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ABSTRACT 

A spectrum evaluator based on four different dosimeter materials was employed to 

estimate the spectral irradiances of exposure to solar radiation. The result was used to 

calculate the biologically effective irradiance using the erythemal action spectrum and a 

fish melanoma action spectrum. Measurements were made in winter at a sub-tropical site 

on the chest and shoulder of subjects during normal daily activities. 

 

Up to 95% of the total UV exposure received was in the UVA waveband (320-400 nm).  

The UVA waveband was found to contribute approximately 14% of the erythemal UV and 

93% of the biologically effective UV for fish melanoma. Extrapolation to humans 

suggests that the exposure to the UVA band will contribute to photodamage in human 

skin during an exposure to solar radiation.  
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1. Introduction 

The assessment of the hazard of solar ultraviolet (UV) radiation on humans has been 

made with the erythemal action spectrum for human skin [1]. This action spectrum is 

normalised to unity at 297 nm with the value of the sensitivity dropping by about 3 

decades in the UVB waveband (280-320 nm). In the UVA (320-400 nm) waveband, the 

value of the action spectrum varies from 10-3 to 10-4. The incidence of melanoma may be 

linked to the exposure of solar UV [2]. There have been studies [3,4] on the relation of UV 

exposure and the induction of melanoma and the results suggest that the melanin in the 

melanocytes absorbs UV at all wavelengths. No action spectrum for induction of melanoma 

in humans is available. Recently Setlow et al [4] derived an action spectrum for melanoma 

using a hybrid fish. The fish melanoma action spectrum has a relative effectiveness up to 

800 times higher than that for erythema in the UVA waveband.  

 

For sunlight, the spectral irradiance in the UVA is approximately one hundred times higher 

compared to the UVB in locations such as Australia. Furthermore, UVA wavelengths are 

employed in sunlamps for tanning sunbeds. Diffey [5] has estimated the population 

exposure to UVA in England to be 1,500 J cm-2 based on the measurement of ambient 

radiation. No measurements on the contribution of the UVA waveband to personal 

biologically effective exposures have been previously undertaken. In addition, there have 

been very little studies on the estimation of the biological hazard of solar radiation using 

action spectra other than the erythemal action spectrum. It would be useful to make a 

quantitative study on the effect of these action spectra. The result would yield information 
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on the contribution of the two waveband components (UVA and UVB) to the biological 

effects under selected conditions during the exposure. 

 

To apply an action spectrum for estimating the biological hazard of personal exposure to 

solar radiation, a measurement of the solar spectrum is necessary. Measurement surveys of 

the personal exposures have been performed with polysulphone dosimeters [6-9] and CR-

39 dosimeters [10]. These dosimeters were calibrated to measure personal erythemal 

exposures resulting predominantly from the UVB (280-320 nm) waveband. They are 

predominantly sensitive to the UVB wavelengths [11,12] and are impractical, if not 

impossible for the assessment of personal exposures to the UVA wavelengths. 

Furthermore, when applying the dosimeter to assess the effect of solar radiation using 

action spectra other than the erythemal action spectrum, the dosimeters must be re-

calibrated for that purpose. A detector [13] based on four different dosimeter materials 

was previously developed for estimating the solar UV spectrum and will be employed in 

this paper for evaluation of the hazard of the UVA waveband.  

2. Materials and Methods 

2.1 Dosimetric Method 

The damaging effect of UV radiation on human skin can be expressed employing the 

concept of the biologically effective UV irradiance (UVBE) and the action spectrum, 

A(λ), for the process under consideration as follows: 

  UVB       (1) E S A d= ∫ ( ) ( )λ λ
280

400
λ
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where S(λ) is the source spectrum. A recently developed UV spectrum evaluator, [14] 

with four types of UV sensitive dosimeter films has been employed for evaluation of the 

filtered solar ultraviolet spectrum [15]. Its sensitivity at 340 nm is about 1000 times that 

of polysulphone [14]. The development and testing of the method has been previously 

described [16,13,14]. The dosimeter materials employed in the spectrum evaluator are 

polysulphone, nalidixic acid (NDA), 8-methoxypsoralen (8MOP) and phenothiazine [13]. 

The spectrum evaluator has an overall size of 3 cm x 3 cm in the form of a film badge 

with a piece of the material of approximately 1 cm2 over a 0.6 cm diameter hole in a 

holder. Previous research has measured a difference of approximately up to 20% between 

spectra evaluated with the system and a calibrated spectroradiometer [13].  

 

Briefly, for each type of dosimeter film exposed to a source spectrum S(λ) over a time 

interval, T, the change in optical absorbance, ΔAi at a set wavelength is given by [13]: 

      (2) 4,...1)()( ==Δ ∫ idRSTA
uv ii λλλ

where Ri(λ) is the spectral response of each material. The subscript denotes one of the 

four different materials used. 

 

Each type of film is responsive to different UV wavebands [14]. The spectral responses 

give the effectiveness of each wavelength for the production of a change in the optical 

absorbance of each film. For each material, it is defined as the change in optical 

absorbance at a set wavelength for each film due to unit irradiance in the wavelength 

interval λ to λ + dλ [13]. Polysulphone exhibits a high response at UVB wavelengths 

with a rapid drop for wavelengths longer than 320 nm. NDA has a peak in response at 
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approximately 325 nm and is sensitive up to 370 nm. 8-MOP responds to wavelengths up 

to 360 nm with a peak at 300 nm. Phenothiazine responds to all UV wavelengths with a 

peak at 330 nm. The composite of all four materials covers the entire UV waveband. 

 

The materials change their optical absorbance after exposure to UV radiation and this was 

determined for each material by measuring the absorbance at 330 nm for both 

polysulphone and NDA, 305 nm for 8MOP and 280 nm for phenothiazine before and 

after exposure in a spectrophotometer (Shimadzu Co., Kyoto, Japan). These wavelengths 

are used as it is at approximately these wavelengths that the greatest change in 

absorbance occurs. The post-exposure absorbance was measured as soon as practical 

following the exposure, thus eliminating errors due to any possible changes in absorbance 

following exposure or a ‘dark reaction’. The result of the change of absorbance in these 

films caused by the exposure to solar radiation was used to evaluate the time averaged 

UV spectrum over the period [13]. Knowledge of the spectrum incident to each site 

allowed calculation of both the biologically effective irradiance employing Equation (1) 

and the broadband irradiances. 

 

An estimate of the source spectrum was extracted by using an assumed function, S(λ), for 

the source spectrum based on a prior estimate of the spectrum as follows [13]:  

        (3) ⎟
⎠

⎞
⎜
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where λo is the wavelength where the irradiance is approximately zero (300 nm in this 

case), n is the order of the polynomial and ai are coefficients determined by an iterative 

technique by minimising the χ2 value defined as: 

  2'
4

1
2

2 )(1
ii

i
AA Δ−Δ= ∑

= σ
χ       (4) 

where ΔAi are the measured change in optical absorbance, σ is the error in ΔAi and  

was calculated using the assumed function (Equation 3) in Equation (2).  

'A iΔ

2.2 UV Exposures 

A spectrum evaluator was employed at each of the chest and shoulder of five human 

subjects undertaking outdoor activities in winter in Toowoomba (27.5o S latitude) at 

approximately noon. Each spectrum evaluator was attached on top of the clothing with a 

clip. Subject 1 was a jogger on 2 August between 13:10 and 13:40 EST and subjects 4 to 

5 were undertaking recreational activities in the park on 4 August between 11:55 and 

12:25 EST. For each case, the spectrum evaluator was exposed for a period of 30 

minutes. This time period was long enough to produce a measurable change in the optical 

absorbance of the dosimeter materials. From the measured changes in absorbance, the UV 

spectrum incident on each of the sites for each of the subjects was evaluated and the 

biologically effective irradiance was calculated employing the erythema action spectrum 

and the action spectrum for melanoma in Xiphophorus fish [4]. In the literature, the 

erythema action spectrum is normalized to unity at 297 nm and the fish melanoma is 

normalized to unity at 302 nm.   
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3. Results 

3.1 Spectral Irradiances 

The action spectra for human erythema and fish melanoma in Figure 1 show the relative 

differences, particularly in the UVA waveband. In this Figure, the fish melanoma has 

been linearly interpolated between the measurement wavelength points of 302, 313, 365 

and 405 nm employed by Setlow et al [4]. The fish melanoma action spectrum is 

approximately up to 5 times greater in the UVB waveband compared to the UVA 

waveband. In comparison the erythema action spectrum is approximately 1,000 to 10,000 

greater in the UVB compared to the UVA.  

 

The evaluated UV spectra time averaged over the exposure period for the shoulder and 

chest for subject 2 are provided in Figure 2(a) as an example of the different spectra. This 

illustrates the differences in UV spectra to the different body sites. The spectral 

biologically effective irradiances calculated from these spectra are provided in Figure 

2(b) both for the erythemal and fish melanoma action spectra for both the shoulder and 

chest sites. The consequences of the higher effectiveness of the fish melanoma in the 

UVA waveband are evident here. Due to the higher UVA spectral irradiances, the 

spectral UVBE for fish melanoma is higher in the UVA compared to the UVB. On the 

other hand the spectral UVBE for erythema is of the order of 10 to 100 times less in the 

UVA waveband compared to the UVB waveband.  
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3.2 Broadband Irradiances 

The irradiances integrated over the UVB waveband, the UVA waveband and total UV 

irradiance to the chest and shoulder of each subject and averaged over the five subjects 

are provided in Table 1. The error is represented as the standard error in the mean. The 

irradiances to the shoulder ranged from 62 to 80 μW cm-2 for the UVB and from 1006 to 

1316 μW cm-2 for the UVA. Similarly, for the chest, the irradiances ranged from 23 to 49 

μW cm-2 for the UVB and 391 to 991 μW cm-2 for the UVA. For both the chest and 

shoulder, the broadband UVA irradiances contribute 94 to 95% of the total irradiances. 

The differences in the irradiances to the chest and shoulder are due to the differences in 

the time averaged UV spectra to each of the sites as a result of the different locations and 

orientations as illustrated in Figure 2(a). These differences are also dependent on the 

season, time of day and any influences that affect the ratio of diffuse to direct UV 

radiation. It should be noted that from previous research, [13], the differences for the UV 

exposures between those calculated with the evaluated spectra and spectra measured with 

a calibrated spectroradiometer were found to be less than 20%. 

3.3 Biologically Effective Irradiances 

As explained in Equation 1, the biologically effective irradiances for both the human 

erythema and fish melanoma action spectrum may be obtained by integrating the product 

of the spectral irradiances and action spectra as given in Figure 2(b) over the entire UV 

waveband. The averages of the biologically effective irradiances for the chest and 

shoulder are provided in Table 2. The error is the standard error in the mean. The 

erythemal irradiances ranged from 1.7 to 3.6 μW cm-2 for the chest and from 4.6 to 5.9 
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μW cm-2 for the shoulder. The relative contribution of the UVA waveband to the 

erythemal UV ranges from 13 to 16%. In comparison, the fish melanoma UV ranges from 

91 to 223 μW cm-2 for the chest and 237 to 310 μW cm-2 for the shoulder with the UVA 

contributing 92 to 93% of the biologically effective irradiance. As seen from Figure 2(b), 

this is due to the higher relative effectiveness of this action spectrum in the UVA along 

with the higher UVA irradiances.  

 

4. Conclusion and Discussion 

The data presented in this paper indicate that the UVA waveband contributes about 95% 

of the personal exposure to solar radiation. In terms of erythemally effective exposure, the 

UVA waveband contributes about 14%. On the other hand, using the fish melanoma 

action spectrum, the contribution of the UVA waveband amounts to about 93%. The 

extrapolation of this action spectrum to humans is an open question. Nevertheless, the 

action spectrum suggests the photobiological importance to humans of the UVA 

waveband [17]. If the fish melanoma action spectrum is found to apply or at least 

resemble that for melanoma in humans, the UVA waveband could contribute to the risk 

of melanoma development during exposure to solar radiation. The usage of the fish 

melanoma action spectrum in this paper to calculate the biologically effective irradiances 

poses the possibility and opens the debate on the increased relative importance of the 

UVA waveband. 

 

The choice of the action spectrum is critical in assessing the hazard of the UV exposure. 

The erythemal UVA contribution found in this research is still significant with regards to 
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skin damage as previous research [18] has found that repeated exposures to suberythemal 

doses of UVA induce human skin damage. On the other hand, the high relative 

contribution of the UVA waveband to fish melanoma indicate the possibility that the 

UVA waveband may contribute to human melanoma.  

 

This contribution of the UVA waveband to the biologically effective irradiance will vary 

with the atmospheric conditions, time of year and day and with the environment. The 

relative contribution of the UVA waveband may be even more significant on cloudy days 

when the ratio of UVA to UVB is higher compared to clear days [19] and on winter days 

when this ratio is higher compared to summer days [14]. Similarly, the UVA does not 

vary with time of day as much as the UVB and the relative contribution may be higher in 

the morning and afternoon compared to noon. For other body sites, geographic locations 

and seasons, the UVA irradiance will generally be higher than the UVB irradiance. 

Consequently, the contribution of the UVA waveband to the biologically effective 

exposure for the fish melanoma action spectrum will generally be high for other body 

sites, geographic locations and seasons. 

 

Additionally, patients on photosensitising drugs need to be aware of the large UVA 

component with the requirement to reduce daylight exposure. If further data become 

available on an action spectrum for melanoma in humans, the method employed in this 

paper for evaluating personal biologically effective exposures can be utilised to determine 

the nature of the hazard for the induction of skin cancers. 
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Table 1 – The means of the broad band UV irradiances to the chest and shoulder of the 

subjects. The error is the standard error in the mean. 

Site Irradiances (μW cm-2) 

 UVB UVA Total UV  

Chest 37±5 698±98 735±102  

Shoulder 74±4 1180±68 1253±72  
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Table 2 – The means of the irradiances weighted by the human erythema and fish 

melanoma action spectra and the relative contribution of the UVA waveband to 

the total effective irradiances. The error is the standard error in the mean. The 

standard error for the relative contribution data is less than 0.005 in each case. 

Site Effective Irradiances (μW cm-2) Relative contribution of the UVA 

 Erythemal UV Fish  

Melanoma UV 

Erythemal UV Fish  

Melanoma UV  

Chest 2.7±0.3 160±22 0.15 0.93 

Shoulder 5.4±0.3 279±16 0.14 0.92 
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FIGURE CAPTIONS 

 

Figure 1 – (1) The fish melanoma action spectrum [4] and (2) the human erythema action 

spectrum [1]. 

 

Figure 2 - (a) The evaluated spectra for the (1) shoulder and (2) chest of subject 2 and (b) 

the spectral UVBE for the (1) shoulder and (2) chest for the fish melanoma 

action spectrum and for the (3) shoulder and (4) chest for human erythema. 
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