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Abstract— This paper presentsthe Poisson Pareto burst pro-
cess(PPBP) as a simple but accurate model for Inter net traffic.
It presentsformulae relating the parameters of the PPBP to
measurabletraffic statistics,and describesa technique for fitting
the PPBP to a given traffic stream. The PPBP is shown to
accurately predict the queueingperformance of a sampletrace of
aggregated Inter net traffic. Using the traffic model, we predict
that in few years, efficient statistical multiplexing will lead to
efficient optical Internet.

|. INTRODUCTION

For over a quarter of a century researchershave been
looking for a stochasticprocesswhich could be usedas an
1 accurateand simple model for traffic in packet switched
networks. The criteria for sucha stochastiqprocessare:

(i) It is definedby a small numberof parameters.

(i) If theseparametersarefitted usingmeasurabletatisticsof
an actualtraffic streamthe following will be achieved:

1) thefirst andsecondorderstatisticsincluding the autoco-
variancefunction of the stochasticprocess(the model)

will matchthoseof the actualtraffic stream,and

if fed througha singlesener queue(SSQ),performance
resultsfor the modelwill accuratelypredictthoseof the

real traffic streamfed into anidentical SSQ.This must

be true for a wide rangeof buffer sizesaswell asfor a

wide rangeof servicerates.

(iii) It is amenableo analysis.

If the processalso parallelsthe nature of the traffic that
is being modeled,this will give maximum confidencein its
usefulness.

In this paperwe examinethe PoissonParetoburst process
(PPBP)anddemonstratehatthis modelmeetsthesechalleng-
ing criteria. To the bestof our knowledge this makesthe PPBP
the first model which has beendemonstratedo meetall of
thesecriteria.

The PPBPIs aprocesdasedn multiple overlappingbursts,
wherethe burst lengthsfollow a heavry-tailed distribution. It
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hasbeenshavn that the burst lengthsof WAN file transfers
are heary-tailed [9]. Thus, the PPBP appearsto reflect the
basicpropertiesof at leastsomeaggrejateddatatraffic. The
PPBPis basedon the modelsdescribedin [15], [26], [27],

[28], and is also closely relatedto the M/G/o modelsused
in [22], [25]. The PPBPcan be viewed as a specific caseof

the generalPoissorburst procesdliscussedn [24] andis also
referredto asan M/Paretoprocessn [2].

Previous work hasfocussedon the derivation by analytic
meansof boundson the queueingperformanceof SSQsfed
by M/G/« processeqsee especially[22], [26], [27], [28]).
The evaluation of the PPBP requires accurateestimatesof
gueueingperformancefor the PPBP SSQ. In this paper we
use a new analytical approximationgiven in [3] as a part
of the processof fitting the PPBPto a real traffic stream,
but our evaluation of the how well the PPBP predicts the
gueueingperformanceof realistictraffic streamds carriedout
via computersimulation.We show that for shortto moderate
buffer sizes,our simulationsprovide more useful estimatesof
the queueingperformanceof an SSQfed by a PPBPthanthe
boundsderivedin [28].

To develop the PPBP as a traffic model, we identify the
parametersvhich definethe PPBP Threeof theseparameters
arebasedn measurablstatisticsccommonlyusedin teletrafic
modeling: the mean,the varianceand the Hurst parameter
We shaw that fitting the model to thesethree statisticsis
not sufficient to producereliable predictionsof the queueing
performanceof an SSQfed by the modeledtraffic, andthata
fourth parameteis requiredto uniquely definethe behaiour
of the PPBPSSQ.We identify this parametemlas representing
the “level of aggreation? We demonstratehat whenall four
parameterarefitted in the PPBR the modelmeetsthe criteria
describedabore. We shaw thatfitted PPBPsaccuratelypredict
the queueingperformanceof infinite buffer SSQswith a wide
rangeof serviceratesandbuffer thresholdsvhenthosequeues
arefed by an IP byte stream.We provide an approachbased
on analytic estimateswhich can be usedto derive the best
value of the level of aggreyation parameterA, for a given



traffic stream.We also shav thatif A is adequatelyset, both
the mamginal distribution and the autocwariancefunction of
the real traceare closely matchedwith that of the model.

In Section Il we define the queueing framework used
throughoutthis paperin evaluatingour models.We describe
the PPBPIn Sectionlll, andgive somekey relationshipavhich
we utilize to fit the modelto giventraffic statistics.In Section
IV we explain how we createmultiple PPBPsall having the
samemean,varianceand Hurst parameterWe also describe
the techniquesusedto obtain the simulationresultsgiven in
later sectionsof the paper In SectionV we considermultiple
PPBPsall of which have the samemean,varianceand Hurst
parameter but which have differing levels of aggreation,
and show that they yield different queueingresults.We also
shov that as the level of aggreyation increasesthe PPBP
exhibits behaiour more and more like that of a long range
dependeni{LRD) Gaussianprocess.SectionVI provides an
analytic estimatefor the performanceof the PPBPSSQ.

In SectionVIl we describean analyticalmethodfor match-
ing theaggreationparametel. Usingthis method we choose
the PPBP which best predictsthe queueingperformanceof
a given traffic trace, from a family of processeswith the
samemean,varianceand Hurst parameterbut with different
A values.SectionVIll presentresultsshaving that the PPBP
can accuratelymodel the queueingperformanceof measured
Internettraffic streams.

The results given in Section VIII shov that the model
givesa good matchingto the queueingperformanceof SSQs
fed by real traffic, for a fixed servicerate and a range of
buffer thresholds.We also demonstratehat the model can
alsobe usedto give good estimatef the performanceesults
obtainedby feedingthe measuredraffic through SSQswith
fixed buffer thresholdbut a rangeof servicerates.In Section
IX we examine the correspondencédetweenthe maminal
distribution and autocwariancefunction of an IP byte stream
andthoseof a PPBPfitted to that stream.

Having identified the PPBP as an appropriatemodel for
Internet traffic, we use it in Section X as a part of our
evaluationof future Internettrends.

Historically, paclet switching networks have beendesigned
in the 60s, 70s and 80s to cope efficiently with bursty data
traffic. During theseearly years,becauseof the low volume
of bursty data traffic, it was justified to queue and delay
paclets.Under suchtraffic conditions,queueinganddelaying
paclets can significantly improve link utilization. The paclet
switching paradigmwas then justified. During the 90s and
the beginning of the third millennium, the numberof hosts
usingthe Internet(aswell asthetraffic volume)hasmorethan
doubledevery year During the sametime period,transmission
rate and switching capacityhave grown at a similar rate. The
increasein the numberof hosts(from around20 million in
1997to over 100 million in 2001)leadsto a situationwhereby
traffic on major links is heaiily multiplexed. This by itself
brings about a situation where links can be heavily utilized
without the needfor paclet loss and delay The multiplexing
level will keepincreasingin coming years,and we shav in

SectionX that if the currenttrend continues,it is expected
that towards the end of this decade,it will be possibleto

achieve over 70% link utilization in optical networks and still

to provide acceptableQuality of Service.Therefore,the fact
that the optical Internetdoesnot supportbuffering is not at
all a predicamentln fact,it will leadto low lateng, which is
a desiredfeature.

Il. MODELING A TRAFFIC STREAM

A traffic modelis a stochastigprocesswhich can be used
to predict the behaiour of a real traffic stream.ldeally, the
traffic model should accuratelyrepresentall of the relevant
statisticalpropertiesof the original traffic, but sucha model
may becomeoverly complex. A major applicationof traffic
modelsis in predictingthe behaiour of the traffic asit passes
througha network. In this contet, the responseof individual
network elementsin the traditional Internetcan be modeled
using one or more SSQs.Hencea useful model for network
traffic modelingapplicationsis one which accuratelypredicts
gueueing performancein an SSQ. Matching the first and
secondorder statisticsprovides us with confidencethat such
a performancematchingis not just a lucky coincidence.

In orderto keepour modelingparsimoniouswe try to typify
a given traffic streamusing as few parametersas possible.
Our model is not basedon an exact matchingof either the
autocorrelationfunction or the maginal distribution of the
measuredtreamlnsteadwe usearandomprocessin our case
the PPBPR which is adjustedso asto matchthe key statistics
of the measuredstream.We definethesecharacteristicto be
the mean,varianceand Hurst parameterand the model will
be fitted so asto producethe samevaluesof mean,variance
and Hurst parameteias the measuredstream.

Having matchedthe key statistics,we then measurethe
accurag of our modelby evaluatingthe ability of this matched
procesdo accuratelypredictthe queueingperformanceof the
original streamfor a wide rangeof buffer sizesand service
rates.In our evaluationswe considera discretetime queueing
model. In particular we considera FIFO single sener queue
with an infinite buffer and considertime to be divided into
fixed length samplingintervals. We let A, be a continuous
randomvariablerepresentinghe amountof work enteringthe
systemduring the nth samplinginterval. The process{An} is
assumedo be stationaryand ergodic. We defineC to be the
constantservicerate of the sener. We assumehatthe service
takesplaceat the endof the interval. The meanof the amount
of work arriving during an interval is denotedu = E(A,) and
the varianceof A, is denotedby o2.

Let Qn be the unfinishedwork at the beginning of the
nth samplinginterval. Using the above notation, the system
unfinishedwork process,for the caseof an infinite buffer,
satisfiesLindley’s recurrencesquation:

Qn+l = (Qn + An— C)+7

where Qp = 0 and where X+ = max0,X). Our measure
of queueingperformanceis the steady state queue length
distribution, Pr(Q > x) = Pr(Q. > X). An accuratemodel is

n>o,



one which matchesthe steadystatequeuelength distribution
of the real traffic for a wide rangeof valuesof the queuesize,
X, andfor a wide rangeof servicerates,C.

We evaluateour modelby comparingqueueingperformance
curves. If we consider an infinite buffer SSQ with given
arrival process,then the queueingperformancecurve is a
plot of the complementarygueuelength distribution, Pr(Q >
X), againstbuffer threshold,x. For each buffer threshold,
the correspondingooint on the complementarygqueuelength
distribution curve givesthe proportionof time thatthe amount
of work in the queueexceedsthe threshold.

I1l. THE POISSON PARETO BURST PROCESS (PPBP)

A numberof studies[6], [14], [23], [30] have shovn that
a range of bursty traffic sourcessupply a significant part
of the traffic carried on broadbandnetworks. In [30] it was
shavn that one possiblesourceof this burstinesswasin the
aggreyation of independenbn-off sourceswith heavy tailed
on and/oroff time distributions. In [15] it was shovn that a
processsuchasthe PPBPcould be consideredh limiting case
for the multiplexing of a large numberof suchindependent
heavry-tailed on-off sources.Thus the PPBP appearsa natu-
ral candidatefor the modeling of bursty paclet data traffic
streams.

Let us denoteby Z* the set of non-neative integers, R
the real numbers,andR™ the non-neyative real numbers We
considera continuougtime process{B; : B; € Z*,t > 0} which
representdhe numberof active bursts contributing work to
the traffic streamat time t. We definea seriesof arrival times
{ai:0; € R,i =0,1,2,...} and a seriesof departuretimes
{wi:w €R,i=0,1,2,...}. Thevalueof B; increasedy one
attimet = a; anddecreaseby oneattimet = w;. We define
wi = a;j +d; andlabeld; (d; € R*) the durationof theith burst.
We assume{a;} is a non-decreasingeries,i.e. i < Oj+1
for i =0,1,2,..., but we do not restrict d; (apartfrom the
requirementhat the burst durationis positive) andso {wi } is
not ordered.The value of B; is given by

&:Zli
2 t€[o,0x]
Ix = {

The arrival of burstsis a Poissonprocesswith rate A, so
the intervals betweenadjacentburst arrival times, i — a;_),
arenegative exponentiallydistributedwith meanl1/A, andthe
meannumberof new burstsarriving during a time interval of
lengthT is Poissordistributedwith meanAT. It is well known
thatif the burstsarrivals are a Poissonprocessthe value of
B: is Poisson-distribted, with meanA times the meanburst
duration(e.g.,[8]).

In the PPBR the burst durations,d;, are independentand
identically distributed Pareto random variables, having the
samedistribution as random variable d. Using Pareto dis-
tributed burst durations allows the significant long bursts

where
1, if X is True,
0, otherwise.

that characterizeLRD traffic to occur in the model. The
complementarydistribution function of d is

x\~Y
Prd>x =14 (3) " x=3 1
( ) {1, otherwise, @
3> 0. For 1 <y< 2, we have that E(d) = (yé—yl) and the

varianceof d is infinite.

For the burst procesgo be stationary the systemis initial-
ized with bg initial sessionswherebg is a Poissonrandom
variable with mean E(B;). The durations of these bursts
are independentind identically distributed randomvariables.
Their commondistribution is the sameasa randomvariablew
whichis theforwardrecurrenceime of the Paretodistribution.

Thusa; =0fori€{1,...,bo} andw; valuesfori e {1,...,bo}
aredrawvn from
T x>
Prlw>x)=¢ Y32 - 2
( ) { V;yl (1-3)+3, otherwise. @

We thenconsidera relatedprocessA, the continuoustime
processrepresentinghe total amountof work contributed by
all sessiondn the period (0,t]. We considerthe casewhere
all sessiongontribute work at a constantrater. Thus

R t
Ar=r [ Bdt.
0
This givesa meanof
- Atroy
EA) = —.
B=5-1)

Casesin which the sessiongdo not all contritute equalrate,
or in which the work ratefrom a given sessiormay vary asa
functionof time, arenot consideredere.Resultsregardingthe
propertiesof processedn which r is not necessarilyconstant
or the samefor all sessionsre presentedn [27].

In [24] the term “Poissonburst process”was usedto refer
to processesuch as A, wherei.i.d. burstsof fixed rate start
accordingto a Poissonprocess.For a Poissonburst process
the variancefunction is given by repeatedlyintegrating the
complementanyistribution function of the burst distribution:

VarfA] = 2)\r2/0t dt/oudu/voo dxPr(d > x).

Calculatingfor Paretodistributed burst durationsgives

22 +2 t
2r2\t (w1) a, 0<t<d
N Ot
VaiA] = 2r2)\{ e ©)
13-YyY
_¢WEWW} t>o.

A full derivation of the variancefunction for a PPBPis given
in [19].

Examiningthe expressionfor the variancegiven in Equa-
tion (3), we see that for large t, the dominant term is
2r\ 7 SV If we defineH = (3—y)/2, thenwe can
obser\e t§1at for mcreasmgt the growth of this function is



proportionalto t2. This implies that this processis asymp-
totically self similar with Hurst parameter
3-y

5 (@)
The conditionsunderwhich M/G/« processesire self-similar
are examinedin more depthin [29].

Note that in simulationswe will considera discretetime
versionof A} wheretime is dividedinto fixed lengthintervals
called time-slots.We choosean arbitrary value, T, to be our
time-slotsize and define our discretetime processo be

H=

R R (n+1)t
Ao =Rguay— A =1 [ 7 Buds.

nt

(5)

The time-slotsize, T may take on ary positive value, but our
usualchoiceis T = 1. We will usep= E(A,) ando? = Var/Ay]
to denotethe statistics of this discretetime process.The
processA, hasmean

n=E(A) = (y_%, (6)
and variance
22\ (72— 1), 5>1
o?={ aa{Fh - 5 (7)
—m} , d< L

This discretetime procesdliffersslightly from the processes
consideredn [13], [22], andalsofrom the processesnalyzed
in [26], [27], [28], in that the processegonsideredn those
works samplethe value of By, not the value of A aswe do.
Samplegirawvn from B; cantake on only discretevalueswhile
our processis a continuous-elued, discrete-time process.
Notice that if a burst startsin the middle of a time-slotand
continuesbeyond the end of that time-slot, its contribution
to the work arriving in that time-slotis tr/2, which is not
necessarilyinteger In limiting casesfor low A and/or high
E(d) our processwill behae in avery similar fashionto these
discrete-aluedprocesses.

In our modelingwe chooseo extendthis PPBPby addinga
CBR componentk, representinga constantadditionalamount
of work which arrives every interval. The caseof kK < 0 is
also permitted. This gives us increasedflexibility in fitting
real traffic streams.This CBR componenthas no impact on
the varianceor the Hurst parametenf the total traffic stream.
The overall meanof the PPBPwith a CBR components

Ardy (®)
y-1
Finally, a commenton the meaningof the burst arrival rate
A. The superpositiorof two independenPPBPswith identical
burst length distributions will itself be a PPBPwith Poisson
arrival rate equalto the sum of the arrival ratesof the two
constituentprocessesThus, increasingA can representan
increasen thenumberof sourcesontributingto anaggreyated
streammodeledby a PPBP We labelthe parametel thelevel
of aggregation in the stream.A streamwith A = 100 can be

+ K.

consideredo be generatecby multiplexing 100 independent
streamseachwith A = 1. In [15] it was shavn that a model
of this type could be considereda limiting case for the
multiplexing of a large numberof independenbn-off sources
with heavy tailed on and/or off time distributions. However
no direct mapping betweenthe numberof individual on-off
sourcescontrituting to the streamand the value of A in the
multiplexed streamhasbeenfound.

IV. USING THE PPBP

Using the relationshipsdevelopedin the previous section,
(Equations(4), (7) and(8)) we cancreatea PPBPwhich will
producea givensetof valuesfor the mean varianceandHurst
parameterin fact, we can createnot just one, but a whole
family of PPBPswhich will hase mean,varianceand Hurst
parametervaluesidentical to those of the measuredstream.
The PPBPwe usehasfive parametersthe Poissorarrival rate,
A; thearrival rateof work within a sessionr; the startingpoint
of the Paretotail, o; the rate of decayof the Paretotail, y; and
therateof the CBR componentk. The parameted defineshe
minimum allowable burst length, and we setd = 1 to ensure
thatall burstslast for at leastonefull time-slot.

In fitting a giventraffic streamwe assigntheremainingfour
parametersoasto yield givenvaluesof the meanarrival rate,
U= E(A,); the varianceo?; andthe Hurst parameterH. This
meansthat one of the parametersof the PPBP will be set
arbitrarily. This freedomof choiceis importantas it allows
us to createa whole family of PPBPswith identical values
of u, 62 andH but which differ in otherways. We shall see
thatthe membersof sucha family of PPBPsroducediffering
gueueingperformanceaesultswhenfed into identical SSQs.

We considera family of PPBPawhich yield identicalvalues
of u, 62 andH but which have differing levels of multiplexing.
We do this by increasingthe value of A. We have seenin
Sectionlll thatA may be consideredo representhe level of
multiplexing in the PPBP To increasahe level of multiplexing
we increasehe valueof A andthenscalethe otherparameters
in the processso that the valuesof p, 62 andH areunaltered
by the transformation.

In orderto maintaina constantvalue for the variance,we
utilize the relationshipgiven in Equation(7), and so if A is
multiplied by a factor n, then the transmissiorrate for each
sessioris reducedby dividing r by 1/n. Making thesechanges
to A andr givesa processn which not only the variance but
the entire ACF is unchangedrom that of the original process.
Note that we do not fit the entire ACF of the PPBPto that of
the given traffic stream,exceptvia the fitting of 0% andH.

Multiplying A by a factor of n anddividing r by only 1/n
will increasethe meanarrival rate of the PPBP In order to
focus our attentionon the effects of changingvaluesof A we
do not compensatéor this changeby alteringthe parameters
of the Pareto distribution (& andy). Instead,we modify the
CBR componentk, so asto maintaina matchingbetweerthe
meanarrival rate of the PPBPandthe meanarrival rate of the
modeledstream.The addition of k cells perinterval to every
arrival interval will not affect the valuesof o or H. Since



the Pareto holding time distribution is not altered,the Hurst
parameterof the PPBPis unafectedby altering A. Thuswe
can producea PPBPwith an arbitrary value of A which also
matchesa given setof valuesfor p, 0% andH.

In SectionV we will shav that the different membersof
this family of PPBPscan produce very different queueing
performanceresults.Evidently if we areto achieve our goal
of accuratelymodelinga real traffic stream,we will needto
chooseh correctly In SectionVIl we presenta techniqueby
which we can choosethe value of A which gives the PPBP
which bestfits a given traffic trace.

It may be argued that the PPBP is nothing special, and
that mary modelscould be fitted in this way and still yield
accurateperformanceresults. Even in an M/M/1 queueing
systemwe cansetthemeanto fit any lossprobability. However
if the servicerate changes,or the buffer size changesthis
fitted meanwill not predictperformanceaccurately What we
achieve whenthe PPBPis correctlyfitted is that the first and
secondrderstatisticsof the givenstreamwill be matchedand
accurateresultswill be obtainedfor a wide rangeof different
serviceratesand buffer sizes.

Unlessotherwiselabeled,all PPBPresultsshovn in figures
in the following sectionsare obtainedthroughrepeatedsim-
ulation. The improved simulationtechniquediscussedn [3]
are usedto improve the reliability of the simulationresults.
Performanceesultsfor eachvalue of A are generatedrom a
setof 60 independensimulations,eachcontainingthe same
numberof of samplesThe numberof sampleger simulation
is choseraccordingto Equation(12) of [3] soasto ensurethat
the probability of a large numberof initial long burstscreating
a simulationwhich is permanentlyin an unstablestateis less
than10~".

Confidenceintervals are calculatedfor eachpoint and the
valuesshown in figuresare 95% confidenceintervals, based
on the assumptiorthat the valuesare taken from a Normal
distribution. Analysis of the simulation results, using the
Lilliefors test for normality [16] has shavn that the values
of Pr(Q > x) for PPBPinput aremostlikely not dravn from a
Normal distribution, so the confidencantervals shavn should
be usedonly as a guide to the amountof variability in the
resultsobtained.Confidenceintervals are omitted from some
simulationvaluesin orderto avoid obscuringthe information
being presented.

V. CONVERGENCE TO GAUSSIAN

In recentyearsa numberof researcher$iave investigated
the usefulnesof Gaussiarprocessed representing variety
of traffic types[5], [7], [12], [17], [18], [20]. Analytic expres-
sions have beendevelopedfor the queueingperformanceof
both LRD and non-LRD Gaussianprocesseg5], [20]. The
existence of such expressionsmakes the Gaussianprocess
an attractve model, where it is applicable.In this section
we will shov one reasonwhy the Gaussianmodel may
not be universally applicable,and suggestthat as the level
of multiplexing increaseson larger networks, the Gaussian
processmay find more applicationsin the future.

In Sectionlll we sav that the arrival rate of bursts in
the PPBR A, can be relatedto the numberof traffic sources
contributing to an aggreated traffic flow. In [4] it was
suggestedhat, by the central limit theorem,as the number
of independentsourcescontributing to an aggreyate flow
increasesthe traffic tends,in the senseof weak corvergence,
towardsa Gaussiarstochasticprocessand by the continuity
of the queueingprocessthe queueingbehaiour will tendto
that of the correspondingGaussianprocessalso. We would
thereforeexpectthatasA increasesthe behaiour of the PPBP
shouldapproachthat of a Gaussiarprocess.

Note thatthe Gaussiarprocesgo which a family of PPBPs
corvergeswill have the samecorrelationstructureasthe PPBP
family. This meanghatit will beanasymptoticallyself-similar
process,and not the purely self-similar Fractional Brownian
Motion for which authorssuchas Narayan[18] and Norros
[20] have derived theoreticalresults.

Fortunately analytic resultsfor the queueingperformance
of a Gaussiarprocesswith an arbitraryvariancefunction have
beengiven in [5]. For a Gaussianprocesswith meanp and
variancefunction ¢(t) fed into an infinite buffer queuewith
servicerateC the buffer overflow probability is

2(C—p) 202 (t:/(C—u))
O G2 ) -9

where(0?)'(t) is usedto denotethe derivative of the variance
function o(t) evaluatedat t, underthe assumptiorthat the
derivative exists at that point. The relevant point at which the
function mustbe evaluatedis given by t;:/(c_u) wherety is the
solutionto

Pr(Q > X) = exp (—

202(t)

(@) (t)
for a given normalizedbuffer sizey

Figure 1 shavs an example in which this Gaussiancon-

vergenceoccurs. In the figure we see a family of PPBPs,
all with u= E(A,) = 100, 02 = 14400and H = 0.8 but with
differing levels of aggreyation,which arefed into SSQswith
servicerateC = 350 The infinite buffer overflow probabilities
for eachprocessare evaluatedby simulation.As the value of
A increaseghe queueingperformanceimproves, until a rea-
sonableapproximationof Gaussiarperformances achieved.
Along the way, however, lower valuesof A producedifferent
gueueingperformanceesultsfor PPBPswith the samevalues
of E(An), 6% andH. In this figure, the Gaussiarresultsare
generatedy applying Equation(9) to calculatethe queueing
performanceof a Gaussiarprocesshaving the samevariance
function asthe family of PPBPsconsideredWe note that in
[5] this expressionwas found to over-estimatethe probability
of overflow for smallerqueuelengths,but the tail behaiour
for larger queuelengthscorrespondsvell with that obsened
in a simulatedGaussiarprocess.

—t= Y, (10)

V1. THE QUASI-STATIONARY APPROXIMATION

In the previous section,we have seenthat the queueing
performanceof the PPBPcannotbe estimatedusing straight-
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Fig. 1. Corvemgenceof PPBPto Gaussian.

forward Gaussiananalytic techniques.In this section we
examinemore accurateanalytic techniques.

An approximationfor the queueingperformanceof the
PPBP which is labelled the quasi-stationaryapproximation
was introducedin [3]. Whereasthe boundsgiven above are
valid asx — o, the quasi-stationargstimategivesan estimate
which is valid for A — . This estimateis more useful for
lower valuesof the buffer thresholdx, and hasbeenshovn
in [3] to give accurateestimatesof the infinite buffer queue
length distribution for the PPBPSSQ.

The quasi-stationaryapproximationis basedon dividing
the PPBPinto slowly moving and quickly moving parts.The
combinedeffect of thesetwo componentsvill give the overall
gueueingperformance.

If we considerthe PPBPover ary suchintenal of length
W, i.e., the period [t,t + W], for arbitraryt, thenary of the
initial burstswhich lastfor the entiretime periodwe label as
long bursts All otherburstsare calledshort bursts The short
burstsinclude: (1) thoseburststhat startat or beforet andend
beforet +W, (2) thoseburststhat startaftert andfinish at or
aftert+W and(3) thoseburststhatstartaftert andfinish ator
beforet +W. Consideringheselong andshortbursts,we will
divide the PPBPinto two independenprocesses{l) the long
burstsprocessand(2) the shortburstsprocess Thelong bursts
processis a stationary but non-egodic processcontaining
only the long bursts.The shortburstsprocesscontainsall the
remainingbursts,andis stationaryon the interval [0,W] (see
[3]).

By definition, the long bursts processwill have constant
rate over the interval of lengthW. This constantrate will be
given by nr, wheren is the numberof long bursts,andr is
the rate per burst. The numberof long bursts, n, is Poisson
distributedwith mean\E(d) Pr{w > W) wherePr(w > X) is the
complementarglistribution function of theforwardrecurrence
time of the Paretoburstdistribution, andis given by Equation
(2).

For a given W, we can use known techniquesfor SRD
processege.g.thetechniquegivenin [5] or [11]) to calculate
the performanceof the short bursts processin a queuewith

service rate C — nr. We then calculate an estimate of the
performanceof the PPBPin a queuewith servicerate C by
summingtheseestimatesyeightedby the probability thatthe
long burstsprocesswill containn bursts.

Therearevariouswaysof modelingthe queueingoehaiour
of the short bursts process.One way which is corvenientis
to model this processas Gaussian.This modeling allows us
to apply the formula of [5] to the short bursts process.This
formula is summarisedn SectionV. This approximationis
asymptoticallyaccurateas A — o, becausefor larger A the
short-rangaelependenprocesdecomesnoreandmoresimilar
to Gaussian.

In orderto calculatethe queueingperformanceof the short
burstsprocessusing the Gaussiarformula given in Equation
(9) we must calculatethe valuet;. t; will dependuponthe
meanand the variance-timecurve of the shortburstsprocess.
Thesevalueswill differ from the equivalent expressionsfor
the overall PPBP The meanof the short bursts processis
my = 2% (y8'Y — W) andits variance-timecurve is

Zrz}\W(l—V)

N

-1 ’
Thevaluesof t; usedin the Gaussiarformulaarerestrictedto
belessthanW, sowe do not definethe variance-timecurve of
the shortburstsprocessfor t > W. If no solutionto Equation
(10) canbe found in therange0 <t <W thenty =W.

The final estimateof Pr(Q > x) for the PPBPwill depend
upon the choice of W. Whatever the value of W, the quasi-
stationaryestimates a lower boundon the performanceof the
PPBP Therefore,the bestestimateof the PPBPperformance
is producedby choosingW to be the value which maximizes
the quasi-stationarestimateof P{Q > x).

vs(t) = VarfA] 0<t<W.  (11)

VII. FITTING THE PARAMETER A

For ary given traffic trace,we wish to automaticallycal-
culate the parameterof the PPBP such that: (1) the mean
and autocorrelationfunction of the PPBP will be close to
those of the real trace and (2) if both are fed into infinite
buffer single sener queueswith the sameservicerate, they
will give almostthe sameoverflonv probability curves. This
matching of the overflow probability should occur for ary
buffer thresholdandfor ary servicerate. Henceforthwe will
call sucha PPBPa PPBPwhich fits the real data. Our real
trace is a sequenceof N consecutie measurementsf the
amountof traffic originating from the sourcein consecutre
fixed size time intervals, which form a sequenceof values
{S:: 1< n< N} From the sequence(S,} we can estimate
valuesfor the mean,varianceand Hurst parameterStandard
estimatorsare used to evaluate the mean and variance of
the measuredstreams,and we have usedthe Matlab imple-
mentationof the Abry-Veitch wavelet estimator[1] available
from the website http://www.emulabee.mu.oz.audaryl/ sec-
ondordercode.htmlto estimatethe Hurst parameterof the
streams.

Using the scaling rules describedin SectionlV, we can
create a whole family of PPBPswhich will have mean,



varianceand Hurst parametewvaluesidentical to thoseof the
measuredstream.We have seenin SectionV that different
memberf this family of PPBPswill behae very differently
in identicalqueueingscenariosThe differentmembersof the
family are differentiatedby their different valuesof A, so
choosingthe correctvalue for A would appearto be vital to
producinga modelwhich accuratelyreflectsreality.

We define A* to be the value of the Poissonparameter
which producesa PPBPwhich fits the real data. This fitting
is determinedhougha matchingof the complementangueue
length distributions within infinite buffer SSQsfor a single
fixed servicerate C anda rangeof buffer thresholds.

By feedingthe samplevalues{S,} throughaninfinite buffer
SSQ with service rate C we calculate the complementary
gueuelength distribution for the samplevalues.We calculate
the proportion of time when the amountof work storedin
the infinite buffer exceedsa given threshold for a set of
buffer thresholds{x; : 0 <i <M —1}. Typically we consider
evenly spaceduffer thresholdsy = iAx wherely is a positive
constantput thex; valuesmaybeary setof non-n@ativereals.
The overflow probabilitiescalculatedin this way form the set
{pi =Pr(Q>x)}.

We searchfor the value of A* which, togetherwith the
other threefitted parameterspamely the mean,the variance
and the Hurst parameter defines a PPBP which fits the
real trace. In the following sectionswe examine the fitted
PPBPby generatingqueuelength distributionsfor SSQswith
serviceratesthat are different from the value of C usedin
calculating A*. We also comparethe maminal distribution
and autocorrelationfunction of the PPBP with thoseof the
measuredraffic trace.

To find A* we mustconsidera family of PPBPsAIl PPBPs
in this family will be fitted to the valuesof mean,variance
and Hurst parametemeasuredn the setof values{S,} and
all will have the samevaluesfor & andy. For eachvalue of
A consideredwe usethe quasi-stationaryestimatedeveloped
in [3] andsummarisedibove in SubsectiorVI to estimatethe
gueueingperformanceof this PPBPin an infinite buffer SSQ
with the sameservicerate,C, asthe SSQusedin calculating
the p; values Overflow probabilitiesareestimatedor thesame
valuesof x; to give a setof values{e(A\) = Pr(Q > xi)}.

For eachvalueof A we calculatea measuref the difference
betweenthe estimatedvalues,{e(A)}, and the valuesgiven
by the data,{p;i}. To do this, we divide the resultsinto two
groups,dependingipontherelative sizeof g andp;. If < p;
thenwe assignx; to the setX. Otherwise we assignx; to the
setX.

We then calculatetwo sums:

Gi(\) = §X<Iog|oi—|oga(x)>2 (12)
and
Ge(A) =3 (logpi —logei(h))”. (13)

X eX

We definethe overall accurag of the modelin predicting

the behaviour to be

G(A) = G1(A) — Go(A). (14)

We assumehat the optimal valuefor A* occurswhenG(A) =
0. It is possiblethat there will be more than one value of
A for which G(A\) = 0. We know that the quasi-stationary
approximationis valid for A — o, so in this casewe take
the largestA for which G(A) = 0 to be A*, on the grounds
that this will be the most reliable of the possiblesolutions.
Alternatively, if thereis no value of A for which G(A) =0
thenA* is the value of A which minimizes|G(A)|.

An alternatemeasurefor the accurag of the model could
be given by Gs(A) = G1(A) + G2(A). Gs(A) is the sum of
the squaref the distancegqon a logarithmic scale)between
the two set of values {g(A)} and {pi}, and so A* could
be found by minimizing Gs(A), i.e. using a minimum mean
squareerror techniqueto find A*. We have chosennot to use
this technique,as the differential measureG(A) varies more
quickly in the region of interest, and therefore provides a
more preciseestimatefor A*. We expect that the values of
A* givenby solving G(A) = 0 will be similar to thoseyielded
by minimizing Gs(A) in mostcases.

VIII. PREDICTING THE QUEUEING PERFORMANCE

In Figure 2 we showv that the PPBP also successfully
predicts the queueingperformanceof an IP traffic stream.
This IP traffic streamis derived from link traffic recorded
as a sequenceof IP paclet headersummaries.This paclet
headedatawasreducedo a sequencef integers,whereeach
value representghe numberof bytestransmittedon the link
in a 0.1 secondinterval. For this sequencewe measureda
mean arrival rate of 5225 bytes per interval, a variance of
21.223x 10° andH =~ 0.91. The fitting of the parameten is
carried out using the methoddescribedin SectionVIl for a
servicerate of C = 21000 (bytesper 0.1 s) with a family of
PPBPswith y=1.18 and & = 1. The fitting processgives a
level of aggregationof A = 0.267.

Thefigureshawvs queueingperformancédor a servicerateof
C = 21000bytesper 0.1 second.The confidencentervals for
the A = 0.267 simulationresultsare approximatelythe same
sizeasthemarksusedto indicatethe points,andsoareomitted
from this figure.

We obsenre that the Gaussianprocesswith the samecor-
relation function as the PPBPsshovn considerablyunder
estimateghe loss levels experiencedby the real traffic. This
suggestghat, even thoughthis IP link is likely to be carrying
traffic from a relatively large numberof independensources,
the link traffic is still far from being sufficiently aggreyated
for a Gaussiarmodelto be applicable.

We have shavn that the PPBP can be usedto accurately
predictthe queueingperformanceof measurednternettraffic
streamsn infinite buffer SSQsfor a rangeof buffer sizes.In
this sectionwe shav thatthe PPBPalso successfullypredicts
the queueingperformancef therealtraffic for awide rangeof
servicerates.To illustratethis, we considerthe samelP trace,
and the samefamily of PPBPs.Combining the resultswith
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thoseshawn in Figure2, we canseethatthe PPBPaccurately
predictsthe performanceof the IP datastreamin SSQsfor a
wide rangeof buffer sizesand servicerates.

Figure 3 presentsaan examinationof theimpactof changing
servicerates.Herewe have chosera singlevalueof the buffer
threshold x = 5000bytes,and examinedthe valuesof Pr(Q >
x) for arangeof servicerates.Qualitatvely similar resultsare
obtainedfor otherfixed buffer size values.

For low servicerates,i.e. high utilizations,the probability of
lossis quite high, andall valuesof A give acceptablestimates
of theloss. In facteventhe Gaussiarprocesgivesreasonable
estimatesof queueingperformancefor utilizations above 0.6.

the real traffic acrossa wide rangeof serviceratesand buffer
sizes.

We have achieved this by matchingjust three measurable
propertiesof the original stream,and then setting a fourth
parameter The setting of the fourth parameterA*, is made
with respectto resultsfor a given servicerate, but we see
herethatthis fitting is goodfor a rangeof servicerates.Thus
the PPBP meetsour main criteria as a simple and accurate
modelfor IP traffic.

IX. MATCHING THE STATISTICS

We recall that along with a matching of the queueing
performanceof the real traffic, it is also desirablethat the
model match the first and second order statistics of the
modeledtraffic. In this section,we evaluatethe ability of the
PPBPto achieve this. We usethe samePPBPfitted to the IP
traceasin SectionVIIl.

Figure 4 shavs a Q-Q plot which gives a comparison
betweenthe maminal distribution of the original IP traceand
that of a PPBPwhich is correctlyfitted to the trace.The Q-Q
plot is formed by placing a point (x,y) where Pr(X > x) =
Pr(Y > ), in which X has the distribution of the IP trace
andY hasthe distribution of the model. As shovn in Section
VIII, the PPBPfitted to the tracehasA = 0.267. The maginal
distribution of the PPBPwas measuredrom 60 simulations
of onemillion sampleseach.We seethat the PPBPmatches
mauginal distribution of the IP tracereasonablyvell, although
not perfectly

Figure 5 shavs a comparisonbetweenthe autocwariance
of the original traceandthat of a PPBPfitted to the trace.In
this case,60 setsof one million sampleseachare averaged
to generatethe simulationresults.For comparisonthe ACF
calculatedanalytically basedon Equation(3) is also shavn.
The finite durationof the simulations(making extremelyrare
eventsunlikely to occur)is the mostlikely explanationfor the
fact that the simulation resultsshov covarianceslower than
thosepredictedby the theory Sincethe IP traceis alsofinite,
the good match betweenthe IP trace and the simulationsis
the appropriataéndicatorof a successfumodelandthe results
depictedin Figure5 are quite pleasing.

We note that our methodof fitting a family of PPBPsto
a giventraffic streammeansthat the autocwariancefunction
will not be alteredby changesn the valueof A. Thuswe may
concludethatthe changesn queueingperformanceausedyy
changesdn the valueof A occurprimarily becauseof changes

As the servicerateis increasedandthe utilization decreases) in the mamginal distribution. This leadsus to interpretA asa

the choiceof A becomesnoresignificant.Figure3 shavs that
a singlevalue of A givesa goodfitting for a rangeof service
rates.For example, A = 0.267 producesa PPBPwhich predicts
the queueingbehaiour of the IP streamwell for levels of
utilization greaterthan20%, correspondindo serviceratesof
C = 25000bytesper 0.1 secondnterval, or lower. The results
shaowvn in Figure?2 fall within this regionwhereA = 0.267 gives
a good approximationof the performanceof the IP trace.
Looking at Figure3 in conjunctionwith Figure2 we cansee
thatthe PPBPcorrectly predictsthe queueingperformanceof

measureof the distancebetweenthe maginal distribution of
the traffic streamand a Gaussiardistribution.

In summary we have shawvn that the PPBP gives a good
match with the ACF of the real stream, but matchesthe
maminal distribution only approximately The PPBPperforms
reasonablyvell in matchingthefirst andsecondrderstatistics
of the modeledtraffic. We have alreadyshowvn in Figures2
and3 thatthe PPBPmatcheghe queueingperformanceof the
IP trace.Thusthe PPBPmeetsall of our criteriafor a simple
andaccuratemodel.
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X. OPTICAL INTERNET IMPLICATIONS

We have shawvn that the PPBP has all the attributes of
an accuratelnternettraffic model. Using this model, we are
now ableto confirm the view of [2] and[21] that the long-
range dependent(LRD) phenomenonobsened in Internet
traffic [10], [14] doesnot necessarilflead to low utilization.
Although the traffic doesnot smoothout as voice traffic did,
it will smoothout eventually dueto heary multiplexing.

In particular we usedthe IP traffic trace of SectionVIlI
that was taken in 1998 on a certain US link (this trace was
also usedin [3] and [19]). We first use the PPBP model
of this traffic trace as obtained above, and then consider
several different PPBP processegachof which is a process
resulting from multiplexing togethera numberof statistical
copiesof the original PPBP model of the trace. Recall that
multiplexing of a numberof PPBPsgives anotherPPBP For
eachof thesePPBP processeswe usedthe quasi-stationary
approximationto estimatepaclet lossin a zero buffer SSQ,
and determinedthe capacity requiredto guaranteea given
low paclet loss. We showv the resultsin Figure 6. For the
original traffic stream,we neededto run the systemat 15%
utilization to obtain1/1,000,0000ssprobability, however, if it
is multiplexed 500 times, we obtain 80% utilization. (Notice
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Fig. 6. Improving utilization as multplexing levels increase.

that future Internettraffic may have different characteristics
than currenttraffic, however, it is expectedthat future traffic
will include large componentsof real-time services,which
in fact generatesmootherstreams.)Given the growth of the
Internet,we estimatethat it would take nine yearsto achieve
this level of multiplexing for this particular link. However,
we do not have to wait anotherfive yearsto obsere it. The
smoothingout of Internettraffic hasalreadybeenconfirmedby
measurementin [21] andreferencegherein.This smoothing
out of Internettraffic phenomenomakesthe bufferlessoptical
Internetvery appealing.

XI. CONCLUSIONS

In this paperwe have examinedthe PPBPas a model for
Internet traffic, and we have found it to be very promising
in this role. We have showvn thatthe PPBPmeetsour criteria
for a simple and accuratetraffic model. We have usedthe
PPBPto predictfuture multiplexing andlink efficiencgy levels.
We have demonstratedhat thereis evidencethat the future
optical Internetwill be efficient despitethe factsthat it will
be bufferless.
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