil (5-node CLS)

Consider a grid node xi and its associated 5-node stencil [xi1, x
i
2, x

i
3, x

i
4, x

i
5] (xi ≡

xi3).

The conversion system, which represents the relation between the RBF space and
the physical space, is established from the following equations

(
û
ê

)
=

[
H(0)

K

]

︸ ︷︷ ︸
C

ŵ, (2.21)

where C is the conversion matrix, ŵ = (w1, w2, w3, w4, w5, C1, C2, C3, C4)
T , û =

(u1, u2, u3, u4, u5)
T , û = H(0)ŵ are equations representing nodal values of u over

the stencil, H(0) is a 5× 9 matrix that is obtained from collocating (2.11) at grid
nodes of the stencil, ê = Kŵ are equations representing extra information that
can be the ODE (2.20) at selected nodes, and du/dx at xA and xB. Solving (2.21)
results in

ŵ = C−1

(
û
ê

)
. (2.22)

If the number of extra information values are less than or equal to 4, the obtained
conversion matrix in (2.21) is not overdetermined owing to the presence of the
integration constants. In this case, the extra information is thus imposed in
an exact manner. By substituting (2.22) into (2.7)-(2.11), values of u and its
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derivatives at an arbitrary point x on the stencil are calculated in the physical
space as

d4u(x)

x4
=
[
I
(4)
1 (x), . . . , I

(4)
5 (x), 0, 0, 0, 0

]
C−1

(
û
ê

)
, (2.23)

d3u(x)

dx3
=
[
I
(3)
1 (x), . . . , I

(3)
5 (x), 1, 0, 0, 0

]
C−1

(
û
ê

)
, (2.24)

d2u(x)

dx2
=
[
I
(2)
1 (x), . . . , I

(2)
5 (x), x, 1, 0, 0

]
C−1

(
û
ê

)
, (2.25)

du(x)

dx
=
[
I
(1)
1 (x), . . . , I

(1)
5 (x), x2/2, x, 1, 0

]
C−1

(
û
ê

)
, (2.26)

u(x) =
[
I
(0)
1 (x), . . . , I

(0)
5 (x), x3/6, x2/2, x, 1

]
C−1

(
û
ê

)
, (2.27)

where xi1 ≤ x ≤ xi5. In what follows, we present two ways to construct the final
system of algebraic equations, namely Implementation 1 and Implementation 2.

Implementation 1: The final system is generated by

(i) the collocation of the ODE (2.20) at {x3, x4, . . . , xN−2} using (2.23) and (2.25)
with x = xi, in which ê = Kŵ is employed to represent values of (2.20) at xi2 and
xi4, i.e. (

f (xi2)
f (xi4)

)
=

[
G(2, :)
G(4, :)

]
ŵ, (2.28)

where G = H(4) +H(2), and

(ii) the imposition of du/dx at xA and xB using (2.26) with x = x1 and x = xN .

Implementation 2: The final system is generated by collocating the ODE (2.20)
at {x4, x5, . . . , xN−3} and {x2, x3, xN−2, xN−1}. For the former, the collocation
process is similar to that of Implementation 1. For the latter, special treatments
for the imposition of first derivative boundary conditions are required. Colloca-
tions of the ODE (2.20) at {x2, x3} and {xN−2, xN−1} are based on the stencils
of nodes x3 and xN−2, respectively, with the following modified extra information
vectors

ê = (du(xi1)/dx, f(x
i
4))

T for the stencil of x3,
ê = (f(xi2), du(x

i
5)/dx)

T for the stencil of xN−2.

Both implementations lead to a system matrix of dimensions (N − 2)× (N − 2).
We define the sparsity as the percentage of zero entries relative to the total matrix
entries. For example, the use of grid node N = 31 leads to a system matrix of
dimension 29× 29 with the sparsity of 83.82%.

2.3.2 Compact local 3-node stencil (3-node CLS)

Consider a grid node xi (i = {2, 3, . . . , N − 1}) with its associated 3-node stencil
[xi1, x

i
2, x

i
3] (xi ≡ xi2).
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Unlike the 5-node CLS, nodal values of the first derivative of the field variable
are also treated here as unknowns. There are thus two unknowns, namely u and
du/dx, per node.

We form the conversion system as follows.



û

d̂u
ê


 =




H(0)

H(1)

K




︸ ︷︷ ︸
C

ŵ, (2.29)

where C is the conversion matrix, û = (u1, u2, u3)
T , d̂u = (du(xi1)/dx, du(x

i
3)/dx)

T
,

ŵ = (w1, w2, w3, c1, c2, c3, c4)
T , û = H(0)ŵ is a set of three equations represent-

ing nodal values of u over the stencil, d̂u = H(1)ŵ is a set of two equations
representing nodal values of the first derivative at xi1 and xi3, and ê = Kŵ is
a set of equations which can be used to incorporate more information into the
approximations.

Solving (2.29) results in

ŵ = C−1



û

d̂u
ê


 . (2.30)

It can be seen that the IRBF approximations for the field variable and its deriva-
tives can now be expressed in terms of not only nodal values of u at the three
grid nodes of the stencil but also nodal values of du/dx at the two extreme nodes
of the stencil.

The two unknowns at the central point of the stencil (xi2) require the establish-
ment of two algebraic equations. This can be achieved by collocating the ODE
(2.20) at xi2 and collocating the first derivative at xi2

f(xi2) = G(2, :)C−1



û

d̂u
ê


, (2.31)

du(xi2)

dx
= H(1) (2, :) C−1



û

d̂u
ê


, (2.32)

where G = H(4) +H(2).

The above process leads to a determined final system with (N − 2) equations
for the ODE, and (N − 2) equations for the first derivative du/dx, with (N − 2)
unknowns for the field variable u and (N −2) unknowns for du/dx at the interior
nodes. The sparsity of the final system is 90.76% with the grid node of N = 31
used.

In the case that ê is used to represent the governing equation (GE) (2.20) at xi1
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and xi3, i.e.

(
f(xi1)
f(xi3)

)

︸ ︷︷ ︸
ê

=

(
G (1, :)
G (3, :)

)
ŵ, (2.33)

we name the corresponding stencil a 3-node CLS with GE.

In the case that ê is simply set to null, we call it a 3-node CLS without GE.

2.4 Proposed compact local IRBF stencils for fourth-order
PDEs

Consider a 2D fourth-order differential problem governed by the biharmonic equa-
tion

∂4u

∂x4
+ 2

∂4u

∂x2y2
+
∂4u

∂y4
= f(x, y) (2.34)

on a rectangular domain (xA ≤ x ≤ xB, yC ≤ y ≤ yD), and subject to Dirichlet
boundary conditions (i.e. u and ∂u/∂n given at the boundaries (n the normal
direction)).

The problem domain is represented by a Cartesian grid of Nx × Ny as shown in
Figure 2.1. We employ fourth-order IRBF schemes for compact local 5× 5-node
and 13-node stencils, and second-order IRBF schemes for compact local 3×3-node
stencils.

Figure 2.1 A problem domain and a typical discretisation. Legends square, circle and plus are used to denote the boundary
nodes, the interior nodes next to the boundary and the remaining interior nodes, respectively.
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2.4.1 Compact local 5 ×5-node stencil (5 ×5-node CLS)

Consider a grid node (i, j) and its associated 5 × 5-node stencil. The stencil is
locally numbered from bottom to top and from left to right (node (i, j) ≡ node
13) (Figure 2.2).
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Figure 2.2 A schematic representation of the proposed 5 × 5-node stencil associated with node (i, j). Over the stencil,
nodes are locally numbered for bottom to top and left to right, where 13 ≡ (i, j). Nodal values of the governing equation
used as extra information are placed on a diamond shape.

The solution procedure here is similar to that for 1D problems. However, the
2D problem formulation involves more terms and requires special treatments for
interior “corner” nodes.

The conversion system is constructed as




û

0̂
ê


 =




H(0)
x , O

H(0)
x , −H(0)

y

Kx, Ky




︸ ︷︷ ︸
C

(
ŵx

ŵy

)
, (2.35)

where the subscripts x and y denote the quantity associated with the integration
process in the x and y direction, respectively; 0̂ and O are a vector and a matrix of
zeros, respectively; equations û = H(0)

x ŵx are employed to collocate the variable
u over the stencil; equations H(0)

x ŵx −H(0)
y ŵy = 0̂ are employed to enforce nodal

values of u obtained from the integration with respect to x and y to be identical;
and equations Kxŵx +Kyŵy = ê are employed to represent extra information that
can be values of the PDE (2.20) at selected nodes on the stencil and first-order
derivative boundary conditions. In (2.35), C is the conversion matrix, û and 0̂
are vectors of length 25; (ŵx, ŵy)

T is the RBF coefficient vector of length 90, and

O,H(0)
x ,H(0)

y ,Kx and Ky are matrices (the first three are of dimensions 25 × 45,
while for the last two, their dimensions are dependent on the number of extra
information values imposed and typically vary between 4×45 to 6×45). Solving
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(2.35) yields

(
ŵx

ŵy

)
= C−1




û

0̂
ê


 . (2.36)

We present two ways, namely Implementation 1 and Implementation 2, to form
the final set of algebraic equations.

Implementation 1: The final system is composed of two sets of equations.
The first set is obtained by collocating the PDE at interior nodes (i, j) with
(3 ≤ i ≤ Nx − 2 and 3 ≤ j ≤ Ny − 2) and the second set is obtained by imposing
first derivative boundary conditions at boundary nodes (i = 1, 2 ≤ j ≤ Ny − 1),
(i = Nx, 2 ≤ j ≤ Ny−1), (3 ≤ i ≤ Nx−2, j = 1) and (3 ≤ i ≤ Nx−2, j = Ny).

Implementation 2: First derivative boundary conditions are incorporated into
the conversion system and the final system is formed by collocating the PDE only
at all interior nodes.

Some implementation notes:

1. In constructing the approximations for stencils, the cross derivative ∂4u/∂x2∂y2

is computed through the following relation (Mai-Duy and Tanner, 2005a), which
requires the approximation of second-order pure derivatives only,

∂4u

∂2x∂2y
=

1

2

(
∂2

∂x2

(
∂2u

∂y2

)
+

∂2

∂y2

(
∂2u

∂x2

))

=
1

2

(
H(2)

x

[
H(0)

x

]−1 (H(2)
y ŵy

)
+H(2)

y

[
H(0)

y

]−1 (H(2)
x ŵx

))
. (2.37)

2. For stencils whose central points are interior nodes (i, j) with 3 < i < Nx − 2
and 3 < j < Ny−2, we construct ê = Kxŵx+Kyŵy through the collocation of the
PDE (2.34) at four nodes placed in the diamond (i.e (i− 1, j), (i, j − 1), (i, j +1)
and (i+ 1, j)) as shown in Figure 2.2. The extra information vector can thus be
expressed in the form




f(x8)
f(x12)
f(x14)
f(x18)


 =




Gx(8, :),Gy(8, :)
Gx(12, :),Gy(12, :)
Gx(14, :),Gy(14, :)
Gx(18, :),Gy(18, :)



(
ŵx

ŵy

)
, (2.38)

where

Gx = H(4)
x +H(2)

y

[
H(0)

y

]−1H(2)
x ,

and

Gy = H(4)
y +H(2)

x

[
H(0)

x

]−1H(2)
y .

3. For stencils whose central points are (3, 3), (3, Ny − 2), (Nx − 2, 3) and (Nx −
2, Ny − 2), the extra information vector is comprised of four nodal values of the
derivative boundary condition and two nodal values of the PDE. For example, in
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the case of (3, 3), we form ê = Kxŵx +Kyŵy as




∂u (x2)

∂x
∂u (x3)

∂x
∂u(x6)

∂y
∂u(x11)

∂y
f(x14)
f(x18)




=




H(1)
x (2, :) , O

H(1)
x (3, :) , O
O, H(1)

y (6, :)

O, H(1)
y (11, :)

Gx (14, :) , Gy (14, :)
Gx (18, :) , Gy (18, :)




(
ŵx

ŵy

)
. (2.39)

4. For stencils whose central points are (i = 3, 3 < j < Ny−2), (i = Nx−2, 3 <
j < Ny − 2), (3 < i < Nx − 2, j = 3) and (3 < i < Nx − 2, j = Ny − 2),
the extra information vector is comprised of one nodal value of the derivative
boundary condition and three nodal values of the PDE. For example, in the case
of (i = 3, 3 < j < Ny − 2), we form ê = Kxŵx +Kyŵy as




∂u (x3)

∂x
f(x12)
f(x14)
f(x18)


 =




H(1)
x (3, :), O

Gx (12, :), Gy (12, :)
Gx (14, :), Gy (14, :)
Gx (18, :), Gy (18, :)



(
ŵx

ŵy

)
. (2.40)

Both Implementation 1 and Implementation 2 lead to a final system matrix of
dimensions (Nx−2)(Ny −2)× (Nx −2)(Ny −2). The sparsity of the final system
is 93.64% with the given grid of 21× 21.

2.4.2 Compact local 13-node stencil (13-node CLS)

Figure 2.3 shows a schematic outline of a compact local 13-node stencil. The
construction of the final system matrix using 13-node CLS is similar to that
with 5×5-node CLS. Since the present stencil involves 13 nodes rather than 25
nodes, a sparsity level of the system matrix increases (96.52% with the given grid
of 21 × 21) and its solution is thus more efficient. However, one can expect that
13-node CLS is less accurate than 5×5-node CLS.

2.4.3 Compact local 3 ×3-node stencil (3 ×3-node CLS)

A 3×3-node CLS is constructed through a coupled set of two Poisson equations

∂2ν

∂x2
+
∂2ν

∂y2
= f(x, y), (2.41)

∂2u

∂x2
+
∂2u

∂y2
= ν, (2.42)

which represents the biharmonic equation (2.34).
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Figure 2.3 A schematic representation of the proposed 13-node stencil associated with node (i, j). Over the stencil, nodes
are locally numbered for bottom to top and left to right, where 7 ≡ (i, j). Nodal values of the governing equation used as
extra information are placed on a diamond shape.

Consider a grid node (i, j) (2 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1) and its associated

3× 3-node stencil



x3 x6 x9

x2 x5 x8

x1 x4 x7


 ((i, j) ≡ x5).

Discretisation of equation (2.41)

Over a 3× 3-node stencil, we construct the conversion system as




ν̂

0̂
ê[ν]


 =




H(0)
x , O

H(0)
x , −H(0)

y

K[ν]
x , K[ν]

y




︸ ︷︷ ︸
C[ν]

(
ŵ

[ν]
x

ŵ
[ν]
y

)
, (2.43)

where ν̂ and 0̂ are vectors of length 9, (ŵ
[ν]
x , ŵ

[ν]
y )T is the vector of length 30,

H(0)
x ,H(0)

y are the matrices of dimensions 9 × 15, and equations ê[ν] = K[ν]
x ŵ

[ν]
x +

K[ν]
y ŵ

[ν]
y can be used to represent extra information. Like 3-node CLS for 1D

problems, we study here two cases of ê[ν]. For the first case, the vector ê[ν] is used
to represent nodal values of the governing equation at the four nodes x1, x3, x7

and x9. Hereafter, this stencil is referred to as 3×3-node CLS with GE. For
the second case, the vector ê[ν] is set to null. Hereafter, this stencil is referred to
as 3×3-node CLS without GE.

A mapping from the physical space into the RBF-coefficient space is obtained by
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solving (2.43)

(
ŵ

[ν]
x

ŵ
[ν]
y

)
= (C[ν])−1



ν̂

0̂
ê[ν]


 . (2.44)

Making use of (2.44), one can express the PDE (2.41) at the central point of the
stencil as

[
H(2)

x (5, :), H(2)
y (5, :)

] (
C[ν]
)−1

︸ ︷︷ ︸
D[ν]




ν̂

0̂
ê[ν]


 = f(x5). (2.45)

It can reduce to
D[ν]

1 ν̂ +D[ν]
2 ê

[ν] = f(x5), (2.46)

where D[ν]
1 and D[ν]

2 are the first 9 entries and the last 4 entries ofD[ν], respectively.

In (2.46), D[ν]
2 êν and f(x5) are known values.

Discretisation of equation (2.42)

Unlike equation (2.41), we consider nodal values of the field variable at grid nodes,
∂u/∂x at x2 and x8, and ∂u/∂y at x4 and x6 as unknowns in the discretisation
of (2.42).

The conversion matrix is thus formed as



û

0̂

∂̂ux
∂̂uy


 =




H(0)
x , O

H(0)
x , −H(0)

y

H(1)
x ([2, 8], :), O

O, H(1)
y ([4, 6], :)




︸ ︷︷ ︸
C[u]

(
ŵ

[u]
x

ŵ
[u]
y

)
, (2.47)

where ∂̂ux = (∂u(x2)/∂x, ∂u(x8)/∂x)
T and ∂̂uy = (∂u(x4)/∂y, ∂u(x6)/∂y)

T . It is

noted that the present additional unknowns ∂̂ux and ∂̂uy are defined and located
in the same way as in the FDM work (Stephenson, 1984).

Solving (2.47) results in

(
ŵ

[u]
x

ŵ
[u]
y

)
=
(
C[u]
)−1




û

0̂

∂̂ux
∂̂uy


 . (2.48)

Equation (2.48) can be split into

ŵ[u]
x =

(
C[u]
x

)−1
(
û, 0̂, ∂̂ux, ∂̂uy

)T
, (2.49)

ŵ[u]
y =

(
C[u]
y

)−1
(
û, 0̂, ∂̂ux, ∂̂uy

)T
, (2.50)
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where (C[u]
x )−1 and (C[u]

y )−1 are the first and the last 15 rows of (C[u])−1.

Through (2.49) and (2.50), the first derivatives of u at the central point of the
stencil can be computed by

∂u(x5)

∂x
= H(1)

x (5, :)
(
C[u]
x

)−1




û

0̂

∂̂ux
∂̂uy


 , (2.51)

∂u(x5)

∂y
= H(1)

y (5, :)
(
C[u]
y

)−1




û

0̂

∂̂ux
∂̂uy


 . (2.52)

Through (2.48), the discrete form of equation (2.42) over the stencil can be written
as

[
H(2)

x , H(2)
y

] (
C[u]
)−1

︸ ︷︷ ︸
D[u]




û

0̂

∂̂ux
∂̂uy


 = ν̂. (2.53)

Substitution of (2.53) into (2.46) leads to a discrete form of the biharmonic equa-
tion (2.34) at the central point of the stencil

D[ν]
1 D[u]




û

0̂

∂̂ux
∂̂uy


 = f (x5)−D[ν]

2 f̂k. (2.54)

By applying (2.51), (2.52) and (2.54) at every interior node, we will obtain the
final system matrix of dimensions 3(Nx − 2)(Ny − 2) × 3(Nx − 2)(Ny − 2). The
sparsity of the final system is 97.80% with the given grid of 21× 21.

It can be seen that the proposed compact local IRBF stencil does not require
the calculation of cross derivatives explicitly. Furthermore, there is no need to
derive a computational boundary condition for the intermediate variable ν. When
applying the proposed 3×3-node CLS to fluid flow problems, the variables u and
ν are replaced with the streamfunction and the vorticity variables, respectively.

2.5 Numerical examples

The accuracy of the solution is measured using the relative discrete L2 norm

Ne(u) =

√
N∑
i=1

(ui − uei )
2

√
N∑
i=1

(uei )
2

, (2.55)
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where N is the number of collocation nodes, and ui and u
e
i are the computed and

exact solutions, respectively.

We will study the behavior of the solution u with respect to (i) the grid size h,
and (ii) the MQ width β.

2.5.1 One-dimensional problem

Consider the following fourth-order ODE

d4u

dx4
+
d2u

dx2
= 16π4 sinh(2πx) + 4π2 sinh(2πx), 0 ≤ x ≤ 2. (2.56)

Double boundary conditions are defined as u = 0 and du/dx = 2π at x = 0, and
u = 0 and du/dx = 2π cosh(4π) at x = 2. The exact solution to this problem can
be verified to be ue(x) = sinh(2πx).

We employ 5-node CLS and 3-node CLS without and with GE to discretise
(2.56). To assess the performance of the proposed stencils, the standard local 5-
node IRBF stencil is also implemented. We conduct the calculations with several
uniform grids, {7, 9, · · · , 37}.
Figure 2.4 displays the solution accuracy and the matrix condition numbers
against the grid size h. In terms of accuracy (Figure 2.4a), the solution con-
verges apparently as O(h1.40) for local 5-node stencil, and O(h5.45), O(h3.96) and
O(h4.16) for 5-node CLS and 3-node CLS without and with GE, respectively.
The compact forms, even for the case of 3-nodes, thus outperform the standard
form of 5 nodes as indicated by not only the error norm but also the convergence
rate. It can be also seen that 3-node CLS with GE is more accurate than that
without GE. In terms of the matrix condition number (Figure 2.4b), the 5-node
CLS and the standard 5-node stencil yield similar values. It can be also seen that
the inclusion of first derivatives in the IRBF approximations, i.e 3-node CLSs,
leads to higher condition numbers of the system matrix.

Figure 2.5a shows a comparison of the accuracy between Implementation 1 and
Implementation 2 for the case of 5-node CLS, indicating that both implementa-
tions give similar levels of accuracy. However, Figure 2.5b shows that Implemen-
tation 2 yields better condition numbers than Implementation 1, probably owing
to the fact that the final system matrix of the former is composed of equations
derived from the ODE only.

As mentioned earlier, the value of β would have a strong influence on the solution
accuracy. Since the exact solution to this problem is available, it is straightfor-
ward to obtain the optimal value of β (i.e. at which Ne(u) is minimum). Table
2.1 shows results obtained by a fixed value and the optimal value of β for three
different grids. It can be seen that using the optimal value of β significantly
enhances the solution accuracy.
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Figure 2.4 ODE: Relative L2 errors of the solution u and condition numbers of the system matrix against the grid size by the
proposed stencils and the standard local IRBF one. It is noted that we employ β = 24 for local and compact local 5-node
stencils, β = 34 for 3-node CLS without GE , and β = 5.6 for 3-node CLS with GE .
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Figure 2.5 ODE, 5-node CLS , β = 24: The solution accuracy and matrix condition number against the grid size by
Implementation 1 and Implementation 2.
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Table 2.1 ODE, 5-node CLS , 3-node CLS with GE and 3-node CLS without GE : Relative L2 errors of the solution u using some fixed and the optimal values of β for three grids.

5-node CLS 3-node CLS

Without GE With GE

h Fixed β=24 Optimal β Fixed β=77 Optimal β Fixed β=10 Optimal β

Ne(u) β Ne(u) Ne(u) β Ne(u) Ne(u) β Ne(u)

1/20 6.30E-4 1.2 4.04E-4 3.46E-3 6 9.50E-4 1.60E-3 2.6 2.10E-4

1/50 1.59E-5 29.5 7.18E-6 5.85E-5 57 2.17E-5 2.31E-5 7 1.06E-5

1/70 6.39E-6 30.3 3.93E-7 8.22E-6 77 8.22E-6 2.97E-6 10 2.97E-6

O(h4.21) O(h4.27) O(h4.30)
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2.5.2 Two-dimensional problems

Example 1

Consider the biharmonic problem with the source function as follow.

f(x, y) = 64π4 sin(2πx) sin(2πy) (2.57)

The domain of interest as 0 ≤ x, y ≤ 1 and boundary conditions of the Dirichlet
type. The exact solution is ue(x, y) = sin(2πx) sin(2πy).

Figure 2.6 shows the behaviour of the solution u using the proposed 13-node

CLS (β = 18) with respect to the grid size h. Results obtained by the FD
13-node stencil are also included for comparison purposes.

The IRBF method (Implementation 2) is much more accurate and converges much
faster than the FDM (Figure 2.6a). The rate of convergence is 4.90 for the former
and 1.99 for the latter. On the other hand, the IRBF matrix has higher condition
numbers but grows slightly slower than the FD matrix (Figure 2.6b). The rate
of growth is 3.25 for the former and 3.97 for the latter. Figure 2.7 indicates that
Implementation 2 slightly outperforms Implementation 1 in terms of the matrix
condition and accuracy. However, an improvement in the matrix condition here
is not as significant as in the case of 1D problems.

Table 2.2 presents results by the proposed 5×5-node CLS for a fixed value and
the optimal value of β. It can be seen that the MQ width has more influence on
the solution accuracy than on the system matrix condition number. It is noted
that a chosen fixed value β = 2.5 is the optimal value for the grid with h = 1/50.

Table 2.2 PDE, Example 1, 5×5-node CLS : Condition numbers of the system matrix A and relative L2 errors of the solution
u using a fixed value and the optimal value of β for several grids.

Fixed β = 2.5 Optimal β

h Cond(A) Ne(u) β Cond(A) Ne(u)

1/10 6.15E+2 1.54E-3 1 6.12E+2 1.44E-3

1/20 9.52E+3 1.65E-4 6.2 1.21E+4 7.59E-5

1/30 4.79E+4 8.24E-5 6.4 5.54E+4 1.34E-5

1/40 1.51E+5 4.41E-5 5 1.85E+5 1.35E-5

1/50 3.69E+5 6.47E-6 2.5 3.69E+5 6.47E-6

O(h3.04) O(h3.34)

Table 2.3 shows the accuracy and matrix condition number against the grid size
by the proposed 3×3-node CLS without and with GE. The solution converges
as O(h3.36) for the former and O(h3.88) for the latter. It can be seen that the
incorporation of nodal values of the governing equation into the approximations
results in an accuracy improvement.



2.5. Numerical examples 33

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

FD 13−node

13−node CLS

Grid spacing

N
e(
u
)

(a)

10
−1

10
2

10
4

10
6

10
8

10
10

10
12

 

 

FD 13−node

13−node CLS

Grid spacing

C
on

d
it
io
n
n
u
m
b
er

(b)

Figure 2.6 PDE , Example 1, 13-node CLS , β = 18: The solution accuracy and matrix condition number against the grid
size. Results by the FD 13-node stencil are also included.
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Figure 2.7 PDE, Example 1, 13-node CLS , β = 18: The solution accuracy and matrix condition number against the grid
size by Implementation 1 and Implementation 2.
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Table 2.3 PDE, Example 1, 3×3-node CLS : relative L2 errors of the solution u for several grids.

h Without GE, β = 14.5 With GE, β = 16.6

1/10 1.71E-02 1.29E-02

1/20 3.70E-03 3.43E-03

1/30 1.29E-03 1.23E-03

1/40 4.32E-04 4.05E-04

1/50 4.35E-05 8.13E-06

O(h3.36) O(h3.88)

Example 2

Among our proposed compact stencils, the 3×3-node CLS does not require
special treatments for interior nodes close to the boundary. This stencil is ap-
plied here to obtain the structure of the steady-state lid-driven cavity flow in the
streamfunction-vorticity formulation

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (2.58)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (2.59)

where Re is the Reynolds number, ψ is the streamfunction and ω is the vorticity.
One can compute the x− and y− velocity components according to the following
definitions

vx =
∂ψ

∂y
and vy = −∂ψ

∂x
.

The boundary conditions are prescribed in terms of the streamfunction as

ψ = 0,
∂ψ

∂x
= 0 at x=0 and x=1, (2.60)

ψ = 0,
∂ψ

∂y
= 0 at y=0, (2.61)

ψ = 0,
∂ψ

∂y
= 1 at y=1. (2.62)

We employ several grids, (21 × 21, 31 × 31, · · · , 111 × 111), in the simulation of
the flow. A wide range of Re, (0, 100, 400, 1000, 3200, 5000), is considered and the
resultant nonlinear set of algebraic equations is solved using the Picard iteration
scheme

ζ̂ = θζ̂ (k) + (1− θ)ζ̂ (k−1), (2.63)

where the superscript (k) is used to indicate the current iteration, θ is the relax-

ation factor (0 < θ ≤ 1) and ζ̂ = (ψ̂,
∂̂ψ

∂x
,
∂̂ψ

∂y
)T .
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The flow is considered to reach a steady state when

√
∑(

ζ̂ (k) − ζ̂ (k−1)
)2

√
∑(

ζ̂ (k)
)2 < 10−9. (2.64)

As shown in Section 2.4.3, the proposed formulation does not require the deriva-
tion of a computational boundary condition for the vorticity and nodal values of
the velocity components are obtained directly from solving the final system.

The value of β is chosen to be 20 for all simulations, while the value of θ is
employed in the range of 0.8 to 10−5. The higher the value of Re the smaller the
value of θ will be.

The profile of the x−component of the velocity vector along the vertical centreline
and of the y−component along the horizontal centreline for Re = 1000 using
several grids are demonstrated in Figure 2.8 and Figure 2.9, respectively. To
provide the base for assessment, results obtained by the multi-grid FDM (Ghia
et al., 1982), which are widely cited in the literature, are included. It can be seen
that a convergence with grid refinement is obtained for both velocity profiles.
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Figure 2.8 PDE, Example 2, Re = 1000: Profiles of the x−component of the velocity vector along the vertical centerline
for several grids. Results by the FDM (Ghia et al., 1982) are also included.

Tables 2.4 and 2.5 give a comparison of the extreme values of the velocity profile
on the centrelines obtained by the proposed method, FDM (Ghia et al., 1982),
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Figure 2.9 PDE, Example 2, Re = 1000: Profiles of the y−component of the velocity vector along the horizontal centerline
for several grids. Results by the FDM (Ghia et al., 1982) are also included.

FVM (Deng et al., 1994) and the pseudo-spectral method (Botella and Peyret,
1998). It can be seen that the present results are in better agreement with the
benchmark spectral solution than the others even for ‘coarse’ grids, e.g. 51 × 51
in the case of Re = 100 and 91× 91 in the case of Re = 1000.

Table 2.4 PDE, Example 2, Re = 100, β = 20: Extreme values of the velocity profiles on the centerlines by the proposed
method and several other methods. It is noted that N is the polynomial degree.

Reference Grid vx max vy max vy min

Present 31× 31 0.21252 0.17675 -0.24908

Present 51× 51 0.21354 0.17863 -0.25221

Present 71× 71 0.21378 0.17910 -0.25302

Present 91× 91 0.21386 0.17928 -0.25334

Present 111× 111 0.21390 0.17937 -0.25350

FVM 64× 64 0.21315 0.17896 -0.25339

FDM 129× 129 0.21090 0.17527 -0.24533

Pseudo-spectral N = 96 0.21404 0.17957 -0.25380

FVM, FDM and Pseudo-spectral refer to finite volume, finite difference and pseudo-spectral
methods results in (Deng et al., 1994), (Ghia et al., 1982), and (Botella and Peyret, 1998),
respectively.
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Table 2.5 PDE, Example 2, Re = 1000, β = 20: Extreme values of the velocity profiles on the centerlines by the proposed
method and several other methods. It is noted that N is the polynomial degree.

Reference Grid vx max vy max vy min

Present 31× 31 0.32684 0.30773 -0.42971

Present 51× 51 0.37061 0.35703 -0.50010

Present 71× 71 0.38056 0.36802 -0.51530

Present 91× 91 0.38411 0.37195 -0.52063

Present 111× 111 0.38573 0.37376 -0.52305

FVM 128× 128 0.38511 0.37369 -0.52280

FDM 129× 129 0.38289 0.37095 -0.51550

Pseudo-spectral N = 96 0.3885698 0.3796447 -0.5270771

FVM, FDM and Pseudo-spectral refer to finite volume, finite difference and pseudo-spectral
methods results in (Deng et al., 1994), (Ghia et al., 1982), and (Botella and Peyret, 1998),
respectively.

Results concerning the distribution of of the streamfunction and vorticity over
the flow domain are shown in Figures 2.10 and 2.11, respectively. They look
feasible in comparison with those in literature (e.g. (Ghia et al., 1982; Botella
and Peyret, 1998; Deng et al., 1994)).

2.6 Concluding remarks

This chapter is concerned with the development of several compact local IRBF
stencils for solving fourth-order ODEs and PDEs. The IRBF approximations are
expressed in terms of not only nodal values of the field variable but also nodal
values of the ODE/PDE and, in some cases, of first derivative(s). The latter
is incorporated through the conversion system with the help of the integration
constants. In the case of 3 × 3-node stencil, the resultant discretisation system
is constructed through a set of two second-order PDEs, but there is no need
to derive a computational boundary condition for the intermediate variable and
no requirement for the calculation of cross derivatives explicitly. The proposed
stencils are successfully verified using problems with analytic solution, showing
that high rates of convergence and high levels of accuracy are obtained. For the
lid-driven cavity flow, a convergent solution is obtained for high Re numbers and
the obtained results are in very good agreement with the benchmark solutions.
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Figure 2.10 PDE, Example 2, 3×3-node CLS , a grid of 111 × 111: Streamlines of the flow at several Reynolds numbers.
It can be seen that secondary vortices are clearly captured.
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Figure 2.11 PDE, Example 2, 3×3-node CLS , a grid of 111 × 111: Iso-vorticity lines of the flow at several Reynolds
numbers.



Chapter 3

Compact local IRBF stencils and point
collocation for second-order differential
problems

In the previous chapter, compact local IRBF stencils were developed for the dis-
cretisation of fourth-order ODEs/PDEs. In this chapter, we are interested in
second-order PDEs governing fluid flows, namely the convection-diffusion equa-
tion and the streamfunction-vorticity formulation. The governing equations are
discretised by means of point collocation. We will develop compact RBF ap-
proximations based on 3 × 3 stencils to represent the convection and diffusion
terms. Salient features here are that (i) integration is employed to construct
local RBF approximations; and (ii) through the constants of integration, values
of the convection-diffusion equation at several selected nodes on the stencil are
also enforced. Numerical results indicate that (i) the inclusion of the govern-
ing equation into the stencil leads to a significant improvement in accuracy; (ii)
when the convection dominates, accurate solutions are obtained at a regime of
the RBF width which makes the RBFs peaked; and (iii) high levels of accuracy
are achieved using relatively coarse grids.

3.1 Introduction

It is known that some RBFs such as the Gaussian and multiquadric basis func-
tions exhibit a spectral accuracy (e.g., (Madych and Nelson, 1990; Madych, 1992;
Wendland, 2005)). These RBFs contain a width (shape) parameter. Increas-
ing the RBF width and/or the number of RBFs can lead to an enhancement in
the quality of the approximations. On the other hand, the condition number
of an interpolation RBF matrix is an increasing function of the RBF width and
the number of RBFs. In this sense, at large values of the RBF width and/or
the number of RBFs, the severe ill-conditioning of RBF matrices may prevent
the method from achieving a high rate of convergence. This relation between
numerical stability and error was discussed in (Schaback, 1995) - the so-called
uncertainty or trade-off principle. Recently, Fornberg and his co-workers (Forn-
berg and Wright, 2004; Fornberg et al., 2011) proposed techniques that allow for
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a stable calculation of very large values of the RBF width. It was shown that the
ill-conditioning problem of the RBF methods can be overcome. It was demon-
strated in (Fornberg and Wright, 2004) that the highest accuracy is often found
at values of the RBF width that cause the direct (traditional) computation of
RBF matrices to suffer from severe ill-conditioning.

In this chapter, compact IRBF 3 × 3 stencils are developed for the convection-
diffusion equation governing heat transfer and fluid flow problems defined on
rectangular and non-rectangular domains. The RBF width is chosen as a = βh,
where β is a given number and h is a grid size. Let R be the ratio of the
convection to diffusion. When the convection dominates (i.e., large values of R),
the solution involves some steep gradients which usually occur near the boundary,
and the corresponding computation becomes very challenging. It will be shown
later that the optimal value of β is a decreasing function of R. Accurate results
for large values of R are obtained at a regime of β that makes RBF peaked (not
flat), and one can thus simply apply a direct (traditional) way to compute the
corresponding IRBF interpolants.

This chapter is organised as follows. A brief overview of integrated-RBF approx-
imations is given in Section 2. Section 3 describes new compact IRBF 3 × 3
stencils for the convection-diffusion equation. In Section 4, the method is verified
through an analytic example governed by the convection-diffusion equation and
two benchmark fluid flow problems (i.e., lid-driven cavity and natural convection
flows) governed by the streamfunction-vorticity formulation. Section 5 gives some
concluding remarks.

3.2 Integrated-RBF approximations

Consider a function u(x) with x = (x, y)T . The IRBF expressions representing
u and its derivatives are constructed as follows (Mai-Duy and Tran-Cong, 2001,
2003).

In the x direction, the second derivative of u is first decomposed into RBFs

∂2u(x)

∂x2
=

N∑

i=1

w
[x]
i I

(2)
[x]i(x), (3.1)

where N is the number of RBFs;
{
w

[x]
i

}N

i=1
the set of weights/coefficients; and

{
I
(2)
[x]i(x)

}N

i=1
the set of RBFs. Approximations to the first derivative and function

are then obtained through integration

∂u(x)

∂x
=

N∑

i=1

w
[x]
i I

(1)
[x]i(x) + C

[x]
1 (y), (3.2)

u[x](x) =

N∑

i=1

w
[x]
i I

(0)
[x]i(x) + xC

[x]
1 (y) + C

[x]
2 (y), (3.3)
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where I
(1)
[x]i(x) =

∫
I
(2)
[x]i(x)dx; I

(0)
[x]i(x) =

∫
I
(1)
[x]i(x)dx; and C

[x]
1 (y) and C

[x]
2 (y) are

the constants of integration which are univariate functions of the variable y. For
points that have the same y coordinate, their corresponding integration constants
will have the same value.

For the y direction, in the same way, one has

∂2u(x)

∂y2
=

N∑

i=1

w
[y]
i I

(2)
[y]i(x), (3.4)

∂u(x)

∂y
=

N∑

i=1

w
[y]
i I

(1)
[y]i(x) + C

[y]
1 (x), (3.5)

u[y](x) =

N∑

i=1

w
[y]
i I

(0)
[y]i(x) + yC

[y]
1 (x) + C

[y]
2 (x). (3.6)

It can be seen that there are two approximate values of the function u at point
x, namely u[x](x) and u[y](x). These two values need be forced to be identical. It
is noted that the integration constants are univariate functions and they arise in
a natural way.

3.3 Proposed method

The PDE to be solved is of the form

∂2u

∂x2
+
∂2u

∂y2
+ p(x, y)

∂u

∂x
+ q(x, y)

∂u

∂y
= f(x, y), (3.7)

where p, q and f are some given functions. The magnitudes of p and q decide
the value of R. We restrict our attention to regions which may be partitioned
into rectangular subregions. A Cartesian grid is used to represent the problem
domain.

Consider an interior node, x0. Its associated 3× 3 stencil is defined as



x3 x6 x9

x2 x5 x8

x1 x4 x7




where x0 ≡ x5.

We now utilise IRBFs (3.1)-(3.3) and (3.4)-(3.6) to construct compact approxi-
mations over this stencil.

In the x direction, collocating (3.1)-(3.3) at all grid nodes on the stencil yields

∂̂2u

∂x2
= H(2)

x ŵx, (3.8)

∂̂u

∂x
= H(1)

x ŵx, (3.9)

û[x] = H(0)
x ŵx, (3.10)
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where û[x] denotes a vector of nodal values of u,

ŵx =
(
w

[x]
1 , · · · , w

[x]
9 , C

[x]
1 (y1), C

[x]
1 (y2), C

[x]
1 (y3), C

[x]
2 (y1), C

[x]
2 (y2), C

[x]
2 (y3)

)T
,

(
H(2)

x

)
i,j

= I
(2)
[x]j(xi) i, j = (1, · · · , 9);

(
H(2)

x

)
i,j

= 0 i = (1, · · · , 9), j = (10, · · · , 15),
(
H(1)

x

)
i,j

= I
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)
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8,11

= x8;
(
H(0)

x

)
9,12

= x9,
(
H(0)

x

)
1,13

=
(
H(0)

x

)
2,14

=
(
H(0)

x

)
3,15

= 1,
(
H(0)

x

)
4,13

=
(
H(0)

x

)
5,14

=
(
H(0)

x

)
6,15

= 1,
(
H(0)

x

)
7,13

=
(
H(0)

x

)
8,14

=
(
H(0)

x

)
9,15

= 1.

In the y direction, in a similar fashion, one has

∂̂2u

∂y2
= H(2)

y ŵy, (3.11)

∂̂u

∂y
= H(1)

y ŵy, (3.12)

û[y] = H(0)
y ŵy, (3.13)
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where û[y] denotes a vector of nodal values of u,

ŵy =
(
w

[y]
1 , · · · , w

[y]
9 , C

[y]
1 (x1), C

[y]
1 (x4), C

[y]
1 (x7), C

[y]
2 (x1), C

[y]
2 (x4), C

[y]
2 (x7)

)T
,

(
H(2)

y

)
i,j

= I
(2)
[y]j(xi) i, j = (1, · · · , 9);

(
H(2)

y

)
i,j

= 0 i = (1, · · · , 9), j = (10, · · · , 15),
(
H(1)

y

)
i,j

= I
(1)
[y]j(xi) i, j = (1, · · · , 9);

(
H(1)

y

)
i,j

= 0 i = (1, · · · , 9), j = (10, · · · , 15),
except for

(
H(1)

y

)
1,10

=
(
H(1)

y

)
2,10

=
(
H(1)

y

)
3,10

= 1,
(
H(1)

y

)
4,11

=
(
H(1)

y

)
5,11

=
(
H(1)

y

)
6,11

= 1,
(
H(1)

y

)
7,12

=
(
H(1)

y

)
8,12

=
(
H(1)

y

)
9,12

= 1,
(
H(0)

y

)
i,j

= I
(0)
[y]j(xi) i, j = (1, · · · , 9);

(
H(0)

y

)
i,j

= 0 i = (1, · · · , 9), j = (10, · · · , 15),
except for

(
H(0)

y

)
1,10

= y1;
(
H(0)

y

)
2,10

= y2;
(
H(0)

y

)
3,10

= y3,
(
H(0)

y

)
4,11

= y4;
(
H(0)

y

)
5,11

= y5;
(
H(0)

y

)
6,11

= y6,
(
H(0)

y

)
7,12

= y7;
(
H(0)

y

)
8,12

= y8;
(
H(0)

y

)
9,12

= y9,
(
H(0)

y

)
1,13

=
(
H(0)

y

)
2,13

=
(
H(0)

y

)
3,13

= 1,
(
H(0)

y

)
4,14

=
(
H(0)

y

)
5,14

=
(
H(0)

y

)
6,14

= 1,
(
H(0)

y

)
7,15

=
(
H(0)

y

)
8,15

=
(
H(0)

y

)
9,15

= 1.

For an efficient and convenient computation, the two spaces of the RBF coeffi-
cients, i.e., ŵx and ŵy, should be converted into a single space of nodal values
of the field variable u. In the present study, this conversion is implemented as
follows.

The nodal values of u computed from the IRBF approximation in the x direction
are forced to be the “exact” nodal values of u, which are known in the repre-
sentation of a function and unknown in the solution of a differential equation,
i.e.,

û[x] = (u1, · · · , u9)T . (3.14)

The nodal values of u computed from the IRBF approximation in the y direction
are forced to be equal to those from the IRBF approximation in the x direction,
i.e.,

û[x] − û[y] = 0̂, (3.15)

where 0̂ is a vector of zeros of length 9.

Owing to the presence of the integration constants, the lengths of ŵx and ŵy are
larger than those of û[x] and û[y], respectively. This facilitates the inclusion of
extra equations into the conversion system. Here, extra equations can be used to
impose the governing equation (3.7) at several nodes other than x0 on the stencil,
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e.g., at (x2,x4,x6,x8),

∂2u

∂x2
(x2, y2) +

∂2u

∂y2
(x2, y2) + p(x2, y2)

∂u

∂x
(x2, y2) + q(x2, y2)

∂u

∂y
(x2, y2) = f(x2, y2),

(3.16)

∂2u

∂x2
(x4, y4) +

∂2u

∂y2
(x4, y4) + p(x4, y4)

∂u

∂x
(x4, y4) + q(x4, y4)

∂u

∂y
(x4, y4) = f(x4, y4),

(3.17)

∂2u

∂x2
(x6, y6) +

∂2u

∂y2
(x6, y6) + p(x6, y6)

∂u

∂x
(x6, y6) + q(x6, y6)

∂u

∂y
(x6, y6) = f(x6, y6),

(3.18)

∂2u

∂x2
(x8, y8) +

∂2u

∂y2
(x8, y8) + p(x8, y8)

∂u

∂x
(x8, y8) + q(x8, y8)

∂u

∂y
(x8, y8) = f(x8, y8).

(3.19)

Conditions (3.14), (3.15) and (3.16)-(3.19) constitute the following conversion
system 


û

0̂

f̂


 =




H(0)
x , O

H(0)
x , −H(0)

y

Kx, Ky




︸ ︷︷ ︸
C

(
ŵx

ŵy

)
, (3.20)

where C is the conversion matrix; û, 0̂, ŵx, ŵy, H(0)
x andH(0)

y are defined as before;
O is a 9× 15 matrix of zeros;

f̂ = (f(x2), f(x4), f(x6), f(x8))
T ,

Kx =




I
(2)
[x]1(x2) + p(x2)I

(1)
[x]1(x2), · · · , I

(2)
[x]9(x2) + p(x2)I

(1)
[x]9(x2), 0, 1, 0, 0, 0, 0

I
(2)
[x]1(x4) + p(x4)I

(1)
[x]1(x4), · · · , I

(2)
[x]9(x4) + p(x4)I

(1)
[x]9(x4), 1, 0, 0, 0, 0, 0

I
(2)
[x]1(x6) + p(x6)I

(1)
[x]1(x6), · · · , I

(2)
[x]9(x6) + p(x6)I

(1)
[x]9(x6), 0, 0, 1, 0, 0, 0

I
(2)
[x]1(x8) + p(x2)I

(1)
[x]1(x8), · · · , I

(2)
[x]9(x8) + p(x2)I

(1)
[x]9(x8), 0, 1, 0, 0, 0, 0



,

Ky =




I
(2)
[y]1(x2) + q(x2)I

(1)
[y]1(x2), · · · , I

(2)
[y]9(x2) + q(x2)I

(1)
[y]9(x2), 1, 0, 0, 0, 0, 0

I
(2)
[y]1(x4) + q(x4)I

(1)
[y]1(x4), · · · , I

(2)
[y]9(x4) + q(x4)I

(1)
[y]9(x4), 0, 1, 0, 0, 0, 0

I
(2)
[y]1(x6) + q(x6)I

(1)
[y]1(x6), · · · , I

(2)
[y]9(x6) + q(x6)I

(1)
[y]9(x6), 0, 1, 0, 0, 0, 0

I
(2)
[y]1(x8) + q(x8)I

(1)
[y]1(x8), · · · , I

(2)
[y]9(x8) + q(x8)I

(1)
[y]9(x8), 0, 0, 1, 0, 0, 0



.

This mapping leads to
(
ŵx

ŵy

)
= C−1




û

0̂

f̂


 , (3.21)

or

ŵx = C−1
x

(
û, 0̂, f̂

)T
, (3.22)

ŵy = C−1
y

(
û, 0̂, f̂

)T
, (3.23)
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where C−1
x and C−1

y denote the first and last 15 rows of the matrix C−1, respectively.

It is noted that the condition of C is an increasing function of the RBF width.
For very large values of the RBF width, a direct way of computing the IRBF
interpolant, i.e., (3.20) and (3.21), cannot be carried out, which needs further
studies.

When the problem domain is non-rectangular, stencils of the interior nodes close
to the irregular boundary may be no longer of rectangular shape. There are two
types of nodes in the stencil: regular grid nodes and boundary nodes. The latter
is generated by the intersection of the grid lines and the irregular boundary.
Special treatment is needed in the construction of the conversion matrix; the
governing equation is only enforced at the mentioned nodes that are still regular
(i.e., intersection of the two grid lines). It is expected that the ability of RBFs
to work with irregular nodes and the inclusion of the governing equation into the
approximations will alleviate the loss of accuracy caused by the non-rectangular
shapes of stencils.

By substituting (3.22) into (3.8) and (3.9) and (3.23) into (3.11) and (3.12), one
has

∂̂2u

∂x2
= H(2)

x C−1
x

(
û, 0̂, f̂

)T
, (3.24)

∂̂u

∂x
= H(1)

x C−1
x

(
û, 0̂, f̂

)T
, (3.25)

∂̂2u

∂y2
= H(2)

y C−1
y

(
û, 0̂, f̂

)T
, (3.26)

∂̂u

∂y
= H(1)

y C−1
y

(
û, 0̂, f̂

)T
. (3.27)

Nodal derivative values are thus expressed not only in terms of the nodal values
of u at all grid nodes on the stencil but also in terms of the nodal values of the
governing equation at selected nodes on the stencil.

In this work, the governing equation (3.7) is simply discretised by means of point
collocation. The obtained discrete system is then transformed into a set of alge-
braic equations by making use of (3.24)-(3.27). The algebraic set is sparse so that
one can solve it efficiently for the unknown nodal values of the field variable u.
The sparsity of the algebraic matrix (i.e. the percentage of zero entries relative
to the total matrix entries) is 97.68% with the given grid of 21× 21.

It is noted that, unlike the standard finite difference method, the proposed stencils
are based on two-dimensional approximations. In this regard, it is possible to
extend the stencils to unstructured node layouts.

3.4 Numerical examples

The proposed scheme is implemented with the multiquadric basis function

Ii(x) =
√

(x− ci)T (x− ci) + a2i , (3.28)
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where ci and ai are the centre and width, respectively. It is noted that another
form of the width (shape) parameter is defined as ǫi = 1/ai - this form is very
convenient and meaningful for the study/use of flat RBFs (i.e., ǫi → 0, Lau-
rent expansions). The present work is mainly concerned with the solution of
convection-dominated problems, where the RBF width is found to be small for
an accurate simulation (i.e., small ai and large ǫi).

We choose the RBF width according to the simple relation ai = βhi, where β is
a given number and hi is a grid size.

For the simulation of viscous flows, we employ Picard iteration to deal with the
resultant nonlinear set of algebraic equations. At each iteration, the solution field
is relaxed as

ζk = θζk + (1− θ)ζk−1, (3.29)

where the superscript k is used to denote a current iteration, ζ a vector whose
entries are nodal values of the field variable over the whole domain, and θ a scalar
(0 < θ ≤ 1). The iteration is set to stop when CM < 10−7, where CM (i.e.,
convergence measure) is defined as

CM = norm(ζk − ζk−1)/norm(ζk). (3.30)

3.4.1 Example 1: analytic test (rectangular domain)

The proposed method is first verified in the test boundary-value problem governed
by

∂2u

∂x2
+
∂2u

∂y2
− R

∂u

∂x
= 0, (3.31)

where 0 ≤ x, y ≤ 1, subject to

u(x, 0) = 0 0 ≤ x ≤ 1, (3.32)

u(x, 1) = 0 0 ≤ x ≤ 1, (3.33)

u(0, y) = sin(πy) 0 ≤ y ≤ 1, (3.34)

u(1, y) = sin(2πy) 0 ≤ y ≤ 1. (3.35)

The exact solution to this problem is

ue(x, y) = exp(Rx/2) sin(πy) [2 exp(−R/2) sinh(σx) + sinh(σ(1− x))] / sinh(σ),
(3.36)

where σ =
√
π2 +R2/4. As shown in Figure 3.1, the higher the value of R the

thinner the boundary layer will be.

To study the effects of using compact approximations on the solution accuracy,
the original local IRBF scheme, which is also based on a 3×3 stencil, is employed
here. Calculations are carried out at R = 40 with two values of β: 0.9 (small)
and 2.5 (large) using uniform grids. Results obtained are presented in Tables 3.1
and 3.2. It can be seen that the incorporation of information about the governing
equation into the stencil leads to a significant improvement in accuracy, especially
for the case of small β.
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Figure 3.1 Example 1, rectangular domain: exact solutions at several values of R.

Figures 3.2 and 3.3 display the solution accuracy against the RBF width, showing
that the optimal value of β is 5.80 for R = 10, 2.40 for R = 20, 0.91 for R = 40
and 0.012 for R = 100. It should be pointed out that (i) the optimal value of β is
reduced as R increases; and (ii) the optimal values of β are small (i.e., less than
1) for large values of R.

For R = (10, 20, 40, 100), the corresponding condition numbers at the optimal
value of β are 2.20 × 106, 1.57 × 104, 2.35 × 103 and 4.53 × 103, respectively
for the interpolation matrix in (3.20), and 3.73 × 102, 2.55 × 102, 1.53 × 102

and 9.68 × 101, respectively for the final system matrix. It can be seen that
the condition number of the interpolation matrix is significantly reduced as R
increases. In other words, calculations are stabler as R increases. As a result, at
large values of R where the numerical simulation becomes challenging, one can
apply a simple direct (traditional) way to compute the IRBF interpolants for the
highest accuracy.

Table 3.3 shows a comparison of accuracy between the present scheme and other
techniques. Results by the upwind (UDS), central difference (CDS) and single cell
high order (SCHOS) schemes are extracted from (Gupta et al., 1984). High order
schemes (i.e., IRBF and SCHOS) perform much better than low order schemes
(i.e., UDS and CDS). The presently proposed method yields the most accurate
results.
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Figure 3.2 Example 1, rectangular domain: the maximum relative error against the RBF width (β = a/h) at a grid of
33× 33. The optimal value of β is a decreasing function of R.
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Figure 3.3 Example 1, rectangular domain: the maximum relative error against the RBF width (β = a/h) at a grid of
33× 33. The optimal value of β is a decreasing function of R.
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Table 3.1 Example 1, R = 40, β = 2.5: Maximum relative errors and rates of convergence by the original local IRBF
and present compact local IRBF methods. The rate presented here is the exponent of O(hrate) that is computed over two
successive grids (point-wise) and also over the whole set of grids used. LCR stands for local convergence rate.

Nx ×Ny h Original IRBFs Compact IRBFs

Error LCR Error LCR

15× 15 7.14× 10−2 3.64× 10−1 - 4.64× 10−1 -

17× 17 6.25× 10−2 2.93× 10−1 1.60 2.35× 10−1 5.10

19× 19 5.55× 10−2 2.38× 10−1 1.76 1.32× 10−1 4.84

21× 21 5.00× 10−2 1.95× 10−1 1.89 8.03× 10−2 4.76

23× 23 4.54× 10−2 1.61× 10−1 2.01 5.10× 10−2 4.76

25× 25 4.16× 10−2 1.33× 10−1 2.12 3.36× 10−2 4.80

27× 27 3.84× 10−2 1.12× 10−1 2.23 2.27× 10−2 4.85

29× 29 3.57× 10−2 9.41× 10−2 2.34 1.58× 10−2 4.93

31× 31 3.33× 10−2 7.95× 10−2 2.45 1.11× 10−2 5.01

33× 33 3.12× 10−2 6.73× 10−2 2.57 8.04× 10−3 5.10

Overall convergence rate 2.04 4.86

Table 3.2 Example 1, R = 40, β = 0.9: Maximum relative errors and rates of convergence by the original local IRBF
and present compact local IRBF methods. The rate presented here is the exponent of O(hrate) that is computed over two
successive grids (point-wise) and also over the whole set of grids used.

Nx ×Ny h Original IRBFs Compact IRBFs

Error LCR Error LCR

15× 15 7.14× 10−2 4.26× 10−1 - 4.21× 10−1 -

17× 17 6.25× 10−2 3.62× 10−1 1.21 2.08× 10−1 5.27

19× 19 5.55× 10−2 3.11× 10−1 1.29 1.10× 10−1 5.42

21× 21 5.00× 10−2 2.70× 10−1 1.34 6.10× 10−2 5.58

23× 23 4.54× 10−2 2.36× 10−1 1.38 3.48× 10−2 5.87

25× 25 4.16× 10−2 2.09× 10−1 1.40 2.01× 10−2 6.31

27× 27 3.84× 10−2 1.87× 10−1 1.41 1.15× 10−2 6.98

29× 29 3.57× 10−2 1.84× 10−1 0.20 6.34× 10−3 8.03

31× 31 3.33× 10−2 1.81× 10−1 0.18 3.19× 10−3 9.93

33× 33 3.12× 10−2 1.78× 10−1 0.33 1.46× 10−3 12.05

Overall convergence rate 1.12 6.60
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Table 3.3 Example 1: Maximum relative errors at a grid size of h = 1/32. Results by UDS, CDS and SCHOS are extracted
from (Gupta et al., 1984).

R UDS CDS SCHOS Compact IRBFs

10 0.0916 0.4537× 10−2 0.6011× 10−4 0.7523× 10−5

20 0.1262 0.1576× 10−1 0.1399× 10−3 0.6587× 10−4

40 0.1686 0.5925× 10−1 0.1511× 10−2 0.1424× 10−2

100 0.2264 3.0020× 10−1 0.3517× 10−1 0.3259× 10−1

3.4.2 Example 2: analytic test (non-rectangular domain)

Next, we shall verify the proposed stencil with the case of non-rectangular do-
mains. Consider the following PDE

∂2u

∂x2
+
∂2u

∂y2
− R

(
∂u

∂x
+
∂u

∂y

)
= f (3.37)

defined on a circular domain x2 + y2 ≤ 1 and subjected to Dirichlet boundary
conditions. The boundary conditions and the forcing function f are chosen so
that the solution to this problem is

ue(x, y) =
eR(x2+y2) − 1

eR − 1
. (3.38)

This analytic solution is a bounded function: 0 ≤ ue(x, y) ≤ 1; the boundary
layer is steeper as R increases.

The problem domain is covered by a rectangular Cartesian grid. The grid nodes
outside the domain are then removed and the boundary nodes are generated
through the intersection of the grid lines and the boundary.

We employ a number of grids, {10×10, 20×20, · · · , 150×150}, with three typical
values of R, (1,10,25), to study the grid convergence behaviour of the proposed
stencil. Figure 3.4 displays the the relative discrete L2 error, denoted by Ne,
against the grid size h. The solution converges apparently as O(h4.24) for R = 1,
O(h3.60) for R = 10 and O(h3.36) for R = 25. To capture the boundary layer
accurately, the RBF width is chosen smaller as R increases: β = 25 for R = 1,
β = 7 forR = 10, and β = 0.5 for R = 25. One advantage of the RBF calculations
at low values of β (small RBF widths) is that their matrices have low condition
numbers. It is noted that large condition numbers indicate a nearly singular
matrix. For R = (1, 10, 25), using a grid of 50× 50, the corresponding condition
numbers are 6.45×109, 3.48×108 and 6.31×106, respectively for the interpolation
matrix in (3.20), and 5.22 × 103, 2.46× 103, and 1.21× 103, respectively for the
final system matrix. The RBF width needs to be large for diffusion-dominated
problems (small R) and small for convection-dominated problems (large R). For
example, for R = 1, using a grid of 150 × 150, the error Ne is 5.03 × 10−8 for
β = 25, but increased up to 8.74× 10−7 for β = 10. For R = 25, the error Ne is
3.91× 10−3 for β = 0.5, but increased up to 7.97× 10−3 for β = 1.
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Figure 3.4 Example 2, non-rectangular domain: The exact solution (left) and the grid-convergence behaviour of the proposed
stencil (right) for R = 1 (top), R = 10 (middle) and R = 25 (bottom). Grids employed are (10× 10, 20× 20, · · · , 150×
150). The solution converges apparently as O(h4.24) for R = 1, O(h3.60) for R = 10 and O(h3.36) for R = 25.
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3.4.3 Example 3: Natural convection in a square slot

Using the Boussinesq approximation, the 2D dimensionless governing equations
for a steady buoyancy-driven flow in terms of the streamfunction ψ, vorticity ω
and temperature T can be written as

vx
∂ω

∂x
+ vy

∂ω

∂y
=

√
Pr

Ra

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+
∂T

∂x
, (3.39)

vx
∂T

∂x
+ vy

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (3.40)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (3.41)

where vx and vy are the x and y components of the velocity vector

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
,

and Pr and Ra are the Prandtl and Rayleigh numbers defined as Pr = ν/α
and Ra = βg∆TL3/αν, respectively in which ν is the kinematic viscosity, α
the thermal diffusivity, β the thermal expansion coefficient, g the gravity, and
L and ∆T the characteristic length and temperature difference, respectively. In
this dimensionless scheme, the velocity scale is taken as U =

√
gLβ∆T for the

purpose of balancing the buoyancy and inertial forces (Ostrach, 1988).

Consider free convection in a unit cavity. The left wall is heated to generate
nontrivial motion, while the top and bottom walls are adiabatic. The boundary
conditions are given by

ψ = 0,
∂ψ

∂x
= 0, T = 1 on x = 0, (3.42)

ψ = 0,
∂ψ

∂x
= 0, T = 0 on x = 1, (3.43)

ψ = 0,
∂ψ

∂y
= 0,

∂T

∂y
= 0 on y = 0, y = 1. (3.44)

There are three governing equations that are solved in a coupled manner. Equa-
tions (3.39) with R =

√
Ra/Pr and (3.40) with R =

√
RaPr are discretised

using (3.24)-(3.27), while (3.41) is handled by the compact IRBF 9 point formula
in (Mai-Duy and Tran-Cong, 2011). A computational boundary condition for the
vorticity is derived here using the scheme proposed in (Ho-Minh et al., 2009).

From the published works, the flow was widely simulated for Ra in the range of
103 to 106. In this study, a wider range is considered and we use a uniform grid
to represent the domain. Table 3.4 and Figure 3.5 show the obtained results for
the case of Ra = 103 using β = 10, Ra = 105 using β = 1.5, and Ra = 107

using β = 0.8. Grid convergence is clearly observed for all cases and the obtained
solutions are in very good agreement with the benchmark results reported in
(Davis, 1983; Quere, 1991) (Table 3.4). Contour plots of the field variables look
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feasible even at coarse grids (Figure 3.5). As Ra increases, the pattern of the flow
becomes complex. Very thin boundary layers are formed at Ra = 107. We employ
small values of β for the simulation of high Ra flows. If β = 10 and β = 5 is used
for Ra = 107, the Picard iteration scheme fails to obtain a convergent solution as
shown in Figure 3.6. The matrix conditions of the interpolant, which are recorded
when the iteration scheme has achieved convergence, are presented in Table 3.5.
Their values are relatively low, allowing the calculation of the interpolant to be
conducted in a direct way.
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Table 3.4 Natural convection: Grid convergence study. “Benchmark” and “Benchmark*” refer to the finite difference and pseudo spectral results in (Davis, 1983) and (Quere, 1991), respectively.

Grid vy max error(%) x vx max error(%) y Nvx error(%)

Ra = 103, β = 10, α = 0.01

21× 21 3.7040 0.18 0.178 3.6555 0.17 0.814 1.1183 0.02

31× 31 3.7000 0.08 0.178 3.6518 0.07 0.813 1.1180 0.00

41× 41 3.6988 0.04 0.178 3.6507 0.04 0.813 1.1179 0.00

Benchmark 3.697 0.178 3.649 0.813 1.118

Ra = 105, β = 1.5, α = 0.01

31× 31 69.071 0.70 0.065 34.892 0.46 0.855 4.5380 0.42

41× 41 68.893 0.44 0.066 34.863 0.38 0.855 4.5331 0.31

51× 51 68.797 0.30 0.066 34.825 0.27 0.855 4.5296 0.23

Benchmark 68.59 0.066 34.73 0.855 4.519

Ra = 107, β = 0.8, α = 0.001

61× 61 694.68 0.64 0.021 140.17 5.66 0.874 16.207 1.91

71× 71 695.70 0.49 0.021 142.97 3.78 0.876 16.233 1.75

81× 81 696.05 0.44 0.021 145.33 2.19 0.874 16.269 1.53

Benchmark* 699.179 0.021 148.595 0.879 16.523
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Table 3.5 Natural convection: Condition numbers of the conversion matrix for the vorticity equation (middle column) and the
energy equation (last column) which are measured when the Picard iteration scheme has achieved convergence.

Ra = 103, β = 10

21× 21 O(107) O(107)

31× 31 O(107) O(107)

41× 41 O(107) O(107)

Ra = 105, β = 1.5

31× 31 O(103) O(103)

41× 41 O(103) O(103)

51× 51 O(103) O(103)

Ra = 107, β = 0.8

61× 61 O(104) O(104)

71× 71 O(104) O(104)

81× 81 O(104) O(104)

3.4.4 Example 4: Lid-driven cavity flow

The governing equations employed here are the steady-state Navier-Stokes equa-
tions written in the stream function ψ and vorticity ω as

vx
∂ω

∂x
+ vy

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (3.45)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
. (3.46)

where Re is the Reynolds number. The cavity is taken as a unit square with the
lid sliding from left to right at a unit velocity. The boundary conditions for vx
and vy become

ψ = 0,
∂ψ

∂x
= 0 on x = 0, x = 1, (3.47)

ψ = 0,
∂ψ

∂y
= 0 on y = 0, (3.48)

ψ = 0,
∂ψ

∂y
= 1 on y = 1. (3.49)

At each top corner, there are two values of vx, making the solution singular. In
the early paper by Ghia et al. (Ghia et al., 1982), the flow was simulated by the
finite-difference method using very fine grids (i.e., 129×129 and 257×257). The
obtained results are very accurate and often cited in the literature for comparison
purposes. Later on, in the work of Botella and Peyret (Botella and Peyret,
1998), simulations were carried out by using a Chebyshev collocation method for
handling a regular part of the solution and a substraction method for dealing with
the singularity part. Spectral results for the flow at Re = 100 and Re = 1000
were reported.
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Ra = 103, β = 10 Ra = 105, β = 1.5 Ra = 107, β = 0.8
N = 21× 21 N = 31× 31 N = 61× 61

Figure 3.5 Natural convection: Contour plots of the streamfunction (top), vorticity (middle) and temperature (bottom) at
coarse grids. Each plot contains 21 contour lines whose values vary linearly.

In the present work, the domain is simply discretised using a uniform Cartesian
grid. For stencils involving a top corner, we remove such a point from both sets
of RBF centres and collocation points. Grid convergence study of the present
method for Re = 100 and Re = 1000 are presented in Table 3.6 for extreme
values of the velocity profiles and in Table 3.7 for features of the primary vortex.
Apart from the finite-difference and spectral benchmark solutions, results by Li
et al. (Li et al., 1995) using a compact fourth-order finite difference scheme are
also included. It can be seen that the present solutions converge very fast and
consistently. Results by the present method using a grid 81 × 81 and those by
the compact finite difference method using a grid 129 × 129 (Li et al., 1995)
are in excellent agreement with the spectral benchmark solutions (Table 3.7).
In addition, results by the present technique are in closer agreement with the
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Figure 3.6 Natural convection, Ra = 107, N = 61 × 61, α = 0.001, solution at Ra = 106 used as initial solution:
the convergence behaviour of the Picard iteration scheme for β = 10, β = 5 and β = 0.8. The first two fail to give a
convergent solution.

spectral benchmark solutions than the finite difference benchmark ones (Tables
3.6 and 3.7). Figure 3.7 shows contour plots of the streamfunction and vorticity,
and the velocity profiles on the centrelines for Re = 5000. Other observations
here are similar to those for the natural convection problem. The value of β
needs be smaller for higher Re solution. If larger values of β are used, the Picard
scheme may not achieve convergence as shown in Figure 3.8.

3.5 Conclusions

Compact local stencils based on integrated RBFs are developed for the convection-
diffusion equation defined on rectangular and non-rectangular domains. Like
standard local stencils, the system of algebraic equations is sparse. Unlike stan-
dard local stencils, a high level of accuracy is achieved using relatively coarse
grids. For convection-dominant flows whose patterns are quite complex due to
the presence of steep gradients, it is observed that the most accurate results are
obtained at small values of the RBF width. This suggests that one can consider
a simple direct (traditional) way for computing the IRBF interpolants in the
simulation of highly-nonlinear heat transfer and fluid flow problems.
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Table 3.6 Lid-driven cavity flow: Grid convergence study for extreme values of the velocity profiles. “Benchmark” and “Benchmark*” refer to the finite difference and pseudo spectral results in (Ghia et al., 1982) and
(Botella and Peyret, 1998), respectively.

Grid vx min error(%) y vy max error(%) x vy min error(%) x

Re = 100, β = 5, α = 0.01

11× 11 -0.18325 14.38 0.476 0.15895 11.48 0.223 -0.20049 21.01 0.796

21× 21 -0.20979 1.99 0.462 0.17566 2.18 0.236 -0.24609 3.04 0.809

31× 31 -0.21356 0.22 0.458 0.17922 0.19 0.237 -0.25292 0.35 0.810

41× 41 -0.21400 0.02 0.458 0.17961 0.02 0.237 -0.25372 0.03 0.810

Benchmark -0.21090 0.453 0.17527 0.234 -0.24533 0.805

Benchmark* -0.21404 0.458 0.17957 0.237 -0.25380 0.810

Re = 1000, β = 1, α = 0.01

11× 11 -0.24017 38.19 0.253 0.23700 37.12 0.150 -0.31896 39.48 0.886

21× 21 -0.30445 21.64 0.240 0.28406 24.64 0.187 -0.38808 26.37 0.877

31× 31 -0.34565 11.04 0.202 0.33195 11.93 0.170 -0.45790 13.12 0.892

41× 41 -0.36710 5.52 0.184 0.35531 5.73 0.163 -0.49400 6.27 0.902

51× 51 -0.37690 3.00 0.178 0.36514 3.13 0.161 -0.50989 3.26 0.906

61× 61 -0.38198 1.69 0.175 0.37016 1.79 0.160 -0.51786 1.74 0.908

71× 71 -0.38473 0.98 0.173 0.37292 1.06 0.159 -0.52207 0.95 0.909

Benchmark -0.38289 0.172 0.37095 0.156 -0.51550 0.906

Benchmark* -0.38857 0.172 0.37694 0.158 -0.52708 0.909
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Table 3.7 Lid-driven cavity flow: Grid convergence study for features of the primary vortex. “Benchmark” and “Benchmark*”
refer to the finite difference and pseudo spectral results in (Ghia et al., 1982) and (Botella and Peyret, 1998), respectively.

Grid ψ-value ω-value location

Re = 100, β = 5, α = 0.01

11× 11 -0.089672 -2.84550 0.5799, 0.7494

21× 21 -0.101767 -3.13748 0.6142, 0.7397

31× 31 -0.103337 -3.16448 0.6153, 0.7376

41× 41 -0.103506 -3.16602 0.6155, 0.7373

Benchmark -0.103423 -3.16646 0.6172, 0.7344

Re = 1000, β = 1, α = 0.01

11× 11 -0.0831278 -1.530614 0.5414, 0.6066

21× 21 -0.0950666 -1.810049 0.5370, 0.5952

31× 31 -0.1070562 -1.940676 0.5315, 0.5790

41× 41 -0.1131694 -2.003820 0.5311, 0.5708

51× 51 -0.1158241 -2.033826 0.5312, 0.5677

61× 61 -0.1171839 -2.050214 0.5312, 0.5665

71× 71 -0.1179237 -2.059308 0.5312, 0.5659

81× 81 -0.1183359 -2.064312 0.5311, 0.5655

Li et al. (Li et al.,
1995) (129× 129)

-0.118448 -2.05876 0.5313, 0.5625

Benchmark -0.117929 -2.04968 0.5313, 0.5625

Benchmark* -0.1189366 -2.067753 0.5308, 0.5652
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Figure 3.7 Lid driven cavity flow, Re = 5000, N = 101 × 101, β = 0.1, α = 0.01: Contour plots of the streamfunction
and vorticity (top), and plots of the velocity profiles on the centrelines (bottom). Finite-difference results at a dense grid of
257× 257 [31], denoted by �, are also included.
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Figure 3.8 Lid-driven cavity flow, Re = 5000, N = 101 × 101, α = 0.01, solution at Re = 3200 used as initial solution:
the convergence behaviour of the Picard iteration scheme for β = 3 and β = 0.1. Using β = 3 fails to give a convergent
solution.



Chapter 4

Compact local IRBF stencils and sub-
region collocation for second-order dif-
ferential problems

In Chapters 2 and 3, CLIRBF stencils are deployed in the context of point collo-
cation methods, which we refer to as CLIRBF-PCM. In this Chapter, CLIRBF
stencils will be introduced into the subregion-collocation (finite-volume) formu-
lation for the discretisation of second-order ODEs/PDEs governing heat transfer
and fluid flows. For the latter, the streamfunction-vorticity formulation is em-
ployed. We refer to present approach as CLIRBF-FVM. The problem domain
can be rectangular or non-rectangular, and is simply represented by a Cartesian
grid, over which overlapping compact local IRBF stencils are utilised to approx-
imate the field variable and its derivatives. The governing differential equation
is integrated over non-overlapping control volumes associated with grid nodes,
and the divergence theorem is then applied to convert volume integrals into sur-
face/line integrals. Line integrals are evaluated by means of the middle point rule
(i.e. second-order integration scheme) and three-point Gaussian quadrature rule
(i.e. high-order integration scheme). The accuracy of the proposed method is
numerically investigated through the solution of several test problems including
natural convection in an annulus. Numerical results indicate that (i) the pro-
posed method produces accurate results using relatively coarse grids and (ii) the
three-point integration scheme is generally more accurate than the middle point
scheme.

4.1 Introduction

Finite volume methods (FVMs), which conserve mass, momentum and energy
over any control volume and can work effectively with complex geometry prob-
lems, are widely used in computational fluid dynamic (CFD) (Patankar, 1980;
Eymard et al., 2000; Huilgol and Phan-Thien, 1997; Pereira et al., 2001). It
should be pointed out that the accuracy of a finite-volume solution is decided
not only by the way to approximate the field variable but also by numerical in-
tegration schemes used for evaluating line/surface integrals in the formulation.
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Epperson (Epperson, 2002) has shown that, given exact nodal function values,
using a n-point Gaussian quadrature rule can lead to a solution whose error is
O(h2n), where h is the discretisation size. As a result, the error is of order up
to h2 only if one uses the middle point rule (i.e. one point Gaussian quadra-
ture rule). Toroney and Turner (Moroney and Turner, 2006) proposed a FVM
method, where differentiated RBFs are employed as a means of local gradient in-
terpolation and the underlying line integrals are evaluated using the three-point
Gaussian quadrature rule. Numerical results showed that the method yields ac-
curacy several orders of magnitude better than simpler methods based on shape
functions for both linear and nonlinear diffusion problems.

RBFs have emerged as a powerful high-order approximation tool for scattered
data (Kansa, 1990; Haykin, 1999). The application of RBFs for the solution
of ODEs and PDEs has received a great deal of attention over the last twenty
years (Fasshauer, 2007). In recent years, research effort has been focused on
constructing the RBF approximations in local form (to obtain sparse system
matrices) (Shu et al., 2003; Lee et al., 2003; Sarler, 2005; Mai-Duy and Tran-
Cong, 2009) and in compact local form (to obtain both sparse system matrices and
high rates of convergence of the approximate solution) (Tolstykh and Shirobokov,
2005; Wright and Fornberg, 2006; Mai-Duy and Tran-Cong, 2011; Thai-Quang
et al., 2012; Hoang-Trieu et al., 2012). It is known that the width of RBFs
(shape parameter) strongly affects the quality of the approximations (Kansa,
1990; Rippa, 1999; Fornberg and Wright, 2004; Larsson and Fornberg, 2005).
Numerical experiments show that, to yield a well-conditioned system matrix, one
should choose small RBF widths for global methods, but can take small and
large values for local methods. The accuracy of local RBF methods can thus be
effectively controlled not only by the spatial discretisation size but also by the
RBF width.

In this chapter, compact local integrated RBF stencils will be incorporated into
the FV formulation to discretise second-order differential equations in one (1D)
and two (2D) dimensions. Two numerical integration schemes, namely the middle
point rule and 3-point Gaussian quadrature rule, are employed and their effects
on the solution accuracy are investigated. We also study the accuracy behaviour
against the RBF width. Results obtained are compared with standard FVMs as
well as point collocation methods employed with compact local IRBF stencils.

The remainder of this chapter is organised as follows. A brief review of integrated
RBFs including compact local approximations is given in Section 4.2. The pro-
posed method is described for 1D and 2D problems in Section 4.3 and then verified
in Section 4.4. Section 4.5 concludes the chapters.

4.2 Brief review of integrated RBFs

Consider a function u(x). The integral formulation starts with the decomposition
of highest-order derivatives under consideration into a set of RBFs. For second-
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order differential problems, one has

∂2u(x)

∂η2
=

N∑

i=1

w
[η]
i I

(2)
[η]i(x), x ∈ Ω, (4.1)

where η is used to denote a component of the position vector x (e.g. η can be
x for 1D problems, and x or y for 2D problems); Ω is the domain of interest;

{wi}Ni=1 is the set of unknown RBF coefficients; and
{
I
(2)
[η]i(x)

}N

i=1
is the set of

RBFs. We will implement (4.1) with the multiquadric RBF (MQ)

I
(2)
i (x) =

√
(x− ci)2 + a2i , (4.2)

where ci and ai are the centre and the width of the ith MQ, respectively.

Approximate expressions for first-order derivatives and the function u itself are
then obtained by integrating expression (4.1)

∂u(x)

∂η
=

N∑

i=1

w
[η]
i I

(1)
[η]i(x) + C

[η]
1 , (4.3)

u(x) =
N∑

i=1

w
[η]
i I

(0)
[η]i(x) + ηC

[η]
1 + C

[η]
2 , (4.4)

where I
(1)
[η]i(x) =

∫
I
(2)
[η]i(x)dη; I

(0)
[η]i(x) =

∫
I
(1)
[η]i(x)dη; and C

[η]
1 and C

[η]
2 are the “con-

stants” of integration. C
[η]
1 and C

[η]
2 will be constants for 1D problems, functions

in one variable for 2D problems, and in two variables for 3D problems. These
functions are unknown and can be approximated as linear combinations of basis
functions.

The approximations (4.1)-(4.4) are called a global IRBF scheme if one employs
these expressions over the entire domain, a 1D-IRBF scheme if they are employed
along grid lines, and a local IRBF scheme if they are employed over small overlap-
ping subregions. Global schemes can yield a high rate of convergence, but their
matrices are fully populated and thus very costly for solving large-scale problems.
On the other hand, local schemes result in sparse matrices that can be handled
in a very efficient way, but their accuracies are deteriorated significantly. Sev-
eral treatments were proposed to improve the solution accuracy of local IRBF
schemes. One simple but effective way is to incorporate, through the constants
of integration, nodal values of the governing equation or of first/second deriva-
tives into the local approximations. Such approximations are called a compact
local IRBF scheme. It was shown numerically that compact local IRBF schemes
are superior to local IRBF ones regarding both the computational cost and the
accuracy in the context of point-collocation formulation. In the present work,
compact local IRBF stencils are introduced into the subregion-collocation/finite-
volume formulation for the solution of second-order differential problems defined
on rectangular and non-rectangular domains.
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4.3 Proposed method

The proposed finite-volume method, which is based on compact local IRBF sten-
cils, (CLIRBF-FVM) is first described for 1D problems and then extended to 2D
problems.

4.3.1 One dimensional problems

Consider a 1D problem governed by

d2u(x)

dx2
+
du(x)

dx
+ u(x) = f(x), x ∈ Ω, (4.5)

where u(x) and f(x) are continuous and prescribed functions, respectively. The
domain Ω is subdivided into a set of non-overlapping line segments (control vol-
umes) that are associated with grid nodes. Figure 4.1 shows a full control volume
for an interior grid node xi, (i ∈ {2, 3, . . . , N − 1}) and a half control volume for
a boundary node xi (i ∈ {1, N}). Integrating (4.5) over the full control volume

Figure 4.1 A schematic diagram for the CV formulation in 1D.

Ωi results in
∫

Ωi

(
d2u(x)

dx2
+
du(x)

dx
+ u(x)

)
dΩi =

∫

Ωi

f(x)dΩi, (4.6)

or

du(xi+1/2)

dx
− du(xi−1/2)

dx
+ u(xi+1/2)− u(xi−1/2) +

∫ xi+1/2

xi−1/2

u(x)dx =

∫ xi+1/2

xi−1/2

f(x)dx. (4.7)

The integrals on the left and right sides of equation (4.7) are evaluated using the
middle point rule and also the three point Gaussian quadrature rule.

For the former, the integrals are expressed as
∫ xi+1/2

xi−1/2

u(x)dx = u(xi)∆x, (4.8)

∫ xi+1/2

xi−1/2

f(x)dx = f(xi)∆x, (4.9)



4.3. Proposed method 68

where ∆x = xi+1/2 − xi−1/2.

For the latter, the integrals are expressed as

∫ xi+1/2

xi−1/2

u(x)dx =
∆x

2

3∑

k=1

γku(
xi+1/2 − xi−1/2

2
ζk +

xi+1/2 + xi−1/2

2
), (4.10)

∫ xi+1/2

xi−1/2

f(x)dx =
∆x

2

3∑

k=1

γkf(
xi+1/2 − xi−1/2

2
ζk +

xi+1/2 + xi−1/2

2
), (4.11)

{γk}3k=1 =

{
5

9
,
8

9
,
5

9

}
, {ζk}3k=1 =

{
−
√

3

5
, 0,+

√
3

5

}
, (4.12)

where γk and ζk are the weights and Gauss points, respectively.

We now approximate the field variable u and its derivatives in equations (4.7),
(4.8) - (4.11) using compact local IRBFs. Over a 3-node stencil [xi−1, xi, xi+1]
associated with grid node xi, the relation between the physical space and the
RBF weight space can be established as




ui−1

ui
ui+1

fi−1

fi+1




=

[
H(0)

K

]

︸ ︷︷ ︸
C




w1

w2

w3

c1
c2



, (4.13)

where nodal values of the governing equation at grid nodes xi−1 and xi+1 (i.e.
fi−1 and fi+1) are also included, C is the conversion matrix, and H(0) and K are
submatrices defined as

H(0) =



I
(0)
1 (xi−1), I

(0)
2 (xi−1), I

(0)
3 (xi−1), xi−1, 1

I
(0)
1 (xi), I

(0)
2 (xi), I

(0)
3 (xi), xi, 1

I
(0)
1 (xi+1), I

(0)
2 (xi+1), I

(0)
3 (xi+1), xi+1, 1


 ,

K =

[
G1(xi−1), G2(xi−1), G3(xi−1), xi−1 + 1, 1
G1(xi+1), G2(xi+1), G3(xi+1), xi+1 + 1, 1

]
,

in which Gk(x) = I
(2)
k (x) + I

(1)
k (x) + I

(0)
k (x) with k ∈ {1, 2, 3}. It is noted that

the subscripts i − 1, i and i + 1 are used to represent the nodes of the stencil
in a global definition, while 1, 2 and 3 denote the nodes of the stencil in a local
definition.

Solving (4.13) yields 


w1

w2

w3

c1
c2




= C−1




ui−1

ui
ui+1

fi−1

fi+1



. (4.14)

Values of the field variable and its derivatives at an arbitrary point on the stencil
can thus be calculated in the physical space as
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u(x) =
[
I
(0)
1 (x), I

(0)
2 (x), I

(0)
3 (x), x, 1

]
C−1

(
û

f̂

)
, (4.15)

du(x)

dx
=
[
I
(1)
1 (x), I

(1)
2 (x), I

(1)
3 (x), 1, 0

]
C−1

(
û

f̂

)
, (4.16)

d2u(x)

dx2
=
[
I
(2)
1 (x), I

(2)
2 (x), I

(2)
3 (x), 0, 0

]
C−1

(
û

f̂

)
, (4.17)

where xi−1 < x < xi+1, û = (ui−1, ui, ui+1)
T , and f̂ = (fi−1, fi+1)

T .

We consider two types of boundary conditions

(i) Dirichlet boundary conditions : Since values of u are given at x1 and xn, the
discretisation is carried out for full control volumes only.

(ii) Dirichlet and Neumann boundary conditions : Since the first derivative du/dx
instead of the field variable u is given at a boundary node, one needs to generate
one additional algebraic equation for the value of u at that node. This can be
achieved by conducting the discretisation over a half control volume associated
with the boundary node.

4.3.2 Two dimensional problems

Poisson equation

The governing equation here takes the form

∇2u(x) = f(x), x ∈ Ω. (4.18)

Rectangular domains:

We discretise the problem domain using a Cartesian grid of density Nx × Ny.
Control volumes associated with grid nodes are of rectangular shapes that do not
overlap each other. Consider an interior node xi,j (2 ≤ i ≤ Nx−1; 2 ≤ j ≤ Ny−1).
Its associated 9-node stencil is defined globally as



xi−1,j+1 xi,j+1 xi+1,j+1

xi−1,j xi,j xi+1,j

xi−1,j−1 xi,j−1 xi+1,j−1


,

and locally as



x3 x6 x9

x2 x5 x8

x1 x4 x7


,

where the grid nodes are numbered from bottom to top and from left to right.
Figure 4.2 shows a schematic diagram for a full control volume associated with
an interior node and a half control volume associated with a boundary node.
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Figure 4.2 A schematic diagram for the CV formulation in 2D.

Integrating (4.18) over a full control volume Ωs yields

∫

Ωs

∇2u(x)dΩs =

∫

Ωs

f(x)dΩs. (4.19)

By means of the divergence theorem, (4.19) reduces to

∮

Γs

∇u(x) · n̂dΓs =

∫

Ωs

f(x)dΩs, (4.20)

or

∫ yn

ys

∂u(x)

∂x

∣∣∣∣
e

dy −
∫ yn

ys

∂u(x)

∂x

∣∣∣∣
w

dy +

∫ xe

xw

∂u(x)

∂y

∣∣∣∣
n

dx−
∫ xe

xw

∂u(x)

∂y

∣∣∣∣
s

dx

=

∫

Ωs

f(x)dΩs, (4.21)

where Γs is the interface of the control volume, n̂ is the outward unit normal
vector, and |e, |w, |n and |s denote the east, west, north and south faces of the
control volume, respectively.

If the middle point rule is applied to (4.20), one obtains

(
∂u(xe)

∂x
− ∂u(xw)

∂x

)
∆y +

(
∂u(xn)

∂y
− ∂u(xs)

∂y

)
∆x = ∆x∆yf(x), (4.22)

where the subscripts e, w, n and s are used to indicate the intersections of the grid
lines with the east, west, north and south faces of the control volume, respectively;
∆x = xe − xw and ∆y = yn − ys.
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If the three-point Gaussian quadrature rule is applied to (4.20), one obtains

∆y

2

3∑

j=1

γj
∂u(y(ζj))

dx

∣∣∣∣∣
e

− ∆y

2

3∑

j=1

γj
∂u(y(ζj))

dx

∣∣∣∣∣
w

+
∆x

2

3∑

i=1

γi
∂u(x(ζi))

dy

∣∣∣∣∣
n

−∆x

2

3∑

i=1

γi
∂u(x(ζi))

dy

∣∣∣∣∣
s

=
∆x∆y

4

3∑

i=1

3∑

j=1

γiγjf (x(ζi), y(ζj)) , (4.23)

where γi and ζi are defined as before.

Now we approximate gradients in (4.22) and (4.23) using compact local IRBF
approximations defined over overlapping 3 × 3 stencils. The conversion matrix
for each stencil is constructed as



û

0̂

f̂


 =




H(0)
x , O

H(0)
x , −H(0)

y

Kx, Ky




︸ ︷︷ ︸
C

(
ŵx

ŵy

)
, (4.24)

where 0̂ and O are a zero vector and zero matrix, respectively; û and 0̂ are vectors
of length 9; ŵx and ŵy are the RBF coefficient vectors of length 15; O,H(0)

x ,H(0)
y

are matrices of dimensions 9 × 15, and Kx and Ky are matrices of dimensions

4 × 15. Equations û = H(0)
x ŵx are employed to collocate the variable u over the

stencil; equations H(0)
x ŵx −H(0)

y ŵy = 0̂ are employed to enforce nodal values of u
obtained from the integration with respect to x and y to be identical; equations
Kxŵx +Kyŵy = f̂ are employed to represent values of the PDE (4.18) at selected
nodes;

û = (u1, · · · , u9)T ,

ŵx =
(
w

[x]
1 , · · · , w

[x]
9 , c

[x]
1 (y1), c

[x]
1 (y2), c

[x]
1 (y3), c

[x]
2 (y1), c

[x]
2 (y2), c

[x]
2 (y3)

)T
,

ŵy =
(
w

[y]
1 , · · · , w

[y]
9 , c

[y]
1 (x1), c

[y]
1 (x4), c

[y]
1 (x7), c

[y]
2 (x1), c

[y]
2 (x4), c

[y]
2 (x7)

)T
,
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H(0)
x =




I
(0)
[x]1(x1), · · · , I

(0)
[x]9(x1), x1, 0, 0, 1, 0, 0

I
(0)
[x]1(x2), · · · , I

(0)
[x]9(x2), 0, x2, 0, 0, 1, 0

I
(0)
[x]1(x3), · · · , I

(0)
[x]9(x3), 0, 0, x3, 0, 0, 1

I
(0)
[x]1(x4), · · · , I

(0)
[x]9(x4), x1, 0, 0, 1, 0, 0

I
(0)
[x]1(x5), · · · , I

(0)
[x]9(x5), 0, x2, 0, 0, 1, 0

I
(0)
[x]1(x6), · · · , I

(0)
[x]9(x6), 0, 0, x3, 0, 0, 1

I
(0)
[x]1(x7), · · · , I

(0)
[x]9(x7), x1, 0, 0, 1, 0, 0

I
(0)
[x]1(x8), · · · , I

(0)
[x]9(x8), 0, x2, 0, 0, 1, 0

I
(0)
[x]1(x9), · · · , I

(0)
[x]9(x9), 0, 0, x3, 0, 0, 1




,

H(0)
y =




I
(0)
[y]1(x1), · · · , I

(0)
[y]9(x1), y1, 0, 0, 1, 0, 0

I
(0)
[y]1(x2), · · · , I

(0)
[y]9(x2), y2, 0, 0, 1, 0, 0

I
(0)
[y]1(x3), · · · , I

(0)
[y]9(x3), y3, 0, 0, 1, 0, 0

I
(0)
[y]1(x4), · · · , I

(0)
[y]9(x4), 0, y4, 0, 0, 1, 0

I
(0)
[y]1(x5), · · · , I

(0)
[y]9(x5), 0, y5, 0, 0, 1, 0

I
(0)
[y]1(x6), · · · , I

(0)
[y]9(x6), 0, y6, 0, 0, 1, 0

I
(0)
[y]1(x7), · · · , I

(0)
[y]9(x7), 0, 0, y7, 0, 0, 1

I
(0)
[y]1(x8), · · · , I

(0)
[y]9(x8), 0, 0, y8, 0, 0, 1

I
(0)
[y]1(x9), · · · , I

(0)
[y]9(x9), 0, 0, y9, 0, 0, 1




.

In this study, selected nodes for Kxŵx +Kyŵy = f̂ are chosen as (x2,x4,x6,x8)
so that

Kx =




I
(2)
[x]1(x2), · · · , I

(2)
[x]9(x2), 0, 0, 0, 0, 0, 0

I
(2)
[x]1(x4), · · · , I

(2)
[x]9(x4), 0, 0, 0, 0, 0, 0

I
(2)
[x]1(x6), · · · , I

(2)
[x]9(x6), 0, 0, 0, 0, 0, 0

I
(2)
[x]1(x8), · · · , I

(2)
[x]9(x8), 0, 0, 0, 0, 0, 0



,

Ky =




I
(2)
[y]1(x2), · · · , I

(2)
[y]9(x2), 0, 0, 0, 0, 0, 0

I
(2)
[y]1(x4), · · · , I

(2)
[y]9(x4), 0, 0, 0, 0, 0, 0

I
(2)
[y]1(x6), · · · , I

(2)
[y]9(x6), 0, 0, 0, 0, 0, 0

I
(2)
[y]1(x8), · · · , I

(2)
[y]9(x8), 0, 0, 0, 0, 0, 0



.

Solving (4.24) yields
(
ŵx

ŵy

)
= C−1

(
û, 0̂, f̂

)T
, (4.25)

or ŵx = C−1
x (û, 0̂, f̂)T and ŵy = C−1

y (û, 0̂, f̂)T , where C−1
x and C−1

y are the first
and the last 15 rows of matrix C−1. Substitution of ŵx and ŵy into (4.3) defined
over the stencil leads to

∂u(x)

∂x
= H(1)

x (x)C−1
x (û, 0̂, f̂)T , (4.26)

∂u(x)

∂y
= H(1)

y (x)C−1
y (û, 0̂, f̂)T , (4.27)
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where

H(1)
x (x) =

[
I
(1)
[x]1(x), · · · , I

(1)
[x]9(x), J[y]1(y), J[y]2(y), J[y]3(y), 0, 0, 0

]
, (4.28)

H(1)
y (x) =

[
I
(1)
[y]1(x), · · · , I

(1)
[y]9(x), J[x]1(x), J[x]2(x), J[x]3(x), 0, 0, 0

]
, (4.29)

in which {J[y]1(y), J[y]2(y), J[y]3(y)} and {J[x]1(x), J[x]2(x), J[x]3(x)} are sets of ba-

sis functions used for the approximation of integration “constants” C
[x]
1 (y) and

C
[y]
1 (x) in equations (4.3)-(4.4), respectively

C
[x]
1 (y) = c

[x]
1 (y1)J[y]1(y) + c

[x]
1 (y2)J[y]2(y) + c

[x]
1 (y3)J[y]3(y), (4.30)

C
[y]
1 (x) = c

[y]
1 (x1)J[x]1(x) + c

[y]
1 (x4)J[x]2(x) + c

[y]
1 (x7)J[x]3(x). (4.31)

In a similar way, values of the field variable and its second derivatives are obtained
by substituting ŵx and ŵy into (4.4) and (4.1), respectively.

It can be seen that the approximations for u and its derivatives are expressed
in terms of nodal values of the field variable and of the governing equation.
For Dirichlet boundary conditions only, the discretisation is carried out over full
control volumes associated with interior grid nodes. For Neumann boundary
conditions, extra equations are needed and they are generated from half control
volumes associated with the boundary nodes.

Non-rectangular domains:

We embed the problem domain in a rectangular domain and then discretise it
using a Cartesian grid of density Nx×Ny. Only Dirichlet boundary conditions are
considered here. There are three types of nodes, namely (i) the boundary nodes
(the intersections of the grid lines and the boundary); (ii) normal interior nodes,
where their associated stencils lie within the problem domain entirely; and (iii)
special interior nodes, where their associated stencils are cut by the boundary.
For the third type, which is typically illustrated in Figure 4.3, some special treat-
ments are required. We employ nodes [x1,x2′ ,x3,x4,x5′ ,x6,x7,x8] for the IRBF
approximations with respect to the x direction, and [x1,x2,x3,x4,x5,x6,x7,x8]
for the y direction. Furthermore, in the conversion process (4.24), the governing
equation is collocated at regular grid nodes only (e.g. x3 and x7). Note that
the intersections of the x and y grid lines are considered as regular nodes, while
the intersections of the grid lines and the non-rectangular boundaries are con-
sidered as irregular nodes. The remaining tasks here are similar to those of the
rectangular-domain case.
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x1

x2

x2′

x3

x4

x5

x5′
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x7

x8

w e

n

s

Figure 4.3 A schematic diagram for the CV formulation in 2D, where the stencil is cut by the boundary.

Natural convection flow

The dimensionless governing equations for natural convection flow can be written
in terms of the streamfunction ψ, vorticity ω, and temperature T as

∂T

∂t
+
√
RaPr

(
∂(vxT )

∂x
+
∂(vyT )

∂y

)
=
∂2T

∂x2
+
∂2T

∂y2
, (4.32)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (4.33)

∂ω

∂t
+

√
Ra

Pr

(
∂(vxω)

∂x
+
∂(vyω)

∂y
− ∂T

∂x

)
=
∂2ω

∂x2
+
∂2ω

∂y2
, (4.34)

where vx =
∂ψ

∂y
and vy = −∂ψ

∂x
, Ra is the Rayleigh number, and Pr is the Prandtl

number. Integrating (4.32)-(4.34) over a control volume Ωs results in

∂

∂t

∫

Ωs

TdΩs +
√
RaPr

∫

Ωs

(
∂(vxT )

∂x
+
∂(vyT )

∂y

)
dΩs =

∫

Ωs

(
∂2T

∂x2
+
∂2T

∂y2

)
dΩs, (4.35)

−
∫

Ωs

ωdΩs =

∫

Ωs

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
dΩs, (4.36)

∂

∂t

∫

Ωs

ωdΩs +

√
Ra

Pr

∫

Ωs

(
∂(vxω)

∂x
+
∂(vyω)

∂y
− ∂T

∂x

)
dΩs =

∫

Ωs

(
∂2ω

∂x2
+
∂2ω

∂y2

)
dΩs. (4.37)
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Assume that T and ω are linear over the time interval (t(n−1), t(n)), the time
derivative terms in (4.35) and (4.37) reduce to

∂

∂t

∫

Ωs

TdΩs =

∫
Ωs
T (n)dΩs −

∫
Ωs
T (n−1)dΩs

∆t
, (4.38)

∂

∂t

∫

Ωs

ωdΩs =

∫
Ωs
ω(n)dΩs −

∫
Ωs
ω(n−1)dΩs

∆t
, (4.39)

where the superscript (n) is used to indicate the current time level. Using the
middle point rule, expressions (4.38) and (4.39) further reduce to

∂

∂t

∫

Ωs

TdΩs =
A

∆t

(
T (n) − T (n−1)

)
, (4.40)

∂

∂t

∫

Ωs

ωdΩs =
A

∆t

(
ω(n) − ω(n−1)

)
, (4.41)

where A is the area of Ωs.

We calculate the convection terms in the form∫

Ωs

(
∂(v − xT )

∂x
+
∂(vyT )

∂y

)
dΩs =

∫ xe

xw

(vyT )

∣∣∣∣
n

dx−
∫ xe

xw

(vyT )

∣∣∣∣
s

dx

+

∫ yn

ys

(vxT )

∣∣∣∣
e

dy −
∫ yn

ys

(vxT )

∣∣∣∣
w

dy, (4.42)

∫

Ωs

(
∂(vxω)

∂x
+
∂(vyω)

∂y
− ∂(T )

∂x

)
dΩs =

∫ xe

xw

(vyω)

∣∣∣∣
n

dx−
∫ xe

xw

(vyω)

∣∣∣∣
s

dx

+

∫ yn

ys

(vxω − T )

∣∣∣∣
e

dy −
∫ yn

ys

(vxω − T )

∣∣∣∣
w

dy, (4.43)

and treat the diffusion terms in the same way as for Poisson equation in Section
3.2.1.

Boundary conditions for the vorticity equation (4.34) are not given explicitly.
One can compute them through equation (4.33) using given derivative boundary
conditions for the streamfunction. In the case of rectangular boundaries, values
of ∂ψ/∂n are incorporated into the computational boundary conditions for ω by
means of the integration constants (Mai-Duy, 2005; Mai-Duy and Tanner, 2005b).
In the case of irregular boundaries, we apply the equations reported in (Le-Cao
et al., 2009)

ωb = −
[
1 +

(
tx
ty

)2
]
∂2ψb

∂x2
− qy, (4.44)

ωb = −
[
1 +

(
ty
tx

)2
]
∂2ψb

∂y2
− qx, (4.45)

where tx = ∂x/∂s, ty = ∂y/∂s, s is the tangential direction of boundary, and
qx, qy are the known quantities defined as

qx = − ty
t2x

∂2ψb

∂y∂s
+

1

tx

∂2ψb

∂x∂s
, (4.46)

qy = −tx
t2y

∂2ψb

∂x∂s
+

1

ty

∂2ψb

∂y∂s
. (4.47)
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The solution procedure involves the following steps

1. Solve equation (4.36) for ψ, subject to Dirichlet conditions

2. Compute the velocity components vx and vy, and the boundary values for
the vorticity ω

3. Solve equation (4.35) for T , subject to Dirichlet and Neumann boundary
conditions for natural convection in a square slot (Example 4.4.4), and to
Dirichlet boundary conditions for natural convection in an annulus (Exam-
ple 4.4.4)

4. Solve equation (4.37) for ω, subject to Dirichlet conditions

5. Repeat the above steps until the solution has reached the steady state.

4.4 Numerical examples

The proposed CLIRBF-FVM is verified in a series of 1D and 2D problems. If the
exact solution is available, the accuracy of the approximate solution is measured
using the relative discrete L2 norm

Ne(u) =

√
N∑
i=1

(ui − uei )
2

√
N∑
i=1

(uei )
2

, (4.48)

where N is the number of collocation nodes, and ui and uei are the computed
and exact solutions, respectively. We simply choose the MQ width as ai = βh,
where β is a given number, and h is a grid spacing. Results by the standard FVM
(Patankar, 1980) and the point-collocation method employed with compact local
IRBF stencils (CLIRBF-PCM) (Mai-Duy and Tran-Cong, 2011) are also included
to provide the base for the assessment of the performance of the present method.

4.4.1 Example 1 (1D problem)

Consider the following ODE

∂2u

∂x2
+
∂u

∂x
+u = − exp(−5x) [9979 sin(100x) + 900 cos(100)] , 0 ≤ x ≤ 1. (4.49)

The exact solution to this problem is taken as ue(x) = exp(−5x) sin(100x). We
discretise the domain using {71, 73, . . . , 591} uniformly distributed nodes. The
solution accuracy and the matrix condition number versus the grid size are shown
in Figure 4.4 for Dirichlet boundary conditions only and in Figure 4.5 for Dirichlet
and Neumann boundary conditions.

It can be seen that the proposed CLIRBF-FVM (1 Gauss point) outperforms the
standard FVM, and the proposed CLIRBF-FVM (3 Gausss point) outperforms
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Figure 4.4 Example 1, ODE, Dirichlet boundary conditions: Relative L2 errors of the solution u (top) and condition numbers
of the system matrix (bottom) against the grid size by the standard FVM, CLIRBF-PCM, CLIRBF-FVM (1 Gauss point) and
CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h2.03), O(h4.72), O(h2.30) and O(h4.81) for the
solution accuracy, and O(h2.00), O(h2.00), O(h2.00) and O(h2.00) for the matrix condition number.
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Figure 4.5 Example 1, ODE, Dirichlet and Neumann boundary conditions: Relative L2 errors of the solution u (top) and
condition numbers of the system matrix (bottom) against the grid size by the standard FVM, CLIRBF-PCM, CLIRBF-FVM (1
Gauss point) and CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h1.93), O(h3.83), O(h2.22) and
O(h3.88) for the solution accuracy, and O(h2.00), O(h2.50), O(h2.00) and O(h2.00) for the matrix condition number.
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CLIRBF-PCM regarding both the solution accuracy and convergence rate. High
rates of convergence are obtained with CLIRBF-FVM employed with the 3-point
Gaussian quadrature rule as expected. The control-volume formulation is much
more accurate than the point-collocation formulation, especially for the case of
Neumann boundary conditions. Regarding the numerical stability, the condition
numbers of the system matrix by the present method are similar to those by the
standard FVM and CLIRBF-PCM for the case of Dirichlet boundary conditions
only, but much lower than those by CLIRBF-PCM for the case of Dirichlet and
Neumann boundary conditions.

4.4.2 Example 2 (2D problem, rectangular domain)

We take the following Poisson equation to verify the present method

∂2u

∂x2
+
∂2u

∂y2
= 4(1− π2) sin(2πx) sinh(2y) + 16(1− π2) cosh(4x) cos(4πy), (4.50)

where−0.5 ≤ x, y ≤ 0.5. Its exact solution is given by ue(x, y) = sin(2πx) sinh(2y)+
cosh(4x) cos(4πy). The calculation is carried out with several grid densities
{7 × 7, 9 × 9, . . . , 71 × 71}. The solution accuracy and condition number by
CLIRBF-FVM and CLIRBF-PCM are shown in Figures 4.6 and 4.7. The former
is for Dirichlet boundary conditions, while the latter is for Dirichlet and Neu-
mann boundary conditions, where u is specified on the left and right boundaries
(x = −0.5 and x = 0.5) and ∂u/∂x is prescribed on the bottom and top bound-
aries (y = −0.5 and y = 0.5). Remarks here are similar to the 1D problems, using
the middle-point rule is able to lead to a solution O(h2), while the 3-point Gaus-
sian quadrature rule results in a solution with a very high rate of convergence,
up to O(h5.03).

Figure 4.8 shows the influence of the MQ width measured via β on the solution
accuracy, which is investigated on three grids {31×31, 41×41, 51×51}. It can be
seen that the present scheme can work well for a wide range of β. However, the
optimal value of β and its stable range (e.g. 20 to 60 in this particular example)
are problem-dependent. Generally, one needs to choose small values of β when
the solution involves steep gradients.

4.4.3 Example 3 (2D problem, non-rectangular domain)

Consider the same PDE as in Example 2. However, the domain of interest is of
circular shape of radius 1/2 and the boundary conditions are of Dirichlet type
(Figure 4.9). Results obtained are presented in Figure 4.10. It shows that the
numerical solution converges fast - apparently as O(h4) - for both CLIRBF-PCM
and CLIRBF-FVM (3 Gauss points), and CLIRBF-FVM is more stable than
CLIRBF-PCM. It also shows that the 1-point Gaussian quadrature scheme results
in larger error than 3-point scheme. The error of the former is of order h2 only
at fine grids.
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Figure 4.6 Example 2, PDE, rectangular domain, Dirichlet boundary condition: Relative L2 errors of the solution u (top) and
condition numbers of the system matrix (bottom) against the grid size by the CLIRBF-PCM, CLIRBF-FVM (1 Gauss point)
and CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h4.42), O(h2.00) and O(h4.72) for the solution
accuracy, and O(h2.00), O(h2.00) and O(h2.00) for the matrix condition number.
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Figure 4.7 Example 2, PDE, rectangular domain, Dirichlet and Neumann boundary conditions: Relative L2 errors of the
solution u (top) and condition numbers of the system matrix (bottom) against the grid size by the CLIRBF-PCM, CLIRBF-
FVM (1 Gauss point) and CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h4.82), O(h2.42) and
O(h5.03) for the solution accuracy, and O(h1.93), O(h1.93) and O(h1.93) for the matrix condition number.
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Figure 4.8 Example 2, PDE, rectangular domain, N = {31 × 31, 41 × 41, 51 × 51}: the effect of the MQ width on the
solution accuracy.

Figure 4.9 Non-rectangular domain: circular domain and its discretisation
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Figure 4.10 Example 3, PDE, non-rectangular domain, Dirichlet boundary condition: Relative L2 errors of the solution u
and condition numbers of the system matrix against the grid size by the CLIRBF-PCM, CLIRBF-FVM (1 Gauss point) and
CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h4.03), O(h2.44) and O(h3.98) for the solution
accuracy, and O(h2.85), O(h2.39) and O(h2.37) for the matrix condition number.
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4.4.4 Example 4: Thermally-Driven Cavity Flow Problem

Natural convection in a square slot

Consider a flow in a stationary unit square cavity (0 ≤ x, y ≤ 1), where the two
side walls are heated with T = 1 at x = 0 and T = 0 at x = 1, while the top and
the bottom walls are insulated (∂T/∂y = 0 at y = 0 and y = 1) (Figure 4.11).
The no-slip boundary conditions lead to ψ = 0 and ∂ψ/∂n = 0 on the four walls.

O

vx = 0vx = 0
vy = 0 vy = 0

x
y

T = 1 T = 0

vx = 0, vy = 0,
∂T

∂y
= 0

vx = 0, vy = 0,
∂T

∂y
= 0

0

1

1

Figure 4.11 Geometry and boundary conditions for natural convection in a square slot.

Some important measures associated with this type of flow are

• Maximum horizontal velocity vx max on the vertical mid-plane and its loca-
tion

• Maximum vertical velocity vy max on the horizontal mid-plane and its loca-
tion

• The average Nusselt number throughout the cavity, which is defined as

Nu =

∫

0

1

Nu(x)dx, (4.51)

Nu(x) =

∫

0

1(
vxT − ∂T

∂x

)
dy, (4.52)

in which (vxT − ∂T/∂x) is the local heat flux in the horizontal direction

• The average Nusselt number on the vertical plane at x = 0 (left wall) and
at x = 1/2 (middle cross-section), which are defined by

Nu0 = Nu(x = 0, y)

Nu1/2 = Nu(x = 1/2, y)

A wide range of Ra, (103, 104, . . . , 107), and Pr = 0.71 are considered. The initial
solution is taken from the computed solution at the lower and nearest value of
Ra. For Ra = 103, the simulation starts with the fluid at rest.
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Table 4.1 shows results obtained by the present method using the 3-point Gaus-
sian quadrature rule, the benchmark solutions provided by G. De Vahl Davis
(Davis, 1983) for 103 ≤ Ra ≤ 106, and by P. Le Quere (Quere, 1991) for Ra ≥ 106,
and some other numerical results. It can be seen that (i) very good agreement
is achieved between these results; and (ii) the present solutions are in better
agreement with the benchmark ones than those obtained by the Galerkin-RBF
approach (Ho-Minh et al., 2009), and the thermal BGK lattice Boltzmann (Hao-
Chueh et al., 2010). Figure 4.12 displays the distribution of the streamfunction,
vorticity and temperature over the flow domain. They look feasible in comparison
with those reported in the literature.

Natural convection in a concentric annulus between an outer square cylinder and
an inner circular cylinder

The geometry and boundary condition of the problem are displayed in Figure
4.13. We take the ratio between the radius R of the inner cylinder and the side
length L of the outer square to be 0.2. The Prandtl number is fixed at 0.71 and
the Rayleigh number is varied in a range of (104, 5 × 104, 105, 5 × 105, 106). The
average Nusselt number is defined by

Nu = −1

k

∮
∂T

∂n
ds, (4.53)

where k is the thermal conductivity.

Results concerning the average Nusselt number at the outer walls Nuo and at the
inner walls Nui are presented in Table 4.2. They agree well with other results
((Le-Cao et al., 2009; Moukalled and Acharya, 1996; Shu and Zhu, 2002; Ngo-
Cong et al., 2012a)).

Figure 4.14 shows the contours of the streamfunction, vorticity, and tempera-
ture of the flow for several values of the Rayleigh number. At Ra = 104, their
distributions are nearly symmetric about the horizontal axis across the cylinder
centre. These distributions become more unsymmetric with increasing Ra (higher
convection strength).

4.5 Concluding remarks

This chapter presents a new finite-volume method for the simulation of heat
transfer and fluid flow problems on rectangular and nonrectangular domains. The
use of compact local IRBF approximations instead of the usual linear interpola-
tions to represent the field variable and the employment of high-order integration
schemes rather than the middle-point rule can lead to a significant improvement
in accuracy for a finite-volume solution. The method is verified in analytic test
problems for which high rates of convergence of the solution are achieved and in
natural convection flows for which a convergent and accurate solution at high Ra
number is obtained.
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Table 4.1 Natural convection in a square slot: Maximum velocities on the middle planes and the average Nusselt number by
the present CLIRBF-FVM (3 Gauss points) and by some other methods.

Ra Density vx max x vy max y Nu Nu1/2 Nu0

103 11× 11 3.612 0.814 3.693 0.177 1.121 1.117 1.120

21× 21 3.648 0.813 3.698 0.179 1.118 1.118 1.117

GRBFa - - - - 1.118 1.119 1.117

LBMb 3.648 0.810 3.697 0.180 1.116 - -

FDMc 3.649 0.813 3.697 0.178 1.118 1.118 1.117

104 31× 31 16.059 0.823 19.612 0.118 2.247 2.240 2.246

41× 41 16.164 0.823 19.643 0.119 2.247 2.245 2.247

GRBFa - - - - 2.247 2.248 2.244

LBMb 16.138 0.820 19.602 0.120 2.230 - -

FDMc 16.178 0.823 19.617 0.119 2.243 2.243 2.238

105 41× 41 34.61 0.854 68.98 0.065 4.535 4.530 4.527

51× 51 34.73 0.855 68.93 0.066 4.527 4.526 4.509

GRBFa - - - - 4.529 4.530 4.521

LBMb 34.459 0.855 68.551 0.065 4.488 - -

FDMc 34.73 0.855 68.59 0.066 4.519 4.519 4.509

106 61× 61 64.44 0.851 222.73 0.0372 8.833 8.821 8.809

71× 71 64.59 0.850 222.12 0.0375 8.849 8.840 8.840

GRBF a - - - - 8.864 8.865 8.827

LBMb 63.413 0.848 219.708 0.036 8.745 - -

FDMc 64.63 0.8507 219.36 0.0379 8.800 8.799 8.817

SMd 64.83 0.850 220.6 0.038 8.825 8.825 -

107 91× 91 155.057 0.864 749.835 0.021 16.555 16.536 16.815

GRBFa - - - - 16.661 16.661 -

SMd 148.595 0.879 699.179 0.021 16.523 16.523 -

a Galerkin-RBF method (Ho-Minh et al., 2009)
b Thermal BGK lattice Boltzmann model (Hao-Chueh et al., 2010)
c Finite difference method (Davis, 1983)
d Spectral method (Quere, 1991)
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Figure 4.12 Natural convection in a square slot, N = 71× 71: Contour plots for the streamfunction (left), vorticity (middle),
and temperature (right) for several Ra numbers.
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Figure 4.13 Geometry and boundary conditions for natural convection in a concentric annulus between an outer square
cylinder and an inner circular cylinder.

Table 4.2 Natural convection in an annulus defined by concentric outer square and inner circular cylinders: the average
Nusselt number on the outer (Nuo) and inner (Nui) cylinders by the present CLIRBF-FVM (1 Gauss point) and by some
other methods (RBF, FVM and DQM).

Ra 104 5× 104 105 5× 105 106

Grid Nuo

32× 32 3.22 3.98 4.78 7.30 8.67

42× 42 3.22 4.01 4.83 7.38 8.63

52× 52 3.22 4.04 4.88 7.52 8.77

62× 62 3.22 4.04 4.88 7.51 8.93

1D-IRBF a 3.22 4.04 4.89 7.43 8.70

LMLS-IRBF b 3.23 4.05 4.91 7.43 8.67

DQM c 3.24 4.86 8.90

FVM d 3.33 5.08 9.37

Grid Nui

32× 32 3.21 3.97 4.77 7.49 8.89

42× 42 3.21 4.00 4.83 7.45 8.78

52× 52 3.22 4.02 4.86 7.55 8.98

62× 62 3.22 4.03 4.88 7.51 8.90

1D-IRBF a 3.21 4.04 4.89 7.51 8.85

LMLS-IRBF b 3.23 4.06 4.92 7.55 8.90

DQM c 3.24 4.86 8.90

FVM d 3.33 5.08 9.37

a One dimensional integrated-RBF (Le-Cao et al., 2009)
b Local moving least square - one-dimensional IRBF (Ngo-Cong et al., 2012a)
c Differential quadrature method (Shu and Zhu, 2002)
d Finite volume method (Moukalled and Acharya, 1996)
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Ra = 105
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Figure 4.14 Natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder,
N = 62× 62: Contour plots for the streamfunction (left), vorticity (middle), and temperature (right) for several Ra numbers.



Chapter 5

Compact local IRBF stencils for
viscoelastic fluid flows

This chapter is concerned with the use of compact local IRBF stencils in the
simulation of viscoelastic fluid flows. We solve the Navier-Stokes equation, where
the streamfunction-vorticity formulation is employed, and constitutive equation,
where Oldroyd-B model is taken, in a coupled manner, with Newton iteration.
Poiseuille and corrugated tube flows are considered to verify the present method.
Highly nonlinear and accurate solutions are obtained.

5.1 Introduction

Non-Newtonian fluid flows are known to be more difficult to simulate numerically
than Newtonian fluid flows. This can be attributed to the following reasons (Ke-
unings, 1990; Walters and Webster, 2003). Firstly, viscoelastic fluids are more
complex than Newtonian fluids. Constitutive equations relating stresses to strain
rates are linear for Newtonian fluids but nonlinear for viscoelastic fluids. Sec-
ondly, the mathematical model for a viscoelastic fluid consists of the continuity
and momentum equations, which possess an elliptic character, and the constitu-
tive equation, which possesses a hyperbolic character. Due to the characteristic
mixture in the governing equations, one needs to pay more attention in the sim-
ulation of viscoelastic flows (Walters and Webster, 2003; Barnes et al., 1989;
Macosko, 1994; Grillet et al., 1999). For example, the behaviour of geometric
singularities in a flow is much more severe if the fluid is viscoelastic (Keunings,
1986) and consequently, treatments other than the standard ones (i.e. those as-
sociated with the Newtonian case) are normally required here. Thirdly, the stress
grows exponentially with convection, leading to the great numerical difficulty in
obtaining a convergent solution at high Weissenberg numbers - the so-called high
Weissenberg number problem (HWNP).

Viscoelastic fluid problems have been solved by different numerical methods, for
example, Finite Element methods (FEMs) (Crochet et al., 1984; Keunings and
Crochet, 1984; Guenette and Fortin, 1995; Hulsen et al., 2005), Finite Volume
methods (FVMs) (Xue et al., 1995; Oliveira et al., 1998; Oliveira, 2001; Yapici
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et al., 2009) and spectral methods (SMs) (Pilitsis and Beris, 1989). A set of
continuity, momentum and constitutive equations can be solved by a coupled
or decoupled approach. For the former, the three equations are solved simulta-
neously, while for the latter, the continuity and momentum equations and the
constitutive equation are solved separately at each iteration. The decoupled ap-
proach involves a set of smaller system matrices and thus saving data storage and
reducing computational time; however, it suffers from poor convergence. The de-
coupled approach has been used in (Tanner and Xue, 2002) for computing the
transient flows with high elasticity, and in (Xue et al., 1995) for the study of
secondary flows of viscoelastic fluid in straight pipes. The coupled approach is
more stable than decoupled one, but it leads to large single matrices. One ad-
vantage of the coupled approach is that its resultant system can be solved by
means of a Newton iterative scheme, which gives a relatively fast convergence.
The implementation of the coupled approach has been reported in many papers
(Momeni-Masuleh and Phillips, 2004; Pilitsis and Beris, 1989, 1992; Ho-Minh
et al., 2010). The two approaches may be mixed (Harlen et al., 1995). Further
details can be found in (Tanner and Xue, 2002).

The employment of radial basis functions for solving ODEs/PDEs was proposed
by Kansa in 1990 (Kansa, 1990). Since then, RBFs have been increasingly used
in the simulation of engineering applications. In the context of viscoelastic flows,
several RBF works were reported, including (Mai-Duy and Tran-Cong, 2008a;
Ho-Minh et al., 2010), where global RBF approximations are employed to rep-
resent the field variables. Global methods lead to dense matrices and therefore
only well suit problems whose solutions can be captured with a relatively small
number of nodes. Local methods are a preferred option for solving problems
whose solutions involve complex variations (e.g. steep gradients). In this chap-
ter, compact local IRBF stencils will be applied for the simulation of flows of
a viscoelastic fluid modelled by the Oldroyd-B model. Poiseuille flows between
two parallel plates and in a straight circular tube, and flows through a corru-
gated tube are considered to verify the present CLIRBF method. For Poiseuille
flows, certain analytic solutions are available. For corrugated tube flows, they
were simulated with Newtonian fluid (Lahbabi and Chang, 1986) and viscoelas-
tic fluid using the pseudospectral technique (Pilitsis and Beris, 1992), spectral
method (Momeni-Masuleh and Phillips, 2004), mixed pseudospectral/finite dif-
ference method (PSFD), modified PSFD in a stretched cylindrical coordinate sys-
tem (PCFD) method (Pilitsis and Beris, 1989), 2D-IRBF method (Mai-Duy and
Tanner, 2005a), 1D-IRBF method (Ho-Minh et al., 2010), etc. Results obtained
by spectral methods are considered as benchmark solutions. Here, we employ
Newton iteration to solve the resultant CLIRBF systems and compare our re-
sults with the analytic and benchmark spectral solutions to test the performance
of CLIRBF stencils.

The chapter is organised as follows. In Section 5.2, the governing equations and
Newton’s iteration scheme are briefly reviewed. In Section 5.3, compact local
IRBF stencils are described. The present CLIRBF method is verified in Section
5.4. Section 5.5 concludes the chapter.
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5.2 Governing equations and Newton’s iteration scheme

5.2.1 Governing equations

As reviewed earlier in Section 5.1, it might be advantageous to simulate viscoelas-
tic flows in a coupled manner, where one includes stresses in the list of dependent
variables. Equations for determining these variables are taken from constitutive
models such as UCM, PTT and Oldroyd-B. In the present study, the Oldroyd-B
model is employed, where the extra stress tensor is decomposed into

τ = 2ηsD+ τ v, (5.1)

where ηs is the solvent viscosity, D = 0.5(∇vT +∇v), and τ v is the elastic stress
defined as

τ v + λ
∇
τ v = 2ηpD, (5.2)

in which ηp is the polymeric viscosity, λ is the relaxation time and
∇
τ v is the

material time derivative given by

∇
τ v =

∂τ v

∂t
+ v · ∇τ v − (∇v)T · τ v − τ v · ∇v. (5.3)

The governing equations for flows of an Oldroyd-B fluid in dimensionless form
can thus be written as

∇ · v = 0, (5.4)

∂v

∂t
+ v · ∇v = − 1

Re
∇p+ 1

Re
∇τυ +

α

Re
∆v, (5.5)

τ v +We
∇
τ v = 2(1− α)D, (5.6)

where We is the Weissenberg number, Re is the Reynolds number and α is the
ratio of the solvent (Newtonian) viscosity to the total viscosity of the viscoelastic
fluid.

5.2.2 Newton’s iteration scheme

For simplicity, we review the Newton’s iteration scheme for 1D case. Consider an
equation f(x) = 0. Figure 5.1 illustrates the way in which the solution is found
by using the Newton iteration method. In this figure, the solution is the point
where the curve y = f(x) meets the x-axis. Let x0 be the first guess value of
the solution. We can construct a straight line y = f ′(x0) tangent to the curve
y = f(x) at the point x = x0. This line intersects the x-axis at the point x1. The
point x1 is the next guess value. Again, another straight line tangent to y = f(x)
is constructed at x1 to obtain a new guess point x2. The process continues until
the function f(x) = 0 is satisfied.

The above procedure can be briefly described as

xi = xi−1 − f(xi−1)/f
′(xi−1). (5.7)
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Figure 5.1 Newton’s iteration scheme.

One needs to compute equation (5.7) repeatedly until the convergence condition
is satisfied

|f(xi)| < ε, (5.8)

where ε is a prescribed tolerance.

5.3 Compact local integrated RBF stencils

The implementation of CLIRBF stencils for solving elliptic equation has been
described in the previous chapters. In this section, we will utilise CLIRBF stencils
to discretise hyperbolic constitutive equations.

Constitutive equations for the Oldroyd-B model can be rewritten as

ξ + u
∂ξ

∂x
+ v

∂ξ

∂y
= b(x), (5.9)

where ξ is used to denote a component of the stress tensor, x = (x, y)T is the
position vector; and u, v and b(x) are given values and function, respectively. We
employ CLIRBF stencils of 3×3 nodes to represent the solution. At an arbitrary
point in the stencil, the field variable and its first derivatives are computed as

∂ξ(x)

∂x
= H(1)

x (x)ŵx, ξ(x) = H(0)
x (x)ŵx, (5.10)

∂ξ(x)

∂y
= H(1)

y (x)ŵy, ξ(x) = H(0)
y (x)ŵy, (5.11)

where the hat notation is used to denote a vector, superscript (.) the associated
derivative order, subscripts x and y the quantities associated with the integration
process in the x and y direction, respectively, ŵ is the RBF coefficient vector, H
is the RBF coefficient matrix defined as before (e.g. in Chapter 4), and H(0) =∫
H(1).
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Making use of (5.10) and (5.11), the governing equation (5.9) reduces to

1

2

[
H(0)

x (x)ŵx +H(0)
y (x)ŵy

]
+ uH(1)

x (x)ŵx + vH(1)
y (x)ŵy = b(x). (5.12)

It is noted that, in (5.12), the value of ξ on the left side is computed in an
averaging sense since there are two approximations, one from the x and one from
the y directions for the same quantity.

To convert equation (5.12) into the physical space from the RBF coefficient space,
we construct the following conversion system




H(0)
x , O

H(0)
x , −H(0)

y

1

2
H(0)

x (x̂) + uH(1)
x (x̂),

1

2
H(0)

y (x̂) + vH(1)
y (x̂)




︸ ︷︷ ︸
C

(
ŵx

ŵy

)
=




ξ̂

0̂
b(x̂)


 , (5.13)

where H(0)
x and H(0)

y are the RBF coefficient matrices of dimensions 9× 15, C the
conversion matrix of dimensions 22× 30, the first subset of equations represents
the field variable ξ at all grid nodes of the stencil, the second subset is used
to force the values of the field variable ξ from the two approximations to be
identical, the last subset is employed to include values of (5.12) at four selected
nodes x̂ = [x2,x4,x6,x8] into the approximations (i.e. compact form).

Solving equation (5.13) results in

(
ŵx

ŵy

)
= C−1




ξ̂

0̂
b(x̂)


 . (5.14)

Substitution of (5.14) into (5.12) yields

[
1

2
H(0)

x (x) + uH(1)
x (x),

1

2
H(0)

y (x) + vH(1)
y (x)

]
C−1

︸ ︷︷ ︸
D




ξ̂

0̂
b(x̂)


 = b(x), (5.15)

where D is an array of 22 entries. This equation can be rewritten as

D1ξ̂ = b(x)−D2b(x̂), (5.16)

where D1 and D2 are the first 9 columns and the last 4 columns of D, respectively.

Equation (5.16) is the CLIRBF discretisation form of the governing equation
(5.9).

5.4 Numerical examples

The present RBF method is verified with Poiseuille flows and corrugated tube
flows. Here, we are only interested in the steady state of these flows. The
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streamfunction-vorticity formulation is adopted and we solve the coupled system
of linear and nonlinear algebraic equations by the Newton’s iteration scheme. In
the case of Poiseuille flows, where an exact solution is available, the accuracy of
the approximate solution is measured using the root mean squared error

RMS =

√√√√√
N∑
i=1

(ui − uei )
2

N
, (5.17)

where N is the number of collocation nodes, and ui and u
e
i are the computed and

exact solutions, respectively.

5.4.1 Fully developed planar Poiseuille Flow

The planar Poiseuille flow is a term used to describe the motion of a fluid between
two parallel stationary infinite plates, which is caused by the constant non-zero
pressure gradient in one direction parallel to the plates. Such a flow is an ide-
alisation of a real three dimensional flow as depicted in Figure 5.2. The fluid

Figure 5.2 Geometry for planar Poiseuille flow. The spacing between the two plates is exaggerated in relation to its length.

flows in the x direction between two rectangular plates, separated by a gap 2d.
Those plates stretch in the z direction and their width is very large relative to the
gap. As a result, one can ignore the velocity in the z direction and simply model
the flow by a cross section (Wilkes, 2005). Figure 5.3 shows a 2D computational
model for this 3D flow. The computational domain can be further reduced to a
half (i.e. 0 ≤ y ≤ d) if one takes into account the symmetry of the flow.

The dimensionless governing equations for flows of Newtonian and Oldroyd-B
fluids take the form

Newtonian fluid :

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (5.18)

∂2ω

∂x2
+
∂2ω

∂y2
= Re

(
vx
∂ω

∂x
+ vy

∂ω

∂y

)
, (5.19)

where vx =
∂ψ

∂y
, vy = −∂ψ

∂x
, and Re is the Reynolds number.
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Figure 5.3 A 2D computational model for planar Poiseuille flow.

Oldroyd-B fluid (slow motion):

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (5.20)

α

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+
∂2τxy
∂x2

− ∂2τxy
∂y2

− ∂2 (τxx − τyy)

∂x∂y
= 0 (5.21)

τxx +We

(
vx
∂τxx
∂x

+ vy
∂τxx
∂y

− 2
∂vx
∂x

τxx − 2
∂vx
∂y

τxy

)
= 2 (1− α)

∂vx
∂x

, (5.22)

τxy +We

(
vx
∂τxy
∂x

+ vy
∂τxy
∂y

− ∂vx
∂y

τyy −
∂vy
∂x

τxx

)
= (1− α)

(
∂vx
∂y

+
∂vy
∂x

)
,

(5.23)

τyy +We

(
vx
∂τyy
∂x

+ vy
∂τyy
∂y

− 2
∂vy
∂x

τxy − 2
∂vy
∂y

τyy

)
= 2 (1− α)

∂vy
∂y

, (5.24)

where We is the Weissenberg number and α is the ratio of the retardation time
to the relaxation time. In this study, we employ α = 1/9.

The exact solution to (5.20)-(5.24) at the steady state is given by

vx = 1− y2, vy = 0

ψ = y − 1/3y3, ω = 2y,

τxx = 2We(1− α)

(
∂vx
∂y

)2

= 8We (1− α) y2,

τxy = (1− α)

(
∂vx
∂y

)
= −2 (1− α) y,

τyy = 0.

Boundary conditions:

Consider a half domain of dimensions L × d = 1 × 1. We impose the flow rate
Q = 1(m3/s) in the present simulation. The non-slip and symmetric boundary
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conditions are applied on the top plate and the centreline, respectively, while the
periodic condition is applied on the inlet and outlet (Figure 5.4).

∂vx
∂y

= 0, vy = 0, ψ = 0, ω = 0 at y = 0; 0 ≤ x ≤ 1,

vx = 0, vy = 0, ψ =
2

3
,

∂ψ

∂y
= 0 at y = 1; 0 ≤ x ≤ 1,

ψi = ψo,
∂ψi

∂x
=
∂ψo

∂x
, ωi = ωo,

∂ωi

∂x
=
∂ωo

∂x
, at x = [0, 1]; 0 ≤ y ≤ 1.

It is noted that, by taking ψ = 0 on the centreline and with the imposed flow
rate Q = 1, one has ψ = 2/3 on the wall.

Figure 5.4 Boundary conditions for Poiseuille flows.

On the top plate, the vorticity is computed as ω = −∂2ψ/∂y2 and we incorporate
∂ψ/∂y = 0 into ∂2ψ/∂n2 in the manner as prescribed in Section 4.3.2 of Chapter
4. The symmetric condition leads to ∂vx/∂y = 0, from which one can derive
ω = ∂2ψ/∂y2 = 0 on the centreline.

In the case of Oldroyd-B fluid, one also needs to derive boundary conditions for
stresses. Such boundary conditions can be obtained by solving the constitutive
equations that are collocated on the wall

τxx − 2We
∂vx
∂y

τxy = 0, (5.25)

τxy −We
∂vx
∂y

τyy = (1− α)
∂vx
∂y

, (5.26)

τyy − 2We
∂vy
∂y

τyy = 2(1− α)
∂vy
∂y

, (5.27)

where boundary conditions for velocities are taken into account. At first, equation

(5.27) is solved for τyy, i.e. τyy =

(
2(1− α)

∂vy
∂y

)
/

(
1− 2We

∂vy
∂y

)
. Then, the

obtained τyy is substituted into equation (5.26) to get τxy. Finally, τxx is obtained
by substituting τxy into (5.25).
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Owing to the periodic condition, stresses on the inlet and outlet are forced to be
equal ξi − ξo = 0 , where ξ is used to denote τxx, τxy and τyy. On the centerline,
the constitutive equations reduce to

τxx +We

(
vx
∂τxx
∂x

− 2
∂vx
∂x

τxx

)
= 2 (1− α)

∂vx
∂x

(5.28)

τxy = 0, (5.29)

τyy +We

(
vx
∂τyy
∂x

− 2
∂vy
∂y

τyy

)
= 2 (1− α)

∂vy
∂y

. (5.30)

Table 5.1 shows the RMS errors of the computed solutions in the case of New-
tonian fluid for several values of Re. It can be seen that a convergent solution is
obtained for high Re numbers and the accuracy is enhanced as the grid is refined.
Highly accurate results are achieved even at a coarse grid of 11× 11.

Table 5.1 Planar Poiseuille flow of Newtonian fluid: RMS errors of the computed solutions for several values of Re.

Re Density Ne(vx) Ne(vy) Ne(ψ) Ne(ω)

101
11× 11 4.839E-05 9.709E-09 1.254E-06 1.683E-05

21× 21 6.478E-06 1.762E-09 1.231E-07 8.207E-07

102
11× 11 4.838E-05 9.166E-09 1.247E-06 1.685E-05

21× 21 6.480E-06 2.780E-09 1.262E-07 3.598E-07

103
11× 11 4.831E-05 8.670E-09 1.181E-06 1.704E-05

21× 21 6.478E-06 1.437E-09 1.237E-07 3.883E-07

104
11× 11 4.762E-05 8.600E-09 5.776E-07 2.194E-05

21× 21 6.455E-06 5.252E-10 9.549E-08 6.131E-07

105
11× 11 4.747E-05 7.625E-09 6.270E-06 1.375E-04

21× 21 6.336E-06 7.167E-10 1.655E-07 4.560E-06

106
11× 11 4.766E-05 8.372E-09 2.326E-07 8.752E-05

21× 21 6.430E-06 4.235E-09 2.393E-08 3.482E-06

107
11× 11 4.727E-05 1.473E-06 2.185E-06 5.456E-04

21× 21 6.446E-06 4.618E-09 6.724E-08 6.029E-06

Tables 5.2 and 5.3 show the computed results for planar Poiseuille flow of Oldroyd-
B fluid. In Table 5.2, the present method is shown to yield accurate results at high
We numbers using a grid of 21×21. AsWe increases, the effects of nonlinearity in
the constitutive equations become stronger and the solution accuracy is observed
to be reduced. In Table 5.3, a clear grid convergence at We = 9 is produced,
where grids of densities, {11× 11, 21× 21, 31× 31, 41× 41}, are employed.
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Table 5.2 Planar Poiseuille flow of Oldroyd-B fluid, grid of 21×21: RMS errors of the computed solutions for several values
of We.

We Ne(vx) Ne(ψ) Ne(ω) Ne(Txx) Ne(Txy)

0 6.476E-06 1.193E-07 1.543E-06 5.044E-08 1.359E-06

1 6.463E-06 1.009E-07 1.359E-06 4.180E-05 1.100E-06

2 6.388E-06 2.380E-08 1.557E-05 1.267E-04 2.862E-06

3 6.437E-06 1.228E-07 2.842E-05 2.906E-04 8.096E-06

4 7.059E-06 4.650E-07 8.974E-05 1.002E-03 1.560E-05

5 6.656E-06 2.981E-07 4.603E-05 7.523E-04 9.837E-06

6 6.715E-06 2.423E-07 6.781E-05 1.255E-03 1.956E-05

7 6.694E-06 2.523E-07 6.301E-05 1.336E-03 1.916E-05

8 1.239E-05 2.760E-06 1.516E-04 4.492E-03 9.421E-05

9 1.609E-05 3.481E-06 2.035E-04 7.102E-03 1.526E-04

Table 5.3 Planar Poiseuille flow of Oldroyd-B fluid, We = 9: Grid convergence study.

Density Ne(vx) Ne(ψ) Ne(ω) Ne(Txx) Ne(Txy)

11× 11 6.133E-05 1.070E-05 7.953E-04 3.160E-02 6.644E-04

21× 21 1.609E-05 3.481E-06 2.035E-04 7.102E-03 1.526E-04

31× 31 4.180E-05 1.112E-05 2.998E-04 9.538E-03 2.689E-04

41× 41 4.228E-05 1.101E-05 3.350E-04 7.826E-03 2.266E-04

5.4.2 Poiseuille Flows in straight circular tubes

This section is concerned with simulating the Poiseuille flow of Newtonian and
Oldroyd-B fluids in a circular tube. We employ the governing equations in the
cylindrical coordinate system (Pilitsis and Beris, 1991)

Newtonian fluid :

1

r

(
∂2ψ

∂z2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r

)
= −ω, (5.31)

(
∂2ω

∂z2
+
∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2

)
=
πRe

2

(
vz
∂ω

∂z
+ vr

∂ω

∂r
− vr

r
ω

)
, (5.32)

where Re is the Reynolds number, Re =
2ρQ

πRµ
, and r is the radial distance.
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Oldroyd-B fluid (creeping flows):

1

r

(
∂2ψ

∂z2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r

)
= −ω, (5.33)

α

(
∂2ω

∂z2
+
∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2

)
+
∂2τrr
∂r∂z

+
1

r

∂τrr
∂z

− ∂2τrz
∂r2

+
∂2τrz
∂z2

+
1

r2
τrz +

1

r

∂τrz
∂r

− ∂2τzz
∂r∂z

− 1

r

∂2τθθ
∂z

= 0, (5.34)

τrr +We

(
vr
∂τrr
∂r

+ vz
∂τrr
∂z

− 2
∂vr
∂r

τrr − 2
∂vr
∂z

τrz

)
= 2(1− α)

∂vr
∂r

, (5.35)

τrz +We

(
vr
∂τrz
∂r

+ vz
∂τrz
∂z

+
vr
r
τrz −

∂vz
∂r

τrr −
∂vr
∂z

τzz

)
= (1− α)

(
∂vr
∂z

+
∂vz
∂r

)
,

(5.36)

τzz +We

(
vr
∂τzz
∂r

+ vz
∂τzz
∂z

− 2
∂vz
∂r

τrz − 2
∂vz
∂z

τzz

)
= 2(1− α)

∂vz
∂z

, (5.37)

τθθ +We

(
vr
∂τθθ
∂r

+ vz
∂τθθ
∂z

− 2
vr
r
τθθ

)
= 2(1− α)

vr
r
, (5.38)

where α is the ratio of the retardation time to the relaxation time, vz =
1

r

∂ψ

∂r
, vr =

−1

r

∂ψ

∂z
. Here, we take α = 0.85.

The exact solution when the flow reaches the steady state is given by

vz = 1− r2, vr = 0

ψ = 1/2r2 − 1/4r4, ω = 2r,

τrr = 0,

τrz = (1− α)
∂vz
∂r

= −2 (1− α) r,

τzz = 2We (1− α)

(
∂vz
∂r

)2

= 8We (1− α) r2.

The boundary conditions here are similar to those for the planar Poiseuille flow
(Section 5.4.1). We apply the non-slip condition on the wall, the symmetric
condition on the centreline, and the periodic condition on the inlet and outlet.

On the wall: vr = 0, vz = 0, ψ = 0,
∂ψ

∂z
= 0,

∂ψ

∂r
= 0, and the constitutive

equations reduce to

τrr − 2We
∂vr
∂r

τrr = 2(1− α)
∂vr
∂r

, (5.39)

τrz −We
∂vz
∂r

τrr = (1− α)
∂vz
∂r

, (5.40)

τzz − 2We
∂vz
∂r

τrz = 0, (5.41)

τθθ = 0. (5.42)
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On the centreline: vr = 0, τrz = 0,
∂vz
∂r

=
∂τrr
∂r

=
∂τzz
∂r

=
∂τθθ
∂r

= 0. It is

noted that, due to the involvement of the term 1/r, special care is needed in the
handling of the governing equation and boundary conditions on the centreline
(Constantinescu and Lele, 2000). In this study, we directly employ the symmetric
conditions instead of the simplified constitutive equations.

For Newtonian fluid, we assume that the flow is laminar. The simulation is con-
ducted for a wide range of Re, {101, 102, · · · , 109}. It is noted that simulations
at high values of Re are conducted here only for the purpose of testing the con-
vergence of the proposed numerical method. Results concerning Re = 10 and
Re = 109 are presented in Table 5.4. Highly nonlinear solutions up to Re = 109

are achieved using a coarse grid of 11× 11. The numerical accuracy is improved
with increasing number of nodes used.

Table 5.4 Circular Poiseuille flow of Newtonian fluid: RMS errors of the computed solutions for Re = {10, 109}.

Re Density Ne(vx) Ne(vy) Ne(ψ) Ne(ω)

101
11× 11 4.002E-04 4.265E-09 2.331E-05 3.497E-04

21× 21 1.178E-04 8.041E-09 2.956E-06 7.118E-05

109
11× 11 4.428E-04 3.311E-09 2.351E-05 3.502E-04

21× 21 1.179E-04 6.764E-11 2.958E-06 7.107E-05

For Oldroyd-B fluid, RMS errors of the computed solutions are shown in Table
5.5, whereWe number in a range of 1 to 9 and a grid of 21×21 are employed. It is
observed that the numerical accuracy reduces with increasingWe number. Figure
5.5 displays profiles of velocity and shear stress, and Figure 5.6 the normal stress
difference. They are in very good agreement with the analytic results. Table 5.6
shows a grid convergence for the velocity, streamfunction, vorticity and stresses
at We = 9. As the grid is refined, {11 × 11, 21× 21, · · · , 51 × 51}, the solution
accuracy is generally enhanced.

5.4.3 Flows in corrugated tubes

The schematic diagram of the flow through a corrugated tube is described in
Figure 5.7. The radius of the corrugated tube along the z axis is given by

rw = R (1− ε cos(2πz/L)) , (5.43)

where R is the average radius of an equivalent straight tube, ε is the amplitude
of the corrugation and L is the wavelength. Two parameters, namely ε and the
ratio M = R/L are often used to characterise the geometry of the tube. As the
flow is symmetric and periodic, one only needs to consider a reduced domain as
shown in Figure 5.7 for the numerical analysis.

The governing equations and boundary conditions here are the same as those in
Section 5.4.2. We will solve the equations in a stretched cylindrical coordinate
system (r̂, θ, ẑ), where r̂ = r/rw, and ẑ = z/L.
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Table 5.5 Circular Poiseuille flow of Oldroyd-B fluid, grid of 21× 21: RMS errors of the computed solutions for several We
numbers.

We Ne(vz) Ne(ψ) Ne(ω) Ne(Tzz) Ne(Trz)

1 1.162E-04 2.945E-06 7.291E-05 3.968E-04 1.117E-05

2 1.254E-04 2.924E-06 7.296E-05 5.222E-04 1.688E-05

3 1.178E-04 2.881E-06 7.003E-05 7.654E-04 8.966E-06

4 1.211E-04 2.829E-06 7.527E-05 1.015E-03 2.688E-05

5 1.045E-04 2.759E-06 9.075E-05 1.216E-03 5.216E-05

6 1.739E-04 2.910E-06 1.167E-04 1.277E-03 7.896E-05

7 6.636E-05 2.581E-06 2.373E-04 1.645E-03 1.948E-04

8 1.578E-04 3.221E-06 2.583E-04 1.926E-03 2.124E-04

9 3.524E-05 2.362E-06 3.272E-04 2.037E-03 2.741E-04

Table 5.6 Circular Poiseuille flow of Oldroyd-B fluid, We = 9: Grid convergence study.

Density Ne(vz) Ne(ψ) Ne(ω) Ne(Tzz) Ne(Trz)

11× 11 4.432E-04 2.321E-05 3.386E-04 9.940E-03 4.078E-05

21× 21 3.524E-05 2.362E-06 3.272E-04 2.037E-03 2.741E-04

31× 31 8.439E-05 1.083E-06 2.601E-04 1.465E-03 2.236E-04

41× 41 1.637E-05 7.565E-07 1.171E-04 1.314E-03 1.117E-04

51× 51 1.789E-05 3.688E-07 7.740E-05 1.050E-03 7.359E-05

Consider a function f(r, z) in the physical domain. Below are formulas of trans-
forming the function f(r, z) and its derivatives into the computational domain

∂f

∂r
=

1

rw

∂f

∂r̂
, (5.44)

∂f

∂z
=

1

L

∂f

∂ẑ
− 1

L

r̂

rw

drw
dẑ

∂f

∂r̂
, (5.45)

∂2f

∂r2
=

1

r2w

∂2f

∂r̂2
, (5.46)

∂2f

∂z2
=

1

L2

∂2f

∂ẑ2
+

1

L2

r̂2

r2w

(
drw
dẑ

)2
∂2f

∂r̂2
− 2

L2

r̂

rw

drw
dẑ

∂2f

∂r̂∂ẑ

− r̂

L2

(
1

rw

d2rw
dẑ2

− 2

r2w

(
drw
dẑ

)2
)
∂f

∂r̂
, (5.47)

∂2f

∂r∂z
= − 1

L

1

r2w

drw
dẑ

∂f

∂r̂
+

1

L

1

rw

∂2f

∂r̂∂ẑ
− 1

L

r̂

r2w

drw
dẑ

∂2f

∂r̂2
. (5.48)

One important measure for the study of corrugated tube flows is the flow resis-
tance, which is defined as

fRe =
2π∆PR4

L(µn + µp)Q
, (5.49)

where ∆P is the constant pressure drop per unit cell.
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Figure 5.5 Circular Poiseuille flow of Oldroyd-B fluid, grid of 21 × 21: Computed profiles for velocity.
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Normal stress difference
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Figure 5.6 Circular Poiseuille flow of Oldroyd-B fluid, grid of 21× 21: Computed profiles for stresses.
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Figure 5.7 Geometry of a corrugated tube.

Newtonian fluid

To obtain the flow resistance, we calculate the pressure gradients

∂P

∂r
=

1

L

(
∂ω

∂ẑ
− r̂

rw

drw
dẑ

∂ω

∂r̂

)
− πRe

2

(
vr
rw

∂vr
∂r̂

+
1

L
vz

(
∂vr
∂ẑ

− r̂

rw

drw
dẑ

∂vr
∂r̂

))
,

(5.50)

∂P

∂z
= − 1

rw

(
∂ω

∂r̂
+
ω

r̂

)
− πRe

2

(
vr
rw

∂vz
∂r̂

+
1

L
vz

(
∂vz
∂ẑ

− r̂

rw

drw
dẑ

∂vz
∂r̂

))
. (5.51)

The above equations reduce to

∂P

∂r
=

1

L

(
∂ω

∂ẑ
− r̂

rw

drw
dẑ

∂ω

∂r̂

)
, (5.52)

∂P

∂z
= − 1

rw

(
∂ω

∂r̂
+
ω

r̂

)
, (5.53)

on the wall, and

∂P

∂r
= 0, (5.54)

∂P

∂z
= − 2

rw

∂ω

∂r̂
− πRe

2

1

L
vz
∂vz
∂ẑ

, (5.55)

on the centreline.

Table 5.7 displayed the flow resistances at Re = 0 for different geometries of
the corrugated tube. Results obtained by the spectral method (SM) (Momeni-
Masuleh and Phillips, 2004), Pseudospectral/ finite element method (PSFD) (Pil-
itsis and Beris, 1989), Fourier-Chebyshev Collocation (FCC) (Pilitsis and Beris,
1991), modified PSFD in a stretched cylindrical coordinate (PCFD) (Pilitsis and
Beris, 1989), global 1D integrated radial basis function method (Ho-Minh et al.,
2010) are also included. There is a good agreement between these results. It
can be seen that the present solutions are closer to those obtained by the PSFD
method. We choose the tube with (ǫ = 0.16,M = 0.3) to study the influence
of Re on the flow resistance. Results obtained by the present method and by
1D-IRBF, 2D-IRBF, Galerkin finite element method (GFE) (Pilitsis and Beris,
1992) and Fourier-Chebyshev Collocation (FCC) (Pilitsis and Beris, 1992) are
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Table 5.7 Corrugated tube flow of Newtonian fluid, Re = 0: Computed flow resistances.

ε 0.1 0.1 0.2 0.286 0.3 0.5
M 0.5 0.1592 0.1042 0.2333 0.1592 0.5

21× 21 17.7523 16.9250 19.7620 26.3843 26.4346 95.1881
31× 31 17.7516 16.9275 19.7635 26.3820 26.4357 95.6558
41× 41 17.7515 16.9284 19.7644 26.3821 26.4359 95.6354
1D-IRBFa 17.74106 16.92760 19.76351 26.37759 26.43378 95.61778

SMb 17.7514 16.9290 19.7658 26.3724 26.4370 95.6363
FCCc - - 19.765 26.383 26.437 -
PSFDd - - 19.765 26.383 26.436 -
PCFDe - - 19.761 26.377 26.432 -

a 1D-Integrated Radial basis function network (Ho-Minh et al., 2010)
b Spectral method (Momeni-Masuleh and Phillips, 2004)
c Fourier-Chebyshev Collocation (Pilitsis and Beris, 1991)
d Pseudospectral/ finite element method (Pilitsis and Beris, 1989)
e Modified PSFD in a stretched cylindrical coordinate (Pilitsis and Beris, 1989)

presented in Table 5.8. The present solutions agree well with other solutions,
particularly with the predictions produced by the FCC method.

Figure 5.8 displays contour plots for the streamfunction and vorticity at several
values of Re, where a grid of 41× 41 is employed. They looks feasible when com-
pared with those reported in (Lahbabi and Chang, 1986; Mai-Duy and Tanner,
2005a; Ho-Minh et al., 2010).



5
.4
.

N
u
m
erica

l
exa

m
p
les

107

Table 5.8 Corrugated tube flow of Newtonian fluid, ε = 0.3, M = 0.16: Flow resistances for a wide range of Re.

Re 0 12 22.6 51 73 132 207.4 264 397.2 783

21× 21 26.4468 27.1721 28.5503 31.7126 33.4234 36.5206 38.9315 40.2267 42.3418 45.5700

31× 31 26.4469 27.1744 28.5533 31.7183 33.4372 36.5244 38.9595 40.2381 42.3469 45.5704

41× 41 26.4473 27.1755 28.5538 31.7423 33.4480 36.5262 38.9600 40.2446 42.3479 45.5827

IRBFa 26.4445 27.1773 28.5535 31.7511 33.4538 36.5424 38.9996 40.3044 42.4595 45.7402

IRBFb 26.46298 27.19314 28.55838 31.76329 33.44396 36.51618 38.97686 40.26089 42.37057 45.60680

GFEc 26.4193 27.0911 28.4433 31.6984 33.4039 36.5392 38.9330 40.1544 42.1112 45.0734

FCCd 26.4484 27.1791 28.5536 31.7484 33.4488 36.5264 38.9601 40.2446 42.3479 45.5828
a Integrated Radial basis function network (Mai-Duy and Tanner, 2005a) with a grid of 25× 25
b Integrated Radial basis function network (Ho-Minh et al., 2010) with a grid of 51× 51
c Galerkin finite element method (Pilitsis and Beris, 1992) with the number of elements in the r and z directions being Nr = 40, Nz = 40,
respectively.

d Fourier-Chebyshev Collocation (Pilitsis and Beris, 1992) with the number of Fourier and Chebyshev modes being Nx = 16, and Nc = 33,
respectively.
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Figure 5.8 Corrugated tube flow of Newtonian fluid, M = 0.16, ǫ = 0.3, N = 41×41: Contour plots for the streamfunction
and vorticity.
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Oldroyd-B fluid

The pressure gradients are computed as

∂P

∂r
=
α

L

(
∂ω

∂ẑ
− r̂

rw

drw
dẑ

∂ω

∂r̂

)
+

1

rw

∂τrr
∂r̂

+
1

L

(
∂τrz
∂ẑ

− r̂

rw

drw
dẑ

∂τrz
∂r̂

)
+

1

rwr̂
(τrr − τθθ) ,

(5.56)

∂P

∂z
= − α

rw

(
∂ω

∂r̂
+
ω

r̂

)
+

1

rw

∂τrz
∂r̂

+
τrz
rwr̂

+
1

L

(
∂τzz
∂ẑ

− r̂

rw

drw
dẑ

∂τzz
∂r̂

)
. (5.57)

On the centreline, they reduce to

∂P

∂r
= 0, (5.58)

∂P

∂z
= −2α

rw

∂ω

∂r̂
+

2

rw

∂τrz
∂r̂

+
1

L

∂τzz
∂ẑ

. (5.59)

Table 5.9 shows the computed flow resistances for the tube of (ǫ = 1,M = 0.5) at
We = {0, 1.2017, 3.6213} by the present, PCFD and FCC methods. The present
solutions are in very good agreement with the benchmark spectral results (Pilitsis
and Beris, 1992).

Table 5.9 Corrugated tube flow of Oldroyd-B fluid, ǫ = 0.1,M = 0.5: Computed flow resistances.

We Present method PCFD a FCC b

21× 21 31× 31 41× 41
Nx = 16,
Np = 200

Nx = 16,
Nc = 33

0.0 17.75026 17.75049 17.75020 17.74791 17.75110

1.2017 17.71754 17.68673 17.69261 17.69965 17.70284

3.6213 - 17.70225 17.69329 17.69158 17.69477

a Pseudospectral cylindrical finite element method (Pilitsis and Beris, 1992)
b Fourier-Chebyshev Collocation (Pilitsis and Beris, 1992)

Contour plots for ψ, ω, vr, vz, τrr, τrz, τzz and τθθ for the tube of (M = 0.5, ǫ = 0.1)
at We = 1.2017 using a grid of 31× 31 are displayed in Figure 5.9.

The influence of grid density on the numerical accuracy is illustrated in Figure
5.10. It can be seen that the contours of the velocity become smoother as the grid
is refined. When the grid size used is small enough (i.e. 31×31 for vz and 21×21
for vr), the maximum and minimum values the velocity fields remain unchanged.
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Figure 5.9 Corrugated tube flow of Oldroyd-B fluid, We = 1.2017, N = 31 × 31,M = 0.5, ǫ = 0.1: Contour plots for
the field variables. The maximum and minimum values and their locations are also included.
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Figure 5.10 Corrugated tube flow of Oldroyd-B fluid, We = 1.2017,M = 0.5, ǫ = 0.1: Contour plots for the velocity vz
(left) and vr (right). The maximum and minimum values of the velocities and their locations are also included.
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5.5 Conclusion

In this chapter, CLIRBF stencils are employed to represent the field variables, in-
cluding stresses, in the governing equations representing creeping flows of Oldroyd-
B fluid. The present method is verified with Poiseuille flows and corrugated tube
flows. Grid convergence is studied carefully, including the case of Newtonian
fluid. Highly-nonlinear solutions (i.e. high Re solution for Newtonian fluid and
high We solution for viscoelastic fluid) are obtained. The CLIRBF results are
compared with the analytic solution for Poiseuille flows and with the benchmark
solutions for corrugated tub flows. In all cases, very good agreement is achieved
and the accuracy of the RBF solutions is clearly observed to be enhanced as the
grid is refined.



Chapter 6

Compact local IRBF stencils for
transient problems

In this chapter, transient equations are considered. In the discretisation of tem-
poral derivatives, linear and nonlinear terms are treated according to the Crank-
Nicolson (CN) and Adams-Bashforth (AB) schemes, respectively. Spatial deriva-
tives are approximated using compact local IRBF stencils. Our numerical scheme
is verified with several test problems: heat transfer problems, travelling inviscid
cosine wave, 1D and 2D Burger’s equations, and start-up planar Poiseuille flows
of Newtonian and Oldroyd-B fluids. Results obtained are compared with analytic
solutions and those by other numerical methods.

6.1 Introduction

Many mechanics problems are governed by transient equations. The wave equa-
tion, diffusion equation, Burger’s equation, Navier-Stokes equation and differen-
tial constitutive models for viscoelastic fluids are examples of transient equations.
As shown in Chapter 1, the Navier-Stokes equations are parabolic equations, while
constitutive equations relating stresses and velocity gradients (e.g. Oldroyd-B
model and PTT model) for viscoelastic fluids are hyperbolic equations. Even in
the case of steady state, to obtain the structure of fluid flows, the time derivative
term in the governing equation can be utilised to handle the nonlinear terms -
it acts like an under-relaxation process. In this case, simple first-order temporal
discretisation schemes are usually employed. When the flow reaches the steady
state, the time derivative term vanishes and the solution accuracy is purely de-
cided by the spatial approximation.

For transient flows, the issue about temporal accuracy is generally complex.
Oliveira (Oliveira, 2001) studied the effect of the temporal discretisation on nu-
merical accuracy by simulating the time-dependent vortex shedding from a cir-
cular cylinder in a viscoelastic fluid flow. Both second-order backward scheme
and first-order Euler scheme were utilised. The second-order scheme provided
a good time resolution even with a large time step (0.05), while the first-order
scheme produced a reduction on the amplitude of the oscillation for both the time-
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dependent drag and lift coefficients even with small time steps (e.g. 0.00625).
Moreover, when a first-order time discretisation was coupled with first-order spa-
tial discretisation, the numerical diffusion became very strong. This article also
pointed out that the use of second-order accuracy scheme for both the temporal
and the spatial discretisation is an essential requirement for producing realistic
predictions. In addition, the rise of an artificial diffusion caused by the use of low
order time truncation schemes can be found in (Kansa, 2007). Due to this tran-
sient numerical diffusion, the amplitudes of travelling waves in a transient process
can be weakened (Xue et al., 2004). Therefore, the use of temporal discretisa-
tion schemes of second order or higher is a preferred option in the simulation
of such transient processes. In this study, the Crank-Nicolson/Adams Bashforth
(CN-AB) scheme, which produces a second order accuracy, is adopted.

For the spatial discretisation of transient problems, various numerical methods
and techniques have been applied, such as the cubic spline function technique
(Jain and Holla, 1978), FDM (Srivastava et al., 2011; Bahadir, 2003), adomian
decomposition method (Zhu et al., 2010), and radial basis function method (RBF)
(Kansa, 2007). We employ compact local IRBF stencils, which produce high-order
accuracy, for the spatial discretisation in our study.

The remainder of this chapter is organised as follows. In Section 6.2, compact
local IRBF stencils for 1D and 2D problems are described and a brief review of
the CN-AB algorithm is given. In Section 6.3, several numerical examples are
considered to verify the present method. Section 6.4 concludes the chapter.

6.2 Spatial and temporal discretisations

6.2.1 Spatial discretisation

We employ IRBFs in compact local form to discretise spatial derivatives. In
the IRBF approach, the highest-order derivative(s) in the ODE/PDE is (are)
approximated by RBFs, and lower-order derivatives and the dependent variable
itself are then obtained by integration

∂ku(x)

∂ηk
=

N∑

i=1

w
[η]
i gi(x) =

N∑

i=1

w
[η]
i I

(k)
[η]i(x), (6.1)

∂k−1u(x)

∂ηk−1
=

N∑

i=1

w
[η]
i I

(k−1)
[η]i (x) + C

[η]
1 , (6.2)

· · ·

u(x) =

N∑

i=1

w
[η]
i I

(0)
[η]i(x) +

ηk−1

(k − 1)!
C

[η]
1 +

ηk−2

(k − 2)!
C

[η]
2 + · · ·+ C

[η]
k , (6.3)

where x is the position vector, N is the number of RBFs, {wi}Ni=1 is the set of

network weights, and {gi(x)}Ni=1 is the set of RBFs, η denotes a component of the
position vector x (e.g. η can be x for 1D problems, and x or y for 2D problems),

superscript (k) denotes the order of the derivatives of u, I
(k−1)
[η]i (x) =

∫
I
(k)
[η]i(x)dη,
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· · · , I(0)[η]i(x) =
∫
I
(1)
[η]i(x)dη; and C

[η]
1 , C

[η]
2 , · · · , C [η]

k are the “constants” of inte-
gration, which will be constants for 1D problems and functions in one variable
for 2D problems. With the help of integration constants, one can incorporate
information about the ODEs/PDEs into IRBF approximations to enhance their
numerical accuracy.

One dimensional problems

For 1D problems, we employ compact 3-node stencils to represent the field vari-
able and its derivatives. Collocating expression (6.3) at [x1, x2, x3] results in



u1
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u3


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I
(0)
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(0)
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(0)
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1
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1
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, · · · , 1
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(0)
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(0)
2 (x2), I

(0)
3 (x2),
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2

(k − 1)!
,

xk−2
2
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, · · · , 1

I
(0)
1 (x3), I

(0)
2 (x3), I

(0)
3 (x3),

xk−1
3

(k − 1)!
,

xk−2
3

(k − 2)!
, · · · , 1



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H(0)




w1

w2

w3

C1

C2
...
Ck


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,

(6.4)
where ui = u(xi). Without loss of generality, for simplicity, one can assume
the governing equation of the form K(u) = f(x). We construct the process of
converting the RBF space into the physical space as follows




u1
u2
u3
f1
f3



=




H(0)

K(x1)
K(x3)




︸ ︷︷ ︸
C




w1

w2

w3

C1

C2
...
Ck




, (6.5)

where values of the governing equation at the two end points are also included,
and C is the conversion matrix. Solving equation (6.5) yields

ŵ = C−1

(
û

f̂

)
, (6.6)

where û = [u1, u2, u3]
T , ŵ = [w1, w2, w3, C1, C2, · · · , Ck]

T , and f̂ = [f1, f3]
T .

Approximate expressions for u and its derivatives in the physical space will be
obtained by substituting equation (6.6) into (6.3), (6.2) and (6.1).

Two dimensional problems

For 2D problems, we employ compact 9-node IRBF stencils. The stencil is num-

bered from bottom to top and from left to right as




x3 x6 x9

x2 x5 x8

x1 x4 x7


.
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The procedure to construct compact local IRBF approximations associated with
x5 here is similar to that for 1D problem. At first, equations (6.1)-(6.3) are
appropriately collocated over the stencil to form the following conversion system




û

0̂

f̂


 =




H(0)
x O

H(0)
x −H(0)

y

Kx Ky




︸ ︷︷ ︸
C

(
ŵx

ŵy

)
, (6.7)

where û = (u1, u2, · · · , u9)T ; 0̂ is a zero vector of length 9; ŵx and ŵx are the
weight vectors with respect to the x and y directions, respectively; O is a zero
matrix of dimensions 9×15; the second sub-system H(0)

x ŵx−H(0)
y ŵy = 0̂ is used to

enforce values of u obtained with respect to x direction and those obtained with
respect to y direction to be identical; and the last sub-system Kxŵx+Kyŵy = f̂ is
the discretisation of the governing equation at neighbouring nodes: [x2,x4,x6,x8].

Then, expression (6.7) is solved for the weight vector (ŵx, ŵy)
T . Finally, by

substituting (ŵx, ŵy)
T into (6.1)-(6.3), one can obtain approximate expressions

of computing the field variable and its derivatives over the stencil.

6.2.2 Temporal discretisation

Equations governing transient problems can be written in a general form

∂u

∂t
= F(u, t), (6.8)

where function F(u, t) represents linear, denoted by FL(u, t), and non-linear,
FNL(u, t), terms

F(u, t) = FL(u, t) + FNL(u, t). (6.9)

One can discretise equation (6.8) in the form of

F(u, t)(n+1) = θF(u, t)(n+1) + (1− θ)F(u, t)(n), (6.10)

where θ is a blending factor, 0 ≤ θ ≤ 1, and the superscript denotes the time
level. When θ = 0, the value at the time level (n+1) is explicitly determined by
the value at the time (n). This type of scheme, named the fully explicit, produces
a first order accuracy with respect to time, and is unconditionally unstable. A
stability condition is required for time step to obtain convergence. When θ = 1 we
have the fully implicit scheme. In this scheme, the value at the time level (n+1)
is implicitly determined by the value at the time (n). This scheme also gives only
first-order accuracy in time, but is unconditionally stable. When 0 < θ < 1, the
value at the time level (n + 1) is determined by the value at the time levels (n)
and (n + 1). When θ = 1/2, the scheme is known as a Crank-Nicolson scheme,
which gives second order accuracy in time and unconditionally stable (Tanner and
Xue, 2002). It can be seen that the explicit scheme involves simple calculations
(low cost), but suffers from unstableness. On the other hand, the implicit scheme
is almost unconditionally stable, but one needs to solve the nonlinear system of
algebraic equations. The Crank Nicolson/Adams Bashforth (CN-AB) scheme is
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designed to take advantages of the explicit and implicit schemes. It is based
on an implicit scheme for treating the linear term, and explicit scheme for the
non-linear term

F(u, t)(n+1) =
1

2

(
FL(u, t)

(n+1) + FL(u, t)
(n)
)
+

3

2
FNL(u, t)

(n) − 1

2
FNL(u, t)

(n−1).

(6.11)
It is noted that the superscripts (n − 1), (n), (n + 1) in equation (6.10)-(6.11)
denote successive time levels. The CN-AB scheme has been increasingly used in
engineering applications (He and Sun, 2007; Tone, 2004; Johnston and Liu, 2004).

6.3 Numerical examples

We measure the solution accuracy by means of absolute error and root mean
squared error (RMS)

ǫ =| ui − uei |, (6.12)

RMS =

√√√√√
N∑
i=1

(ui − uei )
2

N
, (6.13)

where N is the number of collocation nodes, and ui and u
e
i are the computed and

exact solutions, respectively.

6.3.1 Example 1: Heat equation

Consider a 1D heat equation
∂u

∂t
=

∂2u

∂x2
in a domain 0 ≤ x ≤ 1, t ≥ 0 with

the initial condition given as u(x, 0) = exp(−x2). The exact solution to this

problem can be verified to be u(x, t) =
1√

1 + 4t
exp

(
− x2

1 + 4t

)
. Using the CN-

AB scheme, the heat equation reduces to

u(n+1) − ∆t

2

∂2u(n+1)

∂x2
= u(n) +

∆t

2

∂2u(n)

∂x2
. (6.14)

Boundary conditions for u at x = 0 and x = 1 are taken from the exact solution.
It is noted that their values change with time. Computed values of u along the
x axis at several time levels are displayed in Figure 6.1. Corresponding analytic
solutions are also included for comparison purposes. Very good agreement is
achieved.

To study the influence of grid size on numerical accuracy, the RMS error is
computed using different grid sizes at a fixed time level t = 1. A time step
∆t = 10−3 and grids of {11, 21, · · · , 101} nodes are used. The RMS error against
the grid size is shown in Figure 6.2, where a high rate of convergence, O(h4.65),
is observed.
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Figure 6.1 Example 1, Heat equation, N = 101, ∆t = 0.001. Exact and computed solutions at several time levels.
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Figure 6.2 Example 1, Heat equation, N = {11, 21, · · · , 101}. Error against grid size at t = 1. The solution converges
apparently as O(h4.65).
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To analyse the influence of time step on numerical accuracy, the RMS error is
computed using different time steps {0.1, 0.09, · · · , 0.01} and a fixed grid of 101
nodes. Figure 6.3 displays the RMS error versus time step at a time level t = 1,
where a second order rate of convergence is observed. The present method based
on compact local IRBF stencils and CN-AB scheme is able to produce a solution
that is high order accurate in space and second-order accurate in time.
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Figure 6.3 Example 1, Heat equation, N = 101, ∆t = {10−2, 2 × 10−2, · · · , 10−1}. Error against time step at t = 1.
The solution converges apparently as O(∆t1.81).

6.3.2 Example 2: Travelling inviscid cosine wave

The travelling inviscid cosine wave is governed by a 1D-hyperbolic equation de-

fined as
∂u

∂t
+
∂u

∂x
= 0. The exact solution is taken to be u(x, t) = cos(x − t).

Boundary condition (at x = 0) and initial condition (at t = 0) are derived from
the exact solution. Computed values of u in the domain [−10π, 10π] at a time
level t = 1.5 together with the corresponding exact solution are shown in Figure
6.4. Very good agreement is obtained.

Table 6.1 displays the RMS error at several time levels t using a grid of 42 nodes
and a time step ∆t = 10−4. Results obtained by RBFs (Kansa, 2007) and local
RBFs (Islam et al., 2013) are also included for comparison purposes. The present
method yields the most accurate results at all time levels. Figure 6.5 describes
the solution behaviour with grid refinement, where the number of grid nodes
employed varies in a range of N = {11, 21, · · · , 101}. A fast rate of convergence,
O(h3.53), is observed.
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Figure 6.4 Example 2, N = 201, ∆t = 0.001, x ∈ [−10π; 10π]. Exact and numerical solutions at t = 1.5.

Table 6.1 Example 2, Hyperbolic equation, N = 42, ∆t = 10−4, the root mean squared errors at several time levels t.

t Present
Kansa
(Kansa,
2007)

Islam (Islam
et al., 2013)

0.002 5.856E-08 3.6E-03 1.06E-06

π/2 1.225E-05 6.7E-05 2.50E-04

3π/2 1.670E-05 2.7E-04 1.06E-04

2π 1.886E-05 7.3E-05 3.32E-04

6.3.3 Example 3: 1D-Burgers’ Equation

The Burgers’ equations have a wide range of applicability, e.g. in the modelling
of shock wave and heat conduction. As a result, solutions to 1D and 2D Burgers’
equations have received a great deal of attention.

Consider a 1D-Burgers’ equation
∂u

∂t
− ∂2u

∂x2
+ u

∂u

∂x
= 0 with the exact solution

being u(x, t) = − 2 sinh(x)

cosh(x)− e−t
. The analytic solution at various time levels are

tabulated in Table 6.2 and displayed in Figure 6.6. The domain of interest is
−9 ≤ x ≤ 9.

The initial condition chosen at t = 0.1 is taken from the analytic solution:

u(x, t) = − 2 sinh(x)

cosh(x)− e−0.1
. We assume that the boundary conditions are fixed,
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Figure 6.5 Example 2, Hyperbolic equation, N = {11, 21, · · · , 201}, ∆t = 0.001, x ∈ [0; 2π]. RMS error against grid
size at t = 2. The solution converges as O(h3.53)
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Figure 6.6 Example 3, 1D-Burgers’ Equation. Analytic solution of Burger equation at various time levels.
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i.e. u(−9, t) = 2 and u(9, t) = −2 instead of changing with time. Time step and
grid size are chosen as ∆t = 0.01 and h = 0.2. They are taken to be same as
those reported in (Hoffmann and Chiang, 2000) for comparison purposes.

The Burgers’ equation is discretised as follows

u(n+1) − u(n)

∆t
− 1

2

(
∂2u(n+1)

∂x2
+
∂2u(n)

∂x2

)
+

(
3

2
u(n)

∂u(n)

∂x
− 1

2
u(n−1)∂u

(n−1)

∂x

)
= 0,

(6.15)
or

u(n+1) − ∆t

2

∂2u(n+1)

∂x2
= u(n) +

∆t

2

∂2u(n)

∂x2
− ∆t

2

(
3u(n)

∂u(n)

∂x
− u(n−1)∂u

(n−1)

∂x

)
.

(6.16)
Results obtained at several time levels are presented in Table 6.3, showing a good
agreement with the exact solution. We also compare the present results with those
by the finite difference methods employed with the DuFort-Frankel explicit (D/F),
forward time/central space (FTCS) explicit, modified Runge-Kutta (MRK) and
second order Total Variation Diminishing (TVD) schemes (Hoffmann and Chiang,
2000). Figures 6.7 and 6.8 display the error distribution over the spatial domain
at two time levels using the same time step and grid size. The present method is
seen to perform much better than the finite difference methods. It is noted that
the error presented is simply taken as the difference between the analytic solution
and the numerical solution.
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Figure 6.7 Example 3, 1D Burger’s equation. Distribution of error over the spatial domain at t = 0.4 by the DuFort-
Frankel explicit (D/F), FTCS explicit, modified Runge-Kutta (MRK), second order TVD scheme (TVD), and present (CL-IRBF)
methods.
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Table 6.2 Example 3. Exact solution

x t = 0.1 t = 0.4 t = 0.7 t = 1
-9.0 2.0004 2.0003 2.0002 2.0002
-8.6 2.0007 2.0005 2.0004 2.0003
-8.2 2.0010 2.0007 2.0005 2.0004
-7.8 2.0015 2.0011 2.0008 2.0006
-7.4 2.0022 2.0016 2.0012 2.0009
-7.0 2.0033 2.0024 2.0018 2.0013
-6.6 2.0049 2.0036 2.0027 2.0020
-6.2 2.0074 2.0054 2.0040 2.0030
-5.8 2.0110 2.0081 2.0060 2.0044
-5.4 2.0164 2.0121 2.0089 2.0066
-5.0 2.0245 2.0180 2.0133 2.0098
-4.6 2.0366 2.0269 2.0198 2.0145
-4.2 2.0549 2.0401 2.0293 2.0214
-3.8 2.0823 2.0597 2.0434 2.0315
-3.4 2.1237 2.0889 2.0639 2.0457
-3.0 2.1866 2.1321 2.0934 2.0656
-2.6 2.2833 2.1955 2.1347 2.0917
-2.2 2.4335 2.2871 2.1895 2.1224
-1.8 2.6715 2.4144 2.2538 2.1479
-1.4 3.0565 2.5724 2.3022 2.1360
-1.0 3.6826 2.6931 2.2460 2.0000
-0.6 4.5374 2.4717 1.8484 1.5574
-0.2 3.4945 1.1513 0.7692 0.6174
0.2 -3.4945 -1.1513 -0.7692 -0.6174
0.6 -4.5374 -2.4717 -1.8484 -1.5574
1.0 -3.6826 -2.6931 -2.2460 -2.0000
1.4 -3.0565 -2.5724 -2.3022 -2.1360
1.8 -2.6715 -2.4144 -2.2538 -2.1479
2.2 -2.4335 -2.2871 -2.1895 -2.1224
2.6 -2.2833 -2.1955 -2.1347 -2.0917
3.0 -2.1866 -2.1321 -2.0934 -2.0656
3.4 -2.1237 -2.0889 -2.0639 -2.0457
3.8 -2.0823 -2.0597 -2.0434 -2.0314
4.2 -2.0549 -2.0401 -2.0293 -2.0214
4.6 -2.0366 -2.0269 -2.0198 -2.0145
5.0 -2.0245 -2.0180 -2.0133 -2.0098
5.4 -2.0164 -2.0121 -2.0089 -2.0066
5.8 -2.0110 -2.0081 -2.0060 -2.0044
6.2 -2.0074 -2.0054 -2.0040 -2.0030
6.6 -2.0049 -2.0036 -2.0027 -2.0020
7.0 -2.0033 -2.0024 -2.0018 -2.0013
7.4 -2.0022 -2.0016 -2.0012 -2.0009
7.8 -2.0015 -2.0011 -2.0008 -2.0006
8.2 -2.0010 -2.0007 -2.0005 -2.0004
8.6 -2.0007 -2.0005 -2.0004 -2.0003
9.0 -2.0004 -2.0003 -2.0002 -2.0002

Table 6.3 Example 3. Solution by CLIRBF

x t = 0.1 t = 0.4 t = 0.7 t = 1
-9.0 2.0000 2.0000 2.0000 2.0000
-8.6 2.0007 2.0002 2.0001 2.0001
-8.2 2.0010 2.0005 2.0003 2.0002
-7.8 2.0015 2.0010 2.0006 2.0004
-7.4 2.0022 2.0016 2.0011 2.0007
-7.0 2.0033 2.0024 2.0017 2.0012
-6.6 2.0049 2.0037 2.0026 2.0019
-6.2 2.0074 2.0054 2.0040 2.0029
-5.8 2.0110 2.0081 2.0060 2.0044
-5.4 2.0164 2.0121 2.0089 2.0066
-5.0 2.0245 2.0181 2.0133 2.0098
-4.6 2.0366 2.0269 2.0198 2.0145
-4.2 2.0549 2.0401 2.0293 2.0214
-3.8 2.0823 2.0597 2.0434 2.0315
-3.4 2.1237 2.0889 2.0639 2.0458
-3.0 2.1866 2.1321 2.0934 2.0656
-2.6 2.2833 2.1955 2.1347 2.0918
-2.2 2.4335 2.2871 2.1896 2.1225
-1.8 2.6715 2.4144 2.2538 2.1480
-1.4 3.0565 2.5725 2.3023 2.1361
-1.0 3.6826 2.6932 2.2461 2.0001
-0.6 4.5374 2.4716 1.8484 1.5575
-0.2 3.4945 1.1515 0.7693 0.6175
0.2 -3.4945 -1.1515 -0.7694 -0.6175
0.6 -4.5374 -2.4716 -1.8484 -1.5575
1.0 -3.6826 -2.6932 -2.2461 -2.0001
1.4 -3.0565 -2.5725 -2.3023 -2.1361
1.8 -2.6715 -2.4144 -2.2538 -2.1480
2.2 -2.4335 -2.2871 -2.1896 -2.1225
2.6 -2.2833 -2.1955 -2.1347 -2.0918
3.0 -2.1866 -2.1321 -2.0934 -2.0656
3.4 -2.1237 -2.0889 -2.0639 -2.0458
3.8 -2.0823 -2.0597 -2.0434 -2.0315
4.2 -2.0549 -2.0401 -2.0293 -2.0214
4.6 -2.0366 -2.0269 -2.0198 -2.0145
5.0 -2.0245 -2.0181 -2.0133 -2.0098
5.4 -2.0164 -2.0121 -2.0089 -2.0066
5.8 -2.0110 -2.0081 -2.0060 -2.0044
6.2 -2.0074 -2.0054 -2.0040 -2.0029
6.6 -2.0049 -2.0037 -2.0026 -2.0019
7.0 -2.0033 -2.0024 -2.0017 -2.0012
7.4 -2.0022 -2.0016 -2.0011 -2.0007
7.8 -2.0015 -2.0010 -2.0006 -2.0004
8.2 -2.0010 -2.0005 -2.0003 -2.0002
8.6 -2.0007 -2.0002 -2.0001 -2.0001
9.0 -2.0000 -2.0000 -2.0000 -2.0000
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Figure 6.8 Example 3, 1D Burger’s equation. Distribution of error over the spatial domain at t = 1 by the DuFort-Frankel ex-
plicit (D/F), FTCS explicit, modified Runge-Kutta (MRK), second order TVD scheme (TVD), and present (CL-IRBF) methods.
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Figure 6.9 Example 3, 1D Burger’s equation. Variations of the RMS error of the solution as time step and grid size are
reduced.
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Figure 6.9 shows the behaviour of the CLIRBF solution with respect to time-step
and grid refinements. For the former, a fixed grid of 71 nodes and a number of
time steps, {0.1, 0.09, · · · , 0.01}, are employed. For the latter, a fixed time step
∆t = 0.01 and a number of grids, {21, 31, · · · , 101}, are employed. The error is
computed at a time level t = 0.5. The solution converges as O(h3.96) in space and
O(∆t2.28) in time.

6.3.4 Example 4: 2D-Burger’s equation

Consider a 2D-Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (6.17)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
, (6.18)

where a ≤ x ≤ b, c ≤ y ≤ d and t ≥ 0.

Using the CN-AB scheme, the two equations (6.17)-(6.18) reduce to

u(n+1) − ∆t

2Re

(
∂2u(n+1)

∂x2
+
∂2u(n+1)

∂y2

)
= u(n) +

∆t

2Re

(
∂2u(n)

∂x2
+
∂2u(n)

∂y2

)

−3∆t

2

(
u(n)

∂u(n)

∂x
+ v(n)

∂u(n)

∂y

)
+

∆t

2

(
u(n−1)∂u

(n−1)

∂x
+ v(n−1)∂u

(n−1)

∂y

)
, (6.19)

v(n+1) − ∆t

2Re

(
∂2v(n+1)

∂x2
+
∂2v(n+1)

∂y2

)
= v(n) +

∆t

2Re

(
∂2v(n)

∂x2
+
∂2v(n)

∂y2

)

−3∆t

2

(
u(n)

∂v(n)

∂x
+ v(n)

∂v(n)

∂y

)
+

∆t

2

(
u(n−1)∂v

(n−1)

∂x
+ v(n−1)∂v

(n−1)

∂y

)
, (6.20)

and we employ compact local IRBF stencils to approximate spatial derivatives.
The present method is verified with the following two problems.

Problem 1: This problem has the exact solution

u(x, y, t) =
3

4
− 1

4 (1 + exp (Re(−t− 4x− 4y)/32))
, (6.21)

v(x, y, t) =
3

4
+

1

4 (1 + exp (Re(−t− 4x− 4y)/32))
, (6.22)

where 0 ≤ x, y ≤ 1 and t ≥ 0. The initial conditions and boundary conditions
for u and v are specified by using the exact solution, i.e. equations (6.21)- (6.22).
The simulation is conducted for Re = 100 with a time step ∆t = 10−4 and a grid
of density 21×21. The absolute errors of u and v by the present method and fully
implicit FDM (Bahadir, 2003), and fully implicit FDM with discrete Adomian
decomposition (Zhu et al., 2010) are displayed in Table 6.4 for t = 0.01 and in
Table 6.5 for t = 0.5. It can be seen that, for both cases, the present method is
much more accurate than the FDMs and yields a very high level of accuracy.
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Table 6.4 Example 4, Problem 1, Re = 100, t = 0.01, ∆t = 10−4, N = 21× 21. Comparison of absolute errors for u and v at several mesh points.

(x, y)
Error of u Error of v

Present
Bahadir
(Bahadir,
2003)

Zhu et.al.
(Zhu et al.,

2010)
Present

Bahadir
(Bahadir,
2003)

Zhu et.al.
(Zhu et al.,

2010)

(0.1,0.1) 1.14911e−6 5.29661e−5 5.91368e−5 1.14908e−6 7.29661e−5 5.91368e−5

(0.5,0.1) 2.29430e−8 1.20674e−5 4.84030e−6 2.30915e−8 7.93260e−6 4.84030e−6

(0.9,0.1) 1.71473e−7 1.10003e−5 3.41000e−8 1.71541e−7 8.99970e−6 3.41000e−8

(0.3,0.3) 3.66283e−7 6.29661e−5 5.91368e−5 3.66776e−7 6.29661e−5 5.91368e−5

(0.7,0.3) 2.53254e−9 2.06740e−6 4.84030e−6 3.01732e−9 2.06740e−6 4.84030e−6

(0.1,0.5) 1.89259e−8 4.04048e−6 1.64290e−6 1.86997e−8 5.95952e−6 1.64290e−6

(0.5,0.5) 3.65917e−7 6.29661e−5 5.91368e−5 3.66422e−7 6.29661e−5 5.91368e−5

(0.9,0.5) 1.24917e−8 2.06740e−6 - 1.27592e−8 2.06740e−6 -

(0.3,0.7) 2.78012e−9 4.04048e−6 - 2.30865e−9 4.04048e−6 -

(0.7,0.7) 3.73489e−7 6.29661e−5 - 3.73943e−7 6.29661e−5 -

(0.1,0.9) 4.50360e−8 8.29028e−6 - 4.48990e−8 1.70972e−6 -

(0.5,0.9) 3.14502e−10 4.04048e−6 - 1.97235e−10 4.04048e−6 -

(0.9,0.9) 9.85985e−7 6.29661e−5 - 9.85766e−7 6.29661e−5 -
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Table 6.5 Example 4, Problem 1, Re = 100, t = 0.5, ∆t = 10−2, N = 21× 21.: Comparison of absolute errors for u and v at several mesh points.

(x, y)
Error of u Error of v

Present
Bahadir
(Bahadir,
2003)

Zhu et.al.
(Zhu et al.,

2010)
Present

Bahadir
(Bahadir,
2003)

Zhu et.al.
(Zhu et al.,

2010)

(0.1,0.1) 8.50334e−6 9.72051e−4 2.77664e−4 8.50020e−6 9.07949e−4 2.77664e−4

(0.5,0.1) 1.56541e−7 7.12590e−4 4.52081e−4 1.51181e−7 1.37741e−3 4.52081e−4

(0.9,0.1) 2.44263e−6 6.92379e−4 3.37430e−6 2.44726e−6 1.38762e−3 3.37400e−6

(0.3,0.3) 1.69270e−5 1.25205e−3 2.77664e−4 1.69221e−5 7.17949e−4 2.77664e−4

(0.7,0.3) 2.38233e−7 7.42590e−4 4.52081e−4 2.43770e−7 1.37741e−3 4.52081e−4

(0.1,0.5) 6.92799e−6 9.14042e−4 2.86553e−4 6.93219e−6 7.95958e−4 2.86553e−4

(0.5,0.5) 4.52579e−6 1.10205e−3 2.77664e−4 4.52359e−6 1.72051e−4 2.77664e−4

(0.9,0.5) 3.06627e−7 3.82590e−4 - 3.04792e−7 6.17410e−4 -

(0.3,0.7) 5.81910e−6 7.54042e−4 - 5.82246e−6 5.55958e−4 -

(0.7,0.7) 2.64176e−6 8.92051e−4 - 2.64221e−6 7.82051e−4 -

(0.1,0.9) 3.68561e−7 8.15864e−4 - 3.65375e−7 8.14136e−4 -

(0.5,0.9) 4.33886e−6 2.04042e−4 - 4.33811e−6 2.40424e−5 -

(0.9,0.9) 1.49306e−5 1.00205e−3 - 1.49326e−5 1.09205e−3 -
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To investigate the order of accuracy of CLIRBF stencils, the RMS error is cal-
culated upon four grids, {11 × 11, 21 × 21, 31 × 31, 41 × 41}, and the time step
is chosen very small (i.e. ∆t = 10−4) to minimise its effects. To investigate
the order of accuracy of the CN-AB scheme, we employ a fixed grid of density
21×21 and several time steps, {0.1, 0.05, 0.01, 0.005}. Results obtained at a time
level t = 0.05 are shown in Figure 6.10, where the solution is seen to be about
second-order accurate in time and fourth-order accurate in space.
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Figure 6.10 Example 4, Problem 1, t = 0.05. Spatial and temporal convergence rates.

Problem 2: The computational domain is taken as 0 ≤ x ≤ 0.5 and 0 ≤ y ≤ 0.5.
The initial and boundary conditions are given below

Initial conditions:

u(x, y, 0) = sin(πx) + cos(πy)
v(x, y, 0) = x+ y

}
0 ≤ x ≤ 0.5, 0 ≤ y ≤ 0.5. (6.23)

Boundary conditions:

u(0, y, t) = cos(πy), u(0.5, y, t) = 1 + cos(πy)
v(0, y, t) = y, v(0.5, y, t) = 0.5 + y

}
0 ≤ y ≤ 0.5, t ≥ 0, (6.24)

u(x, 0, t) = 1 + sin(πx), u(x, 0.5, t) = sin(πx)
v(x, 0, t) = x, v(x, 0.5, t) = x+ 0.5

}
0 ≤ x ≤ 0.5, t ≥ 0. (6.25)

Two values of the Reynolds number, Re = 50 and Re = 500, are considered. The
simulation is performed with a time step ∆t = 10−4 and two grids (21 × 21 for
Re = 50 and 41 × 41 for Re = 500). Results obtained are compared with those
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produced by Jain and Holla, 1978 (Jain and Holla, 1978) and by Bahadir, 2003
(Bahadir, 2003) in Table 6.6 for Re = 50 and in Table 6.7 for Re = 500. It can
be seen that a very good agreement is achieved between these results.

Table 6.6 Example 4, Problem 2, t = 0.625: Solutions at Re = 50.

(x, y) Values of u Values of v

Present
CN-AB

Bahadir
(Ba-
hadir,
2003)

Jain and
Holla
(Jain
and
Holla,
1978)

Present
CN-AB

Bahadir
(Ba-
hadir,
2003)

Jain and
Holla
(Jain
and
Holla,
1978)

(0.1,0.1) 0.96940 0.96688 0.97258 0.09803 0.09824 0.09773

(0.3,0.1) 1.14967 1.14827 1.16214 0.14034 0.14112 0.14039

(0.2,0.2) 0.86191 0.85911 0.86281 0.16710 0.16681 0.16660

(0.4,0.2) 0.97868 0.97637 0.96483 0.17109 0.17065 0.17397

(0.1,0.3) 0.66337 0.66019 0.66318 0.26367 0.26261 0.26294

(0.3,0.3) 0.77189 0.76932 0.77030 0.22624 0.22576 0.22463

(0.2,0.4) 0.58245 0.57966 0.58070 0.32849 0.32745 0.32402

(0.4,0.4) 0.75981 0.75678 0.74435 0.32617 0.32441 0.31822

Table 6.7 Example 4, Problem 2. t = 0.625: Solutions at Re = 500.

(x, y)
Value of u Value of v

Present
41× 41

Jain and
Holla (Jain
and Holla,

1978)
N = 40

Present
41× 41

Jain and
Holla (Jain
and Holla,

1978)
N = 40

(0.15,0.1) 0.95586 0.96066 0.08419 0.08612

(0.3,0.1) 0.96657 0.96852 0.07569 0.07712

(0.1,0.2) 0.83973 0.84104 0.17639 0.17828

(0.2,0.2) 0.86454 0.86866 0.16034 0.16202

(0.1,0.3) 0.67517 0.67792 0.25939 0.26094

(0.3,0.3) 0.77123 0.77254 0.21460 0.21542

(0.15,0.4) 0.54487 0.54543 0.31275 0.31360

(0.2,0.4) 0.58525 0.58564 0.29708 0.29776
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6.3.5 Example 5. Start-up planar Poiseuille flows

The present method is further tested with transient Poiseuille flows between two
parallel plates. The start-up flow occurs when one makes a sudden imposition of a
constant pressure gradient (∆p = p2−p1) to a stationary fluid. In CFD, owing to
the existence of their analytic solutions, start-up planar Poiseuille flows are often
used to verify new numerical solvers, particularly in the context of viscoelastic
flows (e.g. (Waters and King, 1970; Carew et al., 1994; Duarte et al., 2008; Os
and Phillips, 2004; Webster et al., 2004; Miranda and Oliveira, 2010; Xue et al.,
2004)), where the velocity-pressure formulation is widely employed.

Figure 6.11 displays the geometry of the planar Poiseuille flow. Consider the
nondimensional case, where the velocity and length are normalised by the velocity
on the centreline and the gap between the two plates, respectively. The analytic
solution for the steady state flow thus takes the form vx(y) = 4(1 − y)y, with
0 ≤ y ≤ 1 (the maximum velocity on the centreline y = 0.5 is 1). Due to
symmetry, we consider only a half domain (i.e. [0, 1] × [0.5, 1]) in the present
calculation.

Figure 6.11 Example 5, Schematic of planar Poiseuille flow.

Problem 1. Start up planar Poiseuille flow of Newtonian fluid

The Navier-Stokes equation in the streamfunction-vorticity formulation is given
by

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (6.26)

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
=
∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
, (6.27)

where Re is the Reynolds number, vx = ∂ψ/∂y and vy = −∂ψ/∂x. The exact
solution for this flow takes the form ((Waters and King, 1970))

vx(y, t) = 4y(1− y)− 32
∞∑

n=1

sin (Ny)

N3
e−N2t, (6.28)

vy(y, t) = 0, (6.29)
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where N = (2n− 1)π. They lead to the following exact solutions for the stream-
function and vorticity

ψ = 4

(
y2

2
− y3

3

)
− 1

3
+ 32

∞∑

n=1

cos (Ny)

N4
e−N2t, (6.30)

ω = 4(2y − 1) + 32

∞∑

n=1

cos (Ny)

N2
e−N2t. (6.31)

We impose velocities on the inlet and outlet, non-slip boundary condition on the
wall (vx = 0, vy = 0) and symmetric conditions (vy = 0, ∂vx/∂y = 0) on the
centreline. It is noted that the imposed inlet and outlet boundary conditions
are functions of time, taken from the exact solution for the velocity vx - our
imposition here is similar to that of Van Os and Phillips (Os and Phillips, 2004).

Boundary conditions for the streamfunction ψ and the vorticity ω are derived as
follows. On the centreline, the conditions ∂vx/∂y = 0, vy = 0 lead to ψ = 0, ω = 0.
On the wall, the velocities vx = 0, vy = 0 lead to ψ = const, which is taken from
the analytic solution. The vorticity on the wall is computed as ω = −∂2ψ/∂y2
and we incorporate ∂ψ/∂y = 0 into ∂2ψ/∂y2. On the inlet and outlet, the exact
values of the streamfunction are given while the periodic condition is applied for
the vorticity, i.e. ωi = ωo and ∂ωi/∂x = ∂ωo/∂x.

Figure 6.12 Example 5, Grid used for calculating the start-up planar Poiseuille flow. Notice that the boundary conditions for
stresses are used for the flow of Oldroyd-B fluid.

The computational domain is represented by a Cartesian grid as shown in Figure
6.12. We also indicate four sample nodes A,B,C and D, at which the evolution
of the field variables will be recorded. Figure 6.13 shows the velocity evolution
at these indicated sample nodes, while Figure 6.14 illustrates the evolution of the
velocity profile. In both figures, the numerical result is displayed by a symbol
‘∗’, and the analytic solution is displayed by a continuous line. It can be seen
that the obtained results lie on the curves of the analytic solution. The value of
velocity remains unchanged when t > 1 (Figure 6.13), and the velocity profiles
at time levels t = 1 and t = 5 cannot be distinguished (Figure 6.14). Hence, at
t = 1, it appears that the flow reaches the steady state.
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Figure 6.13 Example 5, Problem 1, planar Poiseuille flow of Newtonian fluid, grid spacing h = 0.05. Evolution of velocity at
nodes indicated in Figure 6.12.
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Figure 6.14 Example 5, Problem 1, planar Poiseuille flow of Newtonian fluid, h = 0.05. Velocity profiles at different non-
dimensional times. Notice that the velocity profiles at t = 1 and t = 5 are indistinguishable.
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We also study convergence rates of the spatial and temporal discretisations of
the present method. The obtained results computed at t = 0.5 are shown in
Figure 6.15. For the the spatial discretisation, the time step ∆t = 10−4 is em-
ployed, while the grid sizes used are h = {0.1, 0.05, 0.033, 0.025}. For the tem-
poral discretisation, the grid size is fixed at h = 0.05, and the time steps used
are ∆t = {10−3, 7 × 10−4, 4× 10−4, 10−4}. The solution converges apparently as
O(h3.28) and O(∆t1.49). It can be seen that the rate is relatively high for the
spatial discretisation, but lower than the expected value of 2 for the temporal
discretisation.

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

(h,∆t) convergence

(h,∆t)

R
M
S

O(∆t1.49)

O(h3.28)

Figure 6.15 Example 5, Problem 1, planar Poiseuille flow of Newtonian fluid, t = 0.5: convergence rates of the present
method in time and space.

Problem 2: Start up planar Poiseuille flow of Oldroyd-B fluid

The equations governing the motion of an Oldroyd-B fluid are given by

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (6.32)

α

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+

1

Re

(
∂2τxy
∂x2

− ∂2τxy
∂y2

− ∂2 (τxx − τyy)

∂x∂y

)
=

∂ω

∂t
+

(
vx
∂ω

∂x
+ vy

∂ω

∂y

)
, (6.33)
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∂τxx
∂t

+ vx
∂τxx
∂x

+ vy
∂τxx
∂y

− 2
∂vx
∂x

τxx − 2
∂vx
∂y

τxy +
τxx
We

=
2 (1− α)

We

∂vx
∂x

, (6.34)

∂τxy
∂t

+ vx
∂τxy
∂x

+ vy
∂τxy
∂y

− ∂vx
∂y

τyy −
∂vy
∂x

τxx +
τxy
We

=
(1− α)

We

(
∂vx
∂y

+
∂vy
∂x

)
,

(6.35)

∂τyy
∂t

+ vx
∂τyy
∂x

+ vy
∂τyy
∂y

− 2
∂vy
∂x

τxy − 2
∂vy
∂y

τyy +
τyy
We

=
2 (1− α)

We

∂vy
∂y

, (6.36)

where We is the Weissenberg number, and α is the ratio of the retardation time
to the relaxation time. Here, we take α = 1/9. The analytic solution for this flow
takes the form (Waters and King, 1970; Carew et al., 1994)

Velocities:

vx(y, t) = A(y)− 32

∞∑

n=1

sin (Ny)

N3
GN (E, t), (6.37)

vy(y, t) = 0, (6.38)

where N = (2n− 1)π, A(y) = 4(1− y)y, E = We/Re (elasticity number), and

GN =

{ 1

2
[aN exp(pN t) + bN exp (qN t)] , if γN ≥ 0,

exp(−α∗
N t) (cos(β

∗
N t) + (sN/βN) sin(β

∗
N t)) , if γN < 0,

(6.39)

in which

αN = 1 + αN2E, γN = α2
N − 4EN2, sN = 1 + (α− 2)N2E,

βN =
√
|γN |, α∗

N = αN/(2E), β∗
N = βN/(2E),

aN = 1 + sN/βN , bN = 1− sN/βN ,

pN = −α∗
N + β∗

N , qN = −(α∗
N + β∗

N).

It will be shown shortly that the elasticity number E has a strong influence on
the transient behavior of the fluid.
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Stresses:

τyy = 0, (6.40)

τxy =
(1− α)

E

[
EA′(y)− 32

∞∑

n=1

cos(Ny)

N2
HN(E, t)

]
+ Cxy(E, y) exp

(−t
E

)
,

(6.41)

τxx = 2ReCxy(E, y)

[
A′(y) exp

(−t
E

)
t− 32

∞∑

n=1

cos(Ny)

N2
IN(S1, t)

]

+ 2ReA′(y)(1− α)

[
EA′(y)− 32

∞∑

n=1

cos(Ny)

N2
HN(E, t)

]

− 64ReA′(y)(1− α)

E

∞∑

n=1

cos(Ny)

N2
JN(E, t)

+
2048Re(1− α)

E

∞∑

n,m=1

cos(Ny)

N2

cos(My)

M2
KNM(E, t)

+ Cxx(E, y) exp

(−t
E

)
, (6.42)

where A′(y) = dA(y)/dy = 4(1−2y),M = (2m−1)π, Cxy(E, y) and Cxx(E, y) are
time-dependent functions defined by the requirement that τxy and τxx are zeros
at t = 0, respectively. All coefficients {Cxx, Cxy, HN , IN , JM , KNM} are given in
(Carew et al., 1994) and are rewritten in Appendix D.

Because the flow is symmetric, only half domain [0, 1] × [0.5, 1] is considered.
Boundary conditions for the streamfunction and vorticity here are the same as
those for the case of Newtonian fluid. We impose the periodic condition on the
inlet and outlet for all the stress components. The stress values at the wall are
computed by solving the constitutive equations that are collocated on the wall,
where the non-slip boundary conditions are taken into account. It is noted that,
for some other studies (e.g. (Xue et al., 2004; Os and Phillips, 2004)), the inlet
values of stresses are specified at each time step.

Figures 6.16 - 6.18 displays the time evolution of the field variables, i.e. for the
streamfunction in Figure 6.16, velocity in Figure 6.17 and shear stress in Figure
6.18. These results correspond to We = 0.5, E = 0.5, h = 0.05 and ∆t = 10−3.
It is noted that, values of the velocity and shear stress are recorded at two sample
points, and all the sample points in this example lie on the vertical centreline.

There is a clear difference in behaviour between the Newtonian and non-Newtonian
fluids during the transient regime. For the Oldroyd-B fluid, the velocity overshoot
(peak 1 and 3) and undershoot (peak 2) occur in reaching the steady state. In
these three figures, the corresponding analytic solutions are also included for
comparison purposes. The numerical results clearly lie on the analytic curves.

In Figure 6.19, the computed and analytic velocity profiles at different time levels
are displayed. They are obtained at times shortly after start-up (t=0.2), during
the first peak (t=0.3 and t=0.5), the second peak (t=1), the third peak (t=2),
at t=3, when the flow nearly reaches the steady state, and at t=5 when the flow
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Figure 6.16 Example 5, Problem 2, planar Poiseuille flow of Oldroyd-B fluid, We = 0.5: Evolution of the streamfunction at
an interior sample node.
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Figure 6.17 Example 5, Problem 2, planar Poiseuille flow of Oldroyd-B fluid, We = 0.5: Evolution of the velocity at the
centreline node and an interior sample node.
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Figure 6.18 Example 5, Problem 2, planar Poiseuille flow of Oldroyd-B fluid, We = 0.5. Evolution of shear stress at the
wall and an interior sample node.

reaches the steady state. It can be seen that the computed velocity agrees well
with the analytic solution.

The present method yields a convergent solution for high values of the elasticity
number E. Figure 6.20 shows the evolution of the velocity over time at several
elasticity numbers: E = {0.1, 0.5, 1, 2, 5}. We use ∆t = 10−3, h = 0.1, and Re = 1
for the calculation. The evolution of the shear stress τxy and normal stress τxx with
time at the above elasticity numbers are also displayed in Figures 6.21 and 6.22.
It can be seen that the elasticity number strongly affects the fluid behaviour. The
fluid quickly reaches the steady state when the elasticity number is small. In addi-
tion, the velocity overshoot level increases with the increase of the elasticity num-
ber (e.g. the velocity overshoot level will be 23.27%, 118.16%, 178.15%, 248.99%,
and 356.08% with the elasticity E = {0.1, 0.5, 1, 2, 5}, respectively.), where the
overshoot level is calculated as (vx peak − vx fully developed) /vx fully developed × 100.

6.4 Conclusion

In this chapter, transient equations in one and two dimensions are considered.
They are discretised using the Crank-Nicolson and Adams-Bashforth scheme and
compact local IRBF stencils. The present method is verified with parabolic and
hyperbolic equations. Several examples with analytic solutions are chosen, where
numerical results show that the method yields a solution that is about second-
order accurate in time and fourth-order accurate in space. Some other examples
without exact solutions are also considered, where the present results are found
to be in good agreement with those by other numerical methods.
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Figure 6.19 Example 5, Problem 2, planar Poiseuille flow of Oldroyd-B fluid, We = 0.5, E = 0.5, h = 0.05. Velocity
profiles at different time levels.
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Figure 6.20 Example 5, Problem 2, planar Poiseuille flow of Oldroyd-B fluid, Re = 1: Evolution of the centreline velocity
over time with different values of the elasticity E.



6.4. Conclusion 139

0 1 2 3 4 5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

Numerical
Analytic

t

τ x
y

E = 0.1

E = 0.5

E = 1

E = 2

E = 5

Figure 6.21 Example 5, Problem 2, planar Poiseuille flow of Oldroyd-B fluid, Re = 1: Evolution of the shear stress at the
wall over time with different values of the elasticity E.
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Figure 6.22 Example 5, Problem 2, planar Poiseuille flow of Oldroyd-B fluid, Re = 1: Evolution of the normal stress at the
wall over time with different values of the elasticity E.



Chapter 7

Conclusions

This chapter concludes the thesis. In this thesis, compact local integrated RBF
(CLIRBF) stencils are developed for solving second- and high-order ODEs and
PDEs. They overcome some of the weaknesses of local schemes (i.e. low-order
accuracy) and global schemes (i.e. fully populated systems). High orders of
accuracy of the proposed stencils are achieved owing to

• the use of radial basis functions. We employ the multiquadric functions
that possess an exponential rate of convergence. Since RBFs do not require
an underlying structured nodes for their approximations, our stencils can
also work for problems defined on nonrectangular domains;

• the use of the integral approximation formulation. We decompose highest
derivatives in the ODE/PDE into RBFs and then integrate them to obtain
approximate expressions for low-order derivatives and the variable itself.
Through integration, the discrete solution is more stable and the reduction
in rate of convergence caused by differentiation can be avoided;

• the use of compact approximations. The present RBF approximations are
expressed in terms of not only nodal values of the field variable but also
nodal values of the ODE/PDE and, in some cases, of first derivative(s).
The incorporation of the extra information about the governing equation
into the RBF approximations is conducted through the conversion process
of the multiple RBF spaces into the physical space, with the help of the
integration constants.

Contributions of Chapters can be summarised as follows.

In Chapter 2, CLIRBF stencils are incorporated into the point collocation formu-
lation for the discretisation of high-order ODEs/PDEs. For lid-driven cavity fluid
flows, the streamfunction formulation is adopted but constructed through a set of
two second-order PDEs. Unlike the streamfunction-vorticity formulations, there
is no need to derive a computational boundary condition for the intermediate
variable and no requirement for the calculation of cross derivatives explicitly. A
drawback of compact 3×3 stencils is the production of large interpolant matrices.

In Chapter 3 and 4, CLIRBF stencils are incorporated into the point colloca-
tion and subregion collocation formulations, respectively, for the discretisation
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of second-order ODEs/PDEs defined on rectangular and non-rectangular do-
mains. Governing equations employed are the convection-diffusion equation and
the streamfunction-vorticity formulation. It has been found that, for convection-
dominant flows, the most accurate results are obtained at small values of the
RBF width and thus allowing for the use of a simple direct (traditional) way to
construct the IRBF interpolants. For a finite-volume solution, the employment
of high-order integration schemes is shown to be much more accurate than the
use of the middle-point rule.

In Chapter 5, CLIRBF stencils are applied for the simulation of steady state
viscoelastic fluid flows. The Oldroyd-B model is considered. Verifications are
conducted in flows through channels and corrugated tubes.

In Chapter 6, CLIRBF stencils are employed in transient problems. Time deriva-
tives are discretised using second-order temporal schemes. Verifications are con-
ducted for different transient equations, including parabolic equations, hyperbolic
nature, 1D and 2D Burgers’ equations, start-up planar Poiseuille flows of New-
tonian and Oldroyd-B fluids.

Numerical results indicate that (i) compact local IRBF forms are much more
accurate than local forms and more efficient than global forms; (ii) highly accurate
results are obtained using relatively coarse grids; and (iii) convergent solutions
are obtained for highly nonlinear flows and they are in very good agreement with
the benchmark solutions.

Below is a brief summary of our future work on CLIRBF stencils, which we would
like to pursue, to enhance their performance

• To analyse the influence of the RBF width on the solution accuracy in order
to find its optimal value

• To discretise other constitutive equations such as the PTT model

• To extent CLIRBF stencils to three dimensional problems

• To extent CLIRBF stencils to practical fluid flows, where the calculation is
carried out in parallel



Appendix A

Summary of Differential Operations

A.1 Differential operations in Cartesian coordinate (x, y, z)

(∇ · v) = ∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(A.1)

(v · ∇) = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
(A.2)

A.2 Differential operations in cylindrical coordinate (r, θ, z)

(∇ · v) = 1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

(A.3)

(v · ∇) = vr
∂

∂r
+
vθ
r

∂

∂θ
+ vz

∂

∂z
(A.4)



Appendix B

Two-dimensional formulation of
governing equations

B.1 Governing equations in Cartesian coordinate

In 2D Cartesian coordinates, the isothermal flow of a viscoelastic fluid is governed
by

∂vx
∂x

+
∂vy
∂y

= 0, (B.1)

ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

)
= −∂P

∂x
+ ηs

(
∂2vx
∂x2

+
∂2vx
∂y2

)
+
∂τxx
∂x

+
∂τxy
∂y

, (B.2)

ρ

(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

)
= −∂P

∂y
+ ηs

(
∂2vy
∂x2

+
∂2vy
∂y2

)
+
∂τxy
∂x

+
∂τyy
∂y

. (B.3)

τxx + λ1

(
∂τxx
∂t

+ vx
∂τxx
∂x

+ vy
∂τxx
∂y

− 2
∂vx
∂x

τxx − 2
∂vx
∂y

τxy

)
= 2ηp

∂vx
∂x

, (B.4)

τxy + λ1

(
∂τxy
∂t

+ vx
∂τxy
∂x

+ vy
∂τxy
∂y

− ∂vx
∂y

τyy −
∂vy
∂x

τxx

)
= ηp

(
∂vx
∂y

+
∂vy
∂x

)
,

(B.5)

τyy + λ1

(
∂τyy
∂t

+ vx
∂τyy
∂x

+ vy
∂τyy
∂y

− 2
∂vy
∂x

τxy − 2
∂vy
∂y

τyy

)
= 2ηp

∂vy
∂y

(B.6)

The dimensionless form of conservation equations is

∂v∗x
∂x∗

+
∂v∗y
∂y∗

= 0, (B.7)

Re

(
∂v∗x
∂t∗

+ v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

)
= −∂p

∗

∂x∗
+ α

(
∂2v∗x
∂x∗2

+
∂2v∗x
∂y∗2

)
+
∂τ ∗xx
∂x∗

+
∂τ ∗xy
∂y∗

,

(B.8)

Re

(
∂v∗y
∂t∗

+ v∗x
∂v∗y
∂x∗

+ v∗y
∂v∗y
∂y∗

)
= −∂p

∗

∂y∗
+ α

(
∂2v∗y
∂x∗2

+
∂2v∗y
∂y∗2

)
+
∂τ ∗xy
∂x∗

+
∂τ ∗yy
∂y∗

,

(B.9)
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where

Re =
ρV L

η0
, α =

λ2
λ1

=
ηs
η0
,

x∗ =
x

L
, y∗ =

y

L
, v∗x =

vx
V
, v∗y =

vy
V
,

p∗ =
P

η0V/L
, τ ∗ =

τ

η0V/L
, t∗ =

t

L/V

B.2 Governing equations in cylindrical coordinate

In 2D (axi-symmetric) cylindrical coordinates, the isothermal flow of a viscoelastic
fluid is governed by

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0, (B.10)

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

)
= −∂p

∂r
+ ηs

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

]

−
[
1

r

∂

∂r
(rτrr) +

∂τzr
∂z

− τθθ
r

]
, (B.11)

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

)
= −∂p

∂z
+ ηs

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

]

−
[
1

r

∂

∂r
(rτrz) +

∂τzz
∂z

]
. (B.12)

τrr + λ1

(
∂τrr
∂t

+ vr
∂τrr
∂r

+ vz
∂τrr
∂z

− 2
∂vr
∂r

τrr − 2
∂vr
∂z

τrz

)
= 2ηp

∂vr
∂r

, (B.13)

τrz + λ1

(
∂τrz
∂t

+ vr
∂τrz
∂r

+ vz
∂τrz
∂z

+
vr
r
τrz −

∂vz
∂r

τrr −
∂vr
∂z

τzz

)
=

ηp

(
∂vr
∂z

+
∂vz
∂r

)
, (B.14)

τzz + λ1

(
∂τzz
∂t

+ vr
∂τzz
∂r

+ vz
∂τzz
∂z

− 2
∂vz
∂r

τrz − 2
∂vz
∂z

τzz

)
= 2ηp

∂vz
∂z

, (B.15)

τθθ + λ1

(
∂τθθ
∂t

+ vr
∂τθθ
∂r

+ vz
∂τθθ
∂z

− 2
vr
r
τθθ

)
= 2ηp

vr
r
. (B.16)
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The dimensionless form of conservation equations is

∂v∗r
∂r∗

+
v∗r
r∗

+
∂v∗z
∂z∗

= 0, (B.17)

πRe

2

(
∂v∗r
∂t∗

+ v∗r
∂v∗r
∂r∗

+ v∗z
∂v∗r
∂z∗

)
= −∂p

∗

∂r∗
+ α

(
∂2v∗r
∂r∗2

+
1

r∗
∂v∗r
∂r∗

+
∂2v∗r
∂z∗2

− v∗r
r∗2

)

−∂τ
∗
rr

∂r∗
− ∂τ ∗rz
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− τ ∗rr − τ ∗θθ
r∗

, (B.18)

πRe

2

(
∂v∗z
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+ v∗r
∂v∗z
∂r∗
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∂v∗z
∂z∗

)
= −∂p

∗

∂z∗
+ α

(
∂2v∗z
∂r∗2

+
1
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∂r∗

+
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−∂τ
∗
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∂r∗
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, (B.19)

where

Re =
2ρQ

πRη0
, α =

λ2
λ1

=
ηs
η0
,

v∗r =
vr

Q/R2
, v∗z =

vz
Q/R2

, r∗ =
r

R
, z∗ =

z

R
,

p∗ =
P

η0Q/R3
, τ ∗ =

τ

η0Q/R3
, t∗ =

t

R3/Q
.



Appendix C

Analytic form of the integrated MQ
basis functions

The analytic form of the integrated MQ basis functions used is given below

I
(1)
[x]i(x) =

(x− x†i )

2
Q+

Sx

2
Rx (C.1)

I
(1)
[y]i(x) =

(y − y†i )

2
Q +

Sy

2
Ry (C.2)

I
(0)
[x]i(x) =

(
(x− x†i )

2

6
− Sx

3

)
Q +

Sx(x− x†i )

2
Rx (C.3)

I
(0)
[y]i(x) =

(
(y − y†i )

2

6
− Sy

3

)
Q +

Sy(y − y†i )

2
Ry (C.4)

where x = (x, y)T ; ci = (x†i , y
†
i )

T ; r = ‖x− ci‖;

Q =
√
r2 + a2i (C.5)

Rx = ln
(
(x− x†i ) +Q

)
(C.6)

Ry = ln
(
(y − y†i ) +Q

)
(C.7)

Sx = r2 − (x− x†i )
2 + a2i (C.8)

Sy = r2 − (y − y†i )
2 + a2i (C.9)



Appendix D

Analytic Solution of the start-up planar
Poiseuille Flow of Oldroyd-B fluid

The analytic velocity is given in the form

vx(y, t) = A(y)− 32

∞∑

n=1

sin (Ny)

N3
GN(E, t), (D.1)

vy(y, t) = 0, (D.2)

where N = (2n− 1)π, A(y) = 4(1− y)y, E =We/Re (elasticity number), and

GN =

{
1

2
[aN exp(pN t) + bN exp (qN t)] , if γN ≥ 0,

exp(−α∗
N t) (cos(β

∗
N t) + (sN/βN) sin(β

∗
N t)) , if γN < 0,

(D.3)

in which

αN = 1 + αN2E, γN = α2
N − 4EN2

βN =
√
|γN |, sN = 1 + (α− 2)N2E,

α∗
N = αN/(2E), β∗

N = βN/(2E),

aN = 1 + sN/βN , bN = 1− sN/βN ,

pN = −α∗
N + β∗

N , qN = −(α∗
N + β∗

N ).

The shear stress is as

τxy =
(1− α)

E

[
EA′(y)− 32

∞∑

n=1

cos(Ny)

N2
HN(E, t)

]
+ Cxy(E, y) exp

(−t
E

)
,

(D.4)
where

HN =


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

1

2

[
aN

pN + 1/E
exp(pN t) +

bN
qN + 1/E

exp (qN t)

]
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exp(−α∗
N t)

c2N

[(
β∗
N + hN

sN
βN

)
sin(β∗

N t) +

(
hN − β∗

N

sN
βN

)
sin(β∗

N t)

]
,

if γN < 0,
(D.5)
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with hN = −α∗
N + 1/E, and c2N = h2N + (β∗

N)
2.

Analytic solution of normal stress

τxx = 2ReCxy(E, y)

[
A′(y) exp

(−t
E

)
t− 32

∞∑

n=1

cos(Ny)

N2
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+ 2ReA′(y)(1− α)
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EA′(y)− 32
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n=1

cos(Ny)

N2
HN(E, t)

]

− 64ReA′(y)(1− α)

E
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m=1

cos(Ny)

N2
JN(E, t)

+
2048Re(1− α)

E
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n,m=1

cos(Ny)

N2

cos(My)

M2
KNM(E, t)

+ Cxx(E, y) exp

(−t
E

)
,

(D.6)

where

IN =
1

2

[
aN
pN

exp ((pN − 1/E) t) +
bN
qN

exp ((qN − 1/E) t)

]
, if γN ≥ 0, (D.7)

IN =
exp((−α∗

N − 1/E)t)

(α∗
N)

2 + (β∗
N)

2
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β∗
N − α∗

N

sN
βN

)
sin(β∗

N t) +

(
−α∗

N − β∗
N

sN
βN

)
cos(β∗

N t)

]
,

if γN < 0, (D.8)

JN =
1

2

[
aN

(pN + 1/E)2
exp(pN t) +

bN
(qN + 1/E)2

exp (qN t)

]
, if γN ≥ 0, (D.9)

JN =
exp(−α∗

N t)

c2N

[{
hN

(
β∗
N + hN

sN
βN

)
+ β∗

N

(
hN − β∗

N

sN
βN

)}
sin(β∗

N t)

{
hN

(
hN − β∗

N

sN
βN

)
− β∗

N

(
β∗
N + hN

sN
βN

)}
cos(β∗

N)

]
, if γN < 0, (D.10)

KNM(E, t) = exp

(−t
E

)∫ t

0

GN(E, t)HM(E, t) exp

(
t

E

)
dt, (D.11)

and Cxy and Cxx are time-independent functions defined by the requirement that
τxy and τxx are zero at t = 0, respectively.
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