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ABSTRACT 
 

COTTON QUALITY – FIBRE TO FABRIC 

FIBER PROPERTIES RELATIONSHIP 

TO FABRIC QUALITY 

By 

 Patricia Bel 

University of Southern Queensland 

Chairperson of the Supervisory Committee: 

Professor Mark Porter 

Department of Agricultural Engineering 

The textile industry has a recurrent white speck nep problem in cotton. “White 

specks” are immature clusters of fibres that are not visible as defects until dyeing, 

after which they remain white on the surface of a darkly dyed fabric, or appear as 

non-uniform streaks in the fabric. Both results render the fabric unsuitable for 

commercial fashion fabrics. The white speck potential of cotton is difficult to predict 

except in extremely immature cottons. Competitive synthetic fibres are uniform in 

length and strength and never have a maturity problem resulting in dye defects. They 

are much more predictable in the mill. As a result, cotton faces the risk of being 

replaced by synthetic fibres. Industry requires a method to predict fabric quality from 

cotton bale fibre properties to minimize this risk.  

 

This research addresses the problem of predicting white specks in dyed cotton 

fabrics. It is part of a large study, which is supported jointly by US and Australian 
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agencies. The main objective is to predict fabric quality from bale fibre properties 

given controlled gin and mill processing.  Gin and mill processing must be controlled 

so that field and varietal effects can be seen without the interaction of mechanical 

processing differences. This results in achieving other objectives, including the 

provision of baseline data for Australian varieties, ginning effects and comparison of 

ring and open-end spinning.    

 

Initially a reliable method for measuring white specks had to be found. Several 

systems have been evaluated and are reported here. The systems accuracy was 

compared using fabrics from the US Extreme Variety Study (EVS), which was 

grown specifically to have different levels of white specks.  The fabrics made from 

the US (Leading Variety Study 1993 (LVS) and The American Textile 

Manufacturers Institute (ATMI) Cotton Variety Processing Trials, 2001) and the 

Australian (1998 & 1999) variety studies were analysed using AutoRate-2-03, the 

best of the image analysis systems studied. The final release of AutoRate (February 

2003) was developed by Dr. Bugao Xu to measure white specks on dark fabrics in 

conjunction with this research. This final analysis of these studies results in white 

speck prediction equations from high-speed fibre measurement systems. This 

information should be immediately useful to as a tool to measure the effects of field 

and ginning practices on the levels of white specks without having to carry the 

research out to finished fabrics.  Cotton breeders will be able to use the equations in 

the development of new varieties with low white speck potential, by eliminating 

varieties with high white speck potential early on. The research will continue on a 

much larger scale in the US and hopefully a WSP (White Speck Potential) value will 

be incorporated into the US Cotton Grading System. 
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1. INTRODUCTION 
 

Improving the quality and marketability of cotton fabrics through improved fibre 

quality measurement technology could enhance the economic viability of cotton. In 

this dissertation, I set out a starting point for such improved technology.  It is based 

on a program of field experiments conducted with the cooperation and assistance of 

leading fibre research groups in the U.S. and Australia. No other countries are 

producing the controlled conditions for growing and processing samples that are 

necessary for this project. The global and country specific context to the studies is 

explained in this introduction. 

Globally 1(Cotton Australia, 2003) 
The main cotton producing countries in the world are China, USA, India, 
Uzbekistan and Pakistan. Together they account for nearly 80% of world 
production. 

 

 
Figure 1.1:  Cotton production, imports, exports, mill use and ending stock in China, the U.S.  

and Australia for 1989 to 2003  2(National Cotton Council, 2003). 
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World consumption of cotton is estimated at more than 91 million bales per year, 
each bale weighing about 227kg (500 lbs).  This cotton is produced on a total 
global growing area of 31.6 million hectares.  It is grown in over 90 countries, 75 
of which are developing nations. 

 
Of the major producers, China’s mill use has increased in recent years while that 
in the U.S. has decreased, and in conjunction with this, China’s imports have 
increased and the U.S. exports have increased (Figure 1.1). 

 
Australia 3(Cotton Australia, 2003) 

Australia grows just over 3 million bales each year compared to China's 17 
million and the USA's 16 million bales. Australia is a relatively small producer, 
but is the third largest exporter in the world cotton marketplace. Australia exports 
over 95% of its cotton. The value of these exports in 2000/01 was in excess of 
$1.5 billion. Australian dollars.  

 
Over the five-year period to 2002, Australian cotton production has been 
relatively stable, with an average of 3.2 million bales produced from 470,000 
hectares (1,815 sq. miles). Of this, 65% were in NSW with the remainder in 
Queensland 4(see Figure 1.2). The 2002/03 crop produced 1.62 million bales, is a 
50% reduction on 2001/02 crop, due to the impacts of drought 5(CottonWorld, 
2003). 

 

 
Figure 1.2:  Australian cotton is grown mainly in central and northwestern NSW and central 

and southern Queensland. Potential cotton growing areas are shown in the north 6(Cotton 
Australia, 2003). 

 

 2 



 
 

U.S. 7(National Cotton Council, 2003) 
U.S. cotton farmers annually produce between 16 and 18 million bales, each 
weighing approximately 227 kgs (500 lbs), representing a total net value of eight 
to nine billion Australian dollars 8(Cotton Australia, 2003).  

 
Business revenue stimulated by the crop in the U.S. economy is estimated at 
some $120 billion. Cotton is grown in 17 states covering more than 12 million 
acres or about 19,000 square miles (4,921,000 hectare) (see Figure 1.3) 
9(National Cotton Council, 2003). 
 

 
Figure 1.3:  In the US, cotton is grown in 17 states, across the cotton belt (southern part of the 
US from the east coast to the west coast. 10 (National Cotton Council, 2003)  

 
Not all of this cotton represents a quality product. The United States textile industry 

alone loses as much as two hundred million dollars annually (a conservative 

estimate) due to dyed fabric defects 11(Goynes, 1996) associated with white specks. 

The white speck phenomenon has been a recurrent problem since 1874 and is often 

associated with poor weather conditions, and/or with certain cotton varieties. 
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1.1 Project Overview 
White specks are a specific type of fibre defect that result in high financial losses to 

the cotton industry. Fibre entanglements are called neps. Neps that involve immature 

fibres do not dye properly and appear as white specks on the dyed fabric. This 

dissertation presents an experimentally derived link between the properties of baled 

cotton and the quality of resulting fabrics (indicated by the level of white specks in 

the fabric). The results are presented as predictive equations for different fibre 

measurement systems, with the intention of providing a White Speck Potential 

(WSP) that can be incorporated into cotton grading systems used for marketing.  

 

The equations are derived from a database of measured cotton parameters that was 

accumulated during a six-year research program (sixteen years when including initial 

research) on two continents (North America and Australia). A number of 

measurement techniques were developed during the course of the project to acquire 

the data, and these are explained.  

 

The international cotton industry uses non-standard, U.S. units of measurement, and 

so these units have been adopted in this dissertation. SI units are also provided where 

appropriate throughout the dissertation 

1.2 Project Aims 
The aims of this project are: 

i) To develop reliable systems for measuring white speck in fabric samples; 

ii) To produce a database of measured fibre properties and white speck values; 

and 

iii) To produce regression equations that will allow white speck potential in 

fabrics to be estimated from fibre properties. 



 

Previously, several varieties of cotton with known histories had been evaluated and 

rated for white speck content 12(Goynes et al., 1996). Microscopical examination of 

white speck neps from these samples identified them as clumps of cotton fibres that 

are severely immature, containing only the outer cell wall of the fibre. Their flat, 

unsupported structures cause them to clump into bundles that are very difficult to 

separate into individual fibres. Identification of the nature of the white specks led to 

this research project to identify causes of underdevelopment and ways to predict their 

presence in undyed fibres. 

1.3 Previous Work 
 

AFIS Bale Data vs White Speck
US Leading 26 Varieties & 5 Controls
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Figure 1.4:  US Leading Variety Study indicates that processing differences are discernable and 
future studies should have controlled ginning.  

 

This project is an extension of the candidate’s work in conjunction with Agriculture 

Marketing Services (AMS, USDA) on the 26 leading varieties in the USA. That 

study included varieties producing a wide range in the levels of white specks in the 
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finished fabrics and resulted in a scale (% white) for the quality of fabric with respect 

to white speck. True varietal differences were not readily discernable in the study 

results because of the processing interaction shown in Figure 1.4. The varieties were 

collected from different gins and therefore had been processed differently. Such 

interactions must be quantified before the extent of white speck formation can be 

established. 

 

1.4 Justification 
Constant demands to improve competitiveness through increased productivity are 

driving the cotton textile industry to continually upgrade equipment and increase the 

intensity and speed of processing. However as speeds increase in cotton processing, 

so does the number of neps, especially white speck neps.  It has become increasingly 

important to know the white speck potential of a bale of cotton before processing it. 

HVI data provide a basis for controlling the properties that are important to a 

particular operation. However, definitive guidelines are needed so that testing 

methods and sampling techniques give statistically sound white speck and fibre 

maturity data. In previous studies, the candidate defined minimum sample sizes and 

developed techniques for this purpose using both AFIS 13(Bel-Berger, 1999) and 

image analysis techniques 14(Bel-Berger, 1998), which together provide the tools to 

undertake this research.   

 

Cotton breeders would like to improve fibre quality to improve future varieties, and 

the mills need to know what measurable fibre properties are considered the most vital 

for quality during processing. Producers and ginners also need to be aware of these 

fibre properties, but often receive contradictory responses from the textile mills. 

Breeding programs have been geared towards producing longer, stronger, and finer 
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cottons, but with a primary emphasis on yield. Other elements, such as the percent 

immature fibres or strength of seed coat attachment, often change along with the 

targeted fibre property. Seed coat attachment is strongly related to variety. From 14 

to 24 % of white specks are from seed coat fragments that have short immature fibres 

attached. A series of field studies conducted from 1997 to 2001  (sixteen years when 

including initial my research from 1987 to 1997) is presented in this dissertation to 

identify measurable fibre properties that can be used to predict white speck neps 

using high-speed fibre measurement systems. 

1.5 What is a Nep? 
A technical description of neps is presented in Section 2.7.  However, they are the 

cause of the problem addressed in this thesis and a general understanding is required 

in this introduction. 

 

Neps are small tangled knots of lint hairs that appear after ginning in manufactured 

cotton products. In cloth, they appear as specks. In dyed cloth, the specks are usually 

lighter than the background 15(Brown & Ware 1958) and are classically considered to 

be of two different types: mechanical or biological neps. Recent studies have defined 

coalesced neps as a third and very important type. Mechanical neps only contain 

fibres and have their origin in the manipulation of those fibres during processing 

16(van der Sluijs, 1999), whereas biological neps include foreign material such as 

seed coat fragments, leaf or stem material 17(Hebert, 1988). In coalesced neps, the 

immature fibres appear to have grown together in the boll. Mechanical and biological 

neps involving immature fibres create undyed spots in the finished fabric 18(Hebert, 

1988). The coalesced neps, composed solely of immature fibres, always appear as 

white spots on dyed fabric when they survive processing to the fabric stage.  



 

More than 90% of neps in finished fabric incorporate immature fibre 19(Hebert, 

1988). These undyeable spots are known as white speck neps, or more commonly, 

white specks. Not all neps are white specks, but all white specks are neps, and they 

contain immature fibres. Some are tangles of immature and mature fibres while many 

are tight masses of immature fibres. White specks were reported as long ago as 1855. 

Crum20 (Crum, 1855) examined a sample of calico, which contained white spots after 

dyeing. He wrote: “On placing it under the microscope, I found the cotton which had 

thus resisted the dye to consist of very thin and remarkably transparent blades, some 

of which were marked or spotted while others were so clear as to be almost invisible, 

except at the edges. They seem to be particularly numerous during years with 

weather problems such as occurred with the 1987 U.S. crop. Long, fine, immature 

fibres have a propensity to nep during processing, so any field condition, harvesting 

method, gin, or mill processing that increases the level of immature fibres will 

increase neps in yarns and fabrics.  

Figure 1.5:  Mechanical Nep (Photomicrograph by Bruce Ingber). 
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White specks show up as dyeability defects. Figures 1.5, 1.6, and 1.7 are close-ups of 

typical white specks. Figure 1.5 shows an entanglement of mature and immature 

fibres that appeared as a white speck on the dyed fabric. Figure 1.6 is a coalesced 

white speck composed of extremely immature fibres adhered together.  

 

Figure 1.6:  Coalesced white speck nep on fabric surface (low magnification) (Photomicrograph 
by Bruce Ingber). 

 

In Figure 1.7, the white speck neps are very flat and very reflective. These white 

speck neps are immature fibres that have passed through gin and mill processing, and 

were incorporated into fabric. Currently, white specks are not detectable until the 

fabrics are dyed. The dyed fabric is passed over steam cans during drying, essentially 

polishing the already flat immature fibres to a high shine, making them even more 

reflective and the problem even more obvious. 
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Figure 1.7:   High magnification of a white speck nep (note the extremely immature fibres create 
a reflective surface) (Photomicrograph by Bruce Ingber). 

 

The key problem is that the mill does not discover this defect until after the fabric is 

dyed. The textile industry needs high-speed measurement systems to predict white 

specks so the problem can be avoided by putting the cottons with high white speck 

potential into the right product mix where they are not problematic (specifically, 

whites).  

 

The work described in this dissertation enables this level of management by first 

quantifying the white specks on fabrics from a range of cottons and then using field-

to-fabric studies (known field conditions and varieties with specific gin and mill 
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processing through fabric) to develop predictive equations.  

 

Before it is decided which values from high-speed fibre measurement systems are 

most predictive of white specks, the level of white specks in dyed fabric and/or the 

amount of immature fibres needs to be quantified by a consistent method. Several 

different systems are evaluated. The AutoRate program developed by Dr. Xu 

(University of Texas at Austin) is found to provide the most accurate results 

currently available. His program was developed specifically to measure white specks 

and the candidate was involved in its development by evaluating many versions. The 

method uses a scanner to obtain an image that is converted into pixels, measured, and 

analysed by a computer program.  

Figure 1.8:  (Left) Original scan and (Right) scan brightened to 120 and image analysed on 
Autorate. 

Four 5” x 5” samples are scanned for each fabric sample. The images are adjusted on 

AutoRate to the same level of brightness (120) and a minimum size (3 pixels per 

speck) is set to differentiate between real white specks and anomalies. The contrast is 

set for each fabric. If the fabrics are all dyed and scanned in a batch, the contrast 

usually remains the same (each dye batch is slightly different and I have noticed that 
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the scanner contrast has a slight drift over time). Figure 1.8 shows the fabric’s 

original scan and the altered image after it is brightened and analysed. This analysis 

results in a white speck count, the size of the white specks, and the percent white on 

the fabric. 

2. FIBRE PROPERTIES 

Cotton fibre is a truly remarkable biological entity, being formed from a single 

epidermal cell on the surface of a fertilized cottonseed.  As the seed develops the 

seed hair-cell continues to lengthen in the form of a circular cylinder, continues to 

lengthen. The cell wall diameter is determined early in the growth cycle and is 

chiefly a genetic or varietal property.   

 

The development of the cell into the cotton fibre takes place in two stages: cell 

elongation and cell wall thickening (Figure 2.1) 21(Thibodeaux et al, 1986). The 

elongation period lasts about 15 to 25 days after flowering (post-anthesis). The cell 

consists of primary wall filled with a semifluid, semitransparent substance 

(protoplasm in the central lumen) during the elongation phase. Secondary wall 

formation begins as the elongation ceases, 22(Ramey, 1988) and the fibre wall 

thickens by deposition of regular layers of secondary wall cellulose. After about five 

weeks, there is a significant secondary wall development, and most fibres terminate 

wall thickening between seven and nine weeks. Boll opening then commences, and 

the liquid material within and around the fibre evaporates 23(Thibodeaux et al, 1986). 

 

On drying, the cylindrical wall collapses and actually twists or convolutes. The 

thickening of the secondary wall of the fibre, sometimes referred to as to its maturity, 

is extremely important during this stage. The presence of immature fibres can cause 
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many problems during processing. Their reduced strength and resilience results in 

excessive damage and waste at ginning and carding, and weak and uneven yarns. 

Immature fibres also increase the tendency of fibres to tangle and form neps in the 

card web and finished yarn. Neps have a relatively low dye affinity due to low levels 

of cellulose and so they show up as imperfections or speckles in the finished fabric. 

They can lead to severe economic penalties for the manufacturer 24(Thibodeaux et al, 

1986). 

 

A number of related physical measures are used to specify the quality of harvested 

cotton fibre. These are summarised below along with their known impact on nep 

formation. 

2.1 Fibre Fineness 
Two definitions of fibre fineness are gravimetric fineness and biological fineness. 

Gravimetric fineness can be expressed as the mass per unit length of a fibre. The 

gravimetric or linear density of fibres is usually expressed in millitex or micrograms 

per meter.  Biological fineness is defined either by the perimeter of the cross-section 

of the fibre or by the diameter of the cross-section of the fibre with that section 

assumed to be circular. Gravimetric fineness can be related to biological fineness if 

the wall thickness or maturity of the fibre is known 25(Ramey, 1988)   

 

Fine fibres are desirable for strong yarns. The more fibres found in the cross-section 

of a yarn, the stronger the yarn. There are more fibres in the cross-section of a yarn 

constructed with fine fibres rather than coarse fibres. Fine cottons can also be spun at 

lower twist multipliers than coarse cottons of a given staple length. It is usually best 

to choose the finest cotton available 26(Marth et al, 1952). However, finer cotton 
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fibres tend to form neps more easily than coarser fibres because the former are more 

easily bent, buckled, and entangled during mechanical manipulation. Several studies 

have shown that cottons with a lower micronaire (a general measure of maturity and 

fineness) produce neppy, low-grade yarn, whereas cottons with a higher micronaire 

produce less neppy, higher quality yarns 27(van der Sluijs, 1999). 

 

Nep formation becomes more frequent and more detrimental in its consequences 

with the spinning of fine yarns from fine fibres. Neps are more noticeable in fine 

yarns because their size becomes comparable to that of the yarn diameter 28(Ramey, 

1988). 

 

2.2 Fibre Maturity 
The term “fibre maturity” has not been standardized in the cotton industry. Common 

measures used 29, 30(Peirce and Lord, 1939; Lord and Heap, 1988) are: wall thickness, 

degree of thickening, maturity ratio, causticaire maturity index, and dye maturity. 

Wall thickness is the absolute value of the fibre wall thickness (μm). Degree of 

thickening (θ) is defined by area of fibre wall/area of circle having same perimeter. 

Maturity ratio is given by θ/0.577 and is the most widely used term in the literature. 

As a rough guide, immature fibres have a wall thickness below 2.7μm. Montalvo and 

Faught (1996) suggested a further measure called percent wall thickness.  

Dead cotton consists of fibres that are very immature, where the secondary wall is 

completely missing. The fibres with intermediate development (between the dead 

and normal fibres) are described as thin walled; the dead and thin walled fibres may 

be classed together as immature. The mature cottons are fairly ridged and have a 

kidney bean shaped cross-section. The fibres collapse as the boll opens and immature 



fibres collapse to a ribbon-like section and are comparatively floppy. It is because of 

this lack of rigidity that the immature fibres tangle during processing 31(Midgley, 

1933). These neps consist of mostly immature or dead fibres 32(Furter, 1992) that 

collapse into extremely flat ribbons, which are highly reflective and thus appear as 

white specks in the dyed fabric 33(Peter et al, 1989). These fibres are therefore called 

‘shiny neps’.   

 

Figure 2.1: Cottonseed and fibre development (D. P. Thibodeaux and J. P. Evans, Textile 
Research Journal, February 1986). 

 

Cellulose fills in the cell wall as the fibre develops and increases the maturity of the 

cotton. Mature fibre has a more circular in shape as illustrated in Figure 2.2 (a perfect 

circle would have θ = 1, while the smaller θ becomes, the less circular and the flatter 

the cross-section becomes). Cotton immaturity results when the normal wall 

thickening process is interrupted or slowed down by factors such as frost, bad 
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weather, insects, drought stress, premature opening because of mineral deficiencies, 

plant diseases, injury to the foliage, stem or roots. 34(van der Sluijs, 1999). 

 

Figure 2.2: Maturity of the cotton fibre cross-section is dependent on its cell wall development 
(from Devron Thibodeaux). 

 

Cottons of high fibre maturity are likely to give less neppy yarns than those of lower 

maturity. Fibre maturity is partly determined by genetic factors which may produce 

markedly consistent differences in cottons grown under varying environmental 

conditions, even when those conditions are uniformly favourable to a high degree of 

development of secondary thickening 35(Lord, 1948). 

 

Immature fibres are finer, flatter, and more elastic than fully mature fibres of the 

same genotype because the fibre walls are thinner and the fibres are incompletely 

‘filled’ with secondary wall cellulose. Consequently, immature fibres tend to stretch 

elastically, rather than break, when tension is applied.  Upon release of tension, they 

can recoil into tangled snarls. The snarls and knots formed during fibre processing 

often contain entrapped mature fibres, and these tangled fibre masses appear in yarn 

and finished fabric as nep visible to the unaided eye. Furthermore, the lower 
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cellulosic content of the cell walls of the immature fibre results in decreased dye 

uptake, which is seen as undesirable colour shadings or barré. When fibres of 

markedly different maturities are combined, ‘white specks” develop when the 

immature and mature fibres in a nep mass do not dye evenly and to the same degree 

36(Bradow, 1998).  

 

2.3 Fibre Length 
The effect of the staple length on the tendency towards nep formation has been under 

debate. Some think that an increase in the tendency towards nep formation can be 

correlated with an increase in the staple length of the cotton, since a long-staple 

cotton frequently has a greater mean fibre fineness than a short-staple one 

37(Wegener, 1980).  Neps may also form due to the breaking of excessively long 

fibres, or lack of fibre orientation.  However, a useful MSc dissertation by van der 

Sluijs, 38(van der Sluijs, 1996) showed that there was a low correlation between the 

cotton fibre length characteristics and neps, with the 50% (mean) span length playing 

a more significant role than the 2.5% (longest) span length 39(van der Sluijs, 1996). 

 

2.4 Fibre Strength 
Strong cottons usually exhibit fewer problems and fewer neps during processing than 

weaker cottons. Improvement in average strength reduces fibre breakage and 

therefore short fibre content and nep content; the same result can also be achieved by 

improving the uniformity of the cotton. Fibre tenacity is related to nep formation. 

Cotton with a low strength will result in the generation of fibre neps due to fibre 

damage in the carding process.  A link between fibre strength and stiffness could also 

be reflected in a trend towards fewer neps40 (van der Sluijs, 1999).  
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2.5 Fibre Elongation, Stiffness and Buckling Coefficient 
An increase in fibre elongation tends to lead to an increase in nep formation with 

card and draw-frame sliver. At a constant fibre tenacity, an increase in fibre 

elongation is indicative of a decrease in fibre stiffness and an increase in buckling 

potential, and consequently of an increase in nep formation. Stiffer fibres form fewer 

neps. The stress build up and sudden release mechanism or Buckling Coefficient 

41(Alon, 1978), which induces buckling along the fibre length, is probably a cause for 

the neps that are present in finished fabrics 42(van der Sluijs, 1999). Fibres, which are 

stretched during processing, accumulate elastic energy. If one end of the fibre is 

suddenly released from the tensile load, that energy is converted to kinetic energy. 

As the fibre cannot stand compressive stress, buckling results 43(Alon, 1978). 

2.6 Fibre Impurities 
The tendency towards nep formation increases with increasing amounts of impurities 

such as husk, leaf, stalk, and seed coat fragments. This is largely due to the fact that 

the higher the trash content, the greater the number of cleaning points required 

during ginning and opening, which in turn leads to more neps, fibre breakage and 

short fibre content, causing a deterioration in spinning performance and yarn quality 

44(van der Sluijs, 1999). 

2.7 Neps  
The ASTM definition is “Neps are small knot-like aggregates of tightly entangled 

cotton fibres not usually larger than a common pinhead, which are difficult to 

remove. Neps usually appear to be more numerous in cotton after subjection to 

considerable handling and to some manner of processing, as certain ginning and 

manufacturing operations” 45(ASTM, 1947). A nep is therefore a small cluster of 

entangled fibres consisting either entirely of fibres (i.e., a mechanical or coalesced 
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rdi - a, 1985).  

fibre nep) or of foreign matter (e.g., a seed-coat fragment) entangled with fibres. In 

most cases, fibrous neps are found to contain at least five fibres, with the average 

number being 16 or more 46(van der Sluijs, 1999). Neps are distinct from certain 

other imperfections found in cotton, including fibres still attached to parts of seeds.  

One of these imperfections is the “mote”, which consists of a whole undeveloped 

seed of any size or age, covered with fuzzy and short fibres, certain of which bear 

mature lint fibres.  Seed coat and mote fragments with lint or fuzz fibres attached are 

not neps.  Neps are created during development, harvesting, ginning and yarn 

manufacturing phases of production 47(Mangiala

2.7.1 Nep Formation 
Neps can be classified by the differences in formation. Biological neps are neps that 

contain foreign material, whether the material is a seed coat fragment, leaf, or stem 

material 48(Hebert, 1988).  Mechanical neps are those that contain only fibres and 

have their origin in the manipulation of the fibres during processing 49(van der Sluijs, 

1999).  The coalesced neps make a third type of nep in that they are an intermediate 

between biological and mechanical neps (see 2.7.1.3), in that they are entirely 

formed from fibres, but biologically produced. In addition, most important to this 

research, is the fourth type of nep, white speck neps, which cause dye defects in the 

finished fabric.  

 

 2.7.1.1 Biological Neps  
Biological neps are caused by biological components of the cotton plant forming 

contaminants in the fabric; two examples are shown in Figure 2.3. Undeveloped 

seeds, motes, small bits of seed coat, particles of leaf or bract can all be entangled in 

the cotton during harvesting or subsequent processing. They result in small dark 

specks in the greige (just off the loom without chemical finishing) fabric, but are 



generally removed by wet processing (scouring, bleaching, and dyeing). 

Figure 2.3:  Fibre Entanglements -Biological Neps and Mechanical Neps.  

 
 2.7.1.2 Mechanical Neps 
Mechanical neps are found in ginned lint, card web, yarns and cloth. Their numbers 

are strongly influenced by mechanical processing 50(Bel-Berger, 1998). They have 

been attributed to fibre properties such as immaturity, staple length, and fineness and 

to moisture content and handling methods in production such as over- or under-

beating the fibres in the carding or ginning operations 51(Jakes, 1984). Other 

contributing factors may be harvesting methods, early frost, plant disease, and 

premature use of harvesting chemicals 52(Supak, 1992). 

 

 2.7.1.3 Coalesced Neps  
Clumps of very immature fibre are the source of another type of biological nep. 

These clumps of highly entangled fibre can be found in seedcotton prior to 

mechanical processing. Typically, these neps are found in the unginned lint near 

malformed seed 53(Watson et al, 1991). These clusters of immature fibres probably 

come from motes, which are aborted or immature seed, ranging in size from small 

with little or no lint, to others slightly less than full size with long immature lint 

54(Brown & Ware 1958). Mote fibres are commonly called “dead” fibres but in fact, 

all cotton fibres die when the bolls mature and open. Goynes defines a mote fibre as 

one that has defects emanating from arrested development and refers to it as a DEAD 
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fibre 55(Goynes - a, 1995). These neps are formed from immature fibres that are 

damaged while there is still considerable biological material in the lumen or the boll. 

The biological material from the lumen adheres the immature fibres together, leaving 

a flat shiny clump of immature fibres. 

 

 Coalesced fibre entanglements (Figures 1.2 and 1.3 (in Chapter 1) and Figures 2.4 A 

& B) are created as a result of the contents of the lumen escaping or liquid from the 

boll adhering the dead or immature fibres together and result in “shiny” specks on 

the dyed fabric. The causes include premature harvesting or damage due to insects 

56(Wegener, 1980) as well as genetic predisposition and growth conditions such as 

drought or cool temperatures and early frost, which slows down cell wall deposition 

57(Ramey, 1988).  

 

The photomicrograph in Figure 2.4C shows cross-sections of 21-day-old fibres that 

were part of a growth study by Goynes, Ingber and Triplett 58(Goynes - b, 1995). 

These fibres were fixed in a wet state, so have never collapsed as field harvested 

cottons would. The arrow indicates the area where the fibre mass is first beginning to 

separate into individual fibres. Figure 2.4A is a photomicrograph of a coalesced nep 

(removed from the outer edge of a yarn) that was clearly seen as a white speck on the 

dyed fabric. These fibres were dried in the field, processed through dyed fabric, and 

then fixed in a dry state, so they appear to be collapsed. In the cross-section of a 

coalesced nep shown in Figure 2.49B, many of the immature fibres seem to be 

“glued” together. The similarity between the two cross-sections results in the theory 

that dead immature fibres may be so immature that they have not yet separated into 

individual strands, or they may have died early in development and were “glued” 



together by the protoplasm in the boll. If the ultra-immature (biologically 

underdeveloped) or coalesced fibres have loose edges, they can entangle with mature 

fibres during processing, trapping the cluster in the yarn and appearing as white 

specks on the dye fabric (with out any dark foreign matter). Therefore, from this it 

can be seen that coalesced neps could also be considered mechanical or biological 

neps. They are also white speck neps, which are discussed in the next section.  

 

 

Figure 2.4: A) Coalesced nep on a dyed yarn and B) its cross-section. C) 21-day post anthesis 
cotton fibres from a growth study by Goynes et al, 59(Goynes –b, 1995). 

 

 2.7.1.4 White Speck Neps  
White speck neps, referred to as “white specks” through the remainder of this 

dissertation, are the main focus of this project. Figure 2.5 has three different white 

specks highlighted with the matching photomicrograph so the structure may be seen. 

One is a mechanical nep and the other two are coalesced neps, but they all appear as 
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white specks on the dyed fabric.  

 

Figure 2.5:  White specks as seen by the naked eye on fabric and magnified showing fibre 
entanglements or clusters of immature fibre 

 

A shiny nep is found on the surface of dyed fabrics; they appear as light or white 

spots and occur only in the finished fabric 60(Hebert, 1988). Many people have called 

white specks “shiny neps” due to their reflective appearance (Figure 2.6). When 

immature fibres die, they collapse into flat ribbons. In dyed fabric, these flat ribbons 

are passed over steam cans, essentially polishing the already flat immature fibres to a 

high shine.  This makes them even more reflective and the problem becomes even 

more obvious (Figure 2.6). 
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Figure 2.6: White speck - high magnification (photomicrograph by Bruce Ingber) 

 
Goynes used a scanning electron microscope to study the fibre and confirmed that 

most neps are the result of underdeveloped cotton. ''Neps can sneak up on mills: The 

money is spent to dye the fabric, and it comes out spattered with white specks where 

the dye didn't take,'' said Goynes 61(Stoneville, 1997) 62(Goynes et al., 1994). They 

reported that because of low cellulose content of the undeveloped fibres, these 

clumps of fibres do not accept dye. Therefore, when a fabric is dyed, the coalesced, 

mechanical and biological neps formed by immature fibres create undyed spots in the 

finished fabric. These undyed spots became known as white specks 63 (Goynes et al., 

1994). 

 

Not all neps are white specks, but all white specks are neps. Coalesced neps are 
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composed solely of immature fibre clusters. They always appear white or light, and 

therefore are always white specks. Biological and mechanical neps can be white 

speck neps if they involve immature fibres, thus appearing white in dyed fabrics, but 

many of these neps have only mature fibres and appear as a thick and/or a dark spot 

on yarn and wouldn’t be considered white specks. The more general term of “white 

specks” refers to all nep formations that appear white on the surface of the fabric 

(Figure 2.5). 

 

2.8 Fibre Measurement Systems 
High-speed fibre measurements are now being used to provide the main indication of 

crop quality. All US and Australian cotton is graded with the industry standard High 

Volume Instrumentation (HVI) system, which quantifies length, strength, trash, 

colour and micronaire. The candidate’s previous work showed that little correlation 

could be established between any of these measurements and the degree of white 

speck nep potential, unless the processing history was known.  

 

While HVI is the industry standard commercial instrumentation system, other 

systems are available.  One commercially available instrument purchased by many 

textile mills is the Advanced Fibre Information System (AFIS). This machine can be 

fitted with an optional F&M (Fineness and Maturity) module, which provides the 

strongest fibre to white speck data relationships available to industry from high-

speed measurement systems. 

 

Lintronics FiberLab is the latest contender for commercial acceptance in the 

measurement of neps and maturity. It is different from the above systems in that it 
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actually makes a web and attempts to simulate the real world conditions of the card.  

High-speed near-infrared spectroscopy (NIRS) is another new and promising method 

of predicting the white speck potential of bale fibre, but it is still under development 

and not yet available commercially for fibre maturity measurements. 

 

Part of the investigation described in this dissertation was intended to identify the 

high-speed systems that have the most potential for accurately predicting fabric 

quality from fibre quality. A large set of samples was required to do this. Samples 

with known ginning and growth environment history were needed to better establish 

the correlations with HVI, AFIS, NIRS, and other high-speed measurements of 

cotton fibre properties. Finally, the measured values are used to establish best-fit 

relationships between high-speed fibre data and fabric white specks. 
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3. HIGH SPEED FIBRE MEASUREMENT SYSTEMS 
High-speed fibre measurement systems are beginning to influence the way cotton is 

being ginned in Australia and the U.S.A. The High Volume Instrumentation (HVI) 

system is well accepted in the Australian and North American ginning industries, 

while the advantages of several other systems are becoming increasingly well 

known. This chapter describes the HVI system and other high-speed fibre measuring 

systems and details the potential benefit of these systems for improving fibre quality.  

3.1 HVI 
Ginners are more conscious today of what is being done to cotton fibre during the 

ginning process following widespread acceptance of HVI measurements in recent 

years. The biggest offences in ginning have been over-drying and over-machination 

64(Norman, 1991). Until recently, the grower and the ginner produced cotton “for the 

grade”. Ginning “for the grade” produces cotton that is visually appealing but gives 

less than optimum results in the spinning mill. Over-drying may result in reduced 

trash and a raised grade, but it breaks down large particles into pepper trash. It also 

makes neps, reduces average fibre length, increases “ends down” in spinning 

(number of broken ends/spindle hour), lowers yarn evenness, and lowers yarn 

strength. Cotton quality should be maintained or only minimally reduced during 

processing. A robust testing and marketing system would encourage breeding, 

variety selection and ginning for higher quality. Quality is the key, but what fibre 

qualities should be rewarded financially? Currently the marketing system tends to 

reward white, clean, but overprocesed cottons with qualities that can cause 

processing problems and defects in the mill. The grading system was based on hand 

picked cottons and was very valid in its day. However, today cottons are 

mechanically harvested and ginned at high speeds which affect cotton quality in 
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ways that hand picking doesn’t. Mills would now rather pay for long, strong, fine, 

but mature cotton with large trash particles (easily removed in the mill) that process 

well, producing yarns and fabrics with low defects and high strength. Objective 

approaches to improving cotton quality are possible, based on:  

1) Developing methods to measure all the important properties for 
textile processing (trash particle size and shape, short fibre content, 
colour [grey versus yellow], fibre maturity/ fibre fineness, and 
undyeable neps);  

2) Adapting these methods for grading cotton; and  

3) Developing ways to reduce damage in processing and so maintain 
the natural quality produced by the cotton plant; and make allowing 
the fibre as long and strong as possible 65(Werber, 1994).  

 

The impact of HVI on the ginning process follows from the ginners becoming more 

aware of gin equipment and conditions that affect the HVI data on cottons that they 

ginned. The HVI measurements have heightened ginners’ awareness of the need to 

calibrate machinery controls: automatic calibration is available that allows for 

multiple temperature and /or moisture sensing inputs for improved process control. 

Lint cleaners at the gin are being bypassed for improved quality, and single stage lint 

cleaning is being discussed 66(Anthony, 1986). All these effects of the HVI grading 

system positively affect the cotton fibre and its associated nepping.  

3.1.1 Instrumental Determinations 67(Cotton Program AMS USDA, 2001) 
Measurements for the following quality factors are performed by high volume, 

precision instruments, commonly referred to as "HVI" (High Volume 

Instrumentation). The specifics outlined in this section are provided by the USDA 

publication “The Classification of Cotton” 68(Cotton Program AMS USDA, 2001).  

 

3.1.1.1 Fibre Length 
Fibre length is the average length of the longer one half of the fibres (upper half 
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mean length). It is reported in 100ths, 32nds of an inch, or millimetres (see 

conversion chart below). It is measured by passing a "beard" of parallel fibres 

through a sensing point. The beard is formed when a clamp grasps fibres from a 

sample of cotton, then the beard is combed and brushed to straighten and parallelize 

the fibres.  

 

The length of the fibre also influences the fineness of the yarn that can be 

successfully produced from given fibres. Excessive cleaning and/or drying at the gin 

may also result in shorter fibre length. Fibre length affects yarn strength, yarn 

evenness, and the efficiency of the spinning process. 

Table 3.1:  Standard length conversion chart for cotton classing systems: 

  Upland Length Conversion Chart
Inches 32nds Millimetres

0.79 & shorter 24 & shorter 19.1 & shorter
0.80 - .85 26 20.6 
0.86 - .89 28 22.2 
0.90 - .92 29 23.0 
0.93 - .95 30 23.8 
0.96 - .98 31 24.6 
0.99 -1.01 32 25.4 
1.02 -1.04 33 26.2 
1.05 -1.07 34 27.0 
1.08 -1.10 35 27.8 
1.11 - 1.13 36 28.6 
1.14 - 1.17 37 29.4 
1.18 - 1.20 38 30.2 
1.21 - 1.23 39 31.0 
1.24 - 1.26 40 31.8 
1.27 - 1.29 41 32.5 
1.30 - 1.32 42 33.3 
1.33 - 1.35 43 34.1 

1.36 & longer 44 & longer 34.9 & longer
 
 
3.1.1.2 Length Uniformity 
Length uniformity is the ratio between the mean length and the upper half mean 

length of the fibres and is expressed as a percentage. If all of the fibres in the bale 
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were of the same length, the mean length and the upper half mean length would be 

the same, and the uniformity index would be 100. However, there is a natural 

variation in the length of cotton fibres, so length uniformity will always be less than 

100. Table 3.2 can be used as a guide in interpreting length uniformity 

measurements.  

 

Length uniformity affects yarn evenness and strength, and the efficiency of the 

spinning process. It is also related to short fibre content (fibre shorter than one half 

inch). Cotton with a low uniformity index is likely to have a high percentage of short 

fibres. Such cotton may be difficult to process and is likely to produce low quality 

yarn.  

Table 3.2:  Degree of Uniformity as indicated by HVI Index  

 Degree of Uniformity HVI Length Uniformity Index (Percent) 
Very High Above 85

High 83-85
Intermediate 80 - 82

Low 77 - 79
Very Low Below 77

 
3.1.1.3 Fibre Strength 
Strength measurements are reported in terms of grams per Tex. A Tex unit is equal to 

the weight in grams of 1,000 meters of fibre. Therefore, the strength reported is the 

force in grams required to break a bundle of fibres one Tex unit in size. Table 3.3 can 

be used as a guide in interpreting fibre strength measurements. Strength 

measurements are made on the same beards of cotton that are used for measuring 

fibre length. The beard is clamped in two sets of jaws, one-eighth inch apart, and the 

amount of force required to break the fibres is determined.  

 

There is a high correlation between fibre strength and yarn strength. In addition, 

cotton with high fibre strength is more likely to avoid breakage during the 



manufacturing process. 

Table 3.3:  Degree of strength of cotton fibre as indicated by HVI measurements 

Degree of Strength HVI Strength 
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Very Strong 31 & above
Strong 29 -3 0

Average 26 - 28
Intermediate 24 - 25

Weak 23 & below
 

3.1.1.4 Micronaire 
Micronaire is the most commonly used instrumental fibre-quality test 69 70(Lord and 

Heap, 1988; Moore, 1996). Micronaire is a measure of fibre fineness and maturity 

combined. Micronaire is an indirect measure of fineness and maturity, but a direct 

measurement of the air-permeability. An airflow instrument is used to measure the 

air permeability of a constant mass of cotton fibres compressed to a fixed volume. 

The chart in Figure 3.1 can be used as a guide in interpreting micronaire 

measurements. 

 

 

Figure 3.1: Relationship of micronaire readings to market value in standard cotton classing 
scheme. 

 
Fibre fineness affects processing performance and the quality of the end product in 

several ways. In the opening, cleaning and carding processes, low micronaire, or fine 

fibre, cottons require slower processing speeds to prevent damage to the fibres. 

Yarns made from finer fibre result in more fibres per cross section, which in turn 



produces stronger yarns. Dye absorbency and retention varies with the maturity of 

the fibres. The greater the maturity, the better the absorbency and retention. 

 

 
Figure 3.2:  Cotton classing 

 

Samples are classed on an assembly-line arrangement utilizing the latest technology 

and equipment as shown in Figure 3.2. Fibre measurement results are electronically 

transmitted to the classing facility's computerized database. 

 

3.1.1.5 Colour Grade 
The colour grade is determined by the degree of reflectance (Rd) and yellowness 

(+b) as established by the official USDA standards and measured by the HVI. 

Reflectance indicates how bright or dull a sample is and yellowness indicates the 

degree of colour pigmentation. A three-digit colour code is used. The colour code is 

determined by locating the point at which the Rd and +b values intersect on the 

Nickerson Hunter cotton colorimeter diagram for Upland cotton (Table 3.4). 
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The colour of cotton fibres can be affected by genetics, rainfall, freezes, insects and 

fungi, and by staining through contact with soil, grass, or the cotton plant's leaf. 

Excessive moisture and temperature levels also can affect colour while cotton is 

being stored, both before and after ginning. As the colour of cotton deteriorates 

(greys) due to non-optimal environmental conditions, especially bacterial growth, the 

probable processing efficiency is reduced. Colour deterioration is an indication of the 

fibres’ reduced ability to absorb and hold dyes and finishes. 

Table 3.4:  Colour Grades of Upland Cotton 

Colour Grades of Upland Cotton Effective 1993 

 White Light Spotted Spotted Tinged Yellow 
Stained 

Good Middling 11* 12 13 -- -- 
Strict Middling 21* 22 23* 24 25 
Middling 31* 32 33* 34* 35 
Strict Low Middling 41* 42 43* 44* -- 
Low Middling 51* 52 53* 54* -- 
Strict Good Ordinary 61* 62 63* -- -- 
Good Ordinary 71* -- -- -- -- 
Below Grade 81 82 83 84 85 

*Physical Standards. All others are descriptive 
 

There are 25 official colour grades for American Upland cotton, plus five categories 

of below grade colour, as shown in the tabulation below. The USDA maintains 

physical standards for 15 of the colour grades. The others are descriptive standards. 

 
 
3.1.1.6 Trash 
Trash is a measure of the amount of non-lint material (such as leaf and bark from the 

cotton plant) in the cotton. The surface of the cotton sample is scanned by a video 

camera and the percentage of the surface area occupied by trash particles is 

automatically calculated. Although the resulting trash determination is not the same 

as classer's leaf grade, there is a correlation between the two as shown in Table 3.5 
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below.  

Table 3.5:  Relationship of trash measurement to classer’s leaf grade 

Relationship of trash measurement to classer's leaf grade 

Trash Measurement (4-yr. Avg.) (% Area) Classer's Leaf Grade 
0.12 1 
.20 2 
.33 3 
.50 4 
.68 5 
.92 6 
1.21 7 

 

3.1.2 Classer Determinations 
Although the official USDA colour grade is measured by HVI, and an HVI trash 

measurement is provided, the traditional method of classer determination for leaf 

grade and extraneous matter continues to be included as part of USDA's official 

cotton classification. 

 

3.1.2.1 Leaf Grade 
The classer's leaf grade is obtained by a visual estimate of the amount of cotton plant 

leaf particles in the cotton. There are seven leaf grades, designated as leaf grade "1" 

through "7", and all are represented by reference samples. In addition, a “below 

grade” designation is descriptive. Plant variety, harvesting methods, and harvesting 

conditions affect leaf content. The amount of leaf remaining in the lint after ginning 

depends on the amount present in the cotton before ginning, and on the type and 

amount of cleaning and drying equipment used. Even with the most careful 

harvesting and ginning methods, a small amount of leaf remains in the cotton lint.  

From the manufacturing standpoint, leaf content is all waste, and there is a cost 

factor associated with its removal. In addition, small particles cannot always be 

successfully removed and these particles may detract from the quality of the finished 
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product. 

 

3.1.2.2 Preparation 
Preparation is a term used to describe the degree of smoothness or roughness of the 

ginned cotton lint. Various methods of harvesting, handling, and ginning cotton 

produce differences in roughness or smoothness of fibre (preparation) that sometimes 

are very apparent. Abnormal preparation in Upland cotton has greatly diminished in 

recent years due to improvements in harvesting and ginning practices, and now 

occurs in less than one-half of 1 percent of the crop. If the cotton has abnormal 

preparation, that is noted under extraneous matter on the classification record. 

 

3.1.2.3 Extraneous Matter 
Extraneous matter is any substance in the cotton other than fibre or leaf. Examples of 

extraneous matter are bark, grass, spindle twist, seed coat fragments, dust, and oil. 

The classer notes the kinds of extraneous matter, and an indication of the amount 

(light or heavy), on the classification document.  

 

In 1993, the classer grading system was changed. Under the old system of grading, 

the classer determined a composite grade of colour and trash content. Bales that 

contained bark and grass were reduced one or more grade levels. Under the current 

system, the classer determines a colour grade, a leaf (trash) grade and notes whether 

there is bark or grass present in the bale, factors that do not influence the grade. Each 

colour grade percentage will include all levels of leaf 71(Cotton Program AMS USDA, 

2001).  

 

3.2 Other High-Speed Maturity Measurements.   
Fast methods of high-speed maturity measurements other than the HVI (High 
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Volume Instrument) include the Fineness and Maturity Tester (FMT), Lintronics 

FiberLab and the Advanced Fiber and Information System (AFIS). The FMT is 

based on airflow resistance to cotton (Lord and Heap, 1988). Lintronics 

measurements of micronaire, fineness, and maturity are based on double 

compression airflow resistance and are made by image analysis of data from the web 

that the system makes and analyses for neps and seed coat fragments. AFIS is based 

on the amount of radiation (NIR) sensed by two detectors as a single cotton fibre 

moves across the incident beam 72(Gordon et al., 1997). Benchmark analysis speeds, 

exclusive of sample preparation, for FMT, FiberLab and AFIS are, respectively 20, 

55 and 60 seconds 73(Mor, 2003). Although, these are high-speed systems, industry 

does not consider them high volume instrumentation. 

 

3.2.1 FMT  
The first dual-compression airflow instrument for estimating both fibre fineness and 

fibre maturity from airflow rates through untreated raw cotton was the Arealometer, 

developed by Special Instruments Laboratories Inc (Knoxville, TN)74, 75(ASTM, 

1976; Lord and Heap, 1988). The Arealometer provides an indirect measurement of 

the specific surface area of loose cotton fibres, that is, the external area of fibres per 

unit volume (approximately 200-mg samples in four to five replicates). Empirical 

formulae were developed for calculating the approximate maturity ratio and the 

average perimeter, wall thickness, and weight per inch from the specific surface area 

data. The precision and accuracy of Arealometer determinations were sensitive to 

variations in sample preparation, to repeated sample handling, and to previous 

mechanical treatment of the fibres, e.g., conditions during harvesting, blending, and 

opening. The Arealometer was never approved for acceptance testing, and the ASTM 

method was withdrawn in 1977 without replacement 76(Bradow, 2000).  
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The variations in biological fineness and relative maturity of cotton fibres cause the 

porous plugs used in air-compression measurements to respond differently to 

compression and, consequently, to airflow 77(Lord and Heap, 1988). The IIC-Shirley 

Fineness/Maturity Tester (Shirley FMT), a dual-compression instrument, was 

developed to compensate for this plug-variation effect 78(ASTM, 1994). The Shirley 

FMT is considered suitable for research, but is not used for acceptance testing 

(grading) due to low precision and accuracy. Instead of fineness and maturity, the 

combination micronaire value has become the standard estimate in the USDA-AMS 

classing offices. 

 

The need continues for a reliable reference method that can analyse, in about 30 

seconds, several grams of cotton for fineness and maturity. The Shirley 

Developments LTD. Micromat Fineness and Maturity Tester (FMT) provides a 

reference method that meets this need. The method is based on the resistance to air 

flowing through cleaned cotton in a short pipe. Montalvo et al. 79(1995) identified a 

number of biases in data produced by the FMT and performed experiments to define 

acceptable limits. Montalvo and Faught 80 81(1998; 1999) developed the theory and 

reduced to practice physical standards for calibrating, control and elimination of drift 

in the FMT. To calibrate the upgraded FMT (Figures 3.3 and 3.4) with cotton, a 

dozen new FMT standard cottons were produced, analysed by a combination of 

independent reference methods including image analysis 82(Montalvo et al., 2001). 

Combining data from independent methods is the approach used by the National 

Institute of Standards and Technology (NIST) in developing certified reference 

materials 83(Schiller and Eberhardt, 1991).  



 

Figure 3.3 The Shirley Developments LTD. Micromat Fineness and Maturity Tester (FMT), a 
dual-compression instrument 84(ASTM, 1994). Photo supplied by J. Montalvo 85(Montalvo, 

2002). 

 
Instrumentation for the rapid measurement of cotton maturity and fineness must be 

calibrated before it can give accurate results. Calibration is based on results from a 

reference method that gives accurate and precise analyses of cottons. Unfortunately, 

the FMT instrument readings are subject to drift so the data can be unsuitable for 

calibration. In Montalvo’s work, the FMT is modified including headspace resistance 

standards (HRS) and leak detector module (LDM) (Figure 3.4) to produce consistent 

results. The FMT measures maturity and fineness based on the principle of air 

permeability through a fixed mass of fibres. To keep the FMT readings from drifting, 

high precision physical standards were developed. The physical standards create a 

precise permeability when air is drawn through the device. The technology is being 

transferred to the industry by commercialisation of Agricultural Research Service 

(ARS) research 86(Montalvo, 1998).   
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Figure 3.4 Upgraded Micromat at the Southern Regional Research Center includes headspace 
resistance standards (HRS) and leak detector module (LDM) and airflow. PL and PH are the initial 

and second stage pressure drops, respectively. 87(Montalvo, 2002) 

In order to clarify the meaning of the micronaire values, the Shirley FMT tester was 

used to estimate the maturity and fineness of each of the cottons; these measurements 

are shown in the bottom two rows of Table 3.6. Results indicate that the HS-200 

cotton sample is of comparable maturity with the other two cottons, but that it is a 

finer fibre than the other two. Therefore, the low micronaire reading for the HS-200 

cotton is due primarily to fibre fineness, rather than to immaturity.88(Cole, 1997)  
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Table 3.6:  HVI and FMT Fibre Data show that Micronaire is an indirect estimate of 

fibre fineness and maturity 89(Montalvo, 1989). 

Properties HS-200  DPL-5409 Acala  

Micronaire (mg/in) 3.2 4.2 4.7 

FMT Maturity (%) 80.6 78.8 84.1 

FMT Fineness (mtex) 142 184 192 

3.2.2 AFIS - Advanced Fiber Information System 
In 1988, Shofner at Schafner Technologies Inc., Knoxville, USA, developed the 

AFIS-N, which included two measuring modules. Module T measures the number 

and size of trash and dust particles while module L & D measures the length and the 

diameter of individual fibres as well as short fibre content. Subsequent adaptations 

were made to the AFIS-N to allow Seed Coat Fragments (SCFs) to be counted 

separately from fibrous neps and to measure cotton fineness (F) and maturity (M) on 

a single fibre basis 90(van der Sluijs, 1999). Maturity measurements made by the 

AFIS have been compared with image analysis of fibre cross sections. The 

correlation diminishes with later versions of AFIS 91(Thibodeaux et al., 2003). 

 

AFIS, now manufactured by Zellweger Uster, mechanically processes a sample of 

cotton to give a “cloud” of individualized fibres suspended in an air stream. The air 

stream transports individual fibres into a narrow diameter tube for optical analysis 

(Figure 3.5). Gordon et al. 92(1997) collaborated in theoretical and experimental work 

to probe into AFIS data distribution from a set of commercial cottons. Their results 

did not agree with that predicted by theory and suggest that the physical process by 

which the instrument measures maturity is not yet understood.  

 



 

Figure 3.5:  AFIS, by Zellweger Uster, utilized an electro-optical sensor to detect fibre 
properties and their distributions. 

 

Sampling requires the hand generation of five half-gram slivers, approximately thirty 

centimetres (12in) in length, of fibres pulled from various points in the bale. 

Separating trash from lint is done using aerodynamic methods similar to carding 

which individualizes fibres. The aeromechanical processor separates the sample into 

individual fibres, neps, and trash. The trash particles are collected in the trash trap. 

The fibres and neps are picked up by an air stream and transported through an 

electro-optical sensor. Trash is removed through counter flow slots and then 

measured with the trash sensor. The five thousand fibres are then passed before an 

optical sensor where they produce characteristic voltage versus time waveforms. The 

individual neps produce ‘spike’ waveforms whose magnitude and duration are 

related to the size of the neps. The resulting signals are analysed for length, diameter, 
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maturity and fineness. 

 

 The F & M module, currently unavailable to industry, enabled the fineness and 

maturity measurements to be undertaken at SRRC (Versions 2 and 4) and Zellweger 

(Version 5). Five repetitions of the five slivers were utilized on these systems to 

calculate the mean, standard deviation, and percent coefficient of variation for each 

parameter. The parameters relevant to this project include Micronafis (similar to 

micronaire), which measures fineness and maturity in micrograms of one inch of 

fibre, and Theta (θ), which represents the circularity, or the degree of thickening, as, 

calculated by the equation: 
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 θ = 4 2P
Aπ . 

Where A = the cross-sectional area, and 

 P = perimeter of the fibre cross section 

Most importantly, Immature Fibre Fraction (IFF) measured the percentage of fibre 

with values of theta less than 0.25. In every case, there was an inverse correlation 

between the fraction IFF and Micronafis, and Theta. An increase in IFF resulted in a 

decrease in the values of Micronafis and Theta. Since white specks are primarily 

immature fibre clusters, % IFF was seen as a possible prediction tool for indicating a 

potential white speck problem. 

 

3.2.3 Lintronics 
FiberLab (Figure 3.6 shows the combination of FCT (Fibre Contamination Tester) 

and FQT (Fibre Quality Tester)) works at ginning production speeds, and is very 

easy to operate. FiberLab is designed to measure impurities such as neps and to test 

the stickiness of cotton.  



 

Figure 3.6: Lintronics FiberLab measures length, strength stickiness, trash, seed coat fragments 
and neps 93(Mor, 2003). 

3.2.3.1 FQT 
FiberLab FQT system employs technologies in fibre testing that include: 
 

1. Automatic feeding by a cassette that self reverses for its second cycle. 
2. Length and strength measurements by a fully automated beard-

sampling device. 
3. Micronaire & Maturity are measured using a unique automatic system 

for blending the cotton sample. It employs standard single and double 
compression technology using blended cotton. It produces well-
blended samples at very high speeds (55 seconds) - vital for testing 
maturity accurately.  

4. Colour is measured automatically. This module self-calibrates for 
every sample. 

 

3.2.3.2 FCT 
The Fibre Contamination Tester (FCT) 94(Mor, 2003); manufactured by Lintronics 

measures neps, seed coat fragments (SCF and trash by means of unique image 

processing techniques and algorithms that enable it to test for stickiness, neps, SCF 

and trash. Its major advantage is its ability to test contradicting quality parameters. 

FCT is in fact a simulator a spinning process. A sample of cotton (from raw to 

roving) is taken as a bundle and entered into a self-cleaning micro-carding device 

inside the FCT (Figure 3.7).  It produces about10 meters of transparent web that 

 43 



exposes the impurities and contaminants. About one square meter per sample (at the 

same density as used in the spinning mill process) is tested. The web is analysed by 

machine vision, in real time, for trash, neps and seed-coat fragments and then pressed 

between two "stickiness" crush rolls, similar to the crush rolls in commercial cards. 

The cotton web is then removed by vacuum. The deposits that remain on the 

stickiness crush rolls are evaluated by a laser signal analysis system to determine 

stickiness (amount and size). One sample takes 40 seconds to test, including its 

cleaning cycle between samples. 

 

 

Figure 3.7:  FCT testing schematic 95(Mor, 2003).  

 

Neps in Webs - Neps can also be measured by digital image processing (Figure 3.8). 

Using an image analysis program, webs can be examined automatically with regard 

to their disruptive particle content. The size of the area to be examined can be freely 

selected. Type and form classes determined during the course of an examination, as 

well as the sizes of the disruptive particles, are recorded.  

 

These data can be statistically evaluated to determine: 

Number and size of particles per type class (i.e., Neps, Fibrous seed coat 
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fragments, Wood, Leaf fragments, and Extraneous non-cotton fibres)  

 

The disruptive particles are allotted to size classes and the corresponding 

frequency distribution is determined 96(Wulfhorst, 1989). 

 

 

Figure 3.8: Lintronics measures mechanical neps and seed coat fragments, which are detected 
using image analysis on the web it generates from the cotton sample 97(Mor, 2003). 

 

In a comparison of nep determination by card web neps, Agricultural Marketing 

Services (AMS) nep test machine, and yarn neps (Uster), Harrison, (1986) found 

each method delivered similar results and concluded that a good prediction of yarn 

neps can be obtained from card web neps 98(Harrison, 1986). 

 

3.3 Hand count 
Although hand counting neps is not a high-speed system, it is described here as a 

means to acquire baseline data for use with the high-speed systems. In the ASTM 
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D3216 - 78 method (Grading Cotton Card Webs for Appearance), specimens of a 

web are placed on a dark background, with particular care taken to preserve the 

original condition of the web, as it would be immediately after leaving the web-

detaching device on the card. The web specimens are compared with photographs of 

web representing five levels of web quality. The grade is based on the appearance 

and nep content of the specimens in comparison to the photographs 99(ASTM Codes, 

1978).  

 

For the manual counting method, specimens of web are extracted on flat supports 

and covered with templates containing a number of small holes or cells of equal 

cross-sectional area. For each specimen a count is made of the number of cells 

containing neps. The average number of cells with neps per template is converted 

into neps per unit area of web on the assumption that neps follow a Poisson 

distribution. Templates should be no larger than 150mm x 300mm and should 

contain 20 to 40 holes each of 1 square inch in area 100(Verschraege, 1989). 
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4. IMAGE ANALYSIS SYSTEMS 
AND 

THE U.S. EXTREME VARIETY WHITE SPECK STUDY 
This chapter sets out the experimental work and analysis undertaken to develop and 

validate a system for reliably quantifying the amount of white specks in a woven 

fabric. An automatic system was required to enable the collection of a large number 

of measurements so that adequate amounts of data could be obtained in the work 

described in subsequent chapters. 

4.1 Introduction 
It has been estimated that 40% of white specks are caused by processing and 30% by 

the cotton variety 101(Bragg, 1992). Varietal tests indicate that cotton varieties that 

have a strong tendency to nep usually have high levels of immature fibre. Varieties 

mature at different rates. Some mature quickly and there is only a limited “tail” (the 

time period when most bolls have fully matured but some are still maturing). Others 

mature more slowly, and the “tail” drags out longer. These differences increase the 

range of maturities in harvested bolls. It was concluded that nep formation is 

heritable; and that nep levels are influenced by fibre fineness and maturity 

102(Miravelle, 1984). 

 

The genotype influences the tendency of fibres to form neps and the occurrence of 

seed coat fragments (SCF) and motes. Motes are found in genetically disposed 

cultivars that have expressed, to some extent, a defect in the pollination process or 

environmental conditions at anthesis 103(van der Sluijs, 1999). White specks, 

although primarily immature fibre neps, may also result from seed coat fragments 

that have short fibres attached that resist dye. Often, these seed coats appear as dark 
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e seed.  

specks in the dyed fabric with white specks around the SCF, due to their attached 

short, immature fibres. These SCFs are portions of immature or mature seeds that 

have disintegrated during mechanical processing. In addition, the seed coat has a 

weakness at the chalazal  (point at which the nucleus and seed coat of an ovule are 

united) portion of the seed. This portion easily peels and is generally believed to be 

the source of the seed coat fragment problem. SCFs are produced by cultivars that 

have a high fibre-to-seed attachment force, a strong shank and loose tissue at the 

chalazal end of th

 

Some individual varieties have particularly strong tendencies to produce high levels 

of immature cotton. It is likely that in the future this tendency will have a greater 

importance in the selection of new varieties. Breeding programs have been geared to 

producing longer, stronger and finer cottons, but other elements often change without 

control while the breeder seeks the desired property. Breeders could reduce the nep 

formation potential of cotton by selecting for further development those varieties and 

fibre properties that are consistently associated with low nep count and seed coat 

fragment levels in ginned lint, yarn and fabric. 

 

The two varieties shown in Figure 4.1 are from a breeding program in California 

where the EAC-30 variety was bred to mature early from the EAC-32 line. The 

cottons were grown in the same field, and were harvested and ginned identically. 

These photomicrographs show that the EAC-32 cotton has a much higher level of 

immature fibres than the EAC-30. EAC-32 produced very high levels of white 

specks (see Figure 4.5) in the dyed fabric while the EAC-30 had minimal levels. This 

is not surprising when fibre properties such as the cell wall thickness and Buckling 



Coefficient (Figure 4.2) are considered. Two varieties (both Acalas) have similar 

perimeters but the EAC-30 has a much thicker cell wall and would be stiff in 

comparison to the thin-walled EAC-32. Hence, it would be less prone to nepping 

during processing and should have very good dye retention due to the level of 

cellulose found in the thicker cell wall. Conversely, the thin-walled EAC-32 fibres 

would be very prone to nepping and be dye resistant due to the lack of cellulose, 

thereby appearing as white specks in the dyed fabrics.  

 

 

Figure 4.1:  The two varieties are from a breeding program where the EAC-30 was bred to 
mature early. (Note: High level of flat, immature fibres in EAC-32). Hardy cross-sections and 

photomicrographs provided by Jarrel Carra (SRRC). 

 

Hebert 104(1988) found that 96% of all neps studied contained immature fibres, and 

50% of the examined neps were entirely immature fibres. The dead or undeveloped 

fibres have virtually no secondary wall and are exceedingly flat. The dead fibres 

collapse into flat ribbons that highly reflect light and thus appear as white specks in 

the dyed fabric 105(Peter et al, 1989). The shortness of the path of light through the 

extremely thin walls of the immature and dead fibres of the dye resistant nep 
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accentuate the light coloured or white appearance of the nep. In addition, the 

immature fibres have an accelerated rate of sorption and desorption as compared to 

mature fibres and thus dispel dye more easily 106(Cheek, Wilcock, 1988).      

4.2 Extreme Variety Experimental program 
The white speck phenomenon is an industry-wide problem, so it is important to be 

able to predict this phenomenon from high-speed measurements of fibre properties. 

Before such predictions can be made, however, it is necessary to find a method for 

accurately quantifying the level of white specks on fabrics. This section describes an 

experimental program undertaken to develop a system to accurately quantify the 

level of white specks in fabric. It sets out the field and laboratory development work 

in related experimental programs. 

 

 

Figure  4.2:  Fibre properties of the four EVS cottons. Illustration based on cross-sectional data. 

 

An initial field study was designed to produce sample fabrics with extreme levels of 
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white specks. It was named the U.S. Extreme Variety Study (EVS). Varietal 

influences on white specks were examined to eliminate as many confounding 

variables as possible, such as weathering, soil conditions and maturity. Standard 

processing was employed from field to fabric and full warps were made for each 

variety, so the final fabrics reflected varietal differences only.  

 

For the EVS study, four extremely different U.S. cotton varieties were grown under 

irrigated conditions in the same field in the San Joaquin valley in California. The 

cottons included two typically rain grown and two irrigated varieties. DP-90 is a 

commercial Delta Upland fibre, while ST-825 is a Mississippi hybrid variety. EAC30 

(experimentally bred to mature early from the EAC-32 line) and EAC-32 (Prema) are 

Acala cottons (Figure 4.2).   

4.2.1 EVS Processing Methodology 
Full size production equipment was used throughout the study. The EVS cottons 

were spindle picked and then ginned, to remove the seeds, at Mesilla Park, NM, with 

the lint cleaned by two saw-type lint cleaners. Three bales were produced for each 

variety. The bales were opened and processed into yarn and then woven into fabric 

and dyed. See Appendix A - Figure A1- 1) Samples of the fabric were dyed and the 

white specks were counted both manually and with image analysis systems. All of 

these processes were standardized as much as possible to allow future comparisons 

with the EVS results. The ginned fibre samples were evaluated using the following: 

Fibrograph, Stelometer, Arealometer, Peyer, microscopic cross sections with image 

analysis, and the complete ranges of HVI (Motion Control 3500 and Spinlab 9000), 

AFIS and Lintronics tests. Figure 4.2 shows some of the results from these 

measurements. 
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4.2.1.1 Mill Processing 
The cotton was processed using mill equipment at the USDA, Southern Regional 

Research Center (SRRC). Three bales were used for each variety. Equal amounts 

were taken from each of the three bales to make four lots of equal weight per variety 

for processing. All sixteen lots underwent the same opening process. They passed 

through a hopper, Superior Cleaner, and two beater sections of the picker and then 

were chute fed to the cards. Two of the four lots from each variety were single 

carded, while the other two were tandem carded. The international cotton industry 

uses non-standard, U.S. units of measurement, and so these units have been adopted 

in this dissertation. SI units are also provided where appropriate throughout the 

dissertation. A 30 Ne, 30/1 or 30’s yarn all indicate a 30 cotton count yarn, which 

means that it would take 30 x 840 yards or 25,200 yards to weigh one pound. ASTM 

has identified tex yarn number as the standard measure of yarn. Tex determines the 

yarn number by determining the weight in grams of 1 kilometre (1000 meters) of 

yarn 107(Joseph, 1986). For clarity, both cotton count and tex will be given. 

 

The first drawing had eight doublings to 55 grains/yard (3.99g/m) and the second 

drawing had eight doublings to 55 grains/yard. (3.99g/m) Roving was 1.25 hank (472 

tex) with medium soft twist. Both 30’s (19.7 tex) and 40’s (14.8 tex) yarns with a 3.8 

T.M. (twist multiplier - the ratio of turns per inch to the square root of the yarn 

count) were spun on a Roberts Arrow 240 spindle spinning frame with spindle speed 

of 9500 rpm. Warp yarns with a 4.2 T.M. 30’s (19.7 tex) were also spun for fabrics 

with 40’s (14.8 tex) filling for all varieties.   

 

 



 53 

4.2.1.2 Dyeing Procedure for Fibre Evaluation  
Fibre dyeing (Goldwaithe108 maturity test, using red dye portion only) allowed the 

overall number of neps and the white specks in the fibre to be identified. A 0.2 g 

sample was sandwiched between two pieces of 160cm2 (25 in2) fibreglass screening 

and clamped tightly within a 100 cm (4 in) diameter polymer embroidery hoop (or 

tambour frame). The webs were opened up slightly by hand before mounting in the 

screening to minimize fibre clumping. This ensured free access of the dye liquor to 

the fibre without any possible loss of fibre through the web. 

 

The web in its tambour frame was submerged in a 250 ml (cc) dyebath in a 15 cm 

diameter pan. CI Direct Red 81 was selected for this dyeing procedure due to a 

known lack of affinity for immature fibres 109, 110 (Mangliardi, 1990 and Bragg, 1992) 

and poor coverage of immature fibre neps in fibre and fabric. The dyeing pan was 

placed on a hotplate equipped with a magnetic stirrer and a thermistor probe. The 

dyebath included 0.015% (owb [on weight of bath]) dye, 0.1% owb NaCl, and 0.01% 

of non-ionic surfactant (Triton X-100, Rohm and Haas). Dyeing was carried out at 

60°C for one hour with constant stirring, with the salt added in equal portions at three 

15-minute intervals.   

 

The dried web was spread out on a 25 x 10 cm panel of clear Plexiglas, and the fibres 

teased into a thin layer of uniform density as shown in Figure 4.3. A second panel of 

Plexiglas was put on top of the fibres, rendering them immobile. The composite 

assembly was then put onto a piece of black velvet fabric and examined under a 

magnifying lamp (Figure 4.3). The number of undyed neps on each 0.2 g web was 

counted. Five webs were examined for each fibre variety and the total counts were 

recorded as the number of white specks per gram.  



 

Figure 4.3: Sample of bale cotton fibres dyed red from Goldthwait’s maturity dye test and 
spread out on black velvet. Immature fibre is present as small and large clumps. Mature fibres 

absorb dye, while the immature fibres remain white. 

 

4.2.1.3 Dyeing Procedure for Fabric Evaluation  
The scouring and dyeing procedures were standardized for use throughout this 

project. The fabric is finished with a 0.1% Prechem 70, 0.3% T.S.P.P. boil-off, a 

caustic scour of 1.1% Prechem SN, 1.1% Mayquest 80, 0.1% Prechem 70 and 0.7% 

sodium hydroxide (caustic soda), followed by the same boil-off procedure. The 

fabric was then bleached (0.1% Prechem 70, 0.5% Mayquest BLE and 3.0% 

peroxide (Albone 35)) followed by an acid scour (0.1% acetic acid) and dyed with 

4% Cibacron Navy F-G Blue, 0.5% Calgon, 8% Sodium Chloride, 0.8% Na2 Co3 

(soda ash) and 0.5% Triton Tx-100. This dye has a high propensity for highlighting 

white specks in finished fabrics.   

 

Four 130cm2 (20 square inch) fabric samples were evaluated by two technicians for 

each of the eight conditions of the EVS study. The number of white speck neps on 

each 4 inch by 5 inch dyed fabric was counted. From the examination of four fabrics 

(for each fibre carding treatment), the overall total number of such white specks per 

square meter was found. 
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4.2.2 White Speck Evaluation 
After the processing was completed, the tandem carded fabrics had a visibly higher 

level of white specks than the single carded fabrics. It was suspected that the new 

tandem card (this was the first study run) had not been properly set when it was 

installed. Investigations showed that the second card cylinder was left in its shipping 

position. The cylinder was high on the left side and so the fibres tended to roll across 

it to the area of least resistance when they hit that cylinder, causing the number white 

specks to increase considerably as seen in Figure 4.4. 

 

Figure 4.4: Card settings significantly affect the level of white specks on dyed fabrics. 

 

As it turned out, the error had the beneficial effect of producing fabrics with a 

broader range of white speck than would otherwise have been the case. Subsequent 

comparisons of the performance of image analysis systems used these EVS fabrics as 

test specimens. The EVS fabrics provided visibly different levels of white specks as 

seen in the scans of the single carded fabrics in Figure 4.5.  
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Figure 4.5:  Four Varieties grown to show different levels of white specks on fabric. 

 

 Two technicians independently counted white specks on four samples (64.5 cm2 = 

10in2 in size) for each of the eight fabrics. Counts were recorded as the number of 

white specks per square meter and compared with counts from the. Cotton Inc., 

Cambridge, Optimas 4.0 & 5.2 and Xu’s AutoRate image analysis systems as 

explained later in this chapter. 

 

Hand counting white specks, as described above, is an extremely time consuming 

process, and is only practical for a small number of samples. Many samples were 

required in order to meet the objectives of this study, and so a high-speed system for 

analysing neps on the fabric was required in order to complete the project. The hand-

counted values of white speck provide a benchmark to test a range of image analysis 

systems that are described below. Figure 4.6 shows a typical set-up for image 

analysis. 
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4.2.2.1 Cotton Incorporated’s Image Analysis system  
Cotton Incorporated provided an existing image analysis system that was evaluated 

for usefulness in counting white speck in dyed fabric. The Cotton Incorporated 

procedure for Dye Resistant Nep (White Speck) Analysis 111(Von Hoven, 1996) in 

fabrics incorporated a Cohu 4912 CCD monochrome camera, a copy stand, a 

monitor, a computer, a Coreco 3000 Image Processing Board and a fluorescent ring 

light. The camera was mounted so that the lens went through the centre of the 

fluorescent ring light.  The edge of the light fixture and the lens were 380mm (15 

inches) from the sample surface. The viewing area in this configuration covered 

77cm2 (12 in2) of sample. Specific processing software was developed by a Cotton 

Incorporated consultant for this system.  

 

Figure 4.6:  Typical image analysis system:  camera with uniform lighting or scanner to capture 
image, computer with program to evaluate fabrics and monitor to visually evaluate images. 

 

During operation, the software threshold was adjusted by placing a representative 

sample under the camera and acquiring the image on the computer screen. The 

threshold function created a binary (black=0, white =1) image. The threshold was 

 57 



 58 

manually adjusted until all of the white specks were visible to the operator, with a 

minimum amount of noise in the image. Once the threshold was set, the minimum 

size (in pixels) was determined visually to differentiate between white specks and 

noise. The threshold and minimum pixel size were set and maintained throughout the 

duration of the testing to remove noise from the image, leaving the white specks 

highlighted. The number of "events" was then automatically counted with the 

number of pixels determining the size of each "event". The count per square meter 

and “% white" (the actual percent of the fabric that was white rather than dyed blue) 

were calculated. Twenty-four readings were taken from each of the fabrics. The 

samples were manipulated so that there was no overlap of the sample viewing area. 

Cotton Incorporated tested the samples and then the system was shipped to SRRC for 

further evaluation. It must have been damaged in shipping because a drift was noted 

in the data when the system was used at SRRC. The system was focused on one 

fabric, which was taped into place, then tested every half hour with the same settings 

to see if there was any change over time. The recorded number of white speck 

increased significantly over an 8-hour period. The problem could not be resolved and 

it started the search for other imaging systems to evaluate white specks.  Only one 

complete data set for this study using this image analysis system was gathered at 

Cotton, Inc. when the fabrics were sent there for analysis.  This data, was used for 

comparison purposes to compare % White values obtained by the other systems 

evaluated. 

 

4.2.2.2 Cambridge Instruments Quantimet 970112(Von Hoven, 1996) 
The fabrics were also analysed using a Cambridge Instruments Quantimet 970 at 

SRRC. Before testing, the operator determined the camera settings for the Cambridge 

Instruments’ Chalnican camera, which resulted in a sharp image of the white speck 
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fabric. The Cambridge Instruments Chalnican camera was placed on the arm of a 

Cambridge Instruments stand fifteen inches above the surface of the stand, thus the 

camera was twelve and one half inches above the fabric sample.  A ring light was 

used in order to provide uniform lighting and was placed eight and one half inches 

above the fabric sample. The equipment was then allowed to equilibrate for 

approximately an hour to permit stabilization of lighting and equipment. The room 

was blackened so that the only source of light was that of the Image Analysis system. 

After stabilization, shading correction was implemented to eliminate any unevenness 

in lighting.  Acceptance values were set to place size limits on what was to be 

detected as a white speck while eliminating noise or false positives that were 

typically smaller than white specks. These parameters were set once, and all tests 

were performed consecutively under the same conditions so that reliable 

comparisons and correlations could be made. The system was calibrated at the start 

of every analysis procedure to ensure correct measurements.  

 

The equipment was programmed to sample seven approximately 60cm2 (9 square 

inch) sections of fabric, measure the size and area of the white specks, and count the 

number of specks detected in that area. The image size was 600 by 500 pixels, with 

one pixel edge equivalent to 0.138mm2 (0.00543 in2).   An average size, count and 

area were determined for each of the seven samples. The tests were then replicated 

five times.  The same operator tested all samples on the same day, to eliminate any 

operator or lighting variation influencing the results. The operator manipulated the 

fabric sample to avoid detecting the same area more than once 113(Von Hoven, 1996). 

 

4.2.2.3 Optimas 4.0 and the Upgraded Optimas 5.2 Image Analysis System  
Two versions (4.0 and 5.2) of the Optimas system for image analysis were also 
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evaluated for use in the project. The Optimas system used a Gateway 2000 P5-75 

computer with a dual monitor set up with a Sony Trinitron RGB Monitor and an 

Imaging Technologies frame grabber. A Microimage Video Systems 

RGB/YC/NTSC colour camera was mounted on a camera stand. The F-stop on the 

camera was set to a value of four, and the lens was located 47cm (18.5 in) above the 

fabric surface.  

 

The original setup (Version 4.0) used a low level of lighting with only two 15 W 

fluorescent lamps. This was subsequently revised to use a brighter and more uniform 

light source using four tungsten 120 V 300W flood photography lights that could be 

adjusted by a rheostat. A digital light meter was used to measure luminance (visible 

flux density). The light sensor was mounted over the lens of the video camera and 

pointed towards the fabric. The rheostat was adjusted until the light meter luminance 

reading was 234±1 lm/m2 (234±1 Lux). For white speck measurements, the lights 

were set on high and the rheostat was used to maintain a constant reflected light 

measurement of 11 EV with ASA set at 800. This is the lighting procedure used for 

the data reported for both Versions of Optimas. 

 

Thirty different sections, regions of interest (ROI), of the fabric were analysed with a 

total area of 2320cm2 (360 in2) of fabric. The operator manipulated the fabric sample 

so that the same area was not tested more than once and area covered was sequential. 

4.2.2.3.1 Optimas 5.2 Image Analysis System –White Speck Size 
To determine which system was most accurately measuring the size of the white 

specks, forty photomicrographs were taken of white specks from each of the eight 

EVS fabrics and measured using the area protocol from Optimas version 5.2. 



Optimas was developed for medical purposes and is considered very accurate for 

measuring cell areas. A Bausch & Lomb stereomicroscope fitted with a Hitachi KP-

D50 colour digital camera with an extension tube (which increased the 

magnification) RS Photometric’s CoolSNAP was used to create digital 

photomicrographic images of white specks. Most of the white specks were 

photographed at a magnification of four, but some larger white specks had to use a 

magnification factor of three. 

 The Optimas system also changes the scale of the photomicrograph, depending on 

the monitor size, and the image appears as shown in Figure 4.7. The system is 

calibrated and then: 

1) The scanned photomicrograph is opened,  

2)  The operator draws the perimeter of the white speck using the mouse and  

3)  Optimas determines the sizes of the white speck in square microns.  

 

 

Figure 4.7:  Measuring white speck size using Optimas Version 5.2.  

 
4.2.2.4 Xu Image Analysis System 
The AutoRate System was designed and developed by Dr. Bugao Xu of the 

University of Texas at Austin specifically to measure white specks. The candidate 
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assisted Dr Xu throughout this development process.  Initially, we used a camera and 

lighting set-up (as reported for Optimas) with this system but found that it was very 

sensitive to lighting and picked up “hot spots” for each of the four lamps. Next, a 

scanner was used to acquire an image. It gave the uniform lighting necessary for this 

imaging system. The reset control tool of the HP Scan Jet 6300C flatbed scanner was 

used to reset all tools except dimensions to their automatic settings. The scanning 

Region of Interest (ROI) was set at 5 inches by 5 inches with four adjacent fabric 

images analysed to give a total viewing area of 100 square inches. The images were 

converted into pixels by the AutoRate program Version AR-02-03 (February 2003). 

The scanner contrast was found to drift slightly over time, so brightness was adjusted 

to 120 in the AutoRate program so the images would be consistent. A minimum size 

of three pixels was adopted to differentiate between real white specks and anomalies. 

The contrast setting was used to dictate what is detected as white and so it affects the 

percent white of the sampled area. The contrast can be set for each fabric. If the 

fabrics were all dyed and scanned in a batch, the contrast usually remained the same, 

but each dye batch is slightly different. Figure 4.8 shows the original scan of a fabric 

and the altered image after it was brightened and analysed. In this case, the operator 

found that a contrast of 20 was good for all of the EVS fabrics. The analysis results 

in two values: white speck count and area that is white in pixels. The size of the 

white specks and the percent white on the fabric are calculated.  



 
Figure 4.8: Four 5” x 5” fabrics are scanned (image on left). The image is converted into pixels, 
and then adjusted to 120 Brightness in Xu’s AutoRate program; minimum size is set to three 
pixels. Fabrics are measured and analysed resulting in white speck count, size and % white 

(image on right). 

 

The current version of AutoRate is only semi-automated, but development of this 

system continues as a separate project. So far, the candidate has evaluated twelve 

versions of the AutoRate system during the period 1998 - 2003. With AutoRate, 

fabric scans can be checked for brightness level and contrast. The brightness can be 

adjusted from its initial value (eg 99) to 120. However, the internal contrast that 

changes the visual appearance of the scan is set by a slide control instead of a 

numeric value. This means that the contrast varies depending on the depth of dye and 

variations in the scanner. Contrast and pixel size can be set numerically to determine 

what the system views as white specks. My testing determined that, with the scan’s 

brightness adjusted to 120 and minimum pixel size 3 (minimum number of pixels for 

inclusion as white speck event), the contrast can be set between 19 and 39 for the 

wide range of fabrics I have tested in this study. The contrast setting is currently the 

only variable that is set by the operator.  
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Future research will be aimed at eliminating any operator intervention on the settings 

by determining the internal contrast level (in the same manner as the brightness 

setting was developed). That will make the digital images uniform. Then the contrast 

evaluation setting will be determined (in the same manner number of pixels was 

determined) so that white specks can be consistently evaluated without an operator’s 

input.  

 

4.2.3 EVS Results 
 Figure 4.2 illustrates average cross-sections for the four varieties along with the 

cross-section and basic classers data. All four cottons were similar in grade. The 

Acala varieties (EA-C30 and EA-C32) were generally long, strong, small perimeter 

fibres. The DP-90 was a medium length, strength, and perimeter fibre. The STV-825 

was coarser, slightly shorter, and was similar in cell wall thickness of the EA-C32 

and the DP-90. A thicker cell wall results in EA-C30 being more circular than EA-

C32. The STV-825 is the least circular. Micronaire readings show the Acalas 

contrast strongly with each other. The EA-C30 variety had the highest micronaire 

value while EA-C32 had the lowest. 

 

Alon and Alexander 114(1978) pointed out that fibre processing tends to produce 

buckling along the fibre length through a stress build-up/sudden release mechanism. 

They developed an equation for a buckling coefficient115 (Alon et al, 1978) included 

in Figure 4.2. In essence, the longer and finer the fibre, the more prone it is to 

“buckle” and entangle with itself or with other fibres during processing. The 

buckling coefficient does an excellent job of rating these fibres with EAC-32 having 

the highest propensity to nep and appear as white specks, followed by ST-825, DP-

90 and EAC-30 being the least likely to have white specks. The Acalas were two 



32nds (inches) longer that the DP-90 and ST-825 (Table 3.1). Strength varied 

between the varieties with EAC-32 rated as strong, EAC-30 and DP-90 as average 

and ST-825 as weak (Table 3.3). Both Acalas and ST-825 were rated as base grade 

for micronaire (mic) and the DP-90 was rated as premium (Figure 3.1). The 

following sections of the dissertation present results from the eight EVS fabrics (the 

varieties are referred to by their numeric component and S or T indicate Single or 

Tandem carding). 

 

4.2.3.1 Hand Counting and Cotton Incorporated’s Image Analysis System  
The initial data from the Cotton Incorporated image analysis system tracked the hand 

counted white speck values fairly well (see Figure 4.9). However, the results drifted 

over time. The fabric was taped into place and the analysis run every hour resulting 

in a false increase in white speck count as explained in Section 4.2.2.1.  

 

Figure 4.9: Image Analysis by Cotton Incorporated’s System tracks hand counted white specks 

 
4.2.3.2 Cambridge Image Analysis System 
The image analysis results for the Cambridge system were characterised by a lack of 

consistency.  Figure 4.10 shows the variation found with five different test dates. 
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This system was found to be extremely sensitive to the surrounding environment; 

even the colour of the garments worn by the operator altered the readings. It was 

noted that, as the operator leaned forward to evaluate a fabric, the reflectance off her 

white shirt altered the reading. Following this discovery, each test was performed in 

a blackened room in which the image analysis system provided the only source of 

light. The operator wore black clothing to reduce reflectance. The Cambridge system 

was designed for high magnification work and is apparently not suitable for macro 

applications such as white speck analysis.     

 

Figure 4.10: EVS results by Cambridge % White values for five test dates. 

 
4.2.3.3 Optimas Image Analysis System 
The Optimas system provided more consistent results than the Cambridge system. 

The readings were much more repeatable and consistent from day to day, with the 

tandem carded fabrics showing a higher white speck count and a larger size of neps 

than was measured on their single carded counterparts. This result is expected, given 

that the tandem card was mis-set as described in section 4.2.2 and Figure 4.4.   
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EA-C30S had the lowest white speck content in all measurement replications, 

followed by the DP-90S, EAC-30T, DP-90T, STV-825S, EA-C32S, STV-825T, with 

the EA-C32T having the highest % white, as shown in Figure 4.11 and Table 4.1. 

Results obtained with the Optimas 4.0 system are shown in the graph. The data from 

version 5.2 of Optimas is shown as the last testing date. The results from the two 

versions of Optimas are in close agreement. 

 

 

 

Table 4.1:  EVS results by Optimas % White Values for Four Test Dates  

                  (Versions 4.0 and 5.2) 

% White Values Opt 4.0 Opt 4.0 Opt 4.0 Opt 5.2 

 July 95 Jan 96 Feb 96 July 96 

EAC-30-S 0.01418 0.01171 0.01339 0.01188 

EAC-30-T 0.01832 0.0192 0.01893 0.02037 

EAC-32-S 0.02871 0.02807 0.02755 0.0292 

EAC-32-T 0.04646 0.04195 0.04264 0.0494 

DP-90-S 0.05099 0.04573 0.0468 0.04922 

DP-90-T 0.06168 0.05393 0.05643 0.06226 

ST-825-S 0.07744 0.06607 0.0673 0.069 

ST-825-T 0.13473 0.10122 0.11039 0.11675 



 

 

Figure 4.11:  EVS results by Optimas % White values for four test dates. 

 
 
4.2.3.4 AutoRate Image Analysis System 
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Results from four image analysis systems are presented for comparison in Figure 

4.12. The AutoRate system was compared to past systems and generally was found 

to track the level of white specks, although a few points were higher than the other 

systems (with the exception of the Cambridge system which is completely 

inconsistent).  

 

Figure 4.12:  White specks (%White) measured on four image analysis systems. 

 

In Figure 4.13, the White speck count/square meter values from AutoRate, Optimas 

5.2 and Cotton Incorporated’s systems are compared to hand counting. The human 

eye is much more discerning than any of the imaging systems and many tiny white 

specks are counted that may appear as noise to an image analysis system. All of these 

systems have a general upward trend similar to hand counting, but none of the 

electronic systems counts are as high, because at some level for each system, false 

white specks are picked up when trying to account for the smallest white specks, so 

size limits are used to avoid anomalies. The Cotton Incorporated system tracks 
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closest to AutoRate. Optimas has an upward trend, but seems to give much lower 

counts than the other systems. 

 

 

Figure 4.13: White speck count per square meter measured on three image analysis systems and 
compared to hand counting 

 

The next concern is accuracy of measured size. The Cotton Incorporated system 

reported the size in pixels and a conversion was not possible to square microns. 

While evaluating different aspects of the imaging systems, it was noticed that some 

changes could make the white specks appear extremely large. The larger the size of 

the white speck appeared on the monitor, the higher the % white became, resulting in 

a false size measurement and reduced accuracy. The sizes of white specks were also 

measured using a scanning electron microscope and then related back to the available 

imaging systems, Optimas and AutoRate.  

 

When the panel (made up of SRRC & Cotton Incorporated personnel) that rated the 
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fabrics were questioned, they agreed that the three middle fabrics (DP-90T, STV-

825S and EAC-32S) were the hardest to rate because they were the most similar. One 

member stated that the DP-90 was hard to rate because it had much larger white 

specks than the other fabrics, so she felt she had to balance the lower count she saw 

with the larger size, giving it a higher rating for white specks. These observations 

relate well to the microscope and the AutoRate measurements that both show DP-90 

white specks to be the largest (Figure 4.14). 

 

 

Figure 4.14:  Accuracy of white speck size measurements. 

 

It is concluded that the AutoRate system is currently the only one that can provide an 

accurate measurement of white speck size (Figure 4.14) when benchmarked against 

the manually obtained microscopic measurements using a magnification of 40. Since 

all of the fabrics were run at the same settings on the more stable AutoRate system, 

there should be less operator influence on the white speck count and size. Visually, 
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the counts from the AutoRate system appear realistic, while the Optimas system 

appears to undercount and significantly oversize the white specks. The combination 

results in very similar % white for both systems, but the AutoRate system obviously 

measures size more accurately than the Optimas system. Testing fabrics for white 

specks can take as much as an hour per fabric using the manual Optimas system. The 

candidate reduced the required time to ten minutes per fabric with the current 

AutoRate system. A fully automated system should result from Dr. Xu’s current 

work and this would further reduce this time significantly. 

 

Only data from the latest version of AutoRate (AR-02-03) are presented in the 

remainder of this dissertation using the adopted configuration (fabrics scanned using 

the reset control tool, minimum pixel size = 3, brightness =120 and contrast varied as 

needed), which seemed visually most accurate.  



 73 

 

5. LARGE SCALE VARIETY WHITE SPECK STUDIES 
AND 

PROCESSING EFFECTS ON WHITE SPECK LEVELS 
 

Both Australia and the U.S. mechanically harvest and gin their cottons and both 

countries are perceived by buyers to have nep problems. White specks are the most 

expensive nep defect problem. Many growing regions (usually small areas but 

sometimes whole countries) are often avoided by individual cotton buyers if the 

previous year produced high white speck problems for their mills. This project was 

undertaken at sites in the U.S. and Australia to provide baseline data on the level of 

white specks in Australian and U.S. cotton. Previously published studies do not cover 

fabric neps but focus on yarn quality, which makes it particularly important to 

determine the factors that affect white speck levels in fabrics. After all, cotton is 

ultimately valued in fabric form. This chapter sets out the experimental work and 

analysis undertaken in U.S. and Australian field studies. The AutoRate system was 

used to evaluate the large number of fabric samples. Processing effects on the level 

of white specks in the dyed fabrics are also described.  

5.1 Large scale variety white speck studies  
Several field studies in the U.S. and Australia were used to investigate varietal 

differences as well as processing influences on white speck levels. The U.S. Leading 

Variety Study (LVS) consisted of 26 bales from across the U.S. cotton belt and were 

part of an annual variety study conducted by AMS (Agricultural Marketing Service). 

Two years of field studies in Australia with known harvesting and ginning were used 

to derive more information about processing effects on white speck levels.  This was 
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followed by an investigation of 21 varieties from three states in the U.S. All of these 

studies had the same mill processing.  

 

5.1.1 Neps result from growth, harvesting or ginning and processing 
116(Wegener, 1980)   

Imperfections in lint cotton, particularly neps and seed coat fragments, reduce 

processing efficiency in the textile mill and detract from appearance of yarns and 

fabrics, ultimately causing financial losses. Breeders can help to reduce the nep 

formation potential of cotton by selecting for further development those varieties 

with fibre properties that are consistently associated with low nep count and seed-

coat fragment levels in ginned lint, yarn and fabric. Neps are often the result of 

immature fibre growth as influenced by climate, over-watering, coalescence, and 

pests. These growth neps contain predominantly dead and immature fibres. Fibres 

damaged by insects will no longer mature and the escaping lumen cellular fluid 

causes these immature fibres to coalesce 117(Wegener, 1980). If a plant is stressed 

during certain critical periods, for example by a shortage of water, some of the 

immature seeds within a boll are aborted. The immature fibres attached to those 

seeds have the primary wall laid down, but lack secondary wall that other living 

seeds on the plant produce. Growth period, which is related to growing conditions 

prior to harvest, has an impact on the number of neps and other imperfections found 

in ginned lint, yarn and fabric 118(Mangialardi, 1987). It is possible that a crop of 

cotton that “just makes it” through a bad season may not have “made it” at all, and a 

white speck problem is likely to occur.  

 

The susceptibility of cotton to form neps is dependent upon the nature of the cotton 

itself. Fibre properties such as fineness and maturity determine to a large degree the 
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amount of nepping that occurs during mechanical processing 119(Hunter, 1996). Since 

immature fibres have little secondary wall, the stiffness of the fibres is severely 

limited, which allows them to tangle easily, or form a nep during mechanical 

processing such as ginning 120(Chellamani, 1999). Fibres are stretched during 

processing, accumulating elastic energy. When one end of the fibre is suddenly 

released from the tensile load, the energy is converted to kinetic energy, if the fibre is 

free to move. As the fibre cannot withstand compressive stress, buckling results 

121(Alon, 1978). During textile processing, these colonies of immature fibres are 

separated and divided into smaller segments, which are ultimately responsible for the 

white specks of the dyed fabric 122(Watson, 1991). Forty percent of white specks are 

caused by processing 123(Bragg, 1992). 

 

It is common knowledge that cotton in the boll has few, if any, mechanical neps and 

that neps are formed to varying degrees during the mechanical handling and 

processing which the cotton undergoes during harvesting, ginning, opening, cleaning, 

carding, combing, etc., from field to fabric. Neps first form when the cotton boll 

opens and the fibres “blow up”, dry, convolute and collapse 124(Verschraege, 1989). 

Harvesting cotton blends the immature fibres with mature fibres and this usually 

causes neps during further processing. In addition, the aborted seed is usually too 

small to be removed by the gin saws, and persists through processing to produce a 

biological nep and/or a white speck. However, growers, ginners, and mill operators 

can influence, to some degree, the number of imperfections that are created during 

harvesting, ginning, and spinning by controlled use of the processing machinery 

125(Mangliardi, 1990). 
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5.1.2 Harvesting and Ginning 
Harvesting and ginning can cause neps through fibre damage 126(Wegener, 1980). 

Harvesting methods affect nep formation.  Hand picking gives the lowest number of 

neps, strip picking the highest number. Mechanical cotton pickers suit the industry 

well, but they lack the selectivity of manual workers. Mechanical picking removes 

almost all bolls regardless of maturity. Unambiguously immature bolls are removed 

by the rock and green boll trap early in the ginning process, but other partially 

mature bolls may be knocked open during the extraction of trash. When this happens, 

the immature fibre in those bolls mixes with mature fibres and usually results in neps 

during further processing. This effect is particularly bad in “second pick” seedcotton, 

when the farmer undertakes a secondary harvesting operation. 

 

Generally, cotton harvested early in the season will produce yarn and fabric 

containing a lower number of imperfections than cotton harvested late in the season 

in the same field. This can be attributed to higher micronaire cotton in the earlier 

harvest, associated with more mature fibres than the later harvested cotton. 

Sometimes, in the face of impending wet weather or other picking problems, farmers 

will choose to pick earlier than is desirable from an agronomic point of view. At 

other times, wet weather prevents picking operations for a time. Both of these 

situations affect the quality of fibre arriving at the gin. Early picked cotton contains 

more immature bolls than cotton allowed to mature properly.  Late picked cotton is 

even worse, for two possible reasons. The bolls that are maturing in the “tail” of the 

process may be marginal bolls with a higher proportion of aborted seeds and 

immature fibre. In addition, lint exposed to sunlight and moisture becomes weaker 

and more susceptible to damage by later mechanical processing 127(Bel-Berger, 

1995). 



 

Figure 5.1:  Different types and levels of trash seen in spindle picked and stripper picked cotton. 

 

Figure 5.1 shows samples of spindle-harvested, conventionally grown cotton (left) 

and stripper-harvested cotton. Cotton harvested with a stripper harvester contains 

more stems and leaves 128(Greb , 2000) than spindle picked cotton.  

 

   

Figure 5.2: Spindle picking cotton129(Nance, 2002).  Cotton stripper harvesting 
cotton130(Wright, 2000). 

  

Figures 5.2 compares the field impacts of the two types of cotton harvesting 

machines.  There is very little cotton left in the field behind the stripper harvester, 

emphasizing that all of the cotton is taken by the stripper, both mature and immature. 
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Figure 5.3 depicts the processing sequence followed by seedcotton from module to 

bale. Many stages can be bypassed or heat levels changed at the discretion of the 

ginner. Ginning increases the number of neps, saw-ginning more so than roller 

ginning. The more violent the ginning method, the more neps and seed coat 

fragments are formed 131(Mangialardi, 1987).   

 

The ginner’s job is to remove the lint from the seed and to clean the cotton (Figure 

5.4) in order to get the best price for the grower for his cotton based on the grading 

system. The grading system was set up on hand picked cotton and discounts heavily 

if the cotton is not “white and clean”, as this was a major indication of quality 

problems in the days of hand picked cotton. 

 

The gin stands and saw cylinder lint cleaners are major points of cleaning and 

formation of neps. Using three saw cylinder lint cleaners in the ginning sequence 

instead of one lint cleaner can increase the number of neps by 54% 132(Mangialardi - 

b, 1985).  Lint cleaning in the gin does take out motes and seed coat fragments 

(SCF), but the cleaning efficiency depends somewhat on the differential weight 

between cotton and trash, so the heavier, larger motes and seed coat fragments are 

more likely to come out than smaller, pinhead motes. As the severity of the 

machining is increased, the smaller motes are just as likely to be broken up and 

scattered through the lint rather than being removed 133(Hughs, 1988). The number of 

neps also increases with increased SFC and coefficient of length variation 

134(Frydrych, 2001), both of which are good indicators of excessive ginning 

conditions.  



 

Figure 5.3: Typical saw ginning system for spindle and stripper picked cottons (Anthony, 
1994).135 

 

Excessive heat or lint cleaning increases the short fibre content and length variability 

of the baled cotton. The final nep level after ginning is also greatly influenced by the 

nature of the cotton itself.  Fibre fineness and maturity determine to a large degree 

the amount of nepping that occurs during the ginning process. Immature, fine-fibre 
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cottons tend to nep more readily than do mature fibres or coarse fibres 136(Anthony, 

1986). 

 

Figure 5.4:  Seedcotton and Ginned Cotton  - Cotton on the right has been ginned and is ready 
for conversion into yarn at a textile mill 137(Agriculture Research Service Image Gallery, 2003). 

 

The AFIS instrument can quantify the effect of multiple stages of saw-type lint 

cleaners. Its analysis indicates the rise in neps, reduction in trash particle count, and 

size as the number of lint cleaners increase.  Some spinning mills are now buying 

cotton direct from the gin and specifying the use of only one lint-cleaner 138(Yankey, 

1996).  

 

 

Figure 5.5: Card wire and levels of lint cleaning in the gin affects the white speck content in 
dyed fabrics 139(Bel-Berger, 1997). 
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White speck levels in dyed fabrics are also increased with the level of lint cleaning as 

shown in Figure 5.5, which shows two varieties (S=Smooth-leaf and H=Hairy-leaf) 

each with 0, 1, 2 & 3 lint cleaners used at the gin. The study was run on a card just 

before and after it was rewired. The effect is minimal if the mill’s cards have new or 

sharp wire, but if the wire is worn, which is inevitable at some point, the lint cleaner 

effect is dramatic. 

 

5.1.3 Mill Processing 
Neps in the spinning mill are caused by the entanglement and hooking-together of 

fibres during various mechanical processes. If a fibre breaks during processing, it 

often rolls up on itself and/or wraps around other fibres, thus forming a nep 

140(Wegener, 1980).   In the spinning mill, neps can be eliminated, or nep formation 

prevented, or at least reduced, by general practices such as maintaining an even feed 

to beaters; keeping machines in good condition; and ensuring that teeth on beaters 

are sharp and straight 141(van der Sluijs, 1999).   

 

5.1.3.1 Carding  
Multiple bales are opened and fibres are suctioned off to the opening line in the mill 

where very coarse trash is removed. The opened fibres are chute fed to the card 

where the main cleaning operation occurs. The stock fed to the card is processed into 

a thin mist-like sheet, or web, which is then formed into a loose rope-like strand of 

fibres known as card sliver. 



 

Figure 5.6: Carding in the Mill 142(Marvin, 1973). 

 

A single card is depicted in Figure 5.6; a tandem card is similar except that it uses 

two large cylinders in tandem to increase cleaning. Tandem carding provides 

superior yarn and fabric quality to single carding. Verschraege 143(Verschraege, 

1989) found that the use of tandem carding over single carding reduces the number 

of neps by 50%. This benefit was not obtained in my project though, in the case of 

the mis-set tandem card discussed in Chapter 4, which caused an increase in white 

specks in the dyed fabrics (Figure 4.4). In carding, a low nep count is directly related 

to the sharpness and thickness of the points of the cylinder wire, carding segments 

and wire flats.  The results shown in Figure 5.5 established that new card wire 

produced, on average, 61% fewer neps (a range of 48% to 73% reduction depending 

on variety and level of lint cleaning) than blunt teeth (van der Sluijs, 1999). The 

same experiments established that the percentage of immature fibres is a major 

contributor to the number of white specks for both the single and tandem carded 

samples. The lengths of the fibres influence the size of the white specks for the 

ndem carded samples.  ta
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 and polish the fibres) will reduce the nep 

ontent considerably 144(Wegener, 1980).  

d about 5% could be only divided into several still 

smaller non-openable knots.  

 

More neps are eliminated on the card than are newly formed if the wires are sharp 

and properly set, but the nep-reducing effect is diminished as the card clothing fills 

up. The number of neps in the card web shortly before the card clothing is cleaned 

can often be double that in the card web shortly after cleaning the card clothing.  The 

use of a tandem card or a second passage through the card is advantageous for 

eliminating as many neps as possible. In addition, the use of calendering rollers 

(take-off roller at end of card which press

c

 

 

To examine whether and to what extent the neps can be opened without destruction 

of the fibres during their opening, neps were taken from the lap (fibres after opening 

before carding), the flat strips, the cylinder strips and the card sliver, and they were 

opened by means of two marking pins under a stereoscope. This manner of opening 

is comparable to the treatment of neps by the card clothing. A nep was regarded as 

non-openable if it could not be taken apart without destruction of the fibres.  The 

results showed that, in the lap, about 75% of the neps could be opened, whilst about 

20% could not be opened an

 

 

The neps were examined for their composition at the same time. About 60% of the 

neps had very fine short fibres (immature and dead fibres) in the centre, about 35% 

were composed of normal fibres, and only about 5% had seed coat residues in their 
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linder strips the 

percentage of the not-openable neps as slig aller, namely:  

Non-openable    35% 
Openable into small knots    5% 

ercentage of non-openable 

eps must increase in the card wastes 145(Kaufman, 1964). 

5.1.3.2 Combing 

 uniform and lustrous yarns, consequently reducing the 

percent white of the fabrics.  

centres. In the card sliver, flat strips and cylinder strips the percentage of the not-

openable neps was slightly smaller, namely:, flat strips and cy

w htly sm

Openable about   60% 

 

The compositions of the neps were similar to that of the neps in the lap.  

These experimental results are in agreement with the idea that the card opens the 

neps. Since only the openable neps can be drawn out, the p

n

 

While carding cleans the fibres, removes some short fibres, and partially parallelizes 

them, combing (Figure 5.7) obtains a better separation of the fibres and a better 

removal of impurities and contaminants than carding alone and reduces the number 

of neps and seed coat fragments in the yarn 146(Verschraege, 1989). By removing the 

short fibres and neps (mostly clusters of immature fibres), combing resulting in 

stronger, smoother, and more



 

Figure 5.7: Combing at the Mill 147(Anthony, 1994). 

 

In general, combing reduces yarn neps by 30 to 50%, with the impact being less for 

rotor (open-end) spinning. Nep removal is also influenced by the setting of combers, 

such as the number of needles on the cylinder and top comb, setting of halflap, 

unicomb and top comb, and maintenance routine of all these settings. The combing 

process appears to be better at removing neps than seed coat fragments 148(van der 

Sluijs, 1999).  
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5.1.3.3 Spinning 
High quality cotton is traditionally spun using the ring spinning system (Figure 5.8) 

at a typical speed of 20 metres per minute.  This produces high quality, fine yarns 

with excellent mechanical properties and a soft, smooth feel. The other technology 

commonly used in cotton processing, the open end (OE) spinning system (also 

known as rotor spinning) (Figure 5.9), has a productivity in the region of 150 metres 

per minute and is more suited to coarser yarns. By comparison, the new Murata 

Vortex Spinning (MVS) (Figure 5.10) system produces 400 metres per minute and 

can produce fine yarns of high quality, similar to that of a ring spun yarn. Based on 

the quantity of yarn produced, open end spinning dominates. Even though there are 

only one-third as many positions of rotors installed, rotor spinning is so much faster 

that they spin three times more yarn than ring spinning 149(Naylor, 2002). 

 

 

Figure 5.8: Ring Spinning –roving is drawn out into a tiny strand of fibres and twisted into a 
yarn. 
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In ring spinning, in order to obtain a good parallelization and the desired number of 

fibres, card lint is drawn down to roving (a very coarse and loosely twisted fibre 

assembly) which in turn is further drawn and twisted during ring spinning. During 

drawing, neps are pulled apart. One nep can be pulled into individual fibres or split 

into two or more neps, much as Kaufman 150(Kaufman, 1964) described in hand 

opening card sliver. Large seed coat fragments (SCFs) break into smaller pieces, 

increasing their number. During drawing, an equal number of neps in a roving will 

be dispersed in a shorter or longer piece of yarn depending on the size of the spun 

yarn. In fine yarns, the number of neps will be more visible than in course yarns 

where they may be hidden inside the yarn 151(Verschraege, 1989).   

 

 

Figure 5.9:  Open End Spinning – card sliver is opened, cleaned, and reduced into 
individualized fibres that are laid into the groove of the rotor and twisted into a yarn as it leaves 

the rotor. 

 

In OE spinning, the sliver passes through the opening roller mechanism of the 

spinning machine (Figure 5.9). This mechanism separates the fibres from most of the 
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seed coat fragments, neps and other contaminants, much like combing. The nep 

count increases rapidly with increased rotor speed and rotor diameter. Strength in OE 

yarn is about 20 % lower than ring spun yarn. The difference in strength is much 

reduced with waste mixing, which means that OE spinning is more advantageous 

when fibre length is short. There is substantial reduction in Uster irregularity and 

imperfection levels in the yarn with OE spinning, even at the highest rotor speeds 

used in the studies 152(Monahar, 1983).  

 

 

Figure 5.10: Vortex Spinning – drawn sliver is reduced to a small continuous strand of fibres 
and fed through an air-jet nozzle with rotating jets of air which twists the fibres together and 

form a yarn. 

 
The major marketing feature of Murata Vortex Spinning (MVS) is that it is capable 

of spinning uncombed cotton slivers into acceptable yarns at significantly higher 

speeds than with any other system. The yarn structure is different from jet-spun yarn 

with many more wrapper fibres, and in some ways, the vortex yarn resembles a two-

fold yarn. There were concerns regarding excessive fibre loss using this spinning 

machine. Even though the fibre loss may be about 8 percent, most of this is short 
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fibre, which would not contribute to yarn quality 153(Naylor, 2002). While there is a 

loss of predominantly short fibre at the spinning frame - in the neighbourhood of 4 to 

7% - it is 'almost like' performing a combing enhancement. This shows up in the 

sheen of the fabric and strength of yarn, even though a carded sliver is being fed to 

the spinning frame 154(Schreiner, date unknown).   

 

5.13.4 Winding 

 

9).  

Yarns intended for the warp (lengthwise element of the woven fabrics) are processed 

through the winder (Figure 5.11) to obtain the proper size package for warping. The 

winder is also used to package yarns for shipping. Van der Sluijs 155(1999) found 

that, at a winding speed of 600 m/min, the winding process increases yarn neps by 

about 20%. This could be due to the tension applied to the yarn during winding; 

fibres may slip, and later, when the tension is released, certain fibres may move 

together and form small knots. Nep formation is also influenced by winding elements 

such as tensioners and yarn guides, and the overall condition of those machine parts 

that come into direct contact with the yarn 156(van der Sluijs, 199

 

 

Figure 5.11: Winding in the Mill 
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5.2 White Speck Variety studies Methodology 
The first experimental study conducted with AMS (USDA’s Agricultural Marketing 

Service) retained little history about the bale, except the region where it was grown, 

the variety, the gin used, and the general processing levels (number of lint cleaners) 

at the gins. The last three studies exercised greater control over the cotton and 

ginning. Samples were identified in the field and agronomic data were collected. The 

samples were then ginned under certain settings, and samples of lint were collected 

from the bale press. Fibres were evaluated by classing, HVI, FMT, AFIS, Lintronics 

and cross-section image analysis. The mill processing for these three studies 

followed the same protocols as the first study except for yarn size. In addition, the 

final study increased carding production from 70 lbs/hour to 150 lbs/hour to be more 

in line with industrial standards. The yarns for all of these studies were woven into a 

common combed warp, producing a filling faced sateen fabric at SRRC (Figure 

5.12). The experimental yarns cover approximately 84% to 92% of the fabric surface, 

a factor that is considered when comparing studies (Figure 5.13). The fabrics were 

dyed and image analysed for white specks at SRRC using the AutoRate Program 

(Version AR-04-03 [April 2003]) as described at the end of Chapter 4. Most studies 

do not cover fabric neps, they usually conclude with yarn quality, which makes these 

studies unusual in design, as the primary results are fabric appearance. 

 

Dyeing of Fabric 
The fabric was finished with a 0.1% Prechem 70, 0.3% T.S.P.P. (tetrasodium 

phosphate) boiloff, a caustic scour of 1.1% Prechem SN, 1.1% Mayquest 80, 0.1% 

Prechem 70 and 0.7% sodium hydroxide (caustic soda), followed by the same boiloff 

procedure. It was then bleached (0.1% Prechem 70, 0.5% Mayquest BLE and 3.0% 
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Peroxide (Albone 35) and dyed with 4% Cibacron Navy F-G Blue 184 (owf-on 

weight of fabric), 0.5% Calgon, 8% NaCl, 0.8% Na2CO3 (soda ash) and 0.5% Triton 

X-100. This reactive dye (Colour Index Reactive Blue184) effectively highlights 

white specks in finished fabrics. 



 

. 

 

Figure 5.12:   Five harness, filling-face sateen fabric construction 157(Potter, 1967). 
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Figure 5.13: Calculating surface coverage of the experimental yarns. 
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5.2.1 US Leading Variety Study – (LVS) 
The 1993 US LVS study was undertaken to quantify the impact of different 

processing regimes on white speck formation.   Twenty-six bales of cotton (24 

upland and 2 American Pima selected by H. H. Ramey Jr. of AMS), were purchased 

to represent leading varieties commercially grown in the United States in the test 

program, Five additional varieties were specifically grown to give a range of white 

specks as recommended by W. R. Meredith. Those five varieties were all harvested 

from the same rain grown field in Stoneville, Mississippi and processed identically to 

the 26 varieties mentioned above. The fibres were ginned using two lint cleaners. All 

150 pounds of each sample were processed in the same manner 158(USDA, AMS, 

1994) at CQRS (Cotton Quality Research Center) in Clemson, SC, USA. See flow 

chart in Appendix A - Figure A1- 2. 

 

Table 5.1 describes the varieties and the growing areas used. All of the cottons were 

single carded at CQRS at a rate of 70 lbs/hour. The ring-spun 36’s yarns gave 

88.53% surface coverage on the dyed fabrics. The U.S. LVS were divided into 

several sub-groups to reflect the mechanical processing. In the first sub-group are 

standard US cottons with standard ginning and mill processing. The second group 

had heavy cleaning at the gin because the cotton was stripper harvested or because 

three lint cleaners were the standard for that gin. Standard mill processing was used 

for this group. The third group had standard ginning, but the cottons were combed in 

the mill. The Acala cottons, sample numbers 19 to 22, were both carded and then 

combed before ring spinning. The combed versions of these cottons were 27 to 30. 

The Pima cottons, 25 and 26, were only combed, as these varieties typically are 

combed. The fourth group is the 1987 EVS study, similar to the original EVS study 



in Chapter 4. In addition to the carded cottons, a combing study was included as part 

of the LVS (ID numbers 25 to 30).  

Table 5.1:  US LVS has several subgroups. Standard US cottons, cottons with heavy 

cleaning at the gin, combed cottons and the 1987 EVS cottons. The second column 

identifies each cotton  (Study -yarn size and type- ID number).  

 

5.2.2 Australian Field Study 1998 (AU98) 
Two series of field studies were conducted in Australia to complement the US LVS 

studies.  They are named the AU98 and AU99 studies in this dissertation.  The 
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objective of these studies was to isolate variety and environmental effects from 

machinery effects on nep formation. 

 

The AU98 study was conducted first, and 30 cotton samples were collected from 

across Australia to include eight different Australian varieties, with four locations or 

irrigation conditions (two varieties only have three locations, due to timing 

problems). Each sample had a known history regarding variety and growing issues 

such as drought, flood, cloud cover, high-low temperatures, or specific field 

problems. For example, if the white speck data for one variety has lower values at 

one location than another, the field history would show if the high white speck data 

were influenced by drought, flooding, or low sun days. It would be obvious that it 

was a weather problem rather than a varietal problem. For the purposes of 

quantifying the tendency of the variety to form white specks, the low white speck 

data would be used, but both the high and low white speck data are used for the fibre 

to fabric prediction study detailed in Chapter 6. By using all of the fibre data, 

including field conditions that increased immature fibre production, useful 

information could be obtained to help reduce white specks in the future and 

prediction equations for yarns and fabrics from fibre properties without processing 

interactions can be determined. 

 

Thirty samples of seedcotton, each 1500 kg in weight, were baled using a small wool 

bale press in the field. Each sample was split into two 750 kg samples at Queensland 

Cotton’s Emerald Gin and ginned (approximately 5 bales/hr to assist in sampling; 

normal gin production is about 6 bales/hr) using one lint cleaner on one set and two 

lint cleaners on the second set of samples. All of the samples were processed through 
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one gin in one line with common equipment settings, preserving the individual 

identities of the lots. The bulk of the ginned cottons were sold, reserving 50 lbs. of 

each of the 60 samples, which were sent to CQRS (Cotton Quality Research Station, 

Clemson SC, US). The 60 cotton bale samples were processed into 36’s and 22’s 

ring yarns and 22’s and 10’s OE yarns using the same processing protocol as the U.S 

LVS program. The full-scale equipment at CQRS is able to handle a minimum of 50 

lbs. See flow chart in Appendix A - Figure A1- 3. 

  

Cotton Seed Distributors (CSD) in Wee Waa furnishes 90% of seed planted in 

Australia and Deltapine provide 10% of the seed planted in Australia. Ninety % of 

CSD’s sales come from five lines - SiCala V2 and V2i, SiOkra V15 and V15i, and 

SiCot 189. Deltapine seed is mostly Delta Pearl. These were included in the study 

together with an Inguard line of genetically modified cotton called NuCOTN. 

 

One CSD variety, CS50, tends to have low micronaire, depending on the growing 

season. It is a long season variety that yields well, but our crop experienced a cold 

start to the growing season. One CS50 sample in Emerald experienced heavy rainfall 

twice following irrigation, so the urea fertiliser leached down slope. As a result, the 

upper end of the field ran out of nitrogen in early January.  We would expect that 

cotton from the upper end would have the worst problem with white speck.  

 

 

 

 

 



Table 5.2:  Identification of the Au 98 cottons using one lint cleaner (LC) at the gin. 
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Table 5.3:  Continuation of the identification of the Au 98 cottons - two lint cleaners (LC) 

at the gin. 

 

 

5.2.3 Australian Field Study 1999 (AU99) 
The second Australian field trial was based on module size cotton samples from the 

1999 Crop. This meant that it was restricted by freight costs to the 'catchment' of one 

gin. It was not possible to have equal numbers of a selected group of varieties in this 

study because there were not enough prospective samples from which to choose. 

This meant that certain varieties were represented by many samples and other 

varieties by single samples. The decision was taken to accept the statistical 
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constraints on comparisons between varieties in order to get the benefits of having 

more samples overall for wider comparisons. Namoi Co-op's Wathagar gin, east of 

Moree was selected for processing the samples. Cotton was selected in the field, and 

harvested normally by spindle picking. At harvest, the cotton was specially tagged 

and diverted to stand with the other sample modules until a suitable time. The 36 

modules comprised 540 tonnes of seedcotton and required about 20 hours running 

time for the Wathagar gin. A rain front arrived after the first 12 hours of ginning, 

changing the ambient atmospheric conditions. The decision was then made to break 

the ginning after the 13th sample module. This was done assuming that fewer 

problems would be caused by the break in continuity than were likely to be caused 

by ginning under markedly different atmospheric conditions. The ginning of the 

remaining 23 sample modules resumed 21 days later under conditions similar to 

those existing for the first 13. All ginning was done during a 'day' shift, which is 12 

hours from 8 a.m. to 8 p.m. The equipment was being used in the main run of the 

season's cotton at the time the samples were ginned. No changes were made for the 

sample modules except for the number of lint cleaners brought into use. 

 

In this AU99 trial, the gin’s operation had to be continuously managed.  The first half 

of each module was ginned using two lint cleaners, which was standard for that gin 

in that season. The flow of seedcotton from the module feeder was then stopped, and 

a bale of cotton fibre was pressed. A lint sample was taken at this time and 

adjustments were made to the equipment so that both lint cleaners were by-passed. 

The flow of seedcotton was resumed until a second bale was pressed. A sample of 

this 'zero lint cleaner' cotton was then removed in the same way as the previous 

sample, and the two lint cleaners were brought back into use. The flow of seedcotton 
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then resumed to complete ginning of that module and start the sequence again with 

the next sample module. Each 25kg lint sample was weighed, and then pressed into 

woolpacks (small bales) in a nearby wool press. Four samples were pressed into each 

woolpack. The lint samples in woolpacks were transported and stored for further 

processing. Smaller lint samples were taken for laboratory analysis. After ginning, 

the lint was freighted to the International Fibre Centre (IFC), Melbourne, Victoria, 

Australia, to be spun on a ring spinning frame to a nominal yarn size of 30's Ne (19.7 

Tex). The spinning specifications were set up to match the U.S. LVS mill processing 

protocol. See flow chart in Appendix A - Figure A1- 4. 

 

The processing of yarns from this study into fabrics experienced technical problems.  

Initially, the yarns were woven and dyed by ITC, International Textile Center, 

Lubbock, Texas, U. S., for a fee, using a common combed warp, in a filling faced 

sateen for dyeing and white speck evaluation. The yarns were backwound before 

weaving and there was a large amount of “fly” in the air during rewinding. The 

fabrics all appeared relatively free of white specks. When the fabrics were tested on 

AutoRate, there was no significant difference among these fabrics for white speck, 

even though the fibre data indicated it should be significant. The yarns were sent to 

USDA and rewoven on the same warp as was used in previous studies. The fabrics 

were visibly different as can be seen in the results section (Figure 6.5).  

 

All of the cottons from this trial were CSD and DP smooth leaf Upland varieties. 

Varieties with “i” as the last letter in their variety name are Inguard varieties, single 

BT gene (same as US Bollguard™). The 666 and Line XXXi are alternative names 

for an experimental variety from CSD. S189i (ct) distinguishes that module from 



another S189i module, both from Statham.  The former was grown amongst a range 

of conventional varieties and was sprayed when they were sprayed. The latter was 

grown amongst a range of Inguard varieties and had the same field treatments as the 

Inguard varieties. 

Table 5.4:  Identification of the Au 99 cottons using 0 & 2 lint cleaners (LC) at the gin. 
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5.2.4 US 2001 Variety Study  (U.S. 2001) 
The cottons for the U.S. Cotton Variety Textile Processing Trials were grown in 

Georgia, Mississippi and Texas during the 2001 season. The Georgia cottons were 

grown in the same field, spindle picked and ginned with one lint cleaner. The Texas 

cottons were grown in one field, stripper picked and ginned using two lint cleaners. 

The Mississippi cottons were grown in the same area and obtained commercially 

without ginning information. Eight bales of cotton were collected for each variety 

and location for a total of 168 bales. Each bale for each variety was sampled and 

blended for processing. Yarns were made by CQRS from one blended bale per 

variety per location (21 Blocks). Blended bales were processed using the same 

protocol as the LVS (detailed below) study except for carding speeds. Ring, OE and 

Vortex yarns were spun.  See flow chart in Appendix A - Figure A1-5.  The 

processing protocol is in Table 5.5.  

Table 5.5: Mill processing protocol for the US 2001 cottons 

Opening & Carding: blended bales carded at 150 pounds per hour similar to 
industry speeds. 
Drawing 1st:  The card sliver was split into 4 equal groups for further 
processing: 
For Open End Spinning - 55 gr. sliver for spinning. 
For Ring Spinning - 60 gr. sliver for 2nd drawing. 
For Vortex Spinning - 55 gr. sliver for 2nd drawing. 
Drawing 2nd:  
For Ring Spinning - 61 gr. sliver for roving. 
For Vortex Spinning - 45 gr. sliver for 3rd drawing. 
Drawing 3rd:  
For Vortex Spinning - 24 cans for spinning 40 gr. sliver.  
Roving For Ring Spinning: 0.75 HR (Hank Roving) 1.30 TM (Twist Multiplier)  
Spinning:  
OES:  Spin 20/1’s with a 4.6 TM.  
Ring:  Spin 20/1’s with a 4.3 TM. 
Vortex:  Spin 20/1’s. 
Weaving:  The yarns were woven as a filling faced sateen in a combed common 
warp as detailed in Figure 5.13.  

 

 



Table 5.6: Identification of the US 2001 cottons. 
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6. RESULTS OF FIELD STUDIES 
Data obtained in the previous chapter were analysed for variety, environment and 

machinery interactions.  The most important fibre data for each of the measurement 

systems and the white speck fabric data for the four large-scale studies are contained 

in Appendix B. 

 

6.1 Results - LVS  
This study was an extension of the candidate’s research with the Agriculture 

Marketing Services (AMS, USDA) on the leading 26 Varieties in the USA. The U.S. 

study included varieties exhibiting a wide range in levels of white specks in the 

finished fabrics. It must be recalled that seedcotton contains very few neps. Thus, 

neps are largely a result of mechanical processing actions, such as harvesting, 

ginning, and cleaning. The varieties were collected from different gins and 

demonstrated that true varietal differences were not readily discernable because of 

the processing interactions, as can be seen in Figure 6.1.  

 

Figure 6.1:  AFIS Bale Data vs. White Speck for the US 26 Leading Varieties and the 5 Controls 
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The different levels of processing break into distinct groups on the graph, signifying 

that processing definitely has an effect on the level of white specks. The control 

group has the highest r2 of 0.92. Even though the other groups have lower R2 values, 

the relationships of the Buckling Coefficients (AFIS Version 2) to white specks show 

that harsher ginning actions will lead to higher levels of white specks, given similar 

buckling coefficients. Combing removes neps, mainly immature fibre clusters that 

are the ultimate cause of white specks, and short fibres. Since most neps are white 

specks, it is not surprising that the combed yarns make fabrics having much lower 

levels of white specks than the carded yarns, as seen in Figure 6.2. The standard 

cottons have the next highest level of white specks on Figure 6.1. These fibres were 

ginned using one or two lint cleaners, but in view of the significant difference 

between the standard cottons and the controls, which used two lint cleaners, it is 

probable that most of the standard cottons were processed with only one lint cleaner. 

The highest level of white specks appears in the heavily cleaned cottons.  
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 Figure 6.2: Combing significantly reduces white specks (these fabrics are from the LVS). 
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It is concluded from the analysis that combing results in a major reduction in the 

level of white specks (Figure 6.2). . Combing is one of the tools that mills can use to 

improve the quality of cottons with high levels of immature fibres. 

  
It is also concluded that for true varietal differences to be readily discernable, cottons 

should be grown across a wide region with duplication for varieties, and then ginned 

at a single gin with yarns produced on the same spinning system. This approach 

eliminates processing variability in the data. True bale cotton fibre properties could 

then be related to yarn and fabric strengths and white specks in the finished fabric. 

The Australian field studies were undertaken to meet this objective. 

6.2 Results AU98 & AU99 White Speck Studies 

6.2.1 Yarn Spinning System 
Open-End (OE) spinning had a significantly lower level of white specks than ring 

spinning when the Australian fibres were evaluated (Figure 6.3). Essentially, the 

opening system combs out the clusters of immature fibres and discards them as trash. 

The opening system was designed to remove trash from the fibre before feeding the 

individualized fibres to the rotor, to improve uniformity and increase efficiency. 

Very small differences are seen in fabrics produced from a large range of fibre 

qualities when OE spinning is employed; however, the fabric quality is much more 

variable when the fibres are ring spun.  



 

Figure 6.3: OE spinning has minimal levels of white specks as compared to ring spinning. 

 

6.2.2 Yarn Size 
OE spinning had such low levels of white specks that no significant differences were 

seen in the data. Figure 6.3 shows the yarn size effect. However, a significant 

difference was found in white speck levels for ring spinning. This is easily 

explainable when it is considered that a smaller yarn (30’s) has less weight for the 

same length than a heavier yarn (20’s). Essentially, since there is no means of 

removing the white speck in ring spinning, like the opening system in OE spinning, 

the number of specks per gram remains the same after spinning. The number of neps 

should remain the same for a given weight, but when that same weight of fibres is 

drafted down (stretched) to a smaller yarn size, the same number of neps is spread 

out over a longer length.  This results in lower nep/white speck counts per length of 

yarn and the fabrics made from smaller yarns, This is characterized in Figure 6.4 
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with the 36’s having a significantly lower level of white specks than the 22’s. Once 

the data were adjusted for yarn size, there was no significant difference in white 

speck levels. It is concluded that comparisons of different studies require the white 

speck counts to be adjusted by weight to a common basis equivalent to 30’s yarns. 

 
Figure 6.4: Yarn size effect on % white and data adjusted on basis of weight. 

 

 

6.2.3 Lint Cleaner Treatments 
When the 1999 cotton was being ginned, the zero lint cleaner treatment cotton was 

visibly trashier than the two lint cleaner cotton. In fact, it caused concern among the 

ginning staff that it would be a problem. While the cotton was being baled, the 

comment was made that "ginners have lost their jobs for producing lint with less 

trash than this.” The zero lint cleaner treatment had 160% more trash, but 15% less 

short fibre content. Short fibre content is a good indicator of severity of gin 

processing and fibre damage; low short fibre indicates gentle ginning. It was also 

2.5% longer (by HVI), which corresponded to 1/32nd of an inch. The only grading 
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attributes where the zero lint cleaner treatment scored worse were the trash and 

colour attributes. These strongly determine the bale value under the current classing 

scheme (hence the comment reported above). This is what might be called the 

ginner's paradox - he can gin for bale value, or he can gin for best quality of the 

cotton, but he cannot do both at present. The zero (Au99) and one lint cleaner (Au98) 

treatments are superior to the two lint cleaner treatment in all attributes that 

determine the realized quality of the cotton, except for trash content. 

 

Figure 6.5 shows the effect of lint cleaner treatments on fabric quality (% White for 

the 1998 and 1999 field trials). The quality as seen in the final product, i.e., the dyed 

fabrics, shows no statistically significant differences between the two gin treatments 

(one and two lint cleaners for 1998 or between zero and two lint cleaners for 1999) 

for the % white (percent area of fabric occupied by white speck neps). One might 

expect from earlier published work by the candidate (Figure 5.8) that there would be 

a difference in the levels of fabric white specks due to different levels of lint 

cleaning. However there was no significant difference, indicating that the cards used 

in these studies were in excellent condition with sharp wires, so that the ginning 

effects were masked. A card with worn wires would probably have shown lint 

cleaner effects. This emphasizes how important it is for mills to keep their cards in 

top condition.  
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Figure 6.5: Lint cleaner effects on white specks for 1998 and 1999 field studies. 
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6.2.4 Winding 
The Au99 study samples were originally sent to ITC for weaving and dyeing. The 

subsequent analyses gave very weak fibre to fabric (% white) relationships and the 

fabrics appeared to have lower levels of white specks than were expected considering 

the maturity of the fibres. When the weaver was questioned, the reason for these low 

white speck levels was discovered. The yarns had to be rewound (backwound) to 

smaller packages when received from Australia. A large amount of “fly,” i.e., loose 

fibre, was noticed in the air during the winding process. The yarns were shipped to 

SRRC and the winder was checked for any sharp edges or high tension on trial 

samples. The Au98 samples were backwound with minimum weights on the 

tensioners to minimize any fly. New fabrics were woven, dyed, and analysed and a 

significant difference was seen between the two sets of fabrics; but not between the 

levels of lint cleaning for either set of fabrics. The % white for the fabrics from ITC 

(after backwinding) and SRRC are shown in Figure 6.5, bottom graph).  

 

This same phenomenon occurred in a mill in Australia. The mill manager 

complained that his knitted yarns were all fine, but he had high returns on the same 

ring yarns due to white specks when the fabrics were woven and dyed. The yarns 

were sourced from the same process but only half were waxed for knitting. In the 

waxing application, the yarns are backwound as the wax is applied. A considerable 

amount of fly, which must have been immature white speck fibres, was stripped off 

the yarns as they went past the tensioners. Having noted this effect twice (once in the 

Australian mill and in this study), I conclude that it is an area that warrants future 

research, but at the moment does not provide a consistent method of white speck 

removal. 
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6.3 Results U.S. 2001 

6.3.1 Harvesting Method 
The U.S. 2001 variety study focussed on two varieties that were grown at three 

different locations (Georgia, Mississippi and Texas) during the 2001 season. The 

Georgia cottons were grown in the same field, spindle-picked and ginned with one 

lint cleaner. The Texas cottons were grown in one field; stripper picked and ginned 

using two lint cleaners. The Mississippi cottons were grown in the same area and 

obtained commercially without ginning information. CQRS processed the cottons in 

the same manner as the other studies, except that they carded at 150 lbs/hour, typical 

of current mill processing. 

 

The proportion of white area on the fabrics was significantly higher for the stripper-

picked cottons in Texas.  Drought and the stripper picking process contributed to this 

effect. . The stripper-picked seedcottons generally have so much more trash that they 

need extra precleaning and two lint cleaners in the gin to bring the cotton up to grade. 

The level of white specks in the Texas stripper-picked cottons in this study was 

almost double that from the other regions, due to the combination of higher levels of 

immature cotton and harsh processing.  These results are illustrated in Figure 6.6 

below. 

 



 
Figure 6.6: Stripper and spindle picking effects on white speck levels. 

 

 

6.3.2 Spinning Systems 
This study also compared three spinning systems. The Open End (OE) and vortex 

systems both have opening systems that comb the fibres before spinning, removing 

trash, short fibre, and clusters of immature fibres. This results in a significantly lower 

level of white specks than occurs with the ring spun yarns across all locations.  The 

Texas cottons, which had extremely high levels of white specks, were dramatically 

affected (Figure 6.7). 
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Figure 6.7: OE and Vortex spinning remove white specks. The resultant fabrics are significantly 

lower in white specks levels than fabrics made from ring spun yarns 

 
 

 

6.4 Field Studies’ Conclusions 
To put all of the studies in perspective and so enable direct comparisons, the data 

were adjusted for each study to allow for fabric structure and yarn size as if all yarns 

were 30/1 and the fabrics were 100% experimental yarns. Visually the fabrics can be 

broken into several groups, based on my judgment from the hundreds of fabrics I 

analysed in this project. 

Excellent fabrics < 0.03 %W 
Acceptable fabrics < 0.07 %W 
Poor fabrics > 0.09 %W 

 
 
Figure 6.8 shows the results from the five different white speck studies described in 

this thesis. 
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Figure 6.8: % White on fabrics for five studies. Data has been adjusted to account for yarn size, fabric construction and extrapolated to 100% Surface coverage by 
experimental yarns.   
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The initial study (U.S. EVS) is the only one that used a full warp and filling for each 

fabric from the experimental fibres. The remaining studies have a common combed 

warp (to remove the white specks) and the experimental filling yarns are used to 

weave a filling faced sateen fabric that has approximately 85% surface coverage 

from the experimental yarns. The white speck data have been adjusted for yarn size 

and fabric construction as if all fabrics were 100% surface coverage with 30’s filling 

yarns, so the results can be evaluated on the same basis. The coloured lines are to 

help identify the individual studies. The first study, U.S. EVS, is simply the first four 

data points indicated by the white circles (red lines). DP90 and EAC-30 both yielded 

excellent fabrics, while the STV825 and EAC-32 were visibly poor fabrics due to the 

high level of white specks. The results were as expected, with the level of white 

specks being extremely low and extremely high for the two Acala varieties (see 

Chapter 4). 

 

The next study, U.S. LVS (triangles and blue lines), also included a control with 

varieties that were expected to range from extremely low to extremely high levels of 

white specks. All of the cottons were processed identically in the mill by CQRS. The 

five white triangles indicate the extreme control varieties in the study for that year. 

The extreme control group was also grown in the same field and processed 

identically to those in the previous extreme study. The green triangles indicate the 

varieties with one and two lint cleaners. The purple triangles indicate the varieties 

that were combed and have very low levels of white specks. Finally, the black 

triangles are for the varieties that were heavily cleaned (stripper harvested with 2 or 3 

lint cleaners).  
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The LVS data show significant differences in levels of white specks due to 

processing. Most of the cottons in the LVS fall within a range that is visibly 

acceptable. The green box indicates the range (% White < 0.07%) representing 

acceptable levels of white speck. Any value greater than this is likely to be 

problematic. The combed cottons are nice and clean, below the 0.05 percent level.  

 

In the third study, Australia 1998 (diamonds) cotton was considered one of the best 

crop years in Australian history. The cotton had excellent fibre properties and as 

shown in Fig 5.24, produced excellent fabrics, many of which were as good as 

combed cottons. The seedcottons were brought to the same gin and both 1 and 2 lint 

cleaners were used. This particular crop year produced very mature fibres and no 

significant difference was seen due to lint cleaning. This study showed there was a 

difference due to yarn sizes and type of spinning system. OE spinning combined with 

one of Australia’s best crop years produced fabrics that had the lowest white speck 

levels of all the studies. 

 

The fourth study, Australia’s 1999 crop (green diamonds, pink lines), had maturity 

problems due to drought and the levels of white specks were significantly higher than 

for the 1998 crop. The Australian 1999 crop yield was less than anticipated due to 

late planting, high insect pressure and harvest rains, all of which contributed to a 

smaller, lower quality crop. There were unusually wet conditions before planting, 

and a summer that was not exceptionally hot; in addition, aphid numbers were much 

higher than usual. In addition to these problems, some areas of the Australian cotton 

crop suffered from an unidentified disease or virus, which seemed to be associated 

with the presence of aphids early in the season. The disease resulted in low numbers 
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of bolls, and small bolls containing only 5-6 seeds (usually 9 or 10) 159(Southern 

Hemisphere Crop report 4/26/1999). The report states, “Fortunately, the quality of 

this cotton has not been affected, only yields. All parameters have been more than 

adequate, with all merchants extremely satisfied with the quality outruns160(Southern 

Hemisphere Crop report 4/26/1999).” This illustrates that what appears to be a good 

crop by HVI standards may in fact be a poor quality crop when the final product 

(dyed fabric) is judged. The 1999 crop resulted in white speck problems in the mills 

in 2000.  

 

The Australia 1999 crop’s higher white speck levels are more similar to the standard 

cottons in the final study, i.e., the U.S. 2001 study (shown as black lines, with green 

squares for the standard cottons and black squares for the stripper-harvested cottons), 

which also experienced weather problems that affected maturity. The higher white 

speck level is also due to higher carding rates (150 lbs per hour as compared to 70 lbs 

per hour). High cylinder speeds are known to increase nep levels. The stripper-

harvested crops are black squares for the US 2001 crop and black triangles for the 

U.S. LVS crop; in both cases, the excess cleaning significantly increased the level of 

white specks compared to the varieties with standard cleaning for those years. The 

higher carding rates make the U.S.2001 stripper samples the most extreme (highest 

% White) in the study. When all of this information is analysed, the measurements of 

immaturity can be evaluated to predict levels of the white speck phenomenon. Many 

measurement systems are attempting to characterize maturity. Results obtained from 

several of these systems will be presented in the next chapter. 
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7. WHITE SPECK MODEL DEVELOPMENT 
PREDICTING WHITE SPECKS FROM 

HIGH-SPEED FIBRE MEASUREMENT SYSTEMS 
This chapter combines and analyses the results and knowledge presented in the 

previous chapters to develop prediction equations of white speck from fibre data 

measured by several high-speed fibre measurement systems.   

7.1 Introduction  
The studies undertaken in this project provide an enormous amount of insight into 

mechanical processing effects on white specks, but only the last study was processed 

at the higher speeds used by industry. The US 2001 cottons are therefore considered 

to provide the best set of data to develop prediction equations of white specks in 

fabrics from fibre properties. Not only did the US 2001 study have higher carding 

rates, it also had the widest range in white speck levels of all of the studies. Some 

white speck levels were as low as those found in some of the combed cottons in the 

LVS study. The stripper-harvested cottons from regions with drought problems had 

the highest white speck levels in all of the studies.  

Ring, Open End and Vortex yarns were spun for this study, but the OE and Vortex 

spinning removed the bulk of the white specks, so the prediction equations are based 

on data from the fabrics made with ring spun filling. Cross-sections, FMT, HVI, 

AFIS, and Lintronics provided measured fibre properties from the bale.  

 

The present cotton marketing system is based on average values of fibre length, 

strength, micronaire, colour and trash. The commercial price only reflects fibre value 

on a broad basis. With increased processing speeds, more cleaning of fibre, new 

varieties, field treatments and other improvements such as genetically engineered 



cotton, the bale fibre properties provided by the current system can not accurately 

predict yarn and fabric quality, nor the processability of cotton. In general, cottons 

with low micronaire, long fibres, low fibre weight per length, and a high percentage 

of large motes tend to develop more neps during processing 161(Hughs, 1988). The 

fundamental importance of fibre maturity is not adequately reflected in these values. 

Micronaire is the most valuable of the HVI parameters currently available for 

indicating the level of fibre maturity, because it correlates with average maturity and 

indicates thin walled fibres. Micronaire is correlated to a combination of maturity 

and fineness and is more useful if the variety is known. Given two varieties with the 

same micronaire, but different fully mature perimeters, the smaller perimeter fibre 

will be more mature than the larger perimeter fibre. Unless extreme, the fibre values 

currently provided to mills on a bale of cotton do not fully indicate a white speck 

problem.  

 

Figure 7.1: Micronaire predicts 87% of white specks for the US 2001 study. Micronafis by AFIS 
Version 2 only predicts 61% of the white specks. 
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Immature fibres are the ultimate cause of white specks and micronaire is the 

measurement that has been classically used to judge maturity. Graph 7.1 shows that 

micronaire as measured by HVI and FMT predicts approximately 87% of the white 

specks seen on the dyed fabric. Micronafis is the Micronaire measurement provided 

by AFIS Version 2 but it tends to be lower (only 61%) than the classical 

measurements. 

 

7.2 Methodology  
This study was designed from the standpoint that cotton is ultimately valued at the 

consumer product level, so the best way to gauge the effects of a particular factor in 

cotton processing is to analyse its effect on realised quality, that is, quality seen at the 

fabric stage. However, since quality of cotton is based on fibre quality, fibre 

measurements from different testing systems must be correlated with levels of white 

specks on the fabrics. Multiple regressions were used to investigate the relationship 

between several independent or predictor variables and the dependent or criterion 

variable, % white, by using the "least squares" method to fit a line through a set of 

observations. Multiple linear regressions are used to analyse how a single dependent 

variable is affected by the values of one or more independent variables. 

 

Multiple regression designs contain the separate simple regression designs for two or 

more continuous predictor variables. The regression equation for a multiple 

regression design for the first-order effects of three continuous predictor variables P, 

Q, and R would be  

Y = b0 + b1P + b2Q + b3R. 

The regression line expresses the best prediction of the dependent variable (Y) in this 

http://www.statsoftinc.com/textbook/glosm.html#Multiple Regression
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case % White, given the independent variables (X), fibre properties. However, nature 

is rarely (if ever) perfectly predictable, and usually there is substantial variation of 

the observed points around the fitted regression line. The deviation of a particular 

point from the regression line (its predicted value) is called the residual value. The 

difference between unity (1.0) and the ratio of the residual variability of the Y 

variable to the original variance is referred to as R-square (R2) or the coefficient of 

determination. If we have an R2 of 0.4 then we know that the variability of the Y 

values around the regression line is 1-0.4 times the original variance; in other words, 

we have explained 40% of the original variability, and are left with 60% residual 

variability. Ideally, we would like to explain most if not all of the original variability. 

The R2 value is an indicator of how well the model fits the data (e.g., an R2 close to 

1.0 indicates that we have accounted for almost all of the variability with the 

variables specified in the model) 162(StatSoft, 2004). 

 

Choice of the Number of Variables. Multiple regression is a seductive 

technique: "plug in" as many predictor variables as you can think of and usually at 

least a few of them will come out as being significant. This is because one is 

capitalizing on chance when simply including as many variables as one can think of 

as predictors of some other variable of interest. This problem is compounded when 

the number of observations is relatively low. Intuitively, it is clear that one can 

hardly draw conclusions from an analysis of 100 questionnaire items based on 10 

respondents. Most authors recommend that one should have at least 10 to 20 times as 

many observations (cases, respondents) as one has variables, otherwise the estimates 

of the regression line are probably very unstable and unlikely to replicate if one were 

to do the study over.  
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For these regressions, all of the fabric data was adjusted to compensate for yarn size, 

and fabric structure. All % white data was based on 30’s ring spun yarns with 100% 

surface coverage of experimental yarns. Because the sample set (US2001 study) is 

only 21 fabrics, it was extremely important to minimise the number of variables in 

the predictions. % White for each of the 21 fabrics were analysed in linear 

regressions with each variable for each system. The variable with the highest R-

square was considered the starting point for the multiple regressions developed for 

each system. The other variables were systematically added in and regressed against 

% white. The variable that showed the largest improvement in the adjusted R2 was 

then entered as the second variable and this process continued until reductions were 

seen in the adjusted R2. If the adjusted R2 drops from .89 to .85 even though the R2 

may have improved from .90 to .95, it indicates that the improvement in R2 isn’t 

valid and the variable should be dropped as part of the final regression. Knowledge 

of the subject is also important in ensuring that the result is meaningful. In AFIS, 

perhaps both average length by number and average length by weight may improve 

the R2, but only one would be needed and the one which raises the adjusted R2 the 

most would be the preferred choice. Between statistical and logical evaluation, the 

final fibre properties that had the best regressions for each test were used to make the 

final predictions. SAS/STAT® Analysis software, (Version 8.02 of the SAS System 

for Windows TS Level 02M0 Copyright, SAS Institute Inc. SAS and all other SAS 

Institute Inc. product or service names are registered trademarks or trademarks of 

SAS Institute Inc., Cary, NC, USA.) was also used to evaluate stepwise regressions 

and forward regression selections. Once the final predictions were developed, they 

were compared to regressions of the same fibre properties across all studies to 
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validate their legitimacy.  

7.3 Model Results   
The fibre and white speck data for the following relationships can be found in 

Appendix B. Forward selection model and stepwise regressions were run on fibre 

and white speck data for all studies in SAS to verify the adjusted R-square method. 

 

7.3.1 FMT 
Maturity ratio and fineness were the best predictors of white speck for FMT. 

Maturity ratio alone had an R-square of 0.58 and fineness increased the R-square to 

0.62 and an adjusted R-square of 0.61. The FMT (maturity ratio and fineness) data in 

Figure 7.2 show a strong relation to white specks for the 2001 study, but when 

evaluating all of the studies together, the R-square drops down from 0.86 (adjusted 

R2 = 0.85) to 0.62, which may be explained by the variations between studies such as 

card condition and speeds. The % white prediction for the 2001 fabrics is slightly 

higher than the predicted % white based on all studies. This is due to the increase in 

carding rates for the 2001 study. As cylinder speeds increase, nep levels increase 

making this 2001 study more accurate for current mill processing rates. It also has a 

much higher R-square explaining approximately 86 % of the variability of white 

specks. FMT only measures maturity. Although maturity is the predominant factor 

for white specks, it doesn’t tell the whole story as can be seen in analysis of some of 

the other fibre measurement systems, which indicates that the FMT is not sufficient 

as a basis for predicting white specks.  

 



 
Figure 7.2: % White predicted from FMT (maturity ratio and fineness) data. 

 

 

7.3.2 HVI  
A forward selection model was used across the data for all studies to verify that the 

buckling coefficient, uniformity index and reflectance (Rd) are the best predictors of 

white speck. Buckling coefficient alone had an R-square of 0.41 and uniformity 

index increased the R-square to 0.44, Rd increased the R-square to 0.46 and an 

adjusted R-square of 0.45. Buckling coefficient and its components, UQL (Upper 

Quartile length) and micronaire, were considered separately to eliminate false results 

due to colinearity. 

 

Mechanical entanglements develop when cotton is exposed to processing 

(harvesting, ginning and mill). As Alon and Alexander 163(1978) pointed out, the 

fibre tangles on itself during processing and the longer and more immature the fibre 

is, the more it is prone to nepping. The fibre is stretched and whips back on itself, 
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entangling other fibres in the process. In Figure 7.3, the buckling coefficient (from 

HVI data as defined below) is graphed against white speck. In this case, we see little 

change as compared to the regressions in Figure 7.1. 

Buckling Coefficient 164(Alon, 1978) = L2/µ2 

µ = Micronaire Value 

L = 2.5% Span Length 

The HVI micronaire predicts about 87% (Figure 7.1) of the white specks for the 2001 

study, but for all the studies together the prediction drops down to only 52%; 

similarly, buckling coefficient drops from 89% to 67%. This shows how difficult it is 

for the mills to use micronaire or even the buckling coefficient, which is slightly 

better than micronaire alone, as a way to predict white specks. The information is 

getting lost because of near multi-colinearity when there is a large mixture of 

different cottons with different conditions. When examining the US 2001 study, an 

initial R-square of 0.87 (Figure 7.1), was only slightly improved to 0.89 by using the 

buckling coefficient. With lower carding rates the buckling coefficient was too 

clustered to adequately predict white specks, but with higher carding speeds, and 

extreme differences in maturity for the 2001 study, the buckling coefficient does 

have a strong relationship accounting for 89% of the variability in white specks. 

Uniformity ratio is an indicator of processing severity in the gin (the more processing 

the higher the level of short fibres, which results in lower uniformity). Colour, Rd - 

degree of reflectance, is often an indicator of immaturity due to the reflective quality 

of the flat immature fibres Buckling coefficient, an indicator of neps, with the 

addition of the uniformity ratio, and colour, Rd increased the R-square to 0.93 for the 

2001 study and to 0.88 for the combined US studies. 

 



The HVI data in Figure 7.3 show a strong relation to white specks for the 2001 study 

when using buckling coefficient, uniformity ratio and Rd, from the adjusted R-square 

studies. When evaluating all of the studies together, the R-square drops down from 

0.93 (adjusted R-square = 0.91) to 0.46 (adjusted R-square = 0.45), which may be 

explained by the variations between studies such as mill processing differences.  

 

Figure 7.3: % White predicted from HVI Buckling Coefficient, Uniformity Ratio and RD. 

 

The Au98 crop, was one of the best cotton crops in Australia’s history and the 

resulting fabrics were uniformly low in white specks, many as low as combed 

cottons, which adds a cluster effect to the left bottom corner of Figure 7.3. By 

leaving the Au 98 data out, the R-square went up from 0.46 to 0.64. By removing the 

Au99 data (because those fibres were processed on different mill equipment than the 

other studies), leaves only the US studies for the third regression in Figure 7.3: the R-

square improved to 0.88. This emphasizes the importance for large-scale studies with 

identical mill processing from year to year to obtain a solid database.  
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7.3.3 AFIS  
Three different versions of AFIS (Advanced Fiber Information System by Zellweger 

Uster) were used during this study and they provided a variety of fibre maturity 

measurements that related to white specks (Appendix B). The AFIS rapidly measures 

fibre properties such as length, diameter, maturity, fineness, and neps. Figures 7.4, 

7.5 and 7.6 show the best predictions of white specks from the fibre properties for 

each version. 

 

7.3.3.1 Version 2 
The most significant AFIS fibre properties relating to white speck are Neps per gram, 

Theta CV and SFC(n) (Short Fibre Content (by number)). Theta CV is an indicator 

of maturity. Theta, the circularity of a fibre is a good indicator of maturity in general 

for each variety, although some varieties can be mature and not as circular as other 

mature varieties, but the variability of maturity is an indication of the level of mature 

fibres for that particular sample. Neps/gram obviously provides a good indicator of 

neps, and when Theta CV (an indicator of maturity) and SCF(n) (an indicator of 

harshness of processing) are added the predictions are improved from an R-square of 

0.73 to 0.82 for the combined AFIS factors for the US Studies (Figure 7.4). The R-

square for the US 2001 study is 0.864. An obvious theme has started to emerge, as 

the regressions improve in this analysis. Neps, maturity and processing levels are all 

very influential factors in the level of white specks in a bale of cotton.   

 



 
Figure 7.4: White speck predicted from AFIS version 2 using Neps/gram, SFC(n) and Theta CV. 

 

The regression with buckling coefficient instead of Neps/gram was practically 

identical to the former parameter’s results, further indicating the importance of neps 

or some predictor of neps. IFF (Immature Fibre Fraction- the percentage of fibre with 

values of theta less than 0.25) slightly, but not significantly increases the R-square 

(Figure 7.5). For a small sample set three variables are enough for the prediction 

equation, although it will be interesting to keep an eye on the combination of the four 

factors in future research, especially since IFC (Version 4’s version of IFF) is a 

major factor in Version 4’s predictions. 
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Figure 7.5:  White speck predicted from AFIS version 2 using IFF, Neps/gram, SFC(n) and 
Theta CV. 

 
7.3.3.2 Version 4 
The most significant AFIS Version 4 fibre properties relating to white speck are 

Neps per gram, SFC(n) and IFC (Figure 7.6). IFC (Immature Fibre Content %) 

measures the percentage of fibre with values of theta less than 0.25. If there was a 

larger data set, fineness and maturity might be added as indicated by the SAS 

Forward Selection procedure, but with a small sample set of 21 this could not be 

done.  Knowing that nep, maturity and processing factors are all represented, and 

given the high R2 value of 0.95 for the US2001 studies, I concluded that it was best 

to stay with only three variables. 

 

Figure 7.6 also shows the regression results for “All Studies” (The US and Australian 

studies combined) as the first regression line.  The US Studies results are presented 

as the second regression and the US 2001 study as the final regression. The same 

pattern occurs as was found in the analysis of the HVI data. Again this emphasizes 

the importance for large-scale studies with identical mill processing from year to 

 131 



year to obtain a large, solid database with minium mill interactions and enough 

variation in bale fibre properties to provide accurate predictions for % White on 

fabrics.  

 

 
Figure 7.6: White speck predicted from AFIS version 4 using IFC, Neps/gram, and SFC(n). 

 
 
7.3.3.3 Version 5 
The SAS Forward selection model indicated that Neps/gram, Nep Size, Seed coat 

Fragment size (SC Size) and SCF(w) (by weight) were the best predictors of % 

White for AFIS Version 5 data as shown in Figure 7.7.  Using the adjusted R-square 

procedures and the knowledge that was gained from the other studies (Neps, maturity 

and processing levels are import factors in predicting % white), another set of 

variables fitting these criteria was chosen and presented in figure 7.8.  Neps/gram, 

Fineness, Neps/gram, Seed coats/gram and SFC(n) also provided an excellent basis 

for predicting white specks using Version 5 data. Fibres for the LVS samples were 

not tested on Version 5, but the regressions for all studies except LVS, have much 
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higher regressions for % White when the Australian studies were included than any 

of the other measurements studied at this point.  

 
Figure 7.7: White speck predicted from AFIS version 5 using Neps/gram, Nep Size, Seed coats 

Size and SFC(w). 

 
 

 
Figure 7.8: White speck predicted from AFIS version 5 using Fineness, Neps/gram, Seed 

Coats/gram and SFC(n). 
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7.3.4 Lintronics 
The SAS Forward selection model indicated that Neps/gram, Nep Area per gram, 

Seed Coat Fragment size (SC Size) and Maturity were the best predictors of   % 

White for Lintronic’s FiberLab system as shown in Figure 7.9. Excessive lint 

cleaning at the gin tends to increase the number and reduce the size of seed coats 

fragments in processing, so SC Size may be an indicator of processing severity. The 

analysis also includes maturity and neps, so it seems to follow the logical trends seen 

in the other systems’ results. 

 
Figure 7.9: White speck predicted from Lintronic’s FiberLab using Neps (area/gram), Seed 

Coats Neps Size, and Maturity 

 

 134 



 135 

 

8.  CONCLUSIONS  
A bale of cotton’s white speck potential (WSP) can be determined by using the 

prediction equations presented in this thesis.  White specks can be predicted from 

bale fibre properties as measured by the range of high-speed instruments studied 

herein. The US 2001 study has a much broader range of fibre and fabric (% White) 

data and since this study was run at speeds similar to industry, the White Speck 

Potential (WSP) prediction equations were based on this study. The common theme 

that runs true for all of these measurement systems is that the number of neps, fibre 

maturity and severity of processing influence white speck levels. The HVI WSP 

prediction equations below are both based on the Buckling Coefficient (UQL2/mic2). 

The equation with the highest R-Square (0.9247) includes Uniformity Index (an 

indication of the level of processing), but the equation indicates that as the 

Uniformity index increases, white specks increase. This is contrary to my experience 

(as processing increases, white specks increase and as processing increases the 

Uniformity Index decreases), which indicates that the second HVI prediction 

equation (R-Square = 0.8914) without the Uniformity Index would be the more 

reliable prediction equation until a larger database is available. The remaining 

equations for AFIS and Lintronics all have fiber to fabric relationships that I have 

found typical in other studies.   

HVI   R-Square = 0.9247 
%W = 3.3682 *(UQL2/mic2) + 0.02169 * Uniformity Index + 0.00848 * Rd- 2.51531 
 
HVI   R-Square = 0.8914 
%W = 3.516205 *(UQL2/mic2) - 0.11382 
 
AFIS-V2   R-Square = 0.8635 
 %W = 0.0000936 * Nep/g - 0.02054 * SCF(n) +  0.04053 * Theta CV – 1.27841 
 
 AFIS-V4   R-Square = 0.9514 
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%W = 0.000484 * Neps/g + 0.07983 * IFC – 0.01006 * SFC(n) - 0.13291 
 
AFIS-V5   R-Square = 0.9401 
%W = 0.000904 * Nep Size + 0.00047 * Nep/g + 0.00059 * SC Size + 0.2283 * SFC(w) – 1.0662  
 
Lintronic’s FiberLab   R-Square = 0.9192               
%W =- 0.97314 * Maturity + 0.000353 * Nep Area/g – 0.51652 * SC Size + 1.367854 

These equations should be seen as providing preliminary predictions of white specks 

from fibre measurements. They are based on mechanically harvested cottons and are 

only the beginning of a larger scale research project. It’s clear that more studies are 

required to provide a large enough database of collected fibre and fabric 

measurements to improve the prediction equations.  The database should have an 

international fibre set including hand picked cottons, considering the world market 

today, and the confusion as to the meaningfulness of high-speed fibre measurements. 

The most important factor for the success of these future studies is that testing and 

mill processing must be standardised from year to year. The mill equipment must 

have proper settings, and consistent card wires.  

 

This thesis has successfully provided an initial basis for the cotton industry to 

quantify white speck potential from high-speed fibre data.  It has also successfully 

provided a foundation for continuing long-term studies to refine this basis.  The US 

2001 fibres and fabric have already been adopted as the first year of a continuing 

follow-on study to this project. When the long-term study that is being undertaken by 

SRRC and CQRS is completed, the White Speck Potential (WSP) can be confidently 

expected to provide the required nep management tool for mills and breeders. The 

breeders will be able to eliminate varieties that have a propensity to white speck 

early on. In addition, when there is a drought situation that will result in white 

specks, the affected bales can be identified. If these high WSP cottons are used in the 
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right product line, where dyeability is not a problem (such as whites), both the 

producers and the mills will have solved a major economic problem. Shirting, 

undergarments, and sheets and towelling are big markets that consume large 

quantities of cotton, which could handle white speck cottons, without any losses due 

to defects. There is a place for these cottons, where they will not cause a problem; it 

just needs to be identified. Alternatively, if a mill does find it has a white speck 

problem they can minimize it. First, the mill may want to check their card settings 

and wire condition, if the cards are in good running order, the mills may comb it or 

using open-end or vortex spinning to minimize the problem.  
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APPENDIX A         

 
Processing Flow Charts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EVS Flow Chart 
 
 
 

 
Figure A-1: Extreme Variety Study Processing Chart 
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LVS Flow Chart 

 
Figure A-2: US 1987 Leading Variety Study Processing Chart 

 
Au98 Flow Chart 

 
Figure A-3: Australia’s 1998 Field Study Processing Chart 
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Au99 Flow Chart 

 
Figure A-4: Australia’s 1999 Field Study Processing Chart 

 

US 2001 Flow Chart 

 
Figure A-5: US 2001 Variety Study Processing Chart 
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Opening & Carding: 2 - 300 pound blended bales were carded at 150 pounds per 
hour similar to industry speeds. 

Drawing 1st:  The card sliver was split into 4 equal groups for further processing: 

1. For Open End Spinning - Used RSB 51 - Made 55 gr. sliver for spinning. 

2. For Ring Spinning - Used RSB 951 - Made 60 gr. sliver for 2nd drawing. 

3. For Vortex Spinning - Used RSB 951 - Made 55 gr. sliver for 2nd drawing. 

Drawing 2nd:    

1. For Ring Spinning - Used RSB51 -Made 61 gr. sliver for roving. 
2. For Vortex Spinning - Used RSB 951 -Made 45 gr. sliver for 3rd drawing. 

 
Drawing 3rd:              

1. For Vortex Spinning - Used RSB 51 -Made 24 cans for spinning 40 gr. 

sliver.  

Roving For Ring Spinning: Made 0.75 HR (Hank Roving) with a 1.30 TM (Twist 
Multiplier) for spinning.  

Spinning:  

1. OES:  Spin 20/1’s with a 4.6 TM.  
2. Ring:  Spin 20/1’s with a 4.3 TM. 
3. Vortex:  Spin 20/1’s. 

 
Weaving:  The yarns were woven at 90 picks per inch as a 4/1 filling faced sateen (a 
5 harness sateen with a 2 move sateen pattern) in a combed common warp  (30/1 ring 
yarns, 72 ends/inch).  
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APPENDIX B     

 
 
 

Fabric White Speck Data & Fibre Data 



 
Fabric White Speck AutoRate (AR-02-03) Data 

 
EVS 40’s Ring 
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LVS 36’s Ring 
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Au98 36’s Ring 
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Au98 36’s Ring (continued) 
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Au98 22’s Ring 
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Au98 22’s Ring (continued) 
 

 
 

 155



Au98 22’s OE 
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Au98 22’s OE (continued) 
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Au98 10’s OE 
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Au98 10’s OE (continued) 
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Au99 28’s Ring 
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Au99 28’s Ring 
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US01 30’s Ring 
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US01 20’s OE 
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US01 20’s Vortex 
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Fibre Data 

HVI (US 2001 & EVS) 
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HVI (LVS) 
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HVI (Au 1998Continued) 
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HVI (Au 1998Continued) 
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HVI (Au 1999) 
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HVI (Au 1999 Continued) 
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AFIS Versions 2 & 4 (US 2001 & EVS) 
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AFIS Versions 2 & 4 (LVS) 
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AFIS Versions 2 & 4 (Au 1998) 
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AFIS Versions 2 & 4 (Au 1998 Continued) 
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AFIS Versions 2 & 4 (Au 1999) 

 



AFIS Versions 2 & 4 (Au 1999 Continued) 
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AFIS-V5 (US 2001 & EVS) 
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AFIS-V5 - Au98 
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AFIS Versions 5 (Au 1998 Continued) 
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AFIS-V5 – Au99 
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AFIS Versions 5 (Au 1999 Continued) 
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Lintronics (US 2001 & EVS) 
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Lintronics - LVS 
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Lintronics - Au98 
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Lintronics – Au98 (continued) 
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Lintronics – Au99 
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Lintronics – Au99 (continued) 
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