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Aiding coastal wetland restoration via the belowground
soil microbiome: an overview
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The United Nations Decade of Ecosystem Restoration was announced in 2021 to highlight the need for collective efforts to revive
degraded ecosystems. Plant above- and belowground microbiomes are fundamental to plant health and ecosystem functioning.
Plant aboveground microbiomes have received considerably more attention than the belowground microbiome, especially in
the context of coastal plant restoration. Thus, there is fundamental gap in our understanding of the role belowground microbiomes
play in restoration success in saltmarsh and mangrove ecosystems. Here, we outline potential pathways and challenges associated
with including the belowground microbiome in mangrove and saltmarsh restoration via a conceptual framework and an overview
of current literature. We highlight the large gap of knowledge that exists in plant-microbe literature as it pertains to coastal res-
toration warranting future research. More research is needed to significantly advance both fundamental and applied knowledge
through better understanding of the importance of coastal microbiomes to restoration success by stakeholders and funding bodies.
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distribution has been estimated to be between 2.2 to 40 Mha
(Pendleton et al. 2012); however, a recent, that is, 2017 global
study, reported and mapped saltmarshes across 43 countries and
territories with a combined area of approximately 5.5 Mha
(Mcowen et al. 2017). The United States (1,723,410 ha),
Australia (1,325,854 ha), Russian Federation (700,719 ha),
China (549,506 ha), and Europe (356,947 ha) have the highest
area of saltmarshes (Mcowen et al. 2017).

However, these coastal ecosystems are experiencing extensive
degradation due to sea level rise, pollution, erosion, and pressure
from introduced invasive species (Jankowski et al. 2017; Birn-

Implications for Practice

e Coastal wetland restoration success may be enhanced by
incorporating assessment of belowground soil microbial
communities that affect plant survival and health.

e Microbial ecologists and land managers need to
collaborate to trial solutions for facilitating coastal
wetland restoration that would be cost effective and
viable long term.

Introduction

Preventing, halting, and reversing the degradation of ecosystems
worldwide are the central goals of the United Nations Decade of
Ecosystem Restoration announced in 2021. The rapid deteriora-
tion of terrestrial and coastal ecosystems calls for coordinated
efforts to prevent further degradation and assist in more informed
restoration management plans. Coastal ecosystems, such as man-
groves and saltmarshes, are highly productive and valuable
marine coastal habitats (Barbier et al. 2011; Costanza et al.
2014). They are of a significant value to humans providing key
ecosystem services, including water filtration, storm surge protec-
tion, carbon storage and sequestration, recreation and serving
as biodiversity reservoirs (Macreadie et al. 2021; Farrer
etal. 2022). Analyses of global mangrove distribution have found
that 75 % of mangroves are concentrated in 15 countries (Giri
et al. 2011). Indonesia (3,112,989 ha), Australia (977,975 ha),
Brazil (962,683 ha) and Mexico (741,917 ha) have the highest
area of mangroves (Giri et al. 2011). Saltmarsh global

baum et al. 2021; Zengel et al. 2022). For example, surveys of
mangrove global coverage in the early 2000s revealed a decline
of more than 35%, with a predicted future decline at 1-2% per
year (Valiela et al. 2001; Duke et al. 2007). Mangrove decline
has been predominantly attributed to their clearing for forestry,
agriculture, and urban expansion, as well as their conversion to
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Soil microbes in coastal wetland restoration

aquaculture ponds across the tropics as well as die-backs from cli-
mate change-driven impacts (Valiela et al. 2001; Bayraktarov
et al. 2016; Sippo et al. 2018; Abhik et al. 2021). It has been esti-
mated that saltmarshes have declined by 25 to 50% compared to
their global historic coverage (Duarte et al. 2008; Crooks
et al. 2011). Saltmarshes have been significantly modified by
drainage for agriculture, coastal eutrophication, and replacement
by mangroves due to climate change (Gedan et al. 2009; Deegan
etal. 2012; Saintilan et al. 2014). Some of these threatening exter-
nal physical processes may cease after change in land use and res-
toration activities (e.g. releasing of grazing pressure or tidal
reinstatement), with time allowing for ecosystem recovery
through natural expansion of nearby vegetation and follow-on cli-
mate change mitigation benefits (e.g. blue carbon; Lovelock
et al. 2022). Alternatively, active restoration may be required in
instances where lack of recruitment and altered, detrimental hab-
itat conditions prevent successful establishment and growth
(Silliman et al. 2015; Billah et al. 2022). Direct planting of seeds,
seedlings, saplings, or small trees, can enhance the survival of

mangrove and saltmarsh wetlands in the short term, but can be
challenged by species growth strategies that impact recovery,
physical disturbances, and poor site selection or lack of
community support, which can lead to longer-term restoration
failures (Bayraktarov et al. 2016; Lee et al. 2019; Lewis
et al. 2019; Lovelock & Brown 2019). Restoration projects in
mangroves and saltmarshes have been predominantly focused
on measuring aboveground plant responses (Bayraktarov
et al. 2016), neglecting the assessment of the belowground soil
health and compatibility with plants. However, plants are highly
reliant on soil microbial communities to withstand stressful
environments because of high salinity, flooding, drought, or low
nutrient concentrations (Farrer et al. 2022). The potential of
plant—microbial interactions in improving the success of restora-
tion in mangroves and saltmarshes has been rarely explored
(see Farrer et al. 2022 and Srivastava et al. 2017 for reviews of
plant—microbe interactions in coastal and aquatic systems).
Saltmarsh and mangrove ecosystems are dominated by plants
that form belowground associations with soil microbial

The role of soil microbes in ecological restoration

Pristine coastal community

Degraded coastal community

Figure 1. Conceptual diagram showing the role of soil microbes in coastal saltmarsh and mangrove communities. Soil microbes include whole communities (microbiome),
as well as individual microbes, that may have significant interactions with the host plant. (A) Pristine coastal community, where plants may form diverse established
associations with microbial communities (e.g. mutualistic [green] and symbiotic [yellow]; solid lines) that have evolved over longer time periods. (B) Degraded coastal
community where some beneficial plant-microbe associations have weakened (dashed lines) due to the degradation. Degradation may also facilitate shifts whereby soil
microbial communities associated with a pristine ecosystem are replaced by opportunistic communities that are thriving in altered abiotic conditions (e.g. following an oil
spill). These new communities may not confer benefits to the host (or ecosystem functions) or represent/replace the beneficial communities. Thus, there is potential for
dysbiosis to develop. Some forms of pressures may also cause complete ecosystem loss. Mutualistic [green] and commensalistic associations [orange] shown. (C) Restored
coastal community with replanted seedlings or saplings may form associations with both, that is, (1) with propagules of the soil microbial communities from the pristine source
community, and (2) with the soil microbial remnants from the degraded coastal community. The initial plant-microbe associations may be weak (dashed lines) following the
restoration. In the absence of further degradation, these associations are expected to strengthen and diversify. In some instances, however, there is natural regeneration
occurring when the negative pressures that caused the degradation are removed. Mutualistic [green], symbiotic [yellow] and antagonistic [red] associations shown.
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Soil microbes in coastal wetland restoration

communities (Fig. 1A). Biogeochemical nutrient cycling of car-
bon and nitrogen relies on both plants and belowground micro-
bial communities that together play a central role in making
them available to living organisms. Soil microbial communities
increase plant stress tolerance, enhance seedling establishment,
and provide protection from soil borne pathogens (Kumar &
Verma 2018; Igwe & Vannette 2019; Liu et al. 2021)—key
functions that are likely important during the colonization of
new soils in extreme (e.g. anoxic, hypersaline, potentially pol-
luted from previous land use) coastal conditions. A recent
review by Farrer et al. (2022) provided a comprehensive over-
view of several plant-microbe symbioses (i.e. mycorrhizae,
nitrogen fixers, endophytes, rhizosphere microbes, and patho-
gens) in coastal ecosystems and their importance in coastal
restoration.

Despite how essential microbiomes are to coastal wetland ecol-
ogy and health, there is yet to be a broad uptake of incorporating
microbial responses or microbiome interventions in mangrove
and saltmarsh restoration (Allard et al. 2020; Bayraktarov
etal. 2020). Here, the focus is to propose a conceptual framework
for the roles that the belowground microbiome may play during
restoration of mangrove and saltmarsh ecosystems (Fig. 1), with
a particular emphasis on how the microbiome communities and
functions can enhance plant establishment and revegetation suc-
cess. We draw on known and potential relationships between
the plant and soil/rhizosphere microbiomes, as well as current res-
toration techniques. By developing this framework, we outline
research opportunities, as well as challenges when considering
these belowground processes during ecological coastal restora-
tion (Fig. 1B & 1C). Lastly, we provide an overview of published
literature that assessed or included belowground microbial com-
munity analyses in coastal mangrove or saltmarsh restoration.

Potential Pathways for Soil Microbiomes to
Accelerate Coastal Wetland Restoration

Improving and utilizing our knowledge of soil and rhizosphere
microbiomes has become an important component to ecologi-
cal restoration and soil management frameworks across many
terrestrial biomes and degradation scenarios (de Deyn &
Kooistra 2021; Coban et al. 2022), including a strategy to sup-
port the Decade of Restoration (Aronson et al. 2020). The roles
and benefits that microbiome provide to degraded ecosystems
include bioremediation of polluted or contaminated soils and
improving biogeochemical conditions (Allard et al. 2020;
Coban et al. 2022), as well as improving plant nutrient acquisi-
tion, productivity, and defense (Allard et al. 2020; Trivedi
etal. 2020; Farrer et al. 2022). In coastal ecosystems, including
saltmarshes and mangroves, developing our understanding and
characterization of the holobiont is a critical step to identifying
the roles and utility of belowground microbiomes in restora-
tion scenarios (Trevathan-Tackett et al. 2019; Allard
et al. 2020). Holobiont is defined as the complex relationship
between communities of microorganisms (the “microbiome”)
and the environment or their hosts (Vandenkoornhuyse
et al. 2015; Trevathan-Tackett et al. 2019). For example,
coastal rhizospheres include functional groups that are critical

to sulfide detoxification (Rolando et al. 2022) and nutrient
acquisition (Davis et al. 2011; Rolando et al. 2022), in addition
to helping the plants cope with salinity, drought and oxidative
stress (Hueso et al. 2011; Mohapatra et al. 2021). Observing
how the root and rhizosphere microbiome develops when pio-
neering species expand habitat into new areas may provide key
insight into the taxa or functions within the microbiome that
assist in revegetation. Further, characterization of the soil and
microbiomes during restoration failures may be informative,
particularly where antagonistic microbiota or stressful below-
ground conditions may be linked to plant mortality and
reduced establishment or expansion. Based on current restora-
tion practices for coastal wetlands, we outline opportunities
where belowground microbiomes could aid in saltmarsh and
mangrove restoration success, either indirectly or directly, pro-
viding examples where possible (summarized in Table 1).

Microbial inoculations or transfers are direct pathways to
manipulate the belowground microbiome to enhance plant ger-
mination, establishment, and expansion. The microbial inocu-
lum can be sourced from pristine adjacent to restoration sites
and sub-selection of plant-growth-promoting bacteria or fungi
would need to be cultured and amplified in the laboratory condi-
tions to ensure high transferable density in the field. The few
examples that exist for emergent coastal plants include rhizo-
sphere bacteria showing suppression activity to fungal patho-
gens (Mavrodi et al. 2018), and bacteria enhancing seed
germination (Figueira et al. 2019; Mesa-Marin et al. 2019) and
seedling root length (Soldan et al. 2019). Such studies hold
promise for coastal wetland rhizospheres as hotspots for benefi-
cial microbiome members (Trevathan-Tackett et al. 2019;
Allard et al. 2020). However, a well-known drawback for apply-
ing inocula is that microbiota often cannot be grown in culture,
thereby limiting our scope for isolating individual microbial
taxum or a consortium of taxa that may be essential for plant root
health. Transferring an intact rhizosphere as part of a cluster of
multiple plants and surrounding the soil has been shown to
improve transplant success by maintaining root oxygenation
and soil stability (Silliman et al. 2015). Likewise, the rhizo-
sphere microbiome within the transplant plug could initially
provide benefits to the plants in the new environment. Over time
the surrounding soil microbiomes will become more important
as the roots expand and the rhizosphere microbiomes change
due to plant selection and recruitment of microbiota from the
new soils (Fig. 1) (Duarte et al. 2012; Wang et al. 2016; Mavrodi
et al. 2018).

Soil manipulations represent pathways for indirectly alter-
ing the soil microbiome in a way that benefits or enhances
revegetation. For coastal ecosystems, tidal reinstatement may
have the power to alter the edaphic conditions and soil micro-
biome prior to, and potentially in facilitation of, revegetation
by saltmarshes (Lynum et al. 2020). Soil amendments have
been used to facilitate coastal plant restoration activities by cre-
ating new space for revegetation (Billah et al. 2022), or adding
specific resources to help plant growth (e.g. biochar; Cai
et al. 2021). We know little about the rhizosphere response to
soil amendments in relation to restoration success, but some
studies suggest microbial taxa or functional traits may respond
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Table 1. List of potential pathways to improve belowground microbiome function, potential impact of chosen pathway during restoration, as well as potential

challenges.

Pathway to Improve
Belowground Microbiome
Function

Description of the Pathway and Potential
Impact During Restoration

Potential Challenges References

(1) Microbial inoculum  Plant-growth-promoting bacteria or
fungi to accelerate plant and seedling
growth or nutrient uptake

Treatment of plant rhizosphere or soil
with an inoculum before outplanting,
including but not limited to
bioremediation

Transference of rhizosphere from
multiple plants in a plug (and
surrounding soil) maintains
rhizosphere microbiome and
conditions, thereby reducing stress
and promoting establishment

Transference of parent microbiota to the
seed to assist in germination and
establishment, e.g. seed coating with
beneficial microbes that assist with
establishment

Stabilization of the soil near or
surrounding the plant may reduce
erosion and allow for enhanced root
and seed establishment, and thereby
rhizosphere development and
germination success

(2) Transference via
clustered transplants
(outplants) or seeds

(3) Artificial structures

(4) Soil or Indirectly altering soil microbiota
environmental conducive to revegetation by altering
manipulation the environment to predisturbance

conditions

Inorganic nutrient, organic matter,
and/or biochar addition to facilitate
root growth or seed germination

Manual aeration of soil to mimic
oxygenation by bioturbation

Planting of fast-growing nontarget
species (e.g. legumes) to improve soil
conditions and stability that would
promote natural establishment of the
target species

Need detailed understanding

Requires nursery or sourcing plants

Little known about seed associated

Prior knowledge of elevation and

Predisturbance environmental

Time consuming and costly
Prior ecological knowledge of

Holguin et al. (2001); Bledsoe
and Boopathy (2016);
Figueira et al. (2019);
Mesa-Marin et al. (2019);
Farrer et al. (2022)

of plant-microbe interactions to
identify beneficial microbial
inoculum and avoid pathogen
introduction

Expensive at-scale

Silliman et al. (2015); Wang
et al. (2016); Mufioz-Rojas
et al. (2018); Nelson (2018)

from a natural ecosystem

microbial communities of coastal
plants

Temmink et al. (2020); Fivash
hydrology is required in order to et al. (2021)
plant in areas where establishment

will be successful

Lorenzo et al. (2010); Begam
et al. (2017); Matzke and
Elsey-Quirk (2018); Lynum
et al. (2020); Cai et al.
(2021); Qiu et al. (2021)

condition records are not always
available

nontarget species required to avoid
soil modification that favors the
nontarget species, e.g. legumes
changing the nutrient balance in
soil and modifying soil conditions
that promote bacteria beneficial to
legumes

in a way that benefits the vegetation (Santini et al. 2019; Cai
etal. 2021). Physical interventions that improve the soil before
revegetation, such as artificial structures, aeration, and pre-
planting of nontarget species (Begam et al. 2017; Fivash
et al. 2021; Qiu et al. 2021), may indirectly improve rhizo-
sphere microbiome development and function and promote
restoration success by improving soil oxygenation and stabil-
ity. For both the direct and indirect interventions, there is still
the possibility that harmful microbiota or pollution could per-
sist from previous land use or degradation activities and could
impact revegetation success (Fig. 1C). Bioremediation of the
soil itself may be needed to improve the soil microbiome and
biogeochemical condition, with potential for enhancing in situ
microbial populations that can degrade pollutants,
e.g. hydrocarbons and heavy metals (Ramsay et al. 2000;
Cabral et al. 2019).

Challenges Associated With Taking Soil Microbes Into
Consideration in Ecological Restoration

We have discussed above some of the pathways that can be
undertaken to enhance saltmarsh and mangrove restoration suc-
cess by incorporating soil microbial communities into
ecological restoration practices. However, there are many con-
siderations and challenges remaining before the full potential
of soil microbial communities can be harnessed for more suc-
cessful and cost-effective restoration outcomes.

(1) Knowledge gaps: Our understanding of soil microbial com-
munities in saltmarsh and mangrove ecosystems is funda-
mentally still very limited and geographically biased
(Trevathan-Tackett et al. 2019), requiring fundamental
descriptive studies of natural belowground microbiomes,
as well as their responses to restoration (e.g. monitoring
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@)

during active restoration like hydrological restoration, as
well as natural colonization and expansion). For example,
ecological restoration studies are heavily skewed toward
North American ecosystems and high-income economies
(Wortley et al. 2013; Bayraktarov et al. 2020; Cadier
et al. 2020). Further, we need to understand who are
the site-specific core members of the soil microbiomes, the
function they serve to the plants and subsequently to the
entire ecosystem. For example, changes in microbial com-
munities have been consistently linked with changes in soil
pH, soil moisture, phosphorus availability, and labile
organic carbon pools (Hermans et al. 2017; Delgado-
Baquerizo et al. 2018; Isobe et al. 2020; Ramirez
et al. 2020). Quantifying the relative composition of soil
pathogens in soil prior to restoration is important to predict
the seedling establishment potential. If the soil microbial
diversity is low or pathogen dominated, the seedling sur-
vival and establishment may be greatly compromised.
However, surveying pathogen loads in soil during restora-
tion is not a common practice, to our knowledge. Another
important consideration is better understanding plant reli-
ance on beneficial microbes in their roots. For example,
legumes (Fabaceae) often require the presence of compati-
ble nitrogen fixing bacteria (Rhizobia) for seedling estab-
lishment and growth (Birnbaum et al. 2017; Gorzelak
et al. 2020).

High costs of microbial profiling and associated data
analysis: Although the novel molecular tools to analyze
microbial communities are becoming increasingly afford-
able, the associated total costs of collecting soil samples,
appropriate storage in the cold or freezing conditions in
the field, preparing samples for high-throughput DNA
sequencing for microbial analysis and having the suitable
facilities is very costly and the process time-consuming,
especially for practitioners and land managers leading the
restoration efforts on the ground. For example, the average
cost of amplicon-based microbial profiling for soil bacteria
or fungi (extracted DNA) at a commercial lab is AU$/US
$50-120/sample. The total costs of a one-off analysis can
quickly escalate depending on the number of samples. For
instance, analysis of 100 soil samples for bacterial and fun-
gal profiling using sequencing technologies at a commercial
laboratory in Australia may cost, on average, ca. AU
$10,000. Typically, ecological restoration may require
repeat soil sampling for monitoring the outcomes of restora-
tion practices, and thus the associated costs for repeat soil
microbial sampling may quickly grow into tens of thou-
sands of dollars. Obtaining soil microbial profiling data
requires involvement of either a microbial ecologist or an
expert in microbiology, who can aid scientifically accurate
data collection, analysis, and interpretation of bioinformat-
ics data, although the bioinformatics pipelines are increas-
ingly becoming more use-friendly and accessible (Fierer
et al. 2021). If an expert is not included in the project, inter-
nal upskill may be required that is financially costly and not
always possible. These challenges are also relevant to other
sequencing approaches, such as (shotgun) metagenomics

©)

and eDNA monitoring, which provide information on
microbiome community and functional potential and the
monitoring of target organisms of interest (microbes, ani-
mals, and plants), respectively, (e.g. Foster et al. 2020;
Saenz-Agudelo et al. 2022).

Long-term monitoring, funding, and scalability:
Depending on the recovery parameters of interest and pro-
ject scale, it may take years or decades before restored wet-
lands reach conditions of natural reference wetlands
(e.g. typical long-term monitoring over 5—15 years; Wortley
et al. 2013; Cadier et al. 2020). The timeframes needed to
achieve target biodiversity and ecosystem functions conflict
with government and industry funding (i.e. 1-3 years). Fur-
ther, ecological restoration is very context-dependent and a
“one-size-fits-all” approach to restoration is challenging and
thus limiting the scalability of the restoration projects across
large areas. One solution to assess the response of key resto-
ration conditions within spatiotemporal and funding con-
straints are  space-for-time and chronosequence
approaches. For instance, sampling sites that represent a
range of restoration or community succession responses,
e.g. from natural reference and longer-term restored sites
to newly restored and business-as-usual sites, would help
identify the core microbial community members and func-
tions that may be important to enhancing restoration success
(Wang et al. 2016; Jiao et al. 2022). Such studies from the
terrestrial and coastal realms have shown that restoration
enhances the annual and seasonal stability of the below-
ground microbiome (revegetation of saltponds with man-
groves; Tran et al. 2019), and that soil source, such as
dredge spoil used in the restoration activity, influences rhi-
zosphere community formation (revegetation of saltmarsh;
Mavrodi et al. 2018). Long-term restoration has also been
shown to enhance beneficial fungal and prokaryotic func-
tional groups associated with sulfide oxidation, plant-
growth-promoting, and pathogen suppression functions
(Mavrodi et al. 2018; Yan et al. 2018). With this approach,
however, controlling for or measuring environmental vari-
ables in cross-site comparisons will be key to constraining
the influence of nonrestoration influences in order to detect
restoration-driven  responses on the belowground
microbiomes.

Systematic Review of Saltmarsh and Mangrove
Restoration Studies Where Belowground Microbiome
Has Been Considered

To understand how much belowground microbiomes have been
considered in ecological restoration in saltmarshes and man-
groves globally, we performed a systematic quantitative litera-
ture review by searching the Scopus database (Elsevier,
Atlanta, GA, U.S.A.) on 20 October 2022. Scopus database
was searched through title, abstract and keywords using the
search string:(mangrove OR saltmarsh) AND (fung* OR bact*
OR microb* OR path*) AND (restoration OR “ecological resto-
ration”). Available literature until October 2022 was included.
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Direct analysis (Terminal Tidal flow restoration

Bacteria

Saltmarsh  Soil

United States

25 Bernhard et al. (2012)*

Restriction Fragment

Polymorphism)
Inferred (enzyme activity,

Comparison between restored

NA

Saltmarsh  Soil

United States

26  Wood et al. (2017)*

(dredged river sediment) and natural

marshes

microbial biomass carbon and
nitrogen, potentially

mineralizable nitrogen)

This search returned 177 papers in Scopus. All articles were
imported into Covidence (Covidence systematic review soft-
ware, Veritas Health Innovation, Melbourne, Australia) for title,
abstract and full text screening. 151 studies were excluded,
because they did not meet the criteria as follows: microbial com-
munities not assessed (64 studies), ecological restoration not
conducted (55 studies), review (14 studies), not in English lan-
guage (6 studies), and other (12 studies; e.g. not mangrove or
saltmarsh).

From the final 26 studies, the following data were extracted
including the country where the research was conducted, eco-
system type (i.e. saltmarsh or mangrove), microbial community
and how it was assessed (direct or inferred), and type of restora-
tion. The results from the 26 studies are summarized in Table 2.

We found that approximately 50% of studies were from the
United States (11), followed by China (9), Australia (2), India
(1), Mexico (1), Portugal (1), and United Kingdom (1) (Table 2).
Saltmarshes and mangroves were studied in 16 and 10 studies,
respectively, although there were regional differences. For
example, all studies from the United States were from salt-
marshes. Studies from China were all but two from mangroves
(Table 2). Microbial communities were predominantly assessed
from soil or sediment in all but one study that analyzed arbuscu-
lar mycorrhizal fungi in plant roots (Cooke & Lefor 1990).
Bacteria were the most common microbial group reported in
14 studies, fungi were reported in 2 studies, archaea from
1 study, and 7 studies did not report which microbial community
was assessed or the microbial community was inferred by ana-
lyzing microbial activity or processes (Table 2). In mangroves,
the type of restoration ranged from mudflat stabilization to man-
grove reforestation and reconstruction to comparing chronose-
quences ranging from 1 year to 17 years since restoration,
using predominantly next generation sequencing to assess
microbial communities (Table 2). In saltmarshes, the type of res-
toration ranged from oil spill remediation to comparisons
between restored and reference sites (Table 2). In total, 12 out
of 26 studies compared soil microbial communities between
restored and reference natural sites (Table 2).

In terms of how soil microbial assemblages responded to res-
toration and compared to reference sites, there were limited, or
contrasting findings reported. For example, Wei et al. (2021)
found no significant differences in phospholipid fatty acid
(PLFA) profiles and microbial metabolism between mangrove
sites. Bernhard et al. (2012) found that the bacterial community
composition in restored saltmarsh sites was not significantly dif-
ferent from the undisturbed sites, although there were significant
differences in bacterial community stability. Santini et al. (2019)
reported that the microbial (i.e. bacterial, archaeal) community
assessment in saltmarshes indicated that restored and natural
saltmarsh habitats were similar at a phylum level, except for a
higher proportion of Proteobacteria in the rhizosphere of salt-
marshes from the regenerated habitat. These authors also
reported that the abundance of Desulfuromonas and Geobacter
was associated with high carbon and nitrogen densities in soils
indicating that these genera may be key for the recovery of eco-
system characteristics in saltmarshes. Other authors found a
stronger fungal network in saltmarshes within Ascomycota
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(e.g. Sordariales, Aspergillus, Hypocreales, and Cladosporium
herbarum) in restored marshes, but with a lower diversity of hal-
ophilic taxa (e.g. Chytridiomycota) in comparison with natural
saltmarshes (Xiao et al. 2020). Lynum et al. (2020) found that
the microbial communities in three compared habitats within
the restored marsh were different from reference marshes, and
both the prokaryotic and fungal communities within saltmarsh
Phragmites australis and Typha sp. habitats became more simi-
lar to reference marshes during the first 2 years after restoration.
Taken together, the review of current literature suggests there is
conflicting and inconclusive evidence on soil microbial
responses to restoration and geographic biases in plant—soil
research as it pertains to coastal restoration.

These results show that there is still limited application of soil
microbiome and a paucity of information about the rhizosphere
microbiome responses to coastal restoration. This exercise also
highlights the opportunity for fundamental research on the
belowground microbial community diversity in coastal ecosys-
tems and how these soil microbial communities could be har-
nessed to improve the outcomes of coastal restoration projects
in both above- and belowground compartment.

Conclusions

The belowground microbiome holds a huge potential to enhance
coastal restoration efforts. Before this knowledge can be har-
nessed, better understanding of plant-microbe belowground
associations in coastal ecosystems is needed via on-ground stud-
ies that would provide a baseline on soil microbial diversity.
We have highlighted potential pathways and acknowledged
the associated challenges and suggested opportunities for direct
and indirect interventions based on current restoration tech-
niques within and outside of coastal restoration. While the list
is not exhaustive and will likely be developed over time, we
hope that this review will create further discussions toward
improving the outcomes of coastal restoration. There are chal-
lenges to assessing belowground microbiome responses; how-
ever, we are hopeful that the field will see significant
advancements in both fundamental and applied knowledge
through technological advances, collaborative efforts, and
increased understanding of the importance of coastal micro-
biomes to restoration success by stakeholders and funding
bodies.
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