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1 Abstract

Particle-level simulation has been employed to investigate rheology and mi-
crostructure of non-spherical particulate suspensions in a simple shear flow.
Non-spherical particles in Newtonian fluids are modeled as three-dimensional
clusters of neutrally-buoyant, non-Brownian spheres linked together by Hookean-
type constraint force. Rotne-Prager correction to velocity disturbance has
been employed to account for far-field hydrodynamic interactions. An iso-
lated rod-like particle in simple shear flow exhibits a periodic orientation dis-
tribution, commonly referred to as Jeffery orbit. Lubrication-like repulsive
potential between clusters have been included in simulation of rod-like sus-
pensions at various aspect ratios over dilute to semi-dilute volume fractions.
Shear viscosity evaluated by orientation distribution qualitatively agrees with
one obtained by direct computation of shear stress.

Keywords: particle-level simulation, fiber, suspension rheology, shear-
induced diffusion

2 Introduction

Non-spherical particulate suspensions are commonly found in both natural
and man-made materials such as pulp fibers, disk-like red blood cells and
needle-like magnetic particulate recording media. The impact of particle
shape through hydrodynamic interactions leads to a dynamic particle orien-
tation distribution under flow. Jeffery (1922) demonstrated that an isolated



inertialess ellipsoid in an unbounded linear flow field undergoes a periodic
closed orbit around the vorticity axis. The orbit period (7") of an ellipsoid
with aspect ratio a, (defined as major semi-axis length / minor semi-axis

length) is given by,
2 1
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where 7 is shear rate. This result for a periodic closed orbit can be extended
to any axisymmetric particle by employing effective aspect ratio [Brether-
ton (1962)]. The effective aspect ratio is determined from experiment or
numerical simulation. For cylindrical shape, Trevelyan and Mason (1951)
have experimentally estimated the effective aspect ratio to be approximately
0.7 X a,. A similar particle-level simulation by Joung (2006) found the effec-
tive aspect ratio to be 0.714 x a,.

For non-spherical particulate suspensions, particle-level simulation pro-
vides a convenient investigative platform to determine microstructure and
the corresponding rheological properties. Claeys and Brady (1993a) devel-
oped the Stokesian Dynamics algorithm for prolate spheroid and calculated
macroscopic suspension properties including diffusivity, permeability and sus-
pension viscosity. However, the methodology incurs an increased mathemat-
ical complexity due to the particle shape and long-range hydrodynamic in-
teractions. Yamane et al. (1994) employed a simplified model of rod-like
particulate suspensions. Although hydrodynamic drag coefficients for rod-
like particle were employed to account for near-field lubrication interactions,
the long-range hydrodynamic effect was ignored. The authors validated the
proposed model by demonstrating a good agreement in viscosity of isotropic
suspension with that calculated by Claeys and Brady (1993b). However, Fan
et al. (1998) demonstrated that the long-range hydrodynamic interactions are
important. The authors employed a slender body assumption to account for
the long-range part of hydrodynamic interaction. The shear-induced Folgar-
Tucker diffusion constants obtained by their simulations are comparable to
values obtained by experiments [Folgar and Tucker (1984)], and the magni-
tude of the diffusion constants from both studies are much higher than that
of Yamane et al. (1994) which included only near-field contributions.

An alternative strategy of modeling non-spherical particles by numerous
smaller spheres rigidly connected to each other, has been previously explored
[Yamamoto and Matsuoka (1993); Kutteh (2003); Joung (2006); Meng and
Higdon (2008)]. Yamamoto and Matsuoka (1993) proposed a method to



model a non-spherical particle by a group of bonded spheres. The stretch-
ing, bending and twisting deformation modes were taken into account for
each connected sphere pair. Pairwise hydrodynamic interactions between
clusters were employed . However, only the near-field squeezing-mode lubri-
cation was included to characterize the hydrodynamic interaction of spheres
within the same cluster. Their proposed methodology was employed in the
subsequent studies of rod-like particulate suspension [Yamamoto and Mat-
suoka (1995)] and plate-like particulate suspension [Yamamoto and Matsuoka
(1997)]. Rod-like particles are initially observed to be aligned in the shear
direction. However, the presence of particles oriented along the vorticity di-
rection become noticeable at later time. Simulation results using a similar
approach by Lindstrom and Uesaka (2008) also showed a similar tendency.

Joung (2006) proposed a particle-level simulation method similar to the
model of Yamamoto and Matsuoka (1993). However, the rod-like particle
was modeled by three-dimensional spheres subjected only to stretching de-
formation at each joint. This model correctly predicted the dynamics of an
isolated rod-like and plate-like particle in shear flow.

In this article, the concept proposed by Joung (2006) is extended to pre-
dict rheology and microstructure of non-spherical particulate suspensions in
a simple shear flow. The details of the simulation method and the evaluation
of microstructure and relevant rheological properties are described below.
The results section begins with a discussion of an isolated rod-like particle
in the simple shear flow for the purpose of model validation. The period of
Jeffery orbits obtained by the model is compared with available literature
results. This is followed by simulations of non-spherical particulate suspen-
sions. The formation of lamellar structures at small Mason numbers and the
impact on transient rheological properties are investigated. The orientation
distribution of particles obtained from the model quantitatively agrees with
the experimental results of Stover et al. (1992). Shear viscosity evaluated
by orientation distribution is in quantitative agreement with that obtained
using direct computation of particle stress, within statistical uncertainty.

3 Simulation method

Following the idea proposed by Joung (2006), a cubic building block for a
non-spherical particle is made of a collection of equal-size spheres of radius
a connected by bonds as shown in Fig. 1(a). Each subunit is composed of a



(a) subunit (b) rod-like and plate-like particle

Figure 1: A schematic diagram of non-spherical particle made of linked
spheres

four-sphere forming a cube of side length 5a. These cubic subunits are stacked
together to form non-spherical particle as illustrated in Fig. 1(b) for rod-like
and plate-like particles. There are additional bonds linking each sphere to
the particle’s center of mass to facilitate rigid body motion. The aspect ratio
(a,) of non-spherical particle is evaluated as the ratio of particle enveloped
length per equivalent diameter [Joung (2006)]. The equivalent diameter (deq)
is taken to be a diameter of a circle which has the same cross-sectional area
to that of particle cross-sectional area which has its normal vector parallel
to the principal axis.

Each sphere pair is linked together along the line of centers by Hookean
links. Consider a pair of spheres o and (3 separated by a distance r,z =
||rs — ral|. At each joint, only the linkage force along the line of centers
is determined. While the bending and twisting modes are ignored, angular
motion of the particle including Jeffery elliptic and axial spin orbit can be
reproduced using this simplified linkage force model [Joung (2003)]. This is
attributed to the three-dimensional linkage construction of a rod-like particle.
The linkage force along the line of centers Fg%k on sphere a due to a linkage
with sphere 3 is given by,

Foi = k(ras — r3)er, (2)

where k is the extensional-mode stiffness coefficient, ¢ is the equilibrium
particle-particle separation distance and e, is a unit vector along the line
of from the center of sphere « to the center of sphere 3. In this study,



k = 100 is employed. Since the stiffness coefficient is finite, the sphere
cluster is approximately a rigid particle. Joung (2006) employed & = 30 — 50
in his investigation and found no apparent deformation with the sphere pairs
deflection distance (|r — r°|/r®Y) never exceeds 1%.

Suspensions are composed of rod-like particles constructed as above, dis-
persed in a Newtonian suspending fluid of viscosity 7.. Suspensions are
exposed to a linear shear flow with a shear rate magnitude 4. Each sphere in
the subunit is considered non-Brownian, neutrally-buoyant and inertialess.
In the limit of vanishing particle and fluid inertia, sphere motions are deter-
mined by the balance of hydrodynamic force(F™®) and non-hydrodynamic
force (F) acting on each sphere. The governing equation of sphere a is
written as,

FF 4 Fivi =, (3)

Two types of non-hydrodynamic forces are considered in the model. First, the
linkage force (F“nk) acting on the linkage joint at sphere center is described
in Eq. 2. The other non-hydrodynamic force is a short-range repulsive force
(F™P). The presence of repulsive force is necessary to prevent overlapping
between particles due to the lack of lubrication force (which will be discussed
later). The F7f on sphere o due to sphere 3 is written as,

ng _ —Forep iXp(_K/_(Taﬁ _imin)) e,, (4)
1 — exp(—K(Tap — Tmin))

where k! is the decay length, F'P is the repulsive force magnitude and
Tmin = 2a is the minimum particle-particle separation distance. In this study,
F'P = 67n,ya? for simulation in simple shear flow where ¥ denotes shear rate.
Thus, the non-hydrodynamic force is the sum of these two contributions:
FP =% a Fg%}f, + .5 Fy- The notations 3” and 3" denote that spheres
B belongs to the same / different cluster to that of sphere «a, respectively.

From Faxen’s law, the hydrodynamic force acting on sphere o can be
written as,

2

FY = 6mn.a(U® - U,) + 6mn.a(l + %V2)U§‘St (5)
where U™, U, and UgiSt are ambient velocity, velocity of sphere a and distur-
bance velocity evaluated at center of sphere «, respectively. The disturbance

velocity is modeled to be the pairwise summation of far-field disturbance ve-
locities. Employing the singularity solution to Stokes’ flow [Kim and Karilla
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(1991)], the 1st correction to disturbance velocity experienced by sphere «
due to motion of sphere [ is given by,

is 20 G(xs — o)
Udlbt,(o) -1 a’_VQ 8 a FHyd,(0)7 6
where G = r~!(d+e,e,) is the Oseen tensor. The term ngd,(o) = 6mn.a(U*—

Ujp) is the hydrodynamic force on isolated sphere 3, and is equivalent to
Stokes drag force. Total disturbance velocity is treated to be equivalent to
the sum of the disturbance field generated by all other sphere in the system.
Additional correction terms to the disturbance field can be obtained itera-
tively by including the correction to the particle velocity to calculate new
hydrodynamic force acting on sphere 3, and the subsequent new correction
to velocity disturbance field [Kim and Karilla (1991)]. Here, only the 1st
correction will be included. Substituting Eq. 6 into Eq. 5, the hydrodynamic
force on sphere o becomes,

FHyd CL2 g(,r, )
«a — U>® — Ua 1 il w2 2—045 . . U>®_U
G = )3 G S Sl 2 (7)
= (U*-U,)+ Y MY (U*-Up), (8)
a#B

where MR is the Rotne-Prager tensor describing far-field hydrodynamic
interactions and is expressed as,

3

3a a
RP _
Moy = (0 + ere,) + 23 (0 — 3e,e,). 9)
Here, & denotes Kronecker delta function, r = ||xs — .||, is a separation

between sphere « (origin) and sphere [ and e, = r /7.

The absence of near-field lubrication is not expected to alter qualitative
features of hydrodynamics. The short-range repulsive force in Eq. 4 exhibits
diverging resistance in the limit of vanishing separation distance which is
qualitatively similar to the near-field lubrication force due to squeezing flow.

The governing equation of sphere o motion can be obtained in a form
suitable for particle-level simulation by substituting Eqs. 8-9 into Eq. 3:

N
U, =U> + (6mn.a) 'FL + Y MEF - (U - Uyp). (10)
a3



To improve computational time [Sierou and Brady (2002)], the velocity
of prior time step is employed as an approximation to the predicted value
of Ug). Sphere trajectories are determined by numerically integrating the
above expression. While the hydrodynamics tensor in Eq. 9 can be directly
applied in a particular situation such as monolayer simulation, an absolutely
convergent form must be employed to a model system with periodic bound-
aries. The problematic long-range artifact can be resolved by a renormaliza-
tion technique [O’Brien (1979)]. Beenakker (1986) has provided the Ewald
summed form of MRP which is absolutely convergent. The synopsis of the
procedure are as follows.

The rapidly converging Ewald sum of RP tensor composes of two con-
tributions: MMEP and M@EP representing summation (of hydrodynamics
interaction) in real and reciprocal space, respectively and are written as,

Ncell
GonaM™® = 373 MO (1) — MO < 0)
=1 ap
1 Ncell
+ o DN " cos(kag  Tap) MPE (k). (11)
*=1 af

Here, the summation are conducted between sphere « in the main cell (con-
taining NV spheres) and sphere 3 which is located either in the main cell or in
the surrounding periodic replicated cells. The ' notation on the MR sum-
mation indicates the exclusion of self-term (o = [3) when sphere 3 is in the
main cell. Also, [* = 1 notation denotes that the reciprocal space summation
excludes the case when interactions are within the main cell. The reciprocal
lattice vector (kqp) is related to the lattice vector r,5 by exp(ikas - 7o) = 1
and £ is a parameter characterizing the distribution between real and re-
criprocal space summation. Here, & = \/7/V'/3 as proposed by Beenakker
(1986). Also, the M®@RP(r = 0) term on the R.H.S. of Eq. 11 is the re-
ciprocal space contribution of the self-term (r = 0). Finally, M:RP(p),



M®@RP (p = 0) and M®-RP (k) are given by,
MOy = (B 109) (69 -9V r ke (12)
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M(Q)’Rp(k) = (5 — ekek) (a — —a3k2> <1 + Z? + §€—4>

exp(—=——). (14)

The governing equation is non-dimensionalized by the following scale vari-
ables:

a —

L,=a, F,=6mrusa? t,=+"" (15)
Initial isotropic configurations are randomly generated. Particle configura-
tions are saved every strain of 0.02 and shear viscosity is evaluated from these
saved configurations.

The particle contribution to the shear stress is considered as a sum of two
contribution: Tilgd and Ta?;n'hyd. The hydrodynamic contribution to the shear
stress is evaluated according to the Einstein relationship: T%d = 2.5¢7%. The
nonhydrodynamic contribution to the shear stress is given by

hon- hyd _ Z yz ’ Z’ (16)

where FP is the  component of the nonhydrodynamic force on sphere i, 1
is the y coordinate of sphere i, and V is the simulation cell volume.

The other approach to evaluate shear stress is to employ constitutive
equation [Fan et al. (1998)]. The shear stress is a function of orientation
tensor < P7P? > and the stress can be written as

Tay = 0Y(1+ ¢f (0, a,)) < PIP; >, (17)
where the function f(¢,a,) is given by

fe a;$(2 — ¢/G)

~ 4(In(2a,) — 1.5)(1 — ¢/G)?’
which the parameter G is 0.53-0.013a,. Also 7. is the viscosity of continuous
phase. In the following section, the proposed model here will be employed to
simulate isolated rod-like particle and suspension of non-spherical particulate
suspensions in simple shear flow.

(18)



Figure 2: Simulated orbits of rigid rod-like particle with aspect ratio 4.43 at
various orbit constants (Cy = 0.017455, Cy = 0.1763, C5 = 0.57737)

4 Results

Representative trajectories for an isolated rod-like particle with aspect ratio
4.43 in simple shear flow are illustrated in Fig. 2. For an isolated particle sim-
ulation, there is no need to include repulsive force (Eq. 4) to prevent particle
overlap. A change in particle initial orientations leads to a distinctly different
closed orbit trajectory. The family of closed orbits can be characterized by
an orbit constant C' which is given by [Jeffery (1922)];

= olP azP? + P2, (19)
where P,, P, and P, are the flow, gradient and vorticity components of a
unit vector parallel to particle principle axis. As illustrated in Fig. 2, an
orbit will shift to rotation on flow-gradient plane as the orbit constant is
increased. The trajectories in Fig. 2 are generated using a constant time
interval. Dense data points along the flow axis (x direction) indicates the
preferential orientation is in the flow direction.

The simulation period of rod-like particle is plotted as a function of aspect
ratio in Fig. 3. Also, experimental results using glass cylinders reported by
Trevelyan and Mason (1951) as well as numerical results by Skjetne et al.
(1997), which modeled a rod-like particle as a linear chain of spheres with
connectors, are given for a comparison. As discussed in the Introduction
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Figure 3: Orbit period of cylindrical rod as a function of aspect ratio. Linked-
sphere model results represented by filled triangles are compared with nu-
merical results reported Skjetne et al. (1997) (denoted by open circles and

open squares) and experimental results reported by Trevelyan and Mason
(1951) (denoted by filled circles).

section, the orbit period is described by Eq. 1 and is independent of initial
orientation. In Fig. 3, the orbit periods increase with aspect ratio in a manner
consistent with literature results. Some quantitative differences are expected
due to the usage of the linked-sphere structure to represent a cylindrical
body. However, the model demonstrates a good agreement with experimental
results at large aspect ratio. Also, the additional length scale corresponding
to the axisymmetric distribution of spheres clearly results in deviation from
the simulation results reported by Skjetne et al. (1997) where the elongated
particle is modeled as a line distribution of spheres. The exact contribution
of these two causes is unclear. A better agreement to literature results could
have been made by employing an effective aspect ratio in lieu of actual aspect
ratio [Petrich et al. (2000)]. However, the actual aspect ratio will be used in
this study.
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Figure 4: Longitudinal and transverse components of rod-shape friction ten-
sor as a function of aspect ratio. Model results are compared with slender-
body theoretical results given by Doi and Edwards (1986).

In Fig. 4, the components of translational drag coefficients and rotational
viscous drag coefficient of an isolated rod-like particle in quiescent fluid is
plotted as a function of particle aspect ratio. The theoretical value based on
the slender body assumption [Doi and Edwards (1986)] is also included in
Fig. 4 for comparison. The drag coefficient is defined as a ratio of transla-
tion/rotation velocity to body force/torque and is calculated from the simu-
lation by monitoring particle velocity /angular velocity upon imposing known
force/torque. The translation viscous drag is composed of two components:
(1) drag for the motion along the line of centers (¢!l and (2) drag for the
motion perpendicular to the principal axis (¢(*). As demonstrated in Fig. 4,
the transverse component drag coefficient from simulations is always higher
than the line of centers component coefficient. The simulation results exhibit
the trend of decreasing drag coefficients with increasing aspect ratio and is
in a reasonable agreement with slender body results. However, the appar-
ent difference between rod-like linked-sphere structure and cylindrical object
lead to some quantitative difference to slender body results.

The particle orientation is monitored in terms of the normalized configu-
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ration function [Fan et al. (1998)]. The flow (¢) and vorticity (£) component
of the configuration function is computed directly from particle orientation
unit vector P and is given by

i
C=\Frr ) (20)
r?

In Fig. 5, ¢ and £ configuration function are plotted as a function of strain
for rod-like suspensions with three different box sizes (or number of clusters).
Here, the rod-like particle concentration is referred using the quantity nL3,
where L is the length of the elongated object and n is the number density.
Particle aspect ratio is set to 2.48 and nL3 = 1 in all simulations. Both ¢ and
¢ configuration function exhibit a cyclical variation which indicate particle
motions follow Jeffery orbit [Yamane et al. (1994) and Fan et al. (1998)]. At
this particular concentration, the structured evolution is insensitive to the
change in box size over the observed length scale and there is no apparent
transient structure changes over the observed time scale. Fan et al. (1998)
reported a transient structured evolution at longer time scale and for certain
particle concentration. However, the primary focus of this study will be
restricted to the early stage of evolution during which there are no apparent
transient structured changes.
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Figure 5: Normalized flow and vorticity components of rod-like particle ori-
entation as a function of strain (a, = 2.48, nL3? = 1).

12



An alternative way to characterize structured evolution is by monitoring
the Jeffery orbit constant given in Eq. 19. The orbit constant has a range
from zero, corresponding to particle oriented in vorticity direction, to infin-
ity, corresponding to particle lying in flow-gradient plane. Thus, it is more
convenient to recast the orbit constant in the form of C, = C'/(1+ C') which
has the range between 0 and 1 instead. The distribution of orbit constant
for a rod-like suspension wih a, = 11.34 and nL?® = 1 is shown in Fig. 6.
Here, the differential of cumulative probability P(C}) with respect to the
orbit constant (OP(Cy)/0C,) is calculated from simulation and compared
with experimental results given by Stover et al. (1992) and Anczurowski and
Mason (1967). It is apparent that the presence of hydrodynamics is neces-
sary to reproduce the distribution of orbit constant in a consistent manner
to the experimental results. A similar skewed C), distribution is observed
when particle concentration (nL?3) is varied. There is no distinct tendency
of statistical mode and mean value of C}, with respect to concentration and
aspect ratio over the observed range. This was also reported in simulation
by Lindstrom and Uesaka (2008).

In Fig. 7, the normalized particle contribution to shear viscosity ((7xy, —
ne)/ne) of rod-like suspensions is plotted as a function of volume fraction.
Here, nL? = 1 is fixed while particle aspect ratio is varied from 2.3 to 20.20.
Shear viscosity is obtained by the direct stress calculation according to Eq. 16,
and is in a good agreement with that obtained by the particle orientation
configuration approach as in Eq. 17. Also, results are in good agreement
with simulation results reported by Lindstrom and Uesaka (2008).

Simulation results for plate-like suspensions are presented in Figs. 8-9.
The plate-like particle has a tendency to align its largest surface parallel
to the shear flow as commonly observed [Yamamoto and Matsuoka (1997);
Joung (2006); Meng and Higdon (2008)]. Here, the orientation vector is de-
fined as a unit normal vector of the largest surface. Similar to the rod-like
particle investigation, the distribution of differential orbit constants are eval-
uated for plate-like suspensions with aspect ratio 1/2.26 and nL?® = 1. In
Fig. 8, the differential probability distribution is compared with the experi-
mental results by Anczurowski and Mason (1967) for a disc-like suspension
with a, = 0.32. Both data sets indicate a shift toward larger orbit constants
corresponding to the largest surface lying on the shear-gradient plane.

Shear viscosity of plate-like suspensions (1/a, = 2.26) is plotted as a
function of volume fraction in Fig. 9. The shear viscosity computed by
direct stress calculation is in a reasonable agreement to that obtained by

13
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Figure 9: Shear viscosity of disc-like suspension as a function of volume
fraction (a, = 1/2.26). The solid line is the theoretical expression given by
van der Kooij et al. (2001) (a, = 1/2.26) The dash line represents simulation
results of oblate spheroidal suspensions (a, = 1/3.28) reported by Martys
(2005) and the dash-dot-dash line is simulation results reported by Meng
and Higdon (2008).
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orientation distribution [Hinch and Leal (1972)]. Also in Fig. 9, a theoretical
expression in the dilute limit using 1/a, = 2.26 [van der Kooij et al. (2001)],
DPD simulation results (1/a, = 3.28) by Martys (2005) and particle-level
simulation of plate-like particle (1/a, = 3) by Meng and Higdon (2008) are
given. Qualitatively, shear viscosity monotonically increase as a function of
volume fraction. Our simulation results agree well with the dilute theoret-
ical expression. However, the predicted viscosity is smaller than the results
of Meng and Higdon (2008) when ¢ becomes greater than 0.05. There is no
clear explanation to the difference between our results and Meng and Higdon
(2008). However, this is partly attributed to the flatter (high 1/a,) particle
employed by Meng and Higdon (2008). In addition, the enveloped volume of
sphere cluster is chosen to be particle volume. Consequently, this choice lead
to lower effective particle volume due to consideration amount of gap volume
among spheres. However these factors are not expected to produce such a sig-
nificant difference. Available literature results reveal somewhat discrepancy
of viscosity values even at low to moderate volume fraction. In Fig. 9, the
magnitude by DPD simulation of ellipsoidal suspensions by Martys (2005) is
smaller than values reported by Meng and Higdon (2008). Subsequent works
particularly that related to experimental measurements will be instructive.

5 Conclusion

In this study, a simple approach to modelling a non-spherical particle in
a Newtonian fluid is presented by considering the particle to be composed
of spheres connected by Hookean constraint forces acting along the line-of-
center direction. The three-dimensional cluster structure allow the exclusion
of bending and twisting forces at each joint. Rotne-Prager correction to
velocity disturbance has been employed to account for far-field hydrodynamic
interactions. Simulations of isolated rod-like and plate-like particle in simple
shear flow produced a periodic orientation distribution (Jefferys orbit). The
period of Jeffery’s orbit as a function of aspect ratio quantitatively agree
with literature results. Particle drag coefficient is in good agreement with
slender-body theoretical results.

Rheology of non-colloidal non-spherical suspensions in simple shear flow
has been investigated. Short-range repulsive force is included to model non-
spherical particulate suspensions. As a first step to explore capability and
limitation of the proposed algorithm, the relatively well understood rod-like
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suspensions and plate-like suspensions were investigated. The model pro-
duces microstructure which qualitatively agrees with experimental results by
Stover et al. (1992) and Anczurowski and Mason (1967). The presence of
long-range hydrodynamics is necessary to produce microstructure in a man-
ner consistent with experimental observations. This linked spheres method
offers another useful investigative tool to visualize the dynamics of various
particle type. Although the primary focus of this study is on rigid parti-
cle, preliminary results have demonstrated the model feasibility to capture
flexible fiber configuration dynamics such as S-turn in simple shear.

Rheological properties have been evaluated by two different approaches:
orientation distribution and direct computation of particle stress. Shear vis-
cosity at low to moderate volume fraction corresponding to dilute to semi-
dilute regime is of a particular interests. Shear viscosity of rod-like as well as
plate-like suspensions evaluated by both approaches are in good agreement
and compare well with available literature results.
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