
Introductory Programming in a Web Context

Michael de Raadt
Department of Mathematics and Computing, Centre for Research in Transitional Pedagogies

University of Southern Queensland

Toowoomba, Queensland, 4350

deraadt@usq.edu.au

Abstract

A number of studies have recognised the benefits of using

a context or theme consistently throughout an

introductory programming course. Examples of contexts

in which programming is related and taught include

micro-worlds, robotics, games and media computation.

Such contexts bring relevance to the content of

programming courses. In this paper, a Web context is

proposed and described. This context has been

successfully used in an introductory programming course

and received a positive student response.
.

Keywords: Introductory programming, context, Web.

1 Introduction

Traditionally, introductory programming has been taught

independently of any context; removed from the real

world to distil programming to its purest, simplest form.

Relevance has been achieved through assignments and

practical examples, but on the whole, programming has

been presented as an independent practice. A study of

assignments in “top” US computer science institutions

found, “Only 34% of the CS1 projects had a practical or

socially-relevant context, 41% had no context at all...”

(Layman et al., 2007, p. 459)

A context can be used consistently through an entire

course of programming, in illustrations of programming

concepts, practical exercises and assignments. Students

can become familiar with the context and see how

programming is relevant there. Often students may

already be familiar with the context before they begin.

Contexts can be stimulating and exciting and can be

relevant to novice programmers’ lives, outside of their

academic careers, thus providing an incentive to learn

about programming with a deep approach. “Engaging

students is critical for them to learn something well

enough to use it again in a new situation.” (Guzdial &

Soloway, 2002, p. 18).

At the same time, contexts can be detrimental to

students learning. If students learn in a particular domain,

it can be difficult for them to transfer their learning to

another domain. Within programming, if novices have

learned in one context they may see programming only in

the related domain. It is therefore important to choose a

domain that is relevant to students (Guzdial, 2005) and to

Copyright © 2010, Australian Computer Society, Inc. This

paper appeared at the Eighth Australasian Computing Education

Conference (ACE2010), Brisbane, Australia. Conferences in

Research and Practice in Information Technology (CRPIT),

Vol. 103. Tony Clear and John Hamer, Eds. Reproduction for

academic, not-for-profit purposes permitted provided this text is

included.

demonstrate how concepts learned in the chosen context

are relevant in other domains (Guzdial, 2009).

This paper begins with review of contexts that have

been used in introductory programming courses, and the

effects of using these contexts. A description of a Web

context and its use in an introductory programming

course is then described. This is followed by possible

impact results and measured student attitudes towards this

context. Finally, conclusions are made.

1.1 Contexts in Introductory Programming

A number of contexts have been used in introductory

programming courses. In this section, some of these

contexts are reviewed, and their effects reported. This

brief overview is far from comprehensive (as many

papers have been written on contexts), but provides a

number of examples from each context.

1.1.1 Micro-worlds

The earliest context proposed for teaching programming

was used in Logo (Papert, 1970), which focussed on

“physical examples” of geometric principles, in a

programmable graphical environment with Lisp-like

syntax. Seymour Papert believed physical analogies

involve students in their learning. “Without this benefit,

seeking to "motivate" a scientific idea by drawing an

analogy with a physical activity could easily denigrate

into another example of "teacher's double talk"” (Papert,

1980, p. 96).

Another example of a micro-world used for

programming is that of Karel the Robot (Bergin et al.,

2005), who embodies the notion of an object with

behaviours in a virtual world. A similar notion is used

with Jeroo, which attempts to engage novice

programmers on a virtual island (Sanders & Dorn, 2003).

Lister (Lister, 2004) used a micro-world called “Pig’s

World” to emphasise object-oriented concepts such as

message passing and containers, using fun-loving pigs as

objects.

A micro-worlds context is useful for teaching, but

students may not be able to transfer the relevance of this

context to the real world.

1.1.2 Robotics

Using robotics as a context for introductory programming

has been successful at a number of institutions. Imberman

& Klibaner (2005) report on the use of Lego robots in an

introductory programming course. “The drudgery of

traditional text based programming assignments was

replaced with a "real life" application” (p. 136). They

claim a positive student response.

Summet et al. (2009) reported that students studying

programming in a robotics context were more successful

than students in non-robotics contexts (including media

computation and Matlab). Yet, when searching for

quantitatively improved student motivation, McWhorter

& O'Connor (2009) found little statistical evidence to

suggest Lego robots motivated students to learn. Follow-

up interviews in this study discovered that students did,

however, enjoy working with robots.

The downside to a robotics context is the cost of

robots and their availability to students. This context is

not convenient when students are studying via distance

education.

1.1.3 Games Programming

A number of papers have reported the use of games

programming as a context.

Bayliss & Strout (2006) used games programming in

an alternate CS1 course and compared student attitudes

with those in their traditional course. They found students

felt less intimidated by their peers in a games context,

Students reported bonding with other students through the

development of games.

Haden (2006) reported on the use of a games

programming context in a follow-on programming

course. Students created simple 2D games, applying

object-oriented techniques, physics and recursion.

Students were positive about their outcomes in the

course. A number of games were exhibited in a public

showing and were received with enthusiasm.

The success of a games programming context relies on

students having a familiarity with computer games and an

interest in producing them, which is not true for all

students. There may also be barriers created by the cost of

purchasing environments and suitable hardware for

games programming. Again this may be a limitation

when students are studying via distance education.

1.1.4 Media Computation

A media computation context for programming,

sometimes referred to as “media-comp”, was originally

considered for students from non-computer science

backgrounds (Guzdial, 2003). Initial studies of the use of

a media-comp context showed improved retention and

enthusiasm among students. Media computation has also

been shown to encourage greater participation of females

(Rich et al., 2004). Media computation involves the

manipulation of media such as images and sound files,

stimulating creative expression while still covering

programming concepts such as iteration and data

handling. The success of this context has encouraged

wider adoption (Yarosh & Guzdial, 2008).

2 A Web Context

A Web context, put simply, is students writing code

which is used in Web pages (JavaScript in HTML pages).

The description of a Web context given here relates to

Web pages as viewed in a Web browser. It does not

attempt to include a client-server model, merely files on

the local machine.

This context arose after a change of language in an

introductory programming course. Previously this course

had used the C programming language and was targeted

towards computer science students. After an

amalgamation of programs, this course became the single

introductory programming course for the university. The

mix of students changed also; currently, the greater

majority of students in the course will not go on to study

further programming, so a strong computer science focus

is unnecessary for these students.

A number of languages were proposed to replace C,

including Python. JavaScript was chosen as a

compromise as it had been used previously in a now

defunct course. Despite initial reservations over the

limitations of JavaScript, it soon became apparent that

this language could be used in a Web context, which has

advantages (and some disadvantages) when compared to

other contexts used in introductory programming.

2.1 Relevance to Students

It is hardly necessary to define “the Web” here in this

paper. Most people in developed countries have a

familiarity with the Web. Although students may be naive

about how the Web works, they do have an understanding

of what Web pages are and the interaction that can take

place in them. They are familiar with the purpose of

JavaScript, even if they have not heard this name before.

What is most important is for students to see that what

they are learning has relevance to themselves and to the

real-world. In that sense, a Web context is more potent

than any of the contexts mentioned earlier in this paper.

Figure 1. A simple card game in JavaScript

The Web context can be stimulating, reaching beyond

text based interaction to graphical user interfaces and

interactive programs. Figure 1 shows a simple card game

which students created in their final assignment (cards

must be revealed in the correct order and will reset on a

failed attempt).

Figure 2. Demonstrating a swap concretely

Even before students can achieve this level of interaction,

it is possible to provide examples in materials that use

these ideas, without daunting students with complexity.

Figure 2 shows an illustration of a triangular swap plan.

One disadvantage of using JavaScript as a

programming language is that it must be used in, or with,

an HTML document. This means that HTML tag syntax

and document structure must be introduced, which creates

additional teaching. Persuading students that HTML and

the presentation of documents, is not the focus of the

course, is also somewhat problematic. Styles and CSS

were avoided in the course described here, but could be

studied in a course with a different focus.

2.2 Ability to Embed Malleable Examples in

Materials

The course described in this paper involved on-campus

students (28%) and external (distance) students (72%),

which is typical at this university. There is therefore an

emphasis on creating materials suitable for both modes.

In the course, all materials were presented online with

no paper alternative. The materials were also made

available to download and view offline, and recorded

onto CD for distribution to external students. Written

materials were complemented with short (~5min)

recorded video snippets of on-campus didactic teaching.

Exercises and examples were intermixed with teaching

materials so students would experience concrete

examples of code throughout each lesson. This mix of

teaching and practice was referred to as a workshop.

Figure 3. Embedded code examples in course

materials (note textareas with code and run button)

The key advantage of this approach was the potential

to provide examples of code, embedded in a page, which

could be edited and executed. An example of this is

shown in Figure 3. All code examples in the course were

presented in this manner. Students could manipulate and

test the examples immediately, without leaving the

learning environment.

These embedded examples are simple to create,

making use of the eval() function in JavaScript. The

text content of a pre-filled textarea can be passed to this

function and executed as code, with the same results as

normal code. Students can modify the code, on their own

or as directed in an exercise, and experience the results of

such changes immediately. HTML examples can be

achieved in a similar manner. HTML source can be

written in a text area and rendered to a section of the

document by assigning its innerHTML property.

The downside of such embedded examples is that it

creates a second way of entering code. Students are also

expected to create source code documents in a text editor.

The distinction between the two methods of entering code

must be explicit when giving students tasks.

2.3 Ability to Teach the Majority of Basic

Programming Concepts

JavaScript is not a general purpose language. It is

primarily a scripting language used to enhance Web

pages. Despite this, most concepts taught in a traditional

programming course can still be covered in this context.

The following topics were covered in the course

described here.

 Programming process, HTML and JavaScript

 Sequence

 Values, Objects, Arrays, Operations, Dynamic

typing, Roles of variables

 Expressions, Using functions

 User I/O, String handling

 Programming Strategies (Initialisation,

Averaging, Divisibility, Cycle position, Number

decomposition, Triangular swap)

 Testing, Debugging, Programming style

 Selection, Iteration

 Programming Strategies (Summing and

Counting, Guarded exceptions, Counter

controlled loops, Primed sentinel-controlled

loops, Validation)

 Writing functions, Recursion

 Programming Strategies (Tallying, Searching,

Min/Max, Sorting)

 Interacting with HTML objects, Forms, Events

Topics that are not covered in this course, but can be

covered using JavaScript, also include exceptions,

creation of objects (paradigm issues are discussed in

section 2.4) and possibly more advanced Web interaction

through technologies such as Ajax. It is even possible,

with perhaps some effort, to achieve media-comp, games

and micro-worlds contexts within JavaScript, although

going this far may confuse students. In a limited fashion,

a games context was used for some later assignments in

the course described here.

JavaScript, like other scripting languages, offers a

simple typing model. There are three primitive types:

numbers, strings and Booleans. Typing is not strict and

variables can change their type dynamically.

JavaScript offers a simple I/O model. The prompt()

function delivers a string input, which is easily converted

to the number type as either an integer or floating point.

Output can be in the form of simple alert() calls,

which pop up a message box, or written to the document

body using document.write(). Output written to the

document body can include HTML tags, so students can

create formatted output such as tables and lists, however

writing to the document body from a script in the head

section can cause confusion for some students. Input and

output to a script can be extended to include form

elements and images (event driven programming will be

discussed in section 2.4).

Because JavaScript is limited to working in a Web

browser, it cannot be used to cover the following topics.

 Compilers and libraries

 File I/O

 ADTs and Information hiding

For the majority of students who take this course alone as

a brief exposure to programming, these limitations are

acceptable. However, transitioning the smaller number of

continuing programming students to a general purpose

language does require more time and effort than using a

single general purpose language through a series of initial

programming courses.

2.4 Potential to explore multiple paradigms

JavaScript is a scripting language, however there is also

potential to explore other paradigms in the Web context,

to a degree that suits the instructor and the course. One

benefit of this flexibility is the possibility to start with

very simple scripts, then move to more complex

programs as the course progresses.

An imperative paradigm can be examined through the

creation and use of functions. Functions can be written in

a script and called as needed. One downside of writing

functions in JavaScript is that they are automatically

overloaded. For example, a function that has two

specified arguments can be called and supplied zero, one,

two or more arguments. It is the responsibility of the

programmer to check that sufficient arguments have been

provided and to ensure the function reacts accordingly.

Objects can be explored in a simple manner. A number

of built in “global” objects are provided in the language,

which are used for I/O, arrays, date and time, and

mathematical functions. Object-oriented programming

can be investigated to a greater depth, however the object

model presented in JavaScript is not as clear as in other

OO languages. Firstly, there are no classes, only objects,

some which can be copied and some which cannot. It is

possible to use global objects without copying them,

which can cause problems. Functions are objects and

primitive types can also be treated as objects.

Graphical user interfaces and event driven

programming can be explored through the use of HTML

forms and images. This was explored in the last part of

the course described here. Some students had trouble

understanding a second paradigm. Interacting with

HTML elements is not trivial as each has its own set of

properties. Care must also be taken when dealing with

timeouts as this can result in unwanted parallel sub-

processes in a program.

2.5 Consistent environment across platforms

Consistency between browsers is not a great issue with

JavaScript. The ECMA standard is followed in almost all

browsers. Incompatibilities tend to arise in the use of

styles and formatting. The only JavaScript

incompatibility that arose in the course was the use of the

const modifier, which is not supported by Internet

Explorer and was therefore avoided (unfortunately). Any

script written by students should have worked equally

well in all browsers. Students were encouraged to use the

Firefox browser as it is available for and consistent across

multiple platforms. It can also be extended to support

JavaScript development as described in section 2.6.

2.6 Access to error messages and debugger

The Firebug add-on for Firefox includes an error console,

debugger and stack tracer. These were particularly useful,

right from the start of the course. JavaScript error

messages are not perfect, but they are relatively

informative and accurate, especially considering the

interpreter is relaxed about syntax. Testing and debugging

were introduced into the course, which was not possible

with previous languages without forcing students to use a

specific platform. The stack tracer worked remarkably

well and assisted in illustrating recursive function calls

without great effort.

Figure 4. Debugger and Stack Trace

An example of the debugger and a stack trace is shown in

Figure 4.

3 Evaluation

To evaluate the Web context after it was used in an

introductory programming course, impact on student

retention and student attitudes were measured.

Student results were not comparable with previous

instances of the course as the student cohort had changed

after an amalgamation of programs. Student retention is a

major problem in the course being examined here; more

students drop out of the course than those who complete

the course and fail. Student retention can be seen as

removed from student potential so it is possible to

examine impact in that regard. Impact was measured by

comparing participation in the course with previous

instances of the course. Participation was judged by

submissions of assignments and the completion of the

examination. Results of this comparison are shown in

section 3.1.

To measure student attitudes a survey was conducted

after the final assignment deadline and before the exam.

The anonymous survey contained six questions related to

the Web context, including five five-point Likert scale

statements and the potential to add a free-form comment.

The survey was delivered using a feedback facility of the

learning management system used in the course. Students

were encouraged by email to participate, but participation

was voluntary. Results of this survey are shown in section

3.2.

3.1 Impact

Participation in the course was measured by counts of

assignment and exam submissions. All assignments are

submitted electronically in the course, so a count was

easily obtained.

0%

20%

40%

60%

80%

100%

120%

Ass 1 Ass 2 Ass 3 Ass 4 Ass 5 Ass 6 Exam

S1 2008

S2 2008

S1 2009

Figure 5. Student retention

Student participation in the exam rose from 74% and 60%

in the previous two offerings, to 77% as shown in Figure

5. This is not significant, particularly in light of the

irregularity of the previous two semesters. A number of

other factors beyond the introduction of a Web context

may have affected this result, including the reduction of

the number of assignments from six to five, the

introduction of weekly quizzes with incentive marks and

the use of a new time-management tool for students.

What is interesting to note in Figure 5 is the

consistency of participation through the course. It could

be argued that students were more engaged.

3.2 Student Attitudes

This section reports on a survey of student attitudes

towards a Web context. Seventy-six survey responses

were recorded, corresponding to a response rate of 55%

when measured against initial enrolments, and to 75%

when measured against the total number of active

students at the time of the fifth and final assignment.

Students were asked what mode they were enrolled in.

The responses were 28% from on-campus students and

72% from external students, which was consistent with

enrolments in the course.

Instead of using the phrase “Web context” the term

“workshop” was used to describe the context through the

course and this was continued in the survey.

0 0.1 0.2 0.3 0.4 0.5

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Figure 6. I appreciated the mix of learning and

practice in the workshops.

Students were asked about the mix of learning and

practice in the course (Figure 6). It is clear that students

appreciated the practice they could achieve through the

embedded examples that were presented in this context.

0 0.1 0.2 0.3 0.4 0.5 0.6

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Figure 7. Being able to interact with embedded

examples was helpful to my understanding.

When asked if the embedded examples helped their

understanding (Figure 7), an even stronger majority

agreed that it was helpful. This is a clear indicator that the

potential that can be achieved in a Web context is valued

by the students.

0 0.1 0.2 0.3 0.4 0.5

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Figure 8. I was confused between when I should be

working in an embedded example and when I should

be working in my editor.

The majority of initial exercises made use of embedded

examples. As the course progressed students were

transitioned to writing code in a text editor. One concern

with this transition was that asking students to write code

in both these forms would cause confusion. The question

(reported in Figure 8) asked students if they had been

confused by this change. This was a negatively phrased

statement. A majority of students disagreed, thus stating

they were not confused. A small proportion (12%) said

that they were confused and a number were neutral about

this statement. There is still a need to clearly distinguish

these two coding activities.

0 0.1 0.2 0.3 0.4 0.5

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Figure 9. The workshops presented materials that

catered for my learning style.

The notion of learning styles had been introduced during

the introduction to the course and students had measured

their learning style using the VARK questionnaire

(Fleming, 2009). The use of the Web context allowed the

materials to be presented in visual, aural, read/write and

especially kinesthetic modalities, within the same,

interactive documents. As shown in Figure 9, 75% of

participating students agreed that this mix catered for

their learning style.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Figure 10. Completing workshops took more time

than I normally put into studying the materials of

other courses.

The final statement (in Figure 10) asked students if this

course required more time than other courses. This

received a mixed response (SA+A≈45%, N≈16%,

D+SD≈38%). Students in the course come from a variety

of disciplines including IT and other sciences, business,

engineering and the arts. There is a large part of the

cohort that sees this course as requiring more time and

work than their other courses (which is probably quite

true).

3.2.1 Comments

Students were asked to provide open comments using the

prompt “Please feel free to provide comments on the

workshops.” One of the reasons for asking for comments

was to discover if students saw a Web context as relevant.

No student specifically stated that it was relevant or

irrelevant; it seems they were familiar with this context

and merely accepted it. Some students expressed

surprised enjoyment in the course, and perhaps this can

be attributed to the context. The course material is well-

detailed and so I have had no trouble understanding what

is required of me. It is possibly even enjoyable! Wow.

The majority of comments were positive. A number of

students commented on the “format” of the workshops.

The workshop format is how courses of this nature should

be laid out.

Embedded examples were appreciated by students.

The most frequently repeated comment related to these

examples. The embedded examples are a great idea as

you have the ability to see the code working and also

make small modifications to see what the results will be.

Enhances learning (sic).

A number of negative comments provided by students

related to workload. I found the workshops took

considerably more time than other subjects, but that I

also had a much more thorough understanding of the

subject afterwards. This was consistent with Figure 10

and with student feedback on the course from previous

offerings conducted before the introduction of the Web

context.

Using a Web context was done, in part, to achieve

real-world relevance. Some students, it seems, cannot be

distracted from their own discipline. One student

commented, I couldn't relate how I'd need to know so

much about computer programming to be a surveyor.

Perhaps the best perspective was provided by a student

who had failed the course in its previous incarnation. The

teaching team has clearly put a lot of work into the

preparation of this course. It is truly appreciated... I have

previously undertaken this course with the C content and

found that to be difficult to follow and understand.

Please, please make all IT cou[r]ses like this one. It

should be noted that most of the concepts covered in the

course were repeated in the new version of the course;

some of the delivery methods changed slightly, but the

most significant change was the use of the Web context.

4 Conclusions

Use of a Web context has many advantages over a

traditional context-free introductory programming course.

Instructors intending to use a context in their introductory

programming teaching should consider the Web context,

particularly to provide relevance to a cohort from various

disciplines. The Web context is well suited for a blended

learning environment, providing more immediate

kinesthetic interaction than other contexts.

A Web context can be used across platforms with no

more than a Web browser and a text editor. It can be used

to teach multiple paradigms to varying degrees.

Students are familiar with the Web context. Students

appreciate the features made possible by a Web context,

particularly embedded examples which allow students to

experiment with example code.

It is clear that the use of a context doesn’t magically

make student’s workload disappear, but it may engage

and encourage them to participate longer.

5 References

Bayliss, J. D., & Strout, S. (2006): Games as a "flavor" of

CS1. Proceedings of the 37th SIGCSE technical

symposium on Computer science education

(SIGCSE2006), Houston, USA 1-5 March, 2006. 500 -

504.

Bergin, J., Stehlik, M., Roberts, J., & Pattis, R. E. (2005):

Karel J Robot: A Gentle Introduction to the Art of

Object-Oriented Programming in Java. Redwood City,

USA, Dream Songs Press.

Fleming, N. D. The VARK Questionnaire,

http://www.vark-

learn.com/english/page.asp?p=questionnaire. Accessed

17 August 2009.

Guzdial, M. (2003): A media computation course for non-

majors. Proceedings of the 8th annual conference on

Innovation and technology in computer science

education, Thessaloniki, Greece. 104 - 108, ACM

Press, New York, NY, USA.

Guzdial, M. (2005): Design process for a non-majors

computing course. Proceedings of the 36th SIGCSE

technical symposium on Computer science education

(SIGCSE2006), St. Louis, USA 1-5 March, 2006. 361 -

365.

Guzdial, M. (2009): Contextualized Computing

Education of Programming. Proceedings of the

Eleventh Australasian Computing Education

Conference (ACE 2009), Wellington, New Zealand, 20

- 23, 2009. 3.

Guzdial, M., & Soloway, E. (2002): Teaching the

Nintendo generation to Program. Communications of

the ACM, 45(4):17 - 21.

Haden, P. (2006): The Incredible Rainbow Spitting

Chicken: Teaching Traditional Programming Skills

Through Games Programming. Proceedings of the

Eighth Australasian Computing Education Conference

(ACE2006), Hobart, Australia, January 2006. 81 - 89.

Imberman, S. P., & Klibaner, R. (2005): A robotics lab

for CS1. Journal of Computing Sciences in Colleges,

21(2):131 - 137.

Layman, L., Williams, L., & Slaten, K. (2007): Note to

self: make assignments meaningful. Proceedings of the

38th SIGCSE technical symposium on Computer

science education (SIGCSE2007), Covington,

Kentucky, USA 7 - 9 March, 2007. 459 - 463.

Lister, R. (2004): Teaching Java First: Experiments with

a Pigs-Early Pedagogy. Proceedings of the Sixth

Australasian Computing Education Conference

(ACE2004), Dunedin, New Zealand, 18 - 22 January,

2004. 193 - 199.

McWhorter, W. I., & O'Connor, B. C. (2009): Do

LEGO® Mindstorms® motivate students in CS1?

Proceedings of the 40th ACM technical symposium on

Computer science education (SIGCSE2009),

Chattanooga, USA 4-7 March, 2009. 438 - 442.

Papert, S. (1970): Teaching Children Thinking (LOGO

Memo), Massachusetts Institute of Technology, A.I.

Laboratory

Papert, S. (1980): Mindstorms: Children, Computers, and

Powerful Ideas, Basic Books, Inc., USA.

Rich, L., Perry, H., & Guzdial, M. (2004): A CS1 course

designed to address interests of women. Proceedings of

the 35th SIGCSE technical symposium on Computer

science education (SIGCSE2004), Norfolk, USA

March, 2004. 190 - 194.

Sanders, D., & Dorn, B. (2003): Jeroo: a tool for

introducing object-oriented programming. Proceedings

of the 34th SIGCSE technical symposium on Computer

science education (SIGCSE2003), Reno, Navada, USA

19-22 Februrary. 201 - 204.

Summet, J., Kumar, D., O'Hara, K., Walker, D., Ni, L.,

Blank, D., et al. (2009): Personalizing CS1 with robots.

Proceedings of the 40th ACM technical symposium on

Computer science education (SIGCSE2009),

Chattanooga, USA 4-7 March, 2009. 433 - 437.

Yarosh, S., & Guzdial, M. (2008): Narrating data

structures: The role of context in CS2. Journal of

Educational Resources in Computing, 7(4):1 - 20.

	Introductory Programming in a Web Context
	Introduction
	Contexts in Introductory Programming
	Micro-worlds
	Robotics
	Games Programming
	Media Computation

	A Web Context
	Relevance to Students
	Ability to Embed Malleable Examples in Materials
	Ability to Teach the Majority of Basic Programming Concepts
	Potential to explore multiple paradigms
	Consistent environment across platforms
	Access to error messages and debugger

	Evaluation
	Impact
	Student Attitudes
	Comments

	Conclusions
	References

