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The population growth and urbanization has caused an exponential increase in waste material. The
proper disposal of waste is a challenging problem nowadays. The proper disposal site selection with
typical sets and operators may not yield fruitful results. To handle such problems, the exponential
aggregation operators based on neutrosophic cubic hesitant fuzzy sets are proposed. For appropriate
decisions in a decision-making problem, it is important to have a handy environment and aggregation
operators. Many multi attribute decision making methods often ignore the uncertainty and hence
yields the results which are not reliable. The neutrosophic cubic hesitant fuzzy set can efficiently
handle the complex information in a decision-making problem, as it combines the advantages of
neutrosophic cubic set and hesitant fuzzy set. In this paper first we establish exponential operational
laws in neutrosophic cubic hesitant fuzzy sets, in which the exponents are neutrosophic cubic hesitant
fuzzy numbers and bases are positive real numbers. In order to use neutrosophic cubic hesitant fuzzy
sets in decision making, we are developing exponential aggregation operators and investigate their
properties in the current study. In many multi expert decision-making methods there are different
decision matrices but same weighting vector for attributes. The results of a multi expert decision-
making problem becomes more reliable if every decision expert has its own decision matrix along with
his own weighting vector for attributes. In this study, we are developing multi expert decision-making
method that uses different weights for an attribute corresponding to different experts. At the end

we present two applications of exponential aggregation operators in environmental protection multi
attribute decision making problems.

Decision making is one of the crucial problems in real life. Aggregation operators are fundamental tools in
decision making. The industrial zone site selection and solid waste disposal site selection are two important
and challenging multi attribute environmental protection problems especially for developing countries. Poor
management of municipal solid waste leads to environmental and water pollution which would harm to human
and wildlife. Different sets and their generalizations like fuzzy set (FS), interval valued fuzzy set (IVFS), intui-
tionistic fuzzy set (IFS), interval intuitionistic fuzzy set (IIES) hesitant fuzzy set (HFS), neutrosophic set (NS),
neutrosophic cubic set (NCS), and several aggregation operators have been defined so for. Zadeh! introduced
the notion of FS as a generalization of classical set. He further extended the idea to IVFS% Chen® in 1992 pro-
posed fuzzy MADM methods and discussed their applications in economics. Chen* proposed the fuzzy exten-
sion of TOPSIS method for MADM problems. Xia® established a novel MADM method. Chang and Wang® in
2009 discussed the applications of fuzzy MADM in successful knowledge development. Attanassov’ introduced
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non-membership degree and proposed IFS. Dey et al.® proposed MADM techniques in IFSs. Later the IFS was
further extended to IIFS°. Mondal and Pramanik'? established intuitionistic fuzzy multi criteria group deci-
sion making approach to quality-brick selection problem. Different researchers established similarity measures
and other important concepts and successfully apply their models to medical diagnosis and selection criteria.
Krohling and Campanharo!! established different useful techniques to sort out MADM problems. Pramanik and
Mondal'? established weighted fuzzy similarity measure based on tangent function and its application to medical
diagnosis. Xu'® proposed some similarity measures of IFS for MADM.

Jun'* in 2012 combined interval value fuzzy set and fuzzy set to form cubic set. The cubic set is generalization
of intuitionistic fuzzy set and interval intuitionistic fuzzy set. Cubic set become vital tool to deal the vague data.
Several researchers!>7 explored algebraic aspects and apparently define ideal theory in cubic sets. Smarandache
initiated the concept of indeterminacy and describes the notion of neutrosophic set (NS)'®. An NS consists of
three components truth, indeterminacy and falsehood. All the three components are independent of each other.
This characteristic of NS enabled researchers to deal with inconsistent and vague data more efficiently. For engi-
neering purposes, the NS is strict to [0,1] and called single valued neutrosophic set presented by Wang et al.'®. The
NS was further extended to interval neutrosophic set (INS)?. After the appearance of NS, researchers put their
contributions in theoretical as well as technological developments of the set. Several researchers use neutrosophic
and interval valued neutrosophic environments to construct MADM. Ye* proposed similarity measures between
INSs for MADM. Biswas et al., established useful MADM techniques using entropy and similarity measures in
neutrosophic environment ?2-%%, Kharal® established a multi-criteria decision making method in neutrosophic
environment. Li?® proposed novel neutrosophic number Einstein aggregation operators for MADM problems.
Mondal and Pramanik?’ established neutrosophic decision making model for clay-brick selection in construction
field based on grey relational analysis. Saha and Broumi®® established some new aggregation operators in INSs.
Zhan et al.”® define aggregation operators and furnished some applications in MADM.

Torra®® defined hesitant fuzzy set. Hesitant fuzzy set is basically a function set on X that when applied to X
returns a subset of [0,1]. Jun®! in 2015 introduced the concept of neutrosophic cubic set (NCS) which consists
of both INS and NS. These characteristics of NCS make it a powerful tool to deal the vague and inconsistent
data more efficiently. Soon after its exploration it attracted the researcher to work in many fields like medicine,
algebra, engineering, decision making theory. Al-Shumrani* discussed the stability analysis in neutrosophic
cubic set with some applications. Cui and Ye ** proposed logarithmic similarity measure of dynamic NCS and
discussed their applications in medical diagnosis. Khan et al.** established exponential aggregation operators
in neutrosophic cubic environment and applied them in MADM problems. Later the idea of cubic hesitant
fuzzy set was introduced by Mehmood et al.”>. Ye’®*” established similarity measures in neutrosophic hesitant
fuzzy set (NHFS) and discussed its applications in MADM. Liu and Luo®® established some new aggregation
operators of NHFS for MADM problems. Saha et al.*’, proposed hesitant triangular neutrosophic numbers and
their applications to MADM. Liu and Shi*’ proposed hybrid geometric aggregation operators in interval valued
neutrosophic hesitant fuzzy sets and discuss its applications in MADM. Biswas et al.*!, established useful MADM
techniques using NHFSs.

Zhu et al.** introduced the method of S-normalization to add some values to a hesitant fuzzy element (HFE),
which is a useful technique in case of different cardinalities. Ye** proposed new exponential operations and
aggregation operators of interval neutrosophic sets for MADM. Lu and Ye** introduced exponential laws in
single valued neutrosophic numbers. Later the exponential aggregation operators were introduced and applied
in typhoon disaster evaluation by Tan et al.**. Wang and Li* proposed some aggregation operators in pictures
hesitant fuzzy set and compared these operators with some existing decision-making methods. Tan and Zhang*’
introduced trapezoidal fuzzy neutrosophic numbers arithmetic averaging and hybrid arithmetic averaging for
MADM. Saha et al.*s, established g-rung orthopair fuzzy weighted aggregation operators for MADM. Feng et al.*’
define type-2 hesitant fuzzy sets and explore some important properties of these sets. Turkarslan et al.*, in 2021
proposed the similarity measures in fuzzy multiset with application in medical diagnosis. Saha and Makharjee®!
defined soft interval-valued intuitionistic fuzzy rough sets and discussed some interesting properties of these
sets. Senapati et al.>?, proposed some novel interval-valued Pythagorean fuzzy aggregation operators based
on Hamachar triangular norms for MADM. Recently WASPAS technique using picture fuzzy sets for MADM
problems was established by Senapati et al.*>. Wang et al.*%, defined picture hesitant fuzzy sets and discussed their
applications in MADM. Xia and Xu® established novel MADM method. Several researchers®>*-5¢ established
many useful techniques for MADM problems.

The NCS consider the truth, indeterminacy and falsity independently but is unable to handle the hesitant
factor in each component. On the other hand, HFS is more flexible in choosing membership grades. Recently
Rehman et al., defined NCHFS* and geometric aggregation operators of NCHFS for MADM problems. The
NCHES can efficiently handle the complex information in a decision-making problem, as it combines the advan-
tages of NCS and HFS. More recently, Rehman et al.*®, established Dombi exponential aggregation operators in
NCHFS and discussed their properties in solid waste disposal site selection. Also see>*.

Motivation. The industries play an important role in economic growth and prosperity of the people of a
region. But there must be a need of proper planning to minimize the negative impacts of industry like pollution.
Waste material is direct consequence of urbanization and population increase. The proper disposal of waste is
necessary for prevention of viral diseases like typhoid, dengue and tuberculosis. The increase in population and
urbanization is exponential so the exponential operational laws and aggregation operators are needed. Regard-
ing to waste material, the information is inconsistent, incomplete and insufficient. These situations can efficiently
be handled by NCHFS.
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The rest of this paper is organized as follows. “Preliminaries” deals with some basic definitions used later. In
“Operational laws in neutrosophic cubic hesitant fuzzy set” we discuss NCHFS and algebraic operational laws
in NCHES. In “Exponential operational laws in NCHFSs” we introduced exponential operational laws and some
useful results in NCHFS. “Exponential aggregation operators” deals with exponential aggregation operators
and their properties in NCHFS. In “Applications of neutrosophic cubic hesitant fuzzy weighted exponential
aggregation operator to MADM and ME-MADM problems” we establish a MCDM method based on NCHFEA
operators and use this method in MCDM problem.

Preliminaries
Definition 1 (Ref.*!) A fuzzy set (FS) on a nonempty set W is a mapping " : W — [0, 1].

Definition 2 (Ref.'®) The cubic set (CS) on a nonempty set Z is defined by © = (x; I(x),3(x)/x € X), where I(x)
isan IVFS on Z and §(x) is an FS on Z.

Definition 3 (Ref.’®) A neutrosophic set associated with a crisp set S, is a set of the form
u = (e; &r(e),&r(e),Er(e) /e € S)ywhere &7, &1, EF + S — [0, 1] respectively called a truth membership function,
a non-membership function and a false membership function.

Definition 4 (Ref.’”) A neutrosophic cubic set in a nonempty set E is defined as a pair (B, u) where
B = (x; Br(e), Br(e), Br(e)/e € E)isan INSand pu = (x; 7 (e), ur(e), r(e)/e € X)isa NS.

Definition 5 (Ref.’) A neutrosophic hesitant fuzzy set a nonempty set E is described as
w = {x; ur(e), ur(e), up(e)/e € E}y where pur(e),ur(e),ur(e) are three HFSs such that
wr(e) + pre) + pr(e) < 3.

Definition 6 (Ref.*®) The object ¢ = (x; &r(x),&1(x), §r(x)/x € X), s called an INHFS on X, where
E7(x), £1(x), £p(x) are IHFSs.

Zhu et al. proposed the following 3-normalization method to enlarge a hesitant fuzzy element, which is a useful
technique in case of different cardinalities.

Definition 7 (Ref.!) Let m* and m™ be the maximum and minimum elements of a hesitant fuzzy set H and
¢(0 < ¢ < 1)an optimized parameter. We callm = ¢m™ + (1 — ¢)m™ an added element.

Definition 8 (Ref.*) Let A = (x, T, T, Fx) be a SVNS. Then exponential laws in A are defined by
" (6 ()T 1= (D 1= (D) e 0,1
M= 1-T, I, Fy .
(o ()= (3= () )z

Definition 9 (Ref?) Let A = (x, [AL(x), AY (x)], [AF(x), AV (x)], [Ak(x), AY (x)]) be an IVNS. Then exponen-
tial laws in A are defined by

(x, [o1=480, AT ], [1 = M@, 1= @A @], [1 = (A0, 1= @] )i 2e 0,1

A — <x) (%)lfALT(x)’ (%)lfA(T](x) : |:1 _ (%)Af(x)’l . (%)AIU(x):|, [1 _ (%)A}L:(x)) 1— (%)Ag(x):| >; i>1

Operational laws in neutrosophic cubic hesitant fuzzy set
In this section operational laws on NCHFS are defined. These operational laws will help to define the proposed
aggregations operators.

Definition 10 Let X be a nonempty set. A neutrosophic cubic hesitant fuzzy set in X is a pair 8 = (B, i)
where B = {{x; Br(x), Br(x), Bp(x))/x € X} is an interval-valued neutrosophic hesitant set in X and
w = {{x; Or(x), 91(x), 9r(x))/x € X} is a neutrosophic hesitant set in X.

Furthermore Ar = {[AJ-LT, AYLj =1 l}, A= {[A},, AVY =1, m} Ap = {[A].LF, AVY =1,
. n} are some interval values in unit interval [0,1] and up = {Mjr? ji=1., p}, = {,LLJ'I; i=1.., q},

UE = {Mjp; ji=1.., r} are some values in unit interval [0,1].

Example 1 Let X = {x, ¥ z} The pair @ = (A, 1) with
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Ar(x) = {[0.1, 0.5],[0.2, 0.7]}, Ar(x) = {0.3, 0.5,0.7}, A;(x) = {[0.2, 0.4],[0.3, 0.6]}, A7 (x)
={0.1, 0.4,0.7}, Ap(x) = {[0.1, 0.4],[0, 0.3],[0.6,0.81}, Ar(x) = {0.4, 0.6}

Ar(y) = {[0.1, 0.5],[0.2, 0.71}, A7(y) = {0.3, 0.5}, A;(y) = {[0.2, 0.3],[0.1, 0.61}, A7 (»)
={0.7, 0.8}, Ap(y) = {[0.1, 0.4], [0, 0.3]}, Ar(y) = {0.4, 0.6}

Ar(z) = {[0.1, 0.5],[0.2, 0.7]}, Ar(z) = {0.3, 0.5}, A;(2) = {[0.2, 0.3],[0.1, 0.6]}, 21 (2)
= {0.7, 0.8}, Ap(z) = {[0.1, 0.4],[0, 0.3]}, Ar(z) = {0.4, 0.6}

is a NCHFS.

Definition 11 The sum and product of two NCHFSs o = (A, 1), B = (B, u)is defined as

L gl _al gl AU ,gU _4UpgU L gl _aLpl 4U , gU_ 4URU Lgl AUgU
w®f= <x>{[AjT + B — A B Ajp + B 7AJ'TBJ'T}}’{{AJ'I + B = Ay By Ajp B 7AJIIBJ1]}’{[AJ'FBJ'F’ AJ'FBJ'F]}’>
{)“jT + iy = ;LjT#jT}’ {;7'1 + i = )”]'I/L]'I}’{/lj }
L pL UnpU L pL UnpU L L L pL U U UnpU
v <x {[AjTBjT, AjTBjT]},{ ALBL, Al le]}, {[AjF +BL —ALBE, AV 4 BY — AjFBjF]},>
{ir i b {2t b { e+ tje — Zjg e }

Moreover the B-normalization is used in case of different cardinalities.

Definition 12 The scalar multiplication of a scalar g with a NCHFS o = (A, ) is defined by

o <{[1 = (=) 1= (=) T - (- ah) 1= (- a0 {(a1)" (Aj‘ﬁ)"]}’>,
(1= (1= 51 (1= (=) 1 (0"}

Theorem 1 For NCHFS « = (A, 1) and a scalar q, we have

o= (* (LG )" () TS LG )" (o) 3l - (=) 1= (1= }’>
(U} )1 (1= (1= )}

where ¢ =a @ o ® - - - @ a(q - times). moreover af is a neutrosophic cubic hesitant fuzzy value for every posi-
tive value of q.

Definition 13 The score, accuracy, and certainty of a NCHF value « = (A, 1) where
A = (Ar, Ay, Ap),

and
Ap = {[A]LT,AJPT’];j= ..., l},A, - {[AjLI,AjU];jz ..., m},AF - {[AjLF,AjU];jz L...,n

T F

A= (A1, A1, AR), AT = {/le; j= 1,...,p}, Al = {/lj,; j=1..., q},ip = {A"jp; ji=1..., r}aredeﬁnedas:

L
I

1 m

1 1 ¢
4U 4U 4U 4U QL QL
( Jr jF) mz< ir jl) ;Z(Z ( T jF))
i =1

1 j=1

1 J
S(a) = 3

1[1< 1< 1<
+g ;Z)“J'T‘{‘EZ)“J'I“';Z(I_AJ'F)
j:l j:l j:l

n P r
1 1 L U 1 U L 1 1 )
H(a) 3{IZ<AJT+AJT) —5> (A1F+Ajp> +§Z/@'T - rzﬂﬁ}»

j=1 j=1 j=1 j=1

1 p
1 1 L U 1
C@ =112 (ah +AY) + 5> 2
=1

Remark (i) It is evident from the above definition that for any NCHF value o = (A, 4), S(@) € [0, 1],
H(a) € [—1,1]and C(@) € [0, 1].

(i) If @ = ({[1, 1]}, {[1, 11}, {[0, 01}, {1}, {1}, {0}) and ¥ = ({[0, 0]}, {[0, 01}, {[1, 11}, {0}, {0}, {1}) are respec-
tively the maximum and minimum ideal NCHF values. Then S(2) = 1,S(¥) =0, H(Q) = , H(¥) = —1,
C(Q) =1,C(¥) = 0.
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Figure 1. Score, accuracy, and certainty.

Ifo = ({[0.1, 0.5],[0.2, 0.7]}, {[0.2, 0.3],[0.1, 0.6]}, {[0.1, 0.4], [0, 0.3]}, {0.1, 0.2}, {0.3, 0.5}, {0.4, 0.8}), and
B = ({[0.4, 0.5],[0.3, 0.4]}, {[0.1, 0.3],[0.2, 0.5]}, {[0.1, 0.4],[0.7, 0.8]}, {0.3, 0.5}, {0.7, 0.8}, {0.4, 0.6}),  then

S(a) = 0.370833, S(B) = 0.545833, H(«) = —0.03333, H(8) = —0.1,C(x) = 0.3,C(B) = 0.4.

Figure 1 provides the graphical interpretation of score, accuracy and cetainty functions of NCHF values. The
value with greater score is defined to be greater than other.

Definition 14 Leta = (A, 1), B = (B, u)are two NCHFSs. We say that > Bif S(e) > S(B).IfS(a) = S(B), then
a> BifA(x) > A(B).IfA(e) = A(B),thena > BifC(x) > C(B).IfS(a) = S(B), A(x) = A(B), C(a) > C(B),
theno = B.

In the next section we define exponential operational laws in neutrosophic cubic hesitant fuzzy set and prove
some elegant results.

Exponential operational laws in NCHFSs

Definition 15 For NCHFS « = (A, 4)and a scalar g > 0, we define

<x’ { [(q)l_AfT,(q)l_AjL;] } { {(q)lfAfLI , (q)Hﬂ } { [1 ~@hi- (q)A};] }> q€(0,1)

1-AL {({11),1;? } {(q)liijll};j (1 B q)l/—]: Al AY
OO IO OG5 -0,
(MO M-

Ifa > B, theng® > ¢P.
Example2 o = ({[0.1, 0.51,[0.2, 0.7]}, {[0.2, 0.3],[0.1, 0.61}, {[0.1, 0.4],[0.0, 0.3}, {0.1, 0.2}, {0.3, 0.5}{0.4, 0.8}}
then using above definition with g = 0.5 we have

{{0.535887, 0.707107], [0.574349, 0.812252]}, {[0.574349, 0.615572], [0.535887, 0.757858]},
qo = < {{0.066967, 0.242142], [0, 0.187748]}, {0.535887, 0.574349}, >
{0.615572, 0.707107},{0.242142, 0.425651}

Theorem 2 For a NCHFN « = (A, A)and a scalar q > 0, q* is a NCHFN.
Theorem 3 For two NCHFNs « = (A, ), B = (B, p) and a scalar q € (0, 1), we have.

e ee® =¢ ®q* (i) q" ®¢° =’ ® ¢~
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Proof

_aL Y _aL _AVU L _gU _gL _gU
{[@' Nt () AJT]},{[@I i, Aﬂ”, {[(q)I*Bjr,(q)‘ BJTH,{[@I it @' BJ’I]},
L u L U
" oqf= < {[1 — @Y, 1 - (q)AJF:| } >®< {[1 —@F, 1 (q)BjF:| } >

{(q)l ’JT} {7}, {1 - (9 ) (@)}, {(q)l_p'jl} {1 (q)"iF}

1-AL 1-BE 1-aL  1-BL 1-aY -BY 1-BY
{[(q) T+ T —( T T, (@9 T +(q) T — ’T (@ T ]}
1-AL 1—BL 1-AL  g-BL 1AV -BY
{[(q) T4 1T-(@ @ T.@ 1 +(q) - q ” (q) ]} >

-( {[(-%) (1-a% ). (- @) (1- %) ]}

{(q)l 41 4 (q) T~ (q)' T (g)' T },{(q)l Hit 4 (q) M — (q)" i (q)l_p'jl},{(l—q);jF(l—q)ﬂjF}
1-BL 1-AL 1-BL  q-al U 1-aY 1-8V 1-4Y
@ T+@ T-@ T@ T.(@ T+@ T-@ 'T@ IT|
1-BL 1-ak 1-Bk a-al U 1-aV 1-8Y 1AV
{[(q) T4+ T-(@ 1@ T.(@ T+@ T-@ 1@ ”]}
>=qﬁ q*

~( ([ ) (=) (- @) (- )]}

{@)““fu(q)“"fr—(qf‘“fT(q)l ’JT}{<q>1*“f1+(q)‘*’ﬂ—(q)‘*“fuq)l/ 1 (=) (1 - g) 5 }

(ii)

([0} 4]}

¢ ®q° = {[ - @" 1 (9)% ]},

{(q)1 ;’T} {(q)lfi”}{l - (q))’”‘}

Theorem 4 For three NCHFNs a = (A, A), B = (B, u),y = (C,v) and a scalar q € (0, 1), we have.

W(ed)eg =@ eq). ¢ ed)0q =4 ("®q)

Proof: (i)

(@ +@" ") + @) - (@' @' " )@ %

(@ +@' ) + @ %) - (@@ ) @'

(((q)l‘*‘f% +@' )+ @) - (@@ )@,

(@ + @) +@"%) - (@M@ 5)(q) ’
)

(= @) (1-@%)) (1~
{((@ % + @) + @) - (@' wq)l Kir
{(@ +@7) + @) - (@ @) @' }

(- @) (- @) (- @)

=q’ & (¢ ®4q”) .. byassociativity of real numbers.

1= ”JT

(¢ed)eq =< ((1- @) (1-@") (1—(q> )
(
)@
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Theorem 5 For three NCHFNs a = (A, 1), B = (B, u),y = (C,v), ascalar q,q1 € (0,1), and k, k1, ky > 0, we
have.

©) k(¢* ®q’) =kg" ® ke,

@ (@) =) )"
(iii) (k1 + k2)q* = ki1g* @ kaq°,
(iv) (qa)kl ® (qa>kz _ (q“)k] +k2)
™ " ®q% = (qq1)"

Proof (i)
1-AL 1-L 1-AL  1-BL 1-AY 1-BY 1-AY  1-BY
@ IT+@ T—-@ IT@ T, IT+@ IT-(@ IT@ IT|},
1-AL 1-BL 1-AF 1B 1-AY 1-BY 1-aY  1-BY
5 @ T+@ T—-(@ @ 1,9 T+@ T-@ @ I
k(qo‘ ®q ) =k

L L U U . ) o o >
{ [(1 - (q)AjF> (1 - (q)BjF), (1 - (q)AJ'F> <1 _ (q)BJ'Fﬂ },{(q)l"JT + (q)l”‘JT _ (q)l "JT(q)l Wt }
(@ +@' ™1 - @'
k k
1-AL 1-BL 1-aL 1Bl 1-AY 1-8Y 1-AY  1-BU
I-|1-(@ T+@ 'T-@ T@ T)].1-(1-|@ TH+@ T-@ T T ,
1-Ak 1-BE 1mal 1-pt\\F 1-AY 1-BY 1—aV U\
I-(1=(@ T+@ T-(@ @ T||],.1-[1-|@ T+@ T-(@ /@ 1

i i b { (1= ()% ) (1- (0)/9F ) }
| (G- ) () () o)) ] >‘
{1 - (1 - ((q)lf;'fT +@" T — (@' (q)lf"fT))k}

{1 - (1= (@' + @it - @' (q)l_ﬂjl))k}’{((l ~ (@) (1- (q)MjF))k}

1—al \k U\ K 1B\ F BU\F
1-(1—@ 1) a-(1-@ I 1-(1-( JI) ,1—(1—(«1) 1
kg okqf =
7ok < AL\ K AUNK >$< B\ BV >
(1—(q) 1F> ,<17(f1) JF) (1—<WF) (P(q)”)

{1—(1—@172}’1‘)’(},{17 l—(q)172j1>k},{(]7(q);'JF>k} {1,<1,(q>1*#f1‘>k},{1,<1,(q)lfﬂjr)k},{(l,(q)MjF)k}
1-AL 1-BL 1-al -l \\* 1-aY 1-8Y 1-aU 1V \\*
I-1-(@ T+@ T-@ T@ T)],1-(1-[(@ T+@ T-@ IT@ T ,
L L L L\ * U U U U\ \
1- (1 - ((q)lfAfI +@ - (q)liB”)) - (1 - ((q)Hﬁ +@ g <q>173f1)> ,
= L L\ u AN .
< {(C-w) - (o) (- ) ]} >

{1 B (1 B ((q)l”'f'T +@' 7T — @' @FM’IT)) }
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Exponential aggregation operators

Definition 16 Let{oz(k) = <A(k), /l(k)>}be a collection of NCHFNSs and gi € (0, 1) be real numbers, then Neu-
trosophic cubic hesitant fuzzy weighted exponential aggregation operator is defined as

NCHWEA(a1, o2, ..., 0y) = n (q]) 7and {a(k) = <A(k), Atk > } are the exponential weighting vector of attribute
j=
values g € (0, 1).
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Theorem 6 Let{oz(k) = <A(k), A"(k)>}bea collection of NCHFNs and qi. € (0, 1) be real numbers, then Neutrosophic
cubic hesitant fuzzy weighted exponential aggregation operator is
_al _aU _al —Al
{[ﬁ () o, ﬁ (@) A%”,Hﬁ (@)~ 1T (a0) ”W”,
k=1 uL kU:1 k=1 X
(@01 1 a0 | {1 (00" )

’:|§

1-

NCHFWEA(ay, 2, .., 0y) = <
k k=
— m 2
{ (qr) e }{1 - 11 (qk)”F“"}

Il
—

s

k=1
{ag = (Aw» Ax))} are the exponential weighting vectors of attribute values qx € (0,1). Furthermore

NCHFHG(ay, @2, . . ., 0ty) is also a neutrosophic cubic hesitant fuzzy value.

2
Proof Using induction we have, NCHFWEA (a1, o) = ® (g;)%.
=1
1-4F 1-A7 1-AL 1-4Y
{{(‘12) o, (q2) "2’}},{ [(112) e, (q2) ”‘2’}},

1Ak 1-A7 1-Af 1-Af
(q1) OL(q) O Q) VL) O,
L U L U
bo( {1 @] )
{(qZ)I*Gm }> {(qz)lf/’ﬂm }) {1 _ (qz))'lF(Z) }
J U

(e
@0 g™ g (g ’Tw]}{[(ql) B (g Ve gy 0 (g Ve
< L

®

{@)™ 0 L{@) ™0 L {1- @) }

1-(q) u“, +1-(q) uu, 1-(q) /,“) ) (1 _ (qz)AjviZ) >
= < 1 (a1 )A,Fm +1—(q) /th) — (1 —(q1) va ) (1 _ (q2)AJlf=‘27) ' >
{(ql) Tt (g2)'
_ (ql)/“m +1—(q2) Fitgy (1 — (q) %o ) (1 — (g2) e )}
T, T, 2 :-l 1,
(i o i)
- < {f-fr@ - {1 ' J >
k=1 5 k=1 5 l;:l
T {0 |
For m=n we have
n _AL n —AU n _AL n —A!
{{H (qk)l A)Tm, 11 (qk)l AJT(k)} }{[ (Qk)l A]LI‘“) I1 (qk)l AJLI}(k)}}
k=1 k:1AL k=1 k=1
NCHFWEA(a1, a2, .. ., 0y) = < { {1 - kH (qx) gy 1 — kH (qx) jF(k):| {kH (qk)lﬂfT(k) } >
=1 =1 =1

we prove form=n+1
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Applications of neutrosophic cubic hesitant fuzzy weighted exponential aggregation
operator to MADM and ME-MADM problems

Many methods in MADM ignore the uncertainty and hence yield the results which are unreliable. In this section
we construct algorithms using the exponential aggregation (NCHFWE) for MADM and ME-MADM problems.

Algorithm 6.1 (MADM problems)

Step 1: Identification of alternatives and attributes.

Let{F1, Fy,. .., F;} be the set of r alternatives, {K, K3, . . ., K} be s attributes. The NCHFS ¢} is used as weight
for the attribute Kj. A decision matrix is D = (d;j) consisting fuzzy values, where d;; represent the preference of
alternative F; corresponding to attribute K;.

Step 2. Allocation of weights to attributes

The NCHF value q; ) js used as weight assigned to attribute K; by expert Ey.

Step 3. Computation of weighted aggregated values

Using NCHFWEA operators, we compute the aggregated values d;’s (j=1....,r) of alternatives F;’s.

Step 4. Ranking of Alternatives

We calculate the scores S(dj);j =1,...,rofthealternatives Fj; i = 1,...,r. Using scores S(d;); i = 1,...,n,
we rank the alternatives F;; i = 1,...,n. If scores of two alternatives are equal, then we use accuracy function
for ranking and if they have same accuracy, we use certainty.
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Figure 2. Ranking based on scores.

Flow chart:

Application in industrial zone site selection.

tive (site for industrial zone) among the given alternatives (sites) Fi, ..
damage to environment; (ii) K, is effect on public safety; (iii) K3 is effect on wildlife safety. Following is the deci-
sion matrix decision matrix D = (djj)s3, where entry d;; represents the preference of alternative F;(i = 1,...,5)

corresponding to attribute Ki(j=1,2,3),

020204
0.8 0.8 0.7
D=1030302
0.8 0.5 0.6
0.6 0.7 0.6

The weights of the attributes are given as:

{[0.3, 0.7],[0.2, 0.4]},
{[0.2, 0.5],[0.1, 0.6]},

w1 = < {[0.2, 0.4], [0, 0.1]}, >’W2 = <
{0.5, 0.6},{0.2, 0.4},{0.2, 0.3}
{[0.4, 0.5],[0.6, 0.7]},
w3 = <

{[0.1, 0.2],[0.3, 0.4]},
{0.3, 0.5}, {0.4, 0.6}, {0.3, 0.4}

Using above defined algorithm to select the best alterna-
., F5 on the basis of attributes (i) Kj is

{[0.5, 0.71,[0.2, 0.5]},

{[0.2, 0.3],[0.1, 0.6]},
{[0.1, 0.4], 0, 0.3]}, ’

{0.4, 0.5},{0.3, 0.4}, {0.2, 0.4}

{[0.1, 0.3],[0.2, 0.5}, >
Scientific Reports | (2023) 13:5262 | https://doi.org/10.1038/s41598-022-22399-3
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The explanation of weights is elaborated as;

In case of wy, {{0.3,0.7],[0.2,0.4]} is interval hesitant degree of preference for attribute Kj, {[0.2,0.5],{0.1,0.6]}
is interval hesitant degree of indeterminacy (preference/ non-preference) for attribute Kj, {[0.2,0.4],[0,0.1]} is
interval hesitant degree of non-preference for attribute Kj, {0.1,0.6}} is hesitant degree of preference for attribute

K1, {0.2,0.4} is hesitant degree of indeterminacy (preference/ non-preference) for attribute Kj, {0.4,0.6} is hesitant
degree of non-preference for attribute K;.

Aggregated values of alternatives.

{[0.083651, 0.240795], [0.05278, 0.129345]},
g < {[0.033381, 0.076327], [0.026516, 0.0.174524]}, >
1= {[0.436991, 0.8], [0.382966, 0.724054]},
{0.089655, 0.148579}, {0.051616, 0.100475}, {0.675869, 0.829732}

{{0.617685, 0.731818], [0.606713, 0.702956]},
5 < {{0.507612, 0.596042], [0.503084, 0.699876]}, >
2= {{0.097522, 0.183507], [0.101477, 0.197601]},
{0.609491, 0.684432}, {0.577689, 0.663357},{0.158613, 0.23167}

{{0.089777, 0.217164], [0.076525, 0.164113]},
g < {{0.034223, 0.07643], [0.031597, 0.170692]}, >
3= {{0.406748, 0.764784], [0.382966, 0.688361]},
{0.086209, 0.15133}, {0.06256, 0.123868}, {0.648489, 0.799751}

{[0.445183, 0.588428], [0.391659, 0.530621]},
e < {[0.303378, 0.385061], [0.291323, 0.536908]}, >
4= {[0.152128, 0.374173], [0.142083, 0.352469]},

{0.412698, 0.500953}, { 0.379002,, 0470432}, {0.285738, 0422203}

{{0.430671, 0.597105], [0.407249, 0.528306]},
5 < {[0.315454, 0.422037], [0.304401, 0.547489]}, >
5= {[0.172143, 0.361839], [0.142083, 0.304007]},
{0.437361, 0.528306}, {0.381049, 0.484407}, {0.278734, 0.39362}

Scores S(d;).  S(dy) = 0.176782,S(dy) = 0.694794, S(d3) = 0.19038, S(dy) = 0.523417, S(d5) = 0.537091.

Ranking of alternatives. AsS(da) > S(ds) > S(ds) > S(d3) > S(d1), so that the most desirable alternative is Fy.

Figure 2 shows the score function of aggregated values.

Figure 2 elaborate graphically the ordering of aggregated values based on score functions. The alternative F,
has the highest score and hence is the most desirable or best alternative.

Many ME-MADM methods use the same weights for each attribute corresponding to each decision maker.
The following method use different weights for each expert.

Algorithm 6.3: (ME-MADM problems)

Step 1: Identification of alternatives and attributes

Let{F,, F, ..., F,}be the set of r alternatives, {K;, K, . . ., K} be s attributes. The NCHFS ajis used as weight
for the attribute Kj. Let {E}, Ey, . . ., E;} be the decision experts. The decision matrix is Db = (djj (k)) consist-

ing fuzzy values, where d;j represent the preference given by the kth expert E to alternative F; corresponding
to attribute K;.

Step 2. Allocation of weights to attributes

The NCHF value ¢; (8 is used as weight assigned to attribute K by expert Ey.

Step 3: Computation of weighted aggregated values

Using NCHFWEA operators, compute the aggregated values d; W75 (j=1,...,r; k=1,..m) of alternatives F's
on the bases of weights assigned by experts.

Step 4: Transformations of d; b5 to dj's o -

The transformation is based on the formula d; = m4’ @ - @uud, where uy (k=1,..m) is the weight
assigned to expert Ej.

Step 5. Ranking of Alternatives

We calculate the scores S(dj);j = 1,...,r of the aggregated values. Using scores S(d;); i = 1, ..., n,we rank
the alternatives F;; i = 1,. .., n. If scores of two alternatives are equal, then we use accuracy function for ranking
and if they have same accuracy, we use certainty.
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Flow Chart:

Solid waste disposal site selection. Using above defined algorithm to select the best alternative (solid
waste disposal site) among the given alternatives (sites) Fi, . . ., F4 on the basis of attributes (i) K is water pol-
lution; (ii) K> slope; (iii) K3 distance from residential area. Following are the decision matrices D® = (di)ax3»
where entry d;; represents the preference given by the expert Ex (k=1,2) to F;(i = 1,...,4) corresponding to

Ki(j = 1,2,3).
0.5 0.4 0.3 0.6 0.3 0.5
0.6 0.6 0.3 0.5 0.4 0.4
Dr=10670805"P2= 080607
0.7 0.5 0.4 0.6 0.6 0.5

The weights for attributes given by experts are:

({04, 0.7],0.3,0.5]}, {(0.3, 0.5], 0.6, 0.7]},
O {[0.2, 0.5], 0.1, 0.6]}, W0 {[0.2, 0.3],[0.1, 0.6]}, W
L= {[0.2, 0.4], [0, 0.1]}, B {[0.1, 0.4], [0, 0.3]}, BCE
{0.6, 0.7},{0.2, 0.3},{0.1, 0.3} {0.5, 0.7},{0.1, 0.3},{0.3, 0.4}
{[0.4, 0.6],[0.3, 0.4]}, {[0.2, 0.4], (0.5, 0.6]},

»Wy s W3

{[0.2, 0.5, [0, 0.1]}, {[0.2, 0.4], [0, 0.3]},
(0.4, 0.6}, {0.2, 0.4}, {0.3, 0.5} (0.7, 0.8},{0.2, 0.3}, {0.4, 0.5}

O _ < {[0.3, 0.4], [0.1, 0.2]}, > o _ < {[0.2, 0.4], [0.3, 0.5]}, > o _
@ - - -

The explanation of weights is elaborated as;

{[04, 0.5], [0.6, 0.7]},
{[0.1, 0.3],[0.2, 0.5]},
{[0.1, 0.3], [0.4, 0.5]},

{0.4, 0.6},{0.1, 0.2},{0.2, 0.3}

{[0.3, 0.5],[0.6, 0.7]},
{[0.1, 0.2], [0.3, 0.6]},
< {[0.1, 0.4],[0.3, 0.5]}, >
{0.5, 0.6}, {0.1, 0.3},{0.4, 0.5}

In case of w1 @, {[0.4,0.6],[0.3,0.4]} is interval hesitant degree of preference to attribute Kj, {[0.3,0.4],[0.1,0.2]}
is interval hesitant degree of indeterminacy (preference/ non-preference) for attribute Kj, {{0.2,0.5],[0,0.1]} is
interval hesitant degree of non-preference for attribute K3, {0.4,0.6}} is hesitant degree of preference for attribute
K1,{0.2,0.4} is hesitant degree of indeterminacy (preference/ non-preference) for attribute Kj, {0.3,0.5} is hesitant

degree of non-preference for attribute Kj, given by second expert.
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Figure 3. Ranking based on scores.

Method

Scores S, cosine similarities C

Ranking

Lu and Ye

S(dy) = 0.454057, S(dy) = 0.624296, S(d3) = 0.458387, S(ds) = 0.582653,
S(ds) = 0.592526

F2>F5>F4>F3>F1

Tan et al., ¥

S(dy) = —0.28165, S(d) = 0.61758, S(d3) = —0.25181, S(d4) = 0.379552,
S(ds) = 0.400404

F2>F5>F4>F3>F1

Ye 43

C(dy) = 0.495585, C(d) = 0.948553, C(d3) = 0.514484, C(dy) = 0.867698,
C(ds) = 0.87221

F2>F5>F4>F3>F1

Current study

S(dy) = 0.176782, S(dy) = 0.694794, S(d3) = 0.19038, S(d4) = 0.523417, S(ds) = 0.537091

F, >Fs >Fy > F; > F

Table 1. Comparison of the results.

Aggregated values of alternatives.

{{0.168693, 0.281372], [0.263604, 0.374317]},
4O {{0.093376, 0.160292], [0.089665, 0.287722]},
1= {[0.295774, 0.633943], [0.382199, 0.611782]},

{0.232751, 0.381204}, {0.093376, 0.123714}, {0.442892, 0.60767} >

{[0.249959, 0.363983], [0.352221, 0.463081]},
40 {[0.149435, 0.23322], [0.152184, 0.363983]},
2 = {[0.239398, 0.536919], [0.382199, 0.5535]},

{0.306626, 0.454715}, {0.149435, 0.186685}, {0.359256, 0.512649} >

{[0.455621, 0.568276], [0.539999, 0.635575]},
PO {[0.336995, 0.440546], [0.340836, 0.560738]},
30 {[0.150378, 0.355881], [0.242142, 0.361851]},

{0.511642, 0.636861}, {0.336995, 0.382743},{0.214347, 0.332492} >

{{0.286796, 0.401832], [0.409242, 0.516248]},
40 _ {{0.189282, 0.271188], [0.186771, 0.415582]},
4 = {[0.207275, 0.500834 |,[0.306855, 0.504286] },

{0.353802, 0.505876}, { 0.189282, 0.230407}, {0.347451, 0.482708}

{[0.172929, 0.27991], [0.290305, 0.369343]},

4 _ {{0.143046, 0.205277], [0.16734, 0.275848]},
1= {[0.337857, 0.661617], [0.187748, 0.531795]},
{

{[0.166906, 0.276601], [0.269857, 0.347395]},
4o {[0.129653, 0.182922], [0.148579, 0.251785]},
2 = {[0.338679, 0.667768], [0.240342, 0.551725]},

{0.316979, 0.437345 },{0.12097, 0.182922}, {0.609754, 0.717157}

;

0.36267, 0.485593},{0.135922, 0.195054}, {0.598318, 0.7} >

;
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{[0.452839, 0.563217], [0.574484, 0.640684]},
40 _ < {[0.412356, 0.483975], [0.445713, 0.561807]}, >
3= {[0.166783, 0.385742], [0.101477, 0.298055]},
{0.627839, 0.715988}, {0.403256, 0.476572},{0.338962, 0.420345}

{{0.301086, 0.424264],[0.410553, 0.487351]},
) {{0.249058, 0.311141], [0.186771, 0.415582]},
i = {[0.239398, 0.521454 |,[0.187748, 0.423571]},
{0.4465, 0.5578}, { 0.236655 , 0.316866 }, {0.469978, 0.575736}

Transformed aggregated values. Using weights ) = u, = 0.5 for experts, we have

{[0.316795, 0.368895], [0.367014, 0.418605]},
g < {[0.294517, 0.322097], [0.298749, 0.36948]}, >
1= {[0.534735, 0.62635], [0.543718, 0.607142]},
{0.377728, 0.455903}, {0.293066, 0.311816}, {0.598383, 0.633952}

{[0.333756, 0.38974], [0.384772, 0.438448]},
5 < {[0.303357, 0.333589], [0.307949, 0.383094]}, >
2 {[0.484897, 0.655379], [0.543036, 0.579802]},
{0.38518, 0.463956}, {0.301537, 0.323}, {0.572655, 0.611645}

{{0.46926, 0.547713], [0.541293, 0.605525]},
5 < {[0.420259, 0.474513], [0.431236, 0.544327]}, >
3= {{0.463809, 0.646651], [0.50664, 0.558764]},
{0.550754, 0.63854}, {0.417617, 0.453544}, {0.560708, 0.59502}

{{0.445183, 0.588428], [0.391659, 0.530621]},

p {{0.303378, 0.385061], [0.291323, 0.536908]},

4= {{0.152128, 0.374173], [0.142083, 0.352469]},
{0.412698, 0.500953}, { 0.379002,, 0.470432}, {0.285738, 0.422203}

Scores S(d;).  S(dy) = 0.369, S(ds) = 0.383, S(d3) = 0.503, S(dy) = 0.420.

Ranking of alternatives. As S(dz) > S(ds) > S(d2) > S(dy), so that the most desirable alternative is Fs.

Figure 3 shows the score function of expert aggregated values and transformed aggregated.

The Fig. 3 is a graphical reflection of scores of aggregated values corresponding to each expert and trans-
formed aggregated values. The figure reflects that the alternative F3 has the highest score of transformed aggre-
gated value and hence the most desirable or best alternative while F is the worse alternative.

Comparative analysis. The industrial zone site selection problem is solved by some existing techniques
and findings are presented in the following table.

Table 1 indicate that the proposed method agrees with existing methods in all alternatives. This also validate
the validity of proposed method as well.

Conclusion

In this study, first we proposed exponential operational laws in NCHFS and investigates the fundamental proper-
ties of these exponential laws. Using these exponential laws, the exponential aggregation operators are proposed
in the environment of NCHEFS, which is a useful addition in the family of aggregation operators. Then we estab-
lished a method to solve complex ME-MADM problem where each expert has its own decision matrix along
with his own weighting vector for attributes. Finally, the proposed method is applied to the industrial zone site
selection and solid waste disposal site selections are problems.
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