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Development of neutrosophic 
cubic hesitant fuzzy exponential 
aggregation operators 
with application in environmental 
protection problems
Ateeq Ur Rehman 1, Muhammad Gulistan 1,5*, Mumtaz Ali 2*, Mohammed M. Al‑Shamiri 3,4 & 
Shahab Abdulla 2

The population growth and urbanization has caused an exponential increase in waste material. The 
proper disposal of waste is a challenging problem nowadays. The proper disposal site selection with 
typical sets and operators may not yield fruitful results. To handle such problems, the exponential 
aggregation operators based on neutrosophic cubic hesitant fuzzy sets are proposed. For appropriate 
decisions in a decision‑making problem, it is important to have a handy environment and aggregation 
operators. Many multi attribute decision making methods often ignore the uncertainty and hence 
yields the results which are not reliable. The neutrosophic cubic hesitant fuzzy set can efficiently 
handle the complex information in a decision‑making problem, as it combines the advantages of 
neutrosophic cubic set and hesitant fuzzy set. In this paper first we establish exponential operational 
laws in neutrosophic cubic hesitant fuzzy sets, in which the exponents are neutrosophic cubic hesitant 
fuzzy numbers and bases are positive real numbers. In order to use neutrosophic cubic hesitant fuzzy 
sets in decision making, we are developing exponential aggregation operators and investigate their 
properties in the current study. In many multi expert decision‑making methods there are different 
decision matrices but same weighting vector for attributes. The results of a multi expert decision‑
making problem becomes more reliable if every decision expert has its own decision matrix along with 
his own weighting vector for attributes. In this study, we are developing multi expert decision‑making 
method that uses different weights for an attribute corresponding to different experts. At the end 
we present two applications of exponential aggregation operators in environmental protection multi 
attribute decision making problems.

Decision making is one of the crucial problems in real life. Aggregation operators are fundamental tools in 
decision making. The industrial zone site selection and solid waste disposal site selection are two important 
and challenging multi attribute environmental protection problems especially for developing countries. Poor 
management of municipal solid waste leads to environmental and water pollution which would harm to human 
and wildlife. Different sets and their generalizations like fuzzy set (FS), interval valued fuzzy set (IVFS), intui-
tionistic fuzzy set (IFS), interval intuitionistic fuzzy set (IIFS) hesitant fuzzy set (HFS), neutrosophic set (NS), 
neutrosophic cubic set (NCS), and several aggregation operators have been defined so for.  Zadeh1 introduced 
the notion of FS as a generalization of classical set. He further extended the idea to  IVFS2.  Chen3 in 1992 pro-
posed fuzzy MADM methods and discussed their applications in economics.  Chen4 proposed the fuzzy exten-
sion of TOPSIS method for MADM problems.  Xia5 established a novel MADM method. Chang and  Wang6 in 
2009 discussed the applications of fuzzy MADM in successful knowledge development.  Attanassov7 introduced 
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non-membership degree and proposed IFS. Dey et al.8 proposed MADM techniques in IFSs. Later the IFS was 
further extended to  IIFS9. Mondal and  Pramanik10 established intuitionistic fuzzy multi criteria group deci-
sion making approach to quality-brick selection problem. Different researchers established similarity measures 
and other important concepts and successfully apply their models to medical diagnosis and selection criteria. 
Krohling and  Campanharo11 established different useful techniques to sort out MADM problems. Pramanik and 
 Mondal12 established weighted fuzzy similarity measure based on tangent function and its application to medical 
diagnosis.  Xu13 proposed some similarity measures of IFS for MADM.

Jun14 in 2012 combined interval value fuzzy set and fuzzy set to form cubic set. The cubic set is generalization 
of intuitionistic fuzzy set and interval intuitionistic fuzzy set. Cubic set become vital tool to deal the vague data. 
Several  researchers15–17 explored algebraic aspects and apparently define ideal theory in cubic sets. Smarandache 
initiated the concept of indeterminacy and describes the notion of neutrosophic set (NS)18. An NS consists of 
three components truth, indeterminacy and falsehood. All the three components are independent of each other. 
This characteristic of NS enabled researchers to deal with inconsistent and vague data more efficiently. For engi-
neering purposes, the NS is strict to [0,1] and called single valued neutrosophic set presented by Wang et al.19. The 
NS was further extended to interval neutrosophic set (INS)20. After the appearance of NS, researchers put their 
contributions in theoretical as well as technological developments of the set. Several researchers use neutrosophic 
and interval valued neutrosophic environments to construct MADM.  Ye21 proposed similarity measures between 
INSs for MADM. Biswas et al., established useful MADM techniques using entropy and similarity measures in 
neutrosophic environment 22–24.  Kharal25 established a multi-criteria decision making method in neutrosophic 
environment.  Li26 proposed novel neutrosophic number Einstein aggregation operators for MADM problems. 
Mondal and  Pramanik27 established neutrosophic decision making model for clay-brick selection in construction 
field based on grey relational analysis. Saha and  Broumi28 established some new aggregation operators in INSs. 
Zhan et al.29 define aggregation operators and furnished some applications in MADM.

Torra30 defined hesitant fuzzy set. Hesitant fuzzy set is basically a function set on X that when applied to X 
returns a subset of [0,1].  Jun31 in 2015 introduced the concept of neutrosophic cubic set (NCS) which consists 
of both INS and NS. These characteristics of NCS make it a powerful tool to deal the vague and inconsistent 
data more efficiently. Soon after its exploration it attracted the researcher to work in many fields like medicine, 
algebra, engineering, decision making theory. Al-Shumrani32 discussed the stability analysis in neutrosophic 
cubic set with some applications. Cui and Ye 33 proposed logarithmic similarity measure of dynamic NCS and 
discussed their applications in medical diagnosis. Khan et al.34 established exponential aggregation operators 
in neutrosophic cubic environment and applied them in MADM problems. Later the idea of cubic hesitant 
fuzzy set was introduced by Mehmood et al.35.  Ye36,37 established similarity measures in neutrosophic hesitant 
fuzzy set (NHFS) and discussed its applications in MADM. Liu and  Luo38 established some new aggregation 
operators of NHFS for MADM problems. Saha et al.39, proposed hesitant triangular neutrosophic numbers and 
their applications to MADM. Liu and  Shi40 proposed hybrid geometric aggregation operators in interval valued 
neutrosophic hesitant fuzzy sets and discuss its applications in MADM. Biswas et al.41, established useful MADM 
techniques using NHFSs.

Zhu et al.42 introduced the method of β-normalization to add some values to a hesitant fuzzy element (HFE), 
which is a useful technique in case of different cardinalities.  Ye43 proposed new exponential operations and 
aggregation operators of interval neutrosophic sets for MADM. Lu and  Ye44 introduced exponential laws in 
single valued neutrosophic numbers. Later the exponential aggregation operators were introduced and applied 
in typhoon disaster evaluation by Tan et al.45. Wang and  Li46 proposed some aggregation operators in pictures 
hesitant fuzzy set and compared these operators with some existing decision-making methods. Tan and  Zhang47 
introduced trapezoidal fuzzy neutrosophic numbers arithmetic averaging and hybrid arithmetic averaging for 
MADM. Saha et al.48, established q-rung orthopair fuzzy weighted aggregation operators for MADM. Feng et al.49 
define type-2 hesitant fuzzy sets and explore some important properties of these sets. Turkarslan et al.50, in 2021 
proposed the similarity measures in fuzzy multiset with application in medical diagnosis. Saha and  Makharjee51 
defined soft interval-valued intuitionistic fuzzy rough sets and discussed some interesting properties of these 
sets. Senapati et al.52, proposed some novel interval-valued Pythagorean fuzzy aggregation operators based 
on Hamachar triangular norms for MADM. Recently WASPAS technique using picture fuzzy sets for MADM 
problems was established by Senapati et al.53. Wang et al.46, defined picture hesitant fuzzy sets and discussed their 
applications in MADM. Xia and  Xu5 established novel MADM method. Several  researchers29,54–56 established 
many useful techniques for MADM problems.

The NCS consider the truth, indeterminacy and falsity independently but is unable to handle the hesitant 
factor in each component. On the other hand, HFS is more flexible in choosing membership grades. Recently 
Rehman et al., defined  NCHFS57 and geometric aggregation operators of NCHFS for MADM problems. The 
NCHFS can efficiently handle the complex information in a decision-making problem, as it combines the advan-
tages of NCS and HFS. More recently, Rehman et al.58, established Dombi exponential aggregation operators in 
NCHFS and discussed their properties in solid waste disposal site selection. Also  see59,60.

Motivation. The industries play an important role in economic growth and prosperity of the people of a 
region. But there must be a need of proper planning to minimize the negative impacts of industry like pollution. 
Waste material is direct consequence of urbanization and population increase. The proper disposal of waste is 
necessary for prevention of viral diseases like typhoid, dengue and tuberculosis. The increase in population and 
urbanization is exponential so the exponential operational laws and aggregation operators are needed. Regard-
ing to waste material, the information is inconsistent, incomplete and insufficient. These situations can efficiently 
be handled by NCHFS.
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The rest of this paper is organized as follows. “Preliminaries” deals with some basic definitions used later. In 
“Operational laws in neutrosophic cubic hesitant fuzzy set” we discuss NCHFS and algebraic operational laws 
in NCHFS. In “Exponential operational laws in NCHFSs” we introduced exponential operational laws and some 
useful results in NCHFS. “Exponential aggregation operators” deals with exponential aggregation operators 
and their properties in NCHFS. In “Applications of neutrosophic cubic hesitant fuzzy weighted exponential 
aggregation operator to MADM and ME-MADM problems” we establish a MCDM method based on NCHFEA 
operators and use this method in MCDM problem.

Preliminaries

Definition 1 (Ref.21) A fuzzy set (FS) on a nonempty set W is a mapping Ŵ : W → [0, 1].

Definition 2 (Ref.16) The cubic set (CS) on a nonempty set Z is defined by µ = �x; I(x), δ(x)/x ∈ X�, where I(x) 
is an IVFS on Z and δ(x) is an FS on Z.

Definition 3 (Ref.30) A neutrosophic set associated with a crisp set S, is a set of the form 
µ = �e; ξT (e), ξI (e), ξF(e)/e ∈ S� where ξT , ξI , ξF : S → [0, 1] respectively called a truth membership function, 
a non-membership function and a false membership function.

Definition 4 (Ref.17) A neutrosophic cubic set in a nonempty set E is defined as a pair (B,µ) where 
B = �x;BT (e),BI (e),BF(e)/e ∈ E� is an INS and µ = �x;µT (e),µI (e),µF(e)/e ∈ X� is a NS.

Definition 5 (Ref.5) A neutrosophic hesitant fuzzy set a nonempty set E is described as 
µ = �x;µT (e),µI (e),µF(e)/e ∈ E� w h e r e  µT (e),µI (e),µF(e) a r e  t h r e e  H F S s  s u c h  t h a t 
µT (e)+ µI (e)+ µF(e) ≤ 3.

Definition 6 (Ref.38) The object ζ = �x; ξT (x), ξI (x), ξF(x)/x ∈ X� , s called an INHFS on X, where 
ξT (x), ξI (x), ξF(x) are IHFSs.

Zhu et al. proposed the following β-normalization method to enlarge a hesitant fuzzy element, which is a useful 
technique in case of different cardinalities.

Definition 7 (Ref.1) Let m+ and m− be the maximum and minimum elements of a hesitant fuzzy set H and 
ζ(0 ≤ ζ ≤ 1) an optimized parameter. We call m = ζm+ + (1− ζ )m− an added element.

Definition 8 (Ref.40) Let A = �x,Tx ,Tx , Fx� be a SVNS. Then exponential laws in A are defined by

Definition 9 (Ref.52) Let A = �x,
[

AL
T (x),A

U
T (x)

]

,
[

AL
I (x),A

U
I (x)

]

,
[

AL
F(x),A

U
F (x)

]

� be an IVNS. Then exponen-
tial laws in A are defined by

Operational laws in neutrosophic cubic hesitant fuzzy set
In this section operational laws on NCHFS are defined. These operational laws will help to define the proposed 
aggregations operators.

Definition 10 Let X be a nonempty set. A neutrosophic cubic hesitant fuzzy set in X is a pair β = �B, µ� 
where B = {�x; BT (x), BI (x), BF(x)�/x ∈ X} is an interval-valued neutrosophic hesitant set in X and 
µ = {�x; ϑT (x), ϑI (x), ϑF(x)�/x ∈ X} is a neutrosophic hesitant set in X.

Furthermore AT =

{

[AL
jT
, AU

jT
]; j = 1, ..., l

}

, AI =

{

[AL
jI
, AU

jI
]; j = 1, ..., m

}

, AF =

{

[AL
jF
, AU

jF
]; j = 1,

..., n

}

 are some interval values in unit interval [0,1] and µT =
{

µjT
; j = 1, ..., p

}

, µI =
{

µjI ; j = 1, ..., q
}

,

µF =
{

µjF ; j = 1, ..., r
}

 are some values in unit interval [0,1].

Example 1 Let X =
{

x, y, z
}

 The pair α = �A, �� with

�
A =

{ 〈

x, (�)1−Tx , 1− (�)Ix , 1− (�)Fx
〉

; � ∈ (0, 1)
〈

x,
(

1
�
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, 1−

(

1
�

)Ix
, 1−

(

1
�

)Fx
〉

; � ≥ 1
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is a NCHFS.

Definition 11 The sum and product of two NCHFSs α = �A, ��, β = �B, µ� is defined as

Moreover the β-normalization is used in case of different cardinalities.

Definition 12 The scalar multiplication of a scalar q with a NCHFS α = �A, �� is defined by

Theorem 1 For NCHFS  α = �A, �� and a scalar q, we have

where  αq = α ⊗ α ⊗ · · · ⊗ α(q - times). moreover  αq  is a neutrosophic cubic hesitant fuzzy value for every posi-
tive value of q.

Definition 13 The score, accuracy, and certainty of a NCHF value α = �A, �� where 
A = (AT , AI , AF),

AT =

{

[AL
jT
, AU

jT
]; j = 1, . . . , l

}

, AI =

{

[AL
jI
, AU

jI
]; j = 1, . . . , m

}

,AF =

{

[AL
jF
, AU

jF
]; j = 1, . . . , n

}  a n d 

� = (�T , �I , �F), �T =
{

�jT ; j = 1, . . . , p
}

, �I =
{

�jI ; j = 1, . . . , q
}

, �F =
{

�jF ; j = 1, . . . , r
}

 are defined as:

Remark (i) It is evident from the above definition that for any NCHF value α = �A, �� , S(α) ∈ [0, 1] , 
H(α) ∈ [−1, 1] and C(α) ∈ [0, 1].

(ii) If � = ({[1, 1]}, {[1, 1]}, {[0, 0]}, {1}, {1}, {0}) and � = ({[0, 0]}, {[0, 0]}, {[1, 1]}, {0}, {0}, {1}) are respec-
tively the maximum and minimum ideal NCHF values. Then S(�) = 1, S(�) = 0 , H(�) = 1,H(�) = −1 , 
C(�) = 1,C(�) = 0.

AT (x) = {[0.1, 0.5], [0.2, 0.7]}, �T (x) = {0.3, 0.5, 0.7},AI (x) = {[0.2, 0.4], [0.3, 0.6]}, �T (x)

= {0.1, 0.4, 0.7},AF(x) = {[0.1, 0.4], [0, 0.3], [0.6, 0.8]}, �F(x) = {0.4, 0.6}

AT (y) = {[0.1, 0.5], [0.2, 0.7]}, �T (y) = {0.3, 0.5},AI (y) = {[0.2, 0.3], [0.1, 0.6]}, �T (y)

= {0.7, 0.8},AF(y) = {[0.1, 0.4], [0, 0.3]}, �F(y) = {0.4, 0.6}

AT (z) = {[0.1, 0.5], [0.2, 0.7]}, �T (z) = {0.3, 0.5},AI (z) = {[0.2, 0.3], [0.1, 0.6]}, �I (z)

= {0.7, 0.8},AF(z) = {[0.1, 0.4], [0, 0.3]}, �F(z) = {0.4, 0.6}

α ⊕ β =

〈

x,
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L
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L
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− A
L
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L
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, A
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jT
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U
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}

,
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,

{
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〉

,

α⊗β =

〈
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U
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}

,
{

�jTµjT

}

,
{

�jIµjI

}

,
{

�jF + µjF − �jFµjF

}

〉

.

qα =
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(
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)q
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(
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(
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If α = �{[0.1, 0.5], [0.2, 0.7]}, {[0.2, 0.3], [0.1, 0.6]}, {[0.1, 0.4], [0, 0.3]}, {0.1, 0.2}, {0.3, 0.5}, {0.4, 0.8}�,  and 
β = �{[0.4, 0.5], [0.3, 0.4]}, {[0.1, 0.3], [0.2, 0.5]}, {[0.1, 0.4], [0.7, 0.8]}, {0.3, 0.5}, {0.7, 0.8}, {0.4, 0.6}�,   then 

S(α) = 0.370833, S(β) = 0.545833, H(α) = −0.03333, H(β) = −0.1,C(α) = 0.3,C(β) = 0.4.

Figure 1 provides the graphical interpretation of score, accuracy and cetainty functions of NCHF values. The 
value with greater score is defined to be greater than other.

Definition 14 Let α = �A, ��,β = �B,µ� are two NCHFSs. We say that α > β if S(α) > S(β) . If S(α) = S(β) , then 
α > β  if A(α) > A(β) . If A(α) = A(β) , then α > β if C(α) > C(β) . If S(α) = S(β),A(α) = A(β),C(α) > C(β) , 
then α = β.

In the next section we define exponential operational laws in neutrosophic cubic hesitant fuzzy set and prove 
some elegant results.

Exponential operational laws in NCHFSs

Definition 15 For NCHFS  α = �A, �� and a scalar q > 0 , we define

If α > β , then qα > qβ.

Example 2 α = �{[0.1, 0.5], [0.2, 0.7]}, {[0.2, 0.3], [0.1, 0.6]}, {[0.1, 0.4], [0.0, 0.3]}, {0.1, 0.2}, {0.3, 0.5},{0.4, 0.8}� , 
then using above definition with q = 0.5 we have

Theorem 2 For a NCHFN  α = �A, �� and a scalar q > 0 , qα is a NCHFN.

Theorem 3 For two NCHFNs α = �A, ��, β = �B, µ� and a scalar q ∈ (0, 1), we have.

 (i) qα ⊕ qβ = qβ ⊕ qα , (ii) qα ⊗ qβ = qβ ⊗ qα.

q
α =
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; q ∈ (0, 1)
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,
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1
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; q ≥ 1

.

qα =

〈 {[0.535887, 0.707107], [0.574349, 0.812252]}, {[0.574349, 0.615572], [0.535887, 0.757858]},

{[0.066967, 0.242142], [0, 0.187748]}, {0.535887, 0.574349},

{0.615572, 0.707107}, {0.242142, 0.425651}

〉

-0.2

0

0.2

0.4

0.6

Score Accuracy Certainty

alpha beta

Figure 1.  Score, accuracy, and certainty.
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Proof

(i)

(ii)

Theorem 4 For three NCHFNs α = �A, ��, β = �B, µ�, γ = �C, ν� and a scalar q ∈ (0, 1), we have.

(i) 
(

qα ⊕ qβ
)

⊕ qγ = qβ ⊕
(

qα ⊕ qγ
)

, (ii) 
(

qα ⊗ qβ
)

⊗ qγ = qβ ⊗
(

qα ⊗ qγ
)

Proof: (i)

q
α ⊕ q

β =

〈

{[

(q)
1−A

L
jT , (q)

1−A
U
jT

]}

,

{[

(q)
1−A

L
jI , (q)

1−A
U
jI

]}

,

{[

1− (q)
A
L
jF , 1−

(

q
)A

U
jF

]}

,

{

(

q
)1−�jT

}

,

{

(

q
)1−�jI

}

,

{

1−
(

q
)�jF

}

〉

⊕

〈

{[

(q)
1−B

L
jT , (q)

1−B
U
jT

]}

,

{[

(q)
1−B

L
jI , (q)

1−B
U
jI

]}

,

{[

1− (q)
B
L
jF , 1−

(

q
)B

U
jF

]}

,

{

(

q
)1−µjT

}

,

{

(

q
)1−µjI

}

,

{

1−
(

q
)µjF

}

〉

=

〈

{[

(q)
1−A

L
jT + (q)

1−B
L
jT − (q)

1−A
L
jT (q)

1−B
L
jT , (q)

1−A
U
jT + (q)

1−B
U
jT − (q)

1−A
U
jT (q)

1−B
U
jT

]}

,

{[

(q)
1−A

L
jI + (q)

1−B
L
jI − (q)

1−A
L
jI (q)

1−B
L
jI , (q)

1−A
U
jI + (q)

1−B
U
jI − (q)

1−A
U
jI (q)

1−B
U
jI

]}

,

{[(

1− (q)
A
L
jF

)(

1− (q)
B
L
jF

)

,

(

1−
(

q
)A

U
jF

)(

1−
(

q
)B

U
jF

)]}

,

{

(

q
)1−�jT +

(

q
)1−µjT −

(

q
)1−�jT

(

q
)1−µjT

}

,

{

(

q
)1−�jI +

(

q
)1−µjI −

(

q
)1−�jI

(

q
)1−µjI

}

,

{

(

1− q
)�jF

(

1− q
)µjF

}

〉

=

〈

{[

(q)
1−B

L
jT + (q)

1−A
L
jT − (q)

1−B
L
jT (q)

1−A
L
jT , (q)

1−B
U
jT + (q)

1−A
U
jT − (q)

1−B
U
jT (q)

1−A
U
jT

]}

,

{[

(q)
1−B

L
jI + (q)

1−A
L
jI − (q)

1−B
L
jI (q)

1−A
L
jI , (q)

1−B
U
jI + (q)

1−A
U
jI − (q)

1−B
U
jI (q)

1−A
U
jI

]}

,

{[(

1− (q)
B
L
jF

)(

1− (q)
A
L
jF

)

,

(

1−
(

q
)B

U
jF

)(

1−
(

q
)A

U
jF

)]}

,

{

(

q
)1−µjT +

(

q
)1−�jT −

(

q
)1−µjT

(

q
)1−�jT

}

,

{

(

q
)1−µjI +

(

q
)1−�jI −

(

q
)1−µjI

(

q
)1−�jI

}

,

{

(

1− q
)µjF

(

1− q
)�jF

}

〉

= q
β ⊕ q

α
.

q
α ⊗ q

β =

〈
{[

(q)
1−A

L
jT , (q)

1−A
U
jT

]}

,

{[

(q)
1−A

L
jI , (q)

1−A
U
jI

]}

,
{[

1− (q)
A
L
jF , 1−

(

q
)A

U
jF

]}

,
{

(

q
)1−�jT

}

,

{

(

q
)1−�jI

}

,

{

1−
(

q
)�jF

}

〉

�

qα ⊕ qβ
�

⊕ qγ =

�

















��

(q)
1−AL

jT + (q)
1−BLjT

�

+ (q)
1−CL

jT

�

−

�

(q)
1−AL

jT (q)
1−BLjT

�

(q)
1−CL

jT ,
��

(q)
1−AU

jT + (q)
1−BUjT

�

+ (q)
1−CU

jT

�

−

�

(q)
1−AU

jT (q)
1−BUjT

�

(q)
1−CU

jT

















,

















��

(q)
1−AL

jI + (q)
1−BLjI

�

+ (q)
1−CL

jI

�

−

�

(q)
1−AL

jI (q)
1−BLjI

�

(q)
1−CL

jI ,
��

(q)
1−AU

jI + (q)
1−BUjI

�

+ (q)
1−CU

jI

�

−

�

(q)
1−AU

jI (q)
1−BUjI

�

(q)
1−CU

jI

















,

















��

1− (q)
AL
jF

��

1− (q)
BLjF

���

1− (q)
CL
jF

�

,
��

1−
�

q
�AU

jF

��

1−
�

q
�BUjF

���

1−
�

q
�CU

jF

�

















,

���

(q)1−�jT + (q)1−µjT

�

+ (q)1−νjT

�

−

�

(q)1−�jT (q)1−µjT

�

(q)1−νjT

�

,
���

(q)1−�jI + (q)1−µjI

�

+ (q)1−νjI

�

−

�

(q)1−�jI (q)1−µjI

�

(q)1−νjI

�

,
���

1−
�

q
��jF

�

�

1−
�

q
�µjF

�

�

�

1−
�

q
�νjF

�

�

�

= qβ ⊕
�

qα ⊕ qγ
�

∴ by associativity of real numbers.
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Theorem 5 For three NCHFNs α = �A, ��, β = �B, µ�, γ = �C, ν�, a scalar q, q1 ∈ (0, 1), and k, k1, k2 > 0, we 
have.

(i) k
(

qα ⊕ qβ
)

= kqα ⊕ kqβ,
(ii) 

(

qα ⊗ qβ
)k

=
(

qα
)k

⊗
(

qβ
)k,

(iii) (k1 + k2)q
α = k1q

α ⊕ k2q
α,

(iv) 
(

qα
)k1

⊗
(

qα
)k2

=
(

qα
)k1+k2,

(v) qα ⊗ qα1 =
(

qq1
)α

Proof (i)

k
(

qα ⊕ qβ
)

= k

〈

{[

(q)
1−ALjT + (q)

1−BLjT − (q)
1−ALjT (q)

1−BLjT , (q)
1−AUjT + (q)

1−BUjT − (q)
1−AUjT (q)

1−BUjT

]}

,

{[

(q)
1−ALjI + (q)

1−BLjI − (q)
1−ALjI (q)

1−BLjI , (q)
1−AUjI + (q)

1−BUjI − (q)
1−AUjI (q)

1−BUjI

]}

,

{[(

1− (q)
ALjF

)(

1− (q)
BLjF

)

,

(

1−
(

q
)AUjF

)(

1−
(

q
)BUjF

)]}

,

{

(q)
1−�jT + (q)

1−µjT − (q)
1−�jT (q)

1−µjT

}

,

{

(q)
1−�jI + (q)

1−µjI − (q)
1−�jI (q)

1−µjI
}

,

{(

1−
(

q
)�jF

)(

1−
(

q
)µjF

)}

〉

=

�









1−

�

1−

�

(q)
1−ALjT + (q)

1−BLjT − (q)
1−ALjT (q)

1−BLjT

��k

, 1−

�

1−

�

(q)
1−AUjT + (q)

1−BUjT − (q)
1−AUjT (q)

1−BUjT

��k










,









1−

�

1−

�

(q)
1−ALjI + (q)

1−BLjI − (q)
1−ALjI (q)

1−BLjI

��k

, 1−

�

1−

�

(q)
1−AUjI + (q)

1−BUjI − (q)
1−AUjI (q)

1−BUjI

��k










,











��

1− (q)
ALjF

��

1− (q)
BLjF

��k

,

��

1−
�

q
�AUjF

��

1−
�

q
�BUjF

��k










,

�

1−

�

1−

�

(q)
1−�jT + (q)

1−µjT − (q)
1−�jT (q)

1−µjT

��k
�

,

�

1−

�

1−

�

(q)
1−�jI + (q)

1−µjI − (q)
1−�jI (q)

1−µjI
��k

�

,

�

��

1−
�

q
��jF

��

1−
�

q
�µjF

��k
�

�

.

kqα⊕kqβ =

�









1−

�

1− (q)
1−ALjT

�k

, 1−

�

1− (q)
1−AUjT

�k










,









1−

�

1− (q)
1−ALjI

�k

, 1−

�

1− (q)
1−AUjI

�k










,











�

1− (q)
ALjF

�k

,

�

1−
�

q
�AUjF

�k










,

�

1−

�

1− (q)
1−�jT

�k
�

,

�

1−

�

1− (q)
1−�jI

�k
�

,

�

�

1−
�

q
��jF

�k
�

�

⊕

�









1−

�

1− (q)
1−BLjT

�k

, 1−

�

1− (q)
1−BUjT

�k










,









1−

�

1− (q)
1−BLjI

�k

, 1−

�

1− (q)
1−BUjI

�k










,











�

1− (q)
BLjF

�k

,

�

1−
�

q
�BUjF

�k










,

�

1−

�

1−
�

q
�1−µjT

�k
�

,

�

1−

�

1−
�

q
�1−µjT

�k
�

,

�

�

1−
�

q
�µjF

�k
�

�

=

�









1−

�

1−

�

(q)
1−ALjT + (q)

1−BLjT − (q)
1−ALjT (q)

1−BLjT

��k

, 1−

�

1−

�

(q)
1−AUjT + (q)

1−BUjT − (q)
1−AUjT (q)

1−BUjT

��k










,









1−

�

1−

�

(q)
1−ALjI + (q)

1−BLjI − (q)
1−ALjI (q)

1−BLjI

��k

, 1−

�

1−

�

(q)
1−AUjI + (q)

1−BUjI − (q)
1−AUjI (q)

1−BUjI

��k










,











��

1− (q)
ALjF

��

1− (q)
BLjF

��k

,

��

1−
�

q
�AUjF

��

1−
�

q
�BUjF

��k










,

�

1−

�

1−

�

(q)
1−�jT + (q)

1−µjT − (q)
1−�jT (q)

1−µjT

��k
�

,

�

1−

�

1−

�

(q)
1−�jI + (q)

1−µjI − (q)
1−�jI (q)

1−µjI
��k

�

,

�

��

1−
�

q
��jF

��

1−
�

q
�µjF

��k
�

�

.
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(ii)

(iii)

�

qα ⊗ qβ
�k

=

�

��

�

(q)
1−AL

jT (q)
1−BLjT

�k
,
�

(q)
1−AU

jT (q)
1−BUjT

�k
��

,
��

�

(q)
1−AL

jI (q)
1−BLjI

�k
,
�

(q)
1−AU

jI (q)
1−BUjI

�k
��

,
















1−
�

1−
�

1− (q)
AL
jF + 1− (q)

BLjF −

�

1− (q)
AL
jF

��

1− (q)
BLjF

���k
,

1−
�

1−
�

1−
�

q
�AU

jF + 1−
�

q
�BUjF −

�

1−
�

q
�AU

jF

��

1−
�

q
�BUjF

���k

















,

�

�

�

q
�1−�jT

�

q
�1−µjT

�k
�

,

�

�

�

q
�1−�jI

�

q
�1−µjI

�k
�

,
�

1−
�

1−
�

1−
�

q
��jF + 1−

�

q
�µjF −

�

1−
�

q
��jF

�

�

1−
�

q
�µjF

�

��k
�

�

.

�

qα
�k

⊗
�

qβ
�k

=

�

��

�

(q)
1−ALjT

�k

,

�

(q)
1−AUjT

�k
��

,

��

�

(q)
1−ALjI

�k

,

�

(q)
1−AUjI

�k
��

,
















1−

�

1−

�

1−(q)
ALjF

��k

, 1−



1−



1−(q)
AUjF









k
















,







�

(q)
1−�jT

�k






,







�

(q)
1−�jI

�k






,







1−

�

1−

�

1−(q)
�jF

��k






�

⊗

�

��

�

(q)
1−BLjT

�k

,

�

(q)
1−BUjT

�k
��

,

��

�

(q)
1−BLjI

�k

,

�

(q)
1−BUjI

�k
��

,
















1−

�

1−

�

1−(q)
BLjF

��k

, 1−



1−



1−(q)
BUjF









k
















,

�

�

(q)
1−µjT

�k
�

,

�

�

(q)
1−µjI

�k
�

,

�

1−

�

1−

�

1−(q)
µjF

��k
�

�

=

�

��

�

(q)
1−AL

jT (q)
1−BLjT

�k
,
�

(q)
1−AU

jT (q)
1−BUjT

�k
��

,
��

�

(q)
1−AL

jI (q)
1−BLjI

�k
,
�

(q)
1−AU

jI (q)
1−BUjI

�k
��

,
















1−
�

1−
�

1− (q)
AL
jF + 1− (q)

BLjF −

�

1− (q)
AL
jF

��

1− (q)
BLjF

���k
,

1−
�

1−
�

1−
�

q
�AU

jF + 1−
�

q
�BUjF −

�

1−
�

q
�AU

jF

��

1−
�

q
�BUjF

���k

















,

�

�

�

q
�1−�jT

�

q
�1−µjT

�k
�

,

�

�

�

q
�1−�jI

�

q
�1−µjI

�k
�

,
�

1−
�

1−
�

1−
�

q
��jF + 1−

�

q
�µjF −

�

1−
�

q
��jF

�

�

1−
�

q
�µjF

�

��k
�

�

(k1 + k2)q
α =

〈

{[

1−
(

1− (q)
1−AL

jT

)k1+k2
, 1−

(

1− (q)
1−AU

jT

)k1+k2
]}

,
{[

1−
(

1− (q)
1−AL

jI

)k1+k2
, 1−

(

1− (q)
1−AU

jI

)k1+k2
]}

,
{[

(

1− (q)
AL
jF

)k1+k2
,
(

1−
(

q
)AU

jF

)k1+k2
]}

,
{

1−
(

1−
(

q
)1−�jT

)k1+k2
}

,

{

1−
(

1−
(

q
)1−�jI

)k1+k2
}

,

{

(

1−
(

q
)�jF

)k1+k2
}

〉

=

�























1−
�

1− (q)
1−AL

jT

�k1
+ 1−

�

1− (q)
1−AL

jT

�k2
−

�

1−
�

1− (q)
1−AL

jT

�k1
��

1−
�

1− (q)
1−AL

jT

�k2
�

,

1−
�

1− (q)
1−AU

jT

�k1
+ 1−

�

1− (q)
1−AU

jT

�k2
−

�

1−
�

1− (q)
1−AU

jT

�k1
��

1−
�

1− (q)
1−AU

jT

�k2
�























,























1−
�

1− (q)
1−AL

jI

�k1
+ 1−

�

1− (q)
1−AL

jI

�k2
−

�

1−
�

1− (q)
1−AL

jI

�k1
��

1−
�

1− (q)
1−AL

jI

�k2
�

,

1−
�

1− (q)
1−AU

jI

�k1
+ 1−

�

1− (q)
1−AU

jI

�k2
−

�

1−
�

1− (q)
1−AU

jI

�k1
��

1−
�

1− (q)
1−AU

jI

�k2
�























,

��

�

1− (q)
AL
jF

�k1�

1− (q)
AL
jF

�k2
,
�

1−
�

q
�AU

jF

�k1�

1−
�

q
�AU

jF

�k2
��

,
�

1−
�

1−
�

q
�1−�jT

�k1
+ 1−

�

1−
�

q
�1−�jT

�k2
−

�

1−
�

1−
�

q
�1−�jT

�k1
�

1−
�

1−
�

q
�1−�jT

�k2
���

,
�

1−
�

1−
�

q
�1−�jI

�k1
+ 1−

�

1−
�

q
�1−�jI

�k2
−

�

1−
�

1−
�

q
�1−�jI

�k1
�

1−
�

1−
�

q
�1−�jI

�k2
���

,
�

�

1−
�

q
��jF

�k1�

1−
�

q
��jF

�k2
�

�

,
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(iv)

(v)

Exponential aggregation operators

Definition 16 Let 
{

α(k) =
〈

A(k), �(k)
〉}

 be a collection of NCHFNs and qk ∈ (0, 1) be real numbers, then Neu-
trosophic cubic hesitant fuzzy weighted exponential aggregation operator is defined as 
NCHWEA(α1, α2, ..., αn) =

n
⊗
j=1

(

qj
)αj and 

{

α(k) =
〈

A(k), �(k)
〉}

 are the exponential weighting vector of attribute 

values qk ∈ (0, 1).
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Theorem 6 Let 
{

α(k) =
〈

A(k), �(k)
〉}

 be a collection of NCHFNs and qk ∈ (0, 1) be real numbers, then Neutrosophic 
cubic hesitant fuzzy weighted exponential aggregation operator is

 
{

α(k) =
〈

A(k), �(k)
〉}

 are the exponential weighting vectors of attribute values qk ∈ (0, 1). Furthermore  
NCHFHG(α1, α2, . . . , αm)  is also a neutrosophic cubic hesitant fuzzy value.

Proof Using induction we have,NCHFWEA(α1, α2) =
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Applications of neutrosophic cubic hesitant fuzzy weighted exponential aggregation 
operator to MADM and ME‑MADM problems
Many methods in MADM ignore the uncertainty and hence yield the results which are unreliable. In this section 
we construct algorithms using the exponential aggregation (NCHFWE) for MADM and ME-MADM problems.

Algorithm 6.1 (MADM problems)
Step 1: Identification of alternatives and attributes.
Let {F1, F2, . . . , Fr} be the set of r alternatives, {K1,K2, . . . ,Ks} be s attributes. The NCHFS αj is used as weight 

for the attribute Kj . A decision matrix is D = (dij) consisting fuzzy values, where dij represent the preference of 
alternative Fi corresponding to attribute Kj.

Step 2. Allocation of weights to attributes
The NCHF value αj(k) is used as weight assigned to attribute Kj by expert Ek.
Step 3. Computation of weighted aggregated values
Using NCHFWEA operators, we compute the aggregated values dj ′s (j = 1,…,r) of alternatives Fj ′s.
Step 4. Ranking of Alternatives
We calculate the scores S(dj); j = 1, . . . , r of the alternatives Fj; i = 1, . . . , r . Using scores S(di); i = 1, . . . , n, 

we rank the alternatives Fi; i = 1, . . . , n . If scores of two alternatives are equal, then we use accuracy function 
for ranking and if they have same accuracy, we use certainty.
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Flow chart:

Assigning Weights and Decision 
Matrix 

Ranking of Alterna�ves

Aggregated Values

Iden�fica�on Alterna�ves and 
A�ributes 

Application in industrial zone site selection. Using above defined algorithm to select the best alterna-
tive (site for industrial zone) among the given alternatives (sites) F1, . . . , F5 on the basis of attributes (i) K1 is 
damage to environment; (ii) K2 is effect on public safety; (iii) K3 is effect on wildlife safety. Following is the deci-
sion matrix decision matrix D = (dij)5×3 , where entry dij represents the preference of alternative Fi(i = 1, . . . , 5) 
corresponding to attribute Kj(j = 1, 2, 3),

The weights of the attributes are given as:

D =
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〉
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Figure 2.  Ranking based on scores.
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The explanation of weights is elaborated as;
In case of w1 , {[0.3,0.7],[0.2,0.4]} is interval hesitant degree of preference for attribute K1 , {[0.2,0.5],[0.1,0.6]} 

is interval hesitant degree of indeterminacy (preference/ non-preference) for attribute K1 , {[0.2,0.4],[0,0.1]} is 
interval hesitant degree of non-preference for attribute K1 , {0.1,0.6}} is hesitant degree of preference for attribute 
K1 , {0.2,0.4} is hesitant degree of indeterminacy (preference/ non-preference) for attribute K1 , {0.4,0.6} is hesitant 
degree of non-preference for attribute K1.

Aggregated values of alternatives. 

Scores S(di). S(d1) = 0.176782, S(d2) = 0.694794, S(d3) = 0.19038, S(d4) = 0.523417, S(d5) = 0.537091.

Ranking of alternatives. As S(d2) > S(d5) > S(d4) > S(d3) > S(d1) , so that the most desirable alternative is F2.
Figure 2 shows the score function of aggregated values.
Figure 2 elaborate graphically the ordering of aggregated values based on score functions. The alternative F2 

has the highest score and hence is the most desirable or best alternative.
Many ME-MADM methods use the same weights for each attribute corresponding to each decision maker. 

The following method use different weights for each expert.
Algorithm 6.3: (ME-MADM problems)
Step 1: Identification of alternatives and attributes
Let {F1, F2, . . . , Fr} be the set of r alternatives, {K1,K2, . . . ,Ks} be s attributes. The NCHFS αj is used as weight 

for the attribute Kj . Let {E1,E2, . . . ,Em} be the decision experts. The decision matrix is D(k) = (dij
(k)) consist-

ing fuzzy values, where dij represent the preference given by the kth expert Ek to alternative Fi corresponding 
to attribute Kj.

Step 2. Allocation of weights to attributes
The NCHF value αj(k) is used as weight assigned to attribute Kj by expert Ek.
Step 3: Computation of weighted aggregated values
Using NCHFWEA operators, compute the aggregated values dj(k)′s (j = 1,…,r; k = 1,..m) of alternatives Fj ′s 

on the bases of weights assigned by experts.
Step 4: Transformations of dj(k)′s to dj ′s
The transformation is based on the formula dj = u1

dj
(1)

⊗ · · · ⊗ um
dj

(m)

 , where uk (k = 1,..m) is the weight 
assigned to expert Ek.

Step 5. Ranking of Alternatives
We calculate the scores S(dj); j = 1, . . . , r of the aggregated values. Using scores S(di); i = 1, . . . , n,we rank 

the alternatives Fi; i = 1, . . . , n . If scores of two alternatives are equal, then we use accuracy function for ranking 
and if they have same accuracy, we use certainty.

d1 =

〈 {[0.083651, 0.240795], [0.05278, 0.129345]},
{[0.033381, 0.076327], [0.026516, 0.0.174524]},

{[0.436991, 0.8], [0.382966, 0.724054]},
{0.089655, 0.148579}, {0.051616, 0.100475}, {0.675869, 0.829732}

〉

d2 =

〈 {[0.617685, 0.731818], [0.606713, 0.702956]},
{[0.507612, 0.596042], [0.503084, 0.699876]},
{[0.097522, 0.183507], [0.101477, 0.197601]},

{0.609491, 0.684432}, {0.577689, 0.663357}, {0.158613, 0.23167}

〉

d3 =

〈 {[0.089777, 0.217164], [0.076525, 0.164113]},
{[0.034223, 0.07643], [0.031597, 0.170692]},
{[0.406748, 0.764784], [0.382966, 0.688361]},

{0.086209, 0.15133}, {0.06256, 0.123868}, {0.648489, 0.799751}

〉

d4 =

〈 {[0.445183, 0.588428], [0.391659, 0.530621]},
{[0.303378, 0.385061], [0.291323, 0.536908]},
{[0.152128, 0.374173], [0.142083, 0.352469]},

{0.412698, 0.500953},
{

0.379002 , 0.470432
}

, {0.285738, 0.422203}

〉

d5 =

〈 {[0.430671, 0.597105], [0.407249, 0.528306]},
{[0.315454, 0.422037], [0.304401, 0.547489]},
{[0.172143, 0.361839], [0.142083, 0.304007]},

{0.437361, 0.528306}, {0.381049, 0.484407}, {0.278734, 0.39362}

〉
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Flow Chart:

Alterna�ves and A�ributes 

Assigning Weights 

Aggregated Values 

Decision Matrices 

Transforma�on to Single Aggregated 
Value 

Ranking of Alterna�ves 

Solid waste disposal site selection. Using above defined algorithm to select the best alternative (solid 
waste disposal site) among the given alternatives (sites) F1, . . . , F4 on the basis of attributes (i) K1 is water pol-
lution; (ii) K2 slope; (iii) K3 distance from residential area. Following are the decision matrices D(k) = (dij)4×3 , 
where entry dij represents the preference given by the expert Ek (k = 1,2) to  Fi(i = 1, . . . , 4) corresponding to 
Kj(j = 1, 2, 3).

The weights for attributes given by experts are:

The explanation of weights is elaborated as;
In case of w1

(2) , {[0.4,0.6],[0.3,0.4]} is interval hesitant degree of preference to attribute K1 , {[0.3,0.4],[0.1,0.2]} 
is interval hesitant degree of indeterminacy (preference/ non-preference) for attribute K1 , {[0.2,0.5],[0,0.1]} is 
interval hesitant degree of non-preference for attribute K1 , {0.4,0.6}} is hesitant degree of preference for attribute 
K1 , {0.2,0.4} is hesitant degree of indeterminacy (preference/ non-preference) for attribute K1 , {0.3,0.5} is hesitant 
degree of non-preference for attribute K1 , given by second expert.

D1 =







0.5 0.4 0.3
0.6 0.6 0.3
0.7 0.8 0.5
0.7 0.5 0.4






,D2 =







0.6 0.3 0.5
0.5 0.4 0.4
0.8 0.6 0.7
0.6 0.6 0.5







w
(1)
1

=

〈

{[0.4, 0.7], [0.3, 0.5]},

{[0.2, 0.5], [0.1, 0.6]},

{[0.2, 0.4], [0, 0.1]},

{0.6, 0.7}, {0.2, 0.3}, {0.1, 0.3}

〉

,w
(1)
2

=

〈

{[0.3, 0.5], [0.6, 0.7]},

{[0.2, 0.3], [0.1, 0.6]},

{[0.1, 0.4], [0, 0.3]},

{0.5, 0.7}, {0.1, 0.3}, {0.3, 0.4}

〉

,w
(1)
3

=

〈

{[0.4, 0.5], [0.6, 0.7]},

{[0.1, 0.3], [0.2, 0.5]},

{[0.1, 0.3], [0.4, 0.5]},

{0.4, 0.6}, {0.1, 0.2}, {0.2, 0.3}

〉

w
(2)
1

=

〈

{[0.4, 0.6], [0.3, 0.4]},

{[0.3, 0.4], [0.1, 0.2]},

{[0.2, 0.5], [0, 0.1]},

{0.4, 0.6}, {0.2, 0.4}, {0.3, 0.5}

〉

,w
(2)
2

=

〈

{[0.2, 0.4], [0.5, 0.6]},

{[0.2, 0.4], [0.3, 0.5]},

{[0.2, 0.4], [0, 0.3]},

{0.7, 0.8}, {0.2, 0.3}, {0.4, 0.5}

〉

,w
(2)
3

=

〈

{[0.3, 0.5], [0.6, 0.7]},

{[0.1, 0.2], [0.3, 0.6]},

{[0.1, 0.4], [0.3, 0.5]},

{0.5, 0.6}, {0.1, 0.3}, {0.4, 0.5}

〉
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Aggregated values of alternatives. 

d
(1)
1 =

〈 {[0.168693, 0.281372], [0.263604, 0.374317]},
{[0.093376, 0.160292], [0.089665, 0.287722]},
{[0.295774, 0.633943], [0.382199, 0.611782]},

{0.232751, 0.381204}, {0.093376, 0.123714}, {0.442892, 0.60767}

〉

d
(1)
2 =

〈 {[0.249959, 0.363983], [0.352221, 0.463081]},
{[0.149435, 0.23322], [0.152184, 0.363983]},
{[0.239398, 0.536919], [0.382199, 0.5535]},

{0.306626, 0.454715}, {0.149435, 0.186685}, {0.359256, 0.512649}

〉

d
(1)
3 =

〈 {[0.455621, 0.568276], [0.539999, 0.635575]},
{[0.336995, 0.440546], [0.340836, 0.560738]},
{[0.150378, 0.355881], [0.242142, 0.361851]},

{0.511642, 0.636861}, {0.336995, 0.382743}, {0.214347, 0.332492}

〉

d
(1)
4 =

〈
{[0.286796, 0.401832], [0.409242, 0.516248]},
{[0.189282, 0.271188], [0.186771, 0.415582]},
{[

0.207275, 0.500834
]

, [0.306855, 0.504286]
}

,
{0.353802, 0.505876},

{

0.189282 , 0.230407
}

, {0.347451, 0.482708}

〉

d
(2)
1 =

〈 {[0.172929, 0.27991], [0.290305, 0.369343]},
{[0.143046, 0.205277], [0.16734, 0.275848]},
{[0.337857, 0.661617], [0.187748, 0.531795]},

{0.36267, 0.485593}, {0.135922, 0.195054}, {0.598318, 0.7}

〉

d
(2)
2 =

〈 {[0.166906, 0.276601], [0.269857, 0.347395]},
{[0.129653, 0.182922], [0.148579, 0.251785]},
{[0.338679, 0.667768], [0.240342, 0.551725]},

{

0.316979, 0.437345
}

, {0.12097, 0.182922}, {0.609754, 0.717157}

〉

0

0.2

0.4

0.6

0.8

1 2 3 4
Expert 1 Expert 2 Aggregated

Figure 3.  Ranking based on scores.

Table 1.  Comparison of the results.

Method Scores S, cosine similarities C Ranking

Lu and Ye 44 S(d1) = 0.454057 , S(d2) = 0.624296 , S(d3) = 0.458387 , S(d4) = 0.582653 , 
S(d5) = 0.592526

F2 > F5 > F4 > F3 > F1

Tan et al., 45 S(d1) = −0.28165 , S(d2) = 0.61758 , S(d3) = −0.25181 , S(d4) = 0.379552 , 
S(d5) = 0.400404

F2 > F5 > F4 > F3 > F1

Ye 43 C(d1) = 0.495585 , C(d2) = 0.948553 , C(d3) = 0.514484 , C(d4) = 0.867698 , 
C(d5) = 0.87221

F2 > F5 > F4 > F3 > F1

Current study S(d1) = 0.176782 , S(d2) = 0.694794 , S(d3) = 0.19038 , S(d4) = 0.523417 , S(d5) = 0.537091 F2 > F5 > F4 > F3 > F1
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Transformed aggregated values. Using weights u1 = u2 = 0.5 for experts, we have

Scores S(di). S(d1) = 0.369, S(d2) = 0.383, S(d3) = 0.503, S(d4) = 0.420.

Ranking of alternatives. As S(d3) > S(d4) > S(d2) > S(d1) , so that the most desirable alternative is F3.
Figure 3 shows the score function of expert aggregated values and transformed aggregated.
The Fig. 3 is a graphical reflection of scores of aggregated values corresponding to each expert and trans-

formed aggregated values. The figure reflects that the alternative F3 has the highest score of transformed aggre-
gated value and hence the most desirable or best alternative while F1 is the worse alternative.

Comparative analysis. The industrial zone site selection problem is solved by some existing techniques 
and findings are presented in the following table.

Table 1 indicate that the proposed method agrees with existing methods in all alternatives. This also validate 
the validity of proposed method as well.

Conclusion
In this study, first we proposed exponential operational laws in NCHFS and investigates the fundamental proper-
ties of these exponential laws. Using these exponential laws, the exponential aggregation operators are proposed 
in the environment of NCHFS, which is a useful addition in the family of aggregation operators. Then we estab-
lished a method to solve complex ME-MADM problem where each expert has its own decision matrix along 
with his own weighting vector for attributes. Finally, the proposed method is applied to the industrial zone site 
selection and solid waste disposal site selections are problems.

Data availability
The datasets generated and/or analyzed during the current study does not use any specific data.
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