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ABSTRACT The distribution-level electric network frequency (ENF) extracted from an electric power signal
is a promising forensic tool for multimedia recording authentication. Local characteristics in ENF signals
recorded in different locations act as environmental signatures, which can be potentially used as a fingerprint
for location identification. In this paper, a reference database is established for distribution-level ENF using
FNET/GridEye system. An ENF identification method that combines a wavelet-based signature extraction
and feedforward artificial neural network-based machine learning is presented to identify the location of
unsourced ENF signals without relying on the availability of concurrent signals. Experiments are performed
to validate the effectiveness of the proposed method using ambient frequency measurements at multiple
geographic scales. Identification accuracy is presented, and the factors that affect identification performance
are discussed.

INDEX TERMS Distribution-level, ENF signal, frequency measurement, signature extraction, location
identification.

I. INTRODUCTION
The electric network frequency (ENF), which typically fluc-
tuates around its a nominal value (50 or 60 Hz) and faith-
fully reflects the balance between generation and load, has
becoming an emerging forensic tool for recorded media
authentication [1]. The ENF criterion was first proposed by
Grigoras [2] and since then copious research has been con-
ducted, mainly focusing on techniques for ENF extraction
from multimedia recordings or the use of ENF as a sig-
nature to ascertain the time, location and authenticity of
recordings [3]–[7].

However, there are significant fundamental questions
remaining, prominently: what are the limitations of ENF
location identification? Can the ENF signal from a given
location be regarded as unique in order to verify the place
a recoding was taken? The answers to these two question

could potentially pave the way for the usage of ENF-based
applications and provide direction to future research for
recording authentication.

It is well known that power grid frequency in differ-
ent interconnections is determined by the overall balance
between generation and load [8]. Thus, the ENF signals
recorded across different interconnections can be distin-
guished using a feather extraction method and machine learn-
ing system [9]. For the ENF within an interconnection, most
existing research assumes that the signals across an inter-
connected power grid are identical [9]–[11]. However, in a
real power system, it is likely that there are some minor
variations in ENF signals recorded at different locations.
A power system disturbance such as a generator tripmay have
an effect on the whole grid which propogates withmeasurable
time coefficients [12]. In [13], [14], the location estimation
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within an interconnection is realized based on correlation
coefficient (CC) on different locations. However, it needs
availability of concurrent ENF signals to obtain the CC. It is
known that in the United States Eastern Interconnection (EI),
these frequency changes propagate throughout the grid at a
speed of approximately 500 miles per second [15]. More-
over, the various electromechanical propagation speeds for
the effects of changes in local loads to other locations mean
that some slight variation or transient differences may be
uniquely reflected in local ENF signals. Furthermore, due
to nonlinear load and recurrent local disturbance, environ-
mental noises such as fluctuation and variation of ENF may
result some long-term signatures in the ambient ENF data in
different locations. It is hypothesized that these signatures,
if successfully extracted, might be potentially used for ENF
location identification within an interconnection, which will
significantly broaden the scope of ENF related applications.
Following this, the objective of this paper is to develop a
machine learning implementation to identify the characteris-
tics of ENF from different locations and classify ENF signals
by their geographic source. To verify this hypothesis, this
paper explores the possibility of retrieving signatures from
ENF signal using real power grid frequency measurements
recorded within a single interconnection.

In this paper, a reference database is first established
for distribution-level ENF using the FNET/GridEye system.
Second, this paper proposes a new approach which com-
bines signature extraction and machine learning. An L-level
Daubechies wavelet is used to remove the common compo-
nent from an ENF signal and a Fourier transform is used to
extract the local signatures. To determine the source location
of the ENF, a feed-forward artificial neural network (F-ANN)
is applied to the extracted signature [16], [17]. These experi-
ments use FNET/GridEye frequency measurements from the
EI at multiple geographic scales (500 miles, 200 miles, and
2 miles) to evaluate identification performance. The accu-
racy of ENF location identification is given and the factors
which influence identification accuracy are discussed. The
outcomes of this work are beneficial for authentication of
digital multimedia and preventing cyber attacks on critical
infrastructure, e.g., power systems, by detecting if real data
have been tampered with or wholly replaced by fake data.

The rest of this paper is organized as follows: Section II
introduces the establishment of an ENF reference database.
Section III presents the proposed approach for signature
extraction and source location identification. Section IV
examines the cases studies for ENF location identification
using frequency measurements from the FNET/Grid system
and discusses the factors which influence the results. Finally,
conclusions and future work are given in Section V.

II. ENF REFERENCE DATABASE
Establishing an ENF reference database is a prerequisite
for the application of multimedia recording authentication
using an ENF criterion [18]–[20]. To apply the multime-
dia recording authentication, an ENF signal embedded in a

multimedia recording is extracted and then matched against
a pre-established ENF reference database. For the multi-
media recording ENF extraction, either time or frequency
domain methods, such as the zero-crossing method [2], [5],
spectrogram and subspace-based signal processing tech-
niques [4], [19], [21], wavelet or short-time Fourier trans-
form (STFT) [3], [11], are used.

Phasor measurement units (PMUs), invented in the 1980s
and installed in high-voltage transmission-level substations,
are able to provide Global Positioning System (GPS) time-
synchronized frequency measurements, which can be used
as a data source for the ENF database [7], [22], [23]. How-
ever, frequency measurements at the transmission level do
not observe the local distribution-level characteristics, e.g.,
small load changes, leading to inapplicability of the ENF
identification on a granular geographic scale.

Originally developed in 2003, the Frequency Monitor-
ing Network (FNET/GridEye) system is a wide-area phasor
measurement system at the distribution-level [24]–[26]. Pre-
cise frequency measurements (at an accuracy of 0.0005 Hz)
obtained by Frequency Disturbance Recorders (FDRs), mem-
bers of the PMU familly, are time-stamped using GPS syn-
chronization [27]–[29]. A photo of a generation-II FDR
is shown in Fig. 1. As of November 2016, more than
250 FDRs have been deployed across North America as
depicted in Fig. 2 [30].

FIGURE 1. Photo of a generation-II frequency disturbance recorder.

The ENF reference database can be established using the
data aggregated on FNET/GridEye servers. The architec-
ture of the ENF database, as illustrated in Fig. 3, mainly
consists of three components: frequency sensors, Internet-
based communication infrastructure, and data servers. FDRs
act as sensors recording the instantaneous ENF every
0.1 seconds and transmitting them to a data center at
the University of Tennessee, Knoxville(UTK) for storage
and analysis. The FNET/Grideye system provides data
storage and application functions (e.g., disturbance detec-
tion, oscillation detection, post-disturbance analysis, and
web services) [15], [24], [25]. Internet-based communication
infrastructure provides communication channels between
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FIGURE 2. Map of FDR deployment in North America.

FIGURE 3. The framework of FNET/GridEye system.

FIGURE 4. Plot of FDR measurement and ENF extracted from an audio
recording.

FDRs and FNET/GridEye servers. Earlier studies show that
frequency measurements collected via the FNET/GridEye
system are able to match the frequency extracted from dig-
ital recordings using the iterative oscillation error correction
method and STFT [3], [11], [31], [32]. Fig. 4 demonstrates
the effectiveness of the FNET/GridEye system as an ENF
reference database.

III. METHODOLOGY
A. SIGNATURE EXTRACTION FROM ENF SIGNAL
Due to hardware failure, e.g., GPS signal loss, spoof-
ing, or network interruption [30], [33]–[35], FDRs frequently
suffer from invalid and missing data. To avoid bad train-
ing of the recognition model using pre-collected frequency
measurements from the database, the continuity and valid-
ity of data are checked prior to signature extraction from
ENF signal. Since each measurement is synchronized with a
GPS time index, a discontinuous index implies missing data.
In order to adequately train the F-ANN for ENF identification
in this study, a minimum length of 15-minute of uninterrupted
frequency data (9000 continuous data points) are required.
If sufficient data is not available for a given unit in a certain
time window, data from that window belonging to that unit
is excluded. Frequency measurement spikes are identified
using amedian filter. Spikes that exceed a preset threshold are
replaced by values from median filter results. The advantage
of this spike identification method from [36] is that it only
eliminates isolated spikes while keeping all other raw data
intact, preserving as much detailed frequency information as
possible.

Since local frequency affects are of interest, it is essential to
remove the common frequency component from each signal
in the interconnection in order to extract local signatures
from ENF signals. Fig. 5 shows concurrent frequency mea-
surements recorded from three FDRs at different locations
in the EI. It can be observed that all three frequency curves
are highly correlated with a common component. Variations
from this component can be seen more clearly in the callout
window.

One approach to remove the common component is to
subtract the median frequency for all units in the interconnec-
tion from the original signal. The median frequency, which
can be obtained using the median filter method, is chosen
to approximate grid frequency due to its robustness with a
large number of units running concurrently [37]. The median
frequency method is straightforward and effective in removal
of the common component.

However, the performance of the median frequency based
extraction method is significantly influenced by the number
of FDRs with available data. In the case where there is only
one or two FDRs identified with available data, median fre-
quency cannot precisely represent the common component.
Therefore, in this paper, an L-level Daubechies wavelet-based
extraction method is applied instead, where each level pro-
vides an approximation to the original signal and the detailed
variations at a specific level of resolution. Assuming the ENF
signals ENF1. . .ENFn are absolutely and square integrable,
the wavelet transform of ENFn(t) can be expressed as

Wf (v, λ) =
1
√
v

∫
+∞

−∞

ENFn(t)9∗
(
t − λ
v

)
dt (1)

where v and λ are defined as the dilation and time-translation
parameters respectively. The mother function 9∗ is a
Daubechies wavelet satisfying admissibility condition [38].
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FIGURE 5. The plot of raw frequency measurements recorded on difference locations in EI.

FIGURE 6. Flowchart of the signature extraction from raw ENF signal.

As illustrated in Fig. 6 the lower time variance of the lower
time-frequency band (the approximation) is considered to
be the common component of the frequency measurements
and the variances of the high-pass band (e.g., Detail 1
and Detail 2) can potentially be used for local signatures
extraction. Although the wavelet-based method introduces
greater computational complexity than the median frequency
method, it is more flexible and can obtain local signatures
without relying on the availability of concurrent ENF signals.

Fig. 7 shows the signatures extracted from three FDRs
using the wavelet-based method of Detail 1. It can been seen
that the signatures from ENF signal are chaotic and stochastic
in the time domain. It is assumed that the local signatures may
have specific patterns in the frequency domain. Therefore,
the fast Fourier transform with a window length of 600 data

points (1 minute of data) and a 10 second moving window is
performed to obtain the input spectrum for F-ANN as illus-
trated in Fig. 8. It can be observed that each of the signatures
has a distinct spectral distribution attributed to local factors
that can be used as input samples when training the F-ANN
for source location identification.

B. ENF LOCATION IDENTIFICATION
The spectrum data ENFS1. . .ENFSn of frequency measure-
ments in the database recorded from different locations and
time periods is used to train the three-layer F-ANN. The struc-
ture of the F-ANN is illustrated in Fig. 9. An FDR outputs
600 frequency measurements per minute. The input vector is
the absolute value of 1 minute ENF spectrum. The length of
the input vector is 300 since the FFT spectrum is symmetrical.
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FIGURE 7. Signature extraction from ENF signal using wavelet transform.

FIGURE 8. Spectrum distribution of extracted signature from raw ENF
signal.

FIGURE 9. Structure of the F-ANN.

The target vector is the column vector of a size equal to the
number of FDR locations. Each target vector has ‘‘0’’s in all
rows except one. The position of the unique ‘‘1’’ element in
each column indicates the location of the corresponding input
vector. For example, a ‘‘1’’ in the nth row of a target vector
indicates that the corresponding input vector originated from
a unit with index n. The transfer function tansig for the hidden

layer is defined as

tansig(x) =
2

1+ e−2x
− 1 (2)

In the final layer, a softmax function is used to normalize
the output to (0,1] while preserving ordering. This function is
defined as

softmax(zn) =
eyn

N∑
n=1

eyn
for n = 1, · · · ,N (3)

where yn is the output from the hidden layer and N is the
number of locations. The purpose of the softmax function is
to approximate a unitary target vector zn ⊆ (0, 1]. The most
likely location of the input vector is determined at the maxi-
mumvalue of the output vector. For the training process, these
input vectors are provided alongside target vectors. Training
vectors are randomly assigned to training, validation, or test
sets, satisfying 70% for training, 15% for validation, and 15%
for testing. Once the F-ANN is trained, it will be used to
identify the location of ENF signals from an unknown source
recorded outside the time window covered by training data as
illustrated in Fig. 10.

FIGURE 10. Illustration of location identification of extracted signatures
from ENF signals.

IV. PERFORMANCE EVALUATION
Taking advantage of the widespread deployment of FDRs,
experiments are carried out to test the performance of the pro-
posed approach for location identification. Frequency mea-
surement data from are obtained from the FNET/Grideye.
Historical data from each of locations is used to train the
F-ANN and then an signal of unknown origin (from one of
the training unit locations for the purpose of this analysis) is
identified using the F-ANN. Three geographic scales, Case I
(500 miles), Case II (200 miles) and Case III (2 miles), are
tested. Five FDRs are randomly selected for each case. For
case I, FDRs in difference EI states (Missouri, Tennessee,
South Carolina, West Virginia, and Florida) with a minimum
distance of approximate 500 miles between any two units, are
selected as mapped in Fig. 11. For Case II, FDRs deployed in
states of Alabama, Tennessee, Kentucky and Georgia with a
minimum distance of approximate 200 miles between units
are selected and mapped in Fig. 11. For the Case III, five
locations in the city of Knoxville, Tennessee, are selected as
shown in Fig. 12.
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FIGURE 11. Map of FDR locations for Case I and Case II.
Red labels: Case I. Blue labels: Case II.

FIGURE 12. Map of FDR locations for Case III.

A. MODEL TRAINING
A 3-layer F-ANN is trained using historical data by the back-
propagation algorithm for location identification of given
signals. The number of neurons greatly influences the identi-
fication accuracy and training time. After some trial and error,
it was found in this study that the optimally number of neu-
rons in the hidden layer is 30. Further increasing the number
of neurons will not substantially improve accuracy, but does
lead to longer training times. As discussed in Section III,
the FFT spectrum of the extracted signature serves as an input
vector for training. Each of these input vectors is assigned a
corresponding target vector, which defines the location where
the signal originated. In each case, the target vector is a five
element column vector. For fair comparison, a 30-minute
data set is used for each unit with a sliding window length
of 10 points. Therefore, a total of 2.7× 106 data points were
fed to the F-ANN during the training process.

B. RESULTS OF ENF LOCATION IDENTIFICATION
The objective of the trained F-ANN is to determine the loca-
tion of a signal of unknown origin from one of the locations
providing historical training data. For any input signature
vector, the F-ANN will return an output vector. The column
index of the output vector with the highest value indicates
the corresponding location to be the most likely source of

TABLE 1. Accuracy for FDR location identification.

TABLE 2. Confusion Matrix for Case I with a 1-month Time Interval.

the signal. To evaluate the performance of the F-ANN,
the overall identification accuracy is defined as

Accuracy =
Icorrect
Itotal

× 100% (4)

where Icorrect represents the number of vectors that are cor-
rectly identified and Itotal is the total number of vectors tested.
The identification accuracy for each case under different

time intervals is listed in Table 1. It can be seen that Case I
has the highest accuracy. The location of the a given signal
can be identified at matching rate larger than 90% given a
6-month time interval. The accuracy is as large as 80.4%
given a 12-month time interval between the signal of
unknown origin and training data in Case I. The confusion
matrices of identification accuracy for Case I with time inter-
vals 1 month and 12 months are shown in Tables 2 and 3,
respectively. For each table, the labels of the columns repre-
sent the actual location of the signals tested while the labels
of the rows denote the location predicted by the F-ANN. The
entries in the highlighted diagonals show the correct identi-
fication accuracy for each location. The accuracies are high,
ranging from 97.23% to 98.82% (1 month) and 78.82% to
82.67% (12 months) for all locations, which demonstrates the
effectiveness of the trained F-ANN for location identification.
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TABLE 3. Confusion Matrix for Case I with a 12-month Time Interval.

There are three potential reasons for the phenomenon that
the accuracy varies in different time. First, the local load may
change with time (different seasons in a year). Therefore,
the environmental noises, which contributes some portions
in the local signatures, may be different when local loads
are changed, e.g., switching on/off a cooling/heating system.
As a result, in some occasions the environmental noise is very
strong while environmental noises become weaker or even
disappeared in some other occasions. Second, in a real power
system, large disturbances may happen and overwhelm long-
term environmental noises. The impact of this kind of dis-
turbances is that the local signatures of ENF signal is still
there but hard to be extracted. Third, for our machine learning
system, only 1-minute data points are used for identification
test. It will be possible that the identified signatures is not
covered in the 1-minute data set. The accuracy of the identi-
fication are influenced by whether testing data have recorded
the sufficient local and extractable signatures.

FIGURE 13. Identification accuracy versus the time interval used.

As illustrated in Fig. 13, the accuracy of Case I is slightly
reduced with the increased time intervals. This drop may
be caused by the local load change with time. Therefore,
to obtain high identification accuracy, the latest available data
are preferred for the machine learning. In Case II, identi-
fication accuracy with a time interval of 1 month (91.5%)
is slightly lower than in Case I (98.2%). Moreover, the rate
of this decrease is greater than in Case I. Case III has a
smallest geographic scale and considerably lower identifica-
tion accuracy (below 50%) than Cases I and II. Therefore, it

FIGURE 14. Comparison of extracted signatures from ENF signals.

can be generally concluded from these results that location
identification of a signal with a relatively large geographic
scale leads to better performance than identification with a
small geographic scale.

C. DISCUSSION
To explore accuracy differences across geographic scales,
the wavelet-extracted signatures are compared in Fig. 14.
A smaller magnitude of extracted signatures is observed as
the geographic scale decreases. For Case I, the amplitude of
the extracted signature is as large as 3.12×10−3 Hz compared
with 5.21× 10−4 Hz for Case III.
As the signature is smaller given shorter distances, the sig-

nal may be heavily overwhelmed at the distribution-level
by measurement uncertainty or noise. Therefore the wavelet
approach cannot effectively extract any distinct features from
ENF signals, leading to the low identification accuracy of
F-ANN. For Case III, the amplitude of the signature is close to
the FDR frequencymeasurement resolution of 5.0×10−4 Hz.
To examine the correlation between extracted signatures

in each case, the normalized cross-correlation of two ENF
signals can be expressed as

ρk,l =

N∑
n=1

fk (n)fl(n)√
N∑
n=1

fk (n)2 ·
N∑
n=1

fl(n)2

(5)

where N is the length of each of two signals and f l(n) is the
ENF signal at time n and location l. The probability distribu-
tions of normalized cross-correlation for each case is shown
in Fig. 15. From Fig. 15, the extracted signature with a rel-
atively small geographic scale has a considerable high value
of normalized cross-correlation distribution, which indicated
a high similarity in ENF signals. This might cause the ENF
difficulty to be differentiated. The mean normalized cross-
correlations for each case are listed in Table 4. It can be seen
from Table 4 that the value of cross-correlation of Case III
(0.8484) is approximately 3 times larger than the value in
Case I (0.2872). When the geographic scale is not large
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FIGURE 15. The probability distribution of normalized cross-correlation.

TABLE 4. Comparison of Normalized Cross-Correlation of Extracted
Signature.

enough, the signatures are relatively attenuated and highly
correlated. As a result, it is possible that the ‘‘true’’ signature
is mostly subsumed by measurement uncertainty and noise,
masking the identification references and leading to mistakes
in location estimation. Therefore, to identify the ENF location
at a small geographic scale, measurement device accuracy
must significantly improve.

V. CONCLUSIONS AND FUTURE WORK
In this paper, a machine learning-based method is developed
to identify the location of an ENF signal of unknown ori-
gin without concurrent information. First, an ENF reference
database is established from FNET/GridEye measurement.
Second, an L-level Daubechies wavelet is used for signature
extraction from ENF signal and a pre-trained F-ANN to
identify the location from which the signal originated.

Three case studies at multiple geographic scales are carried
out using frequency data from the FNET/GridEye system
to evaluate the performance and applicability of the pro-
posed method. It is found that the accuracy of this method
is dependent upon the geographic scales of the input ENF
signal. For a large geographic scale (500 miles), accuracy
of more than 90% and 80% can be achieved using 6 and
12 month time intervals, respectively. This verifies the effec-
tiveness of the proposed method on large geographic scale
location identification. For a small geographic scale, iden-
tification accuracy is low. To address why accuracy drops
significantly with a smaller geographic scale, the signatures
extracted from each case are compared. It is found that
the signatures over a small geographic scale have high val-
ues of normalized cross-correlation. As a result, the true
local signatures are likely to be subsumed by measurement

uncertainty and noise, thus negatively impacting source loca-
tion identification.

Since ENF signals carry strong potential as location
stamps, future work will focus on improving the accuracy
of identification with small geographic scales. At the cur-
rent stage, only frequency measurement signals are used for
identification. The next step is to exploit FNET/Grideyes
synchronized voltage angle and amplitude measurements as
supplementary information. Moreover, increasing the sam-
pling and reporting rate may be another possible approach
to increase accuracy.
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