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ABSTRACT

This study adopts a comprehending theory (CT) approach towards understanding machine learning (ML) for
theory and practice within the finance sector. In building on prior research, the study explores the hidden
meanings of ML phenomena and connects them to the underlying financial motivation behind the actions of
financial firms to create greater intellectual insight for users in practice. At its most basic, the study explores why
the meaning and conception of ML is confusing and ambivalent for users in the sector. Through a scoping review,
only top-tier quartile one publications between the years of 2014 to 2024 were chosen for the review with 167
articles selected for analysis. In making a significant contribution to theory, a classification framework was
developed to provide greater meaning and clarification of different ML criteria. The study matches relevant CT
criteria with the opportunities and challenges of ML identifying significant differences between theory and
practice. The study thus substantially contributes to broadening and extending existing knowledge related to ML
in the financial sector by better explaining what these gaps look like and what to do about them for future

research.

Introduction

The aim of this study is to identify the gaps between artificial intel-
ligence (AI) theory and practice with a second aim to explore the chal-
lenges and opportunities of using machine learning (ML) in the financial
sector. Al has been defined by Langley (2011: p. 277), as a machine
learning tool for understanding the meaning of natural language, with
the capacity to engage in multi-step reasoning that generates innovative
artefacts and novel plans towards some type of goal achievement. To
achieve the first aim, a scoping review process is used to explore the
extant literature. For the second aim, a comprehending theory (CT)
approach (Putnam & Banghart, 2017; Sandberg & Alvesson, 2021), was
used to help explain how ML phenomena could be better understood by
broadening and extending current theoretical insights related to
applying ML knowledge within financial institutions. CT has been
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defined in terms of meaning as constitutive of organizational phenomena
(Sandberg & Alvesson, 2021: p.498), which suggests that humans
cannot act without having increased insight about the meaning of
phenomena. Here, we applied a critical reflexive approach of important
central features of ML applications in the finance sector which to date
have not always been transparent for practitioners. The potential of ML
models in the finance sector is continuously growing, offering oppor-
tunities to improve efficiency, accuracy, and decision-making efficiency
(Pattnaik et al., 2024), in areas such as risk assessment, fraud detection,
customer service automation, and algorithmic trading (Rahmani et al.,
2023). However, potential opportunities also give rise to potential
challenges such as data privacy concerns, algorithmic biases, and reg-
ulatory compliance issues (Cao, 2022; Gupta et al., 2025), which is
discussed in more detail later. At present, the meanings of Al as orga-
nizational phenomena within the finance sector are ambiguous,

E-mail addresses: Omar.Ali@aasu.edu.kw (0. Ali), Peter.A.Murray@unisq.edu.au (P.A. Murray), alahmad.s@gust.edu.kw (A. Al-Ahmad), il.jeon@spc.oxon.org

(L. Jeon), yogesh.dwivedi@kfupm.edu.sa (Y.K. Dwivedi).

https://doi.org/10.1016/j.jik.2025.100762
Received 5 April 2025; Accepted 27 June 2025
Available online 1 August 2025

2444-569X/© 2025 The Authors. Published by Elsevier Espaiia, S.L.U. on behalf of Journal of Innovation & Knowledge. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://orcid.org/0000-0001-5386-8100
https://orcid.org/0000-0001-5386-8100
https://orcid.org/0000-0002-2141-4144
https://orcid.org/0000-0002-2141-4144
https://orcid.org/0000-0002-5547-9990
https://orcid.org/0000-0002-5547-9990
mailto:Omar.Ali@aasu.edu.kw
mailto:Peter.A.Murray@unisq.edu.au
mailto:alahmad.s@gust.edu.kw
mailto:il.jeon@spc.oxon.org
mailto:yogesh.dwivedi@kfupm.edu.sa
www.sciencedirect.com/science/journal/2444569X
https://www.elsevier.com/locate/jik
https://doi.org/10.1016/j.jik.2025.100762
https://doi.org/10.1016/j.jik.2025.100762
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jik.2025.100762&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

O. Ali et al.

situation specific, multi-layered, and constantly evolving (Sandberg &
Alvesson, 2021). We believe that consequently the sector will struggle to
act and respond adequately to the benefits of ML unless practitioners are
able to acquire increased insight about how to apply and better interpret
different Al applications.

Machine learning encompasses wide-ranging concepts within the
field of computer science entailing the development of models capable
of executing tasks usually associated with human intelligence (Ali et al.,
2023). For instance, ML models can comprehend language, acquire
knowledge from data, identify images, and increase users’ decision-
making ability (Agrawal et al., 2019; Yang et al. 2024; Al-Ahmad
et al., 2024). While AI development has captured users’ attention
(Furman & Seamans, 2019; Brynjolfsson et al., 2021), no studies have
used a CT approach to explore the meaning of AI within the financial
sector context. Moreover, the fundamental principles of Al in practice
are not well known despite an increasing need to better understand the
meaning of Al and how to interpret ML applications across contexts (Ali
& Soar, 2016). A stronger focus on how Al can be interpreted in relation
to its various themes and applications for the finance sector represents
an important contribution of the current study. In recent years, Al has
been widely adapted across the finance, healthcare, and manufacturing
industries inter alia (Ali et al., 2023a; 2023b). Reliable communication
protocols as well as AI's versatility in ML is one key factor driving
widespread adoption (Biallas & O’Neill, 2020; Cao, 2022), across sec-
tors. Research suggests that using ML in the finance sector provides
many benefits pertaining to risk assessment, fraud detection, investment
prediction, and in better customer service (Blake et al., 2022; Storey
et al., 2025). Generative Al through models such as ChatGPT enhance
decision-making in financial markets by generating actionable insights
(Chen et al., 2023), that can be used to select customer investments (Sai
et al., 2025).

Financial services are based on sophistical Al algorithms such as
internet banking, peer-to-peer financing, automated investment plat-
forms, and payments via mobile devices (Imerman & Fabozzi, 2020;
David et al., 2025). Consumers greatly benefit from such services which
are convenient, effective, and economical. Financial organizations
however are not always aware of the benefits of Al and ML, the processes
and systems involved, and how to structure and realign conventional
legacy systems with new ML applications (Kalyanakrishnan et al.,
2018). While there are benefits associated with AI implementation
across the finance sector, institutions have yet to fully harness the
available capabilities (Yi et al., 2023). A major concern for instance of
customers is the possibility of discriminatory behavior because of data
bias and inadequate user group representation (Ali et al., 2014; Ashta &
Herrmann, 2021). Studies suggest that excessive reliance on third-party
Al providers will only exacerbate the problem (Danielsson et al., 2022).
Our findings in the current study support this view that Al-based models
are not transparent and not well understood. Indeed, gaps in user ex-
pectations in the finance industry need to be addressed and systematic
studies that explore the role of Al is long overdue (Cooper et al., 2019).
Moreover, regular assessments of Al in the sector are required to guar-
antee the correctness and fairness of Al algorithms and to address rising
consumer issues (Chua et al., 2023).

According to Fabri et al. (2022), there is an increasing need to better
comprehend and interpret the role of Al in the investment industry.
Reputational damage and a reluctance to accept Al are a case in point.
Stakeholders and other investors are demanding greater transparency
and accountability. Inadequate comprehension of the advantages of Al
disrupts financial institutional efforts to identify and correct decision
errors or biases which often result in legal and financial implications
(Lee & Shin, 2020; Quach et al., 2022). While AI has resulted in rapid
development and implementation across various industries and in so-
ciety more generally (Abbas Khan et al., 2024; Abulkassova et al., 2025),
here we generate information about the functions of Al theory and Al
implementation in the financial sector.
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Theoretical background to Al finance
Problematizing issues related to machine learning

Issues related to supervised learning ML techniques

ML consists of a mapping function from input to output that utilizes
supervised learning techniques. This method involves constructing and
training a model by supplying it with pairs of input-output data. Various
supervised learning algorithms are employed, encompassing widely
recognized techniques such as linear and logistic regressions. Other
learning techniques are available through decision trees, random for-
ests, neural networks, and support vector machines (SVMs). Decision
trees are methods that are applied for classification and solving regres-
sion problems that are based on tree topologies. Derived from values
related to input variables, decision trees divide the data into smaller
subsets that subsequently derives choices from these subsets (Kaparthi &
Bumblauskas, 2020). Random forests utilize a collection of learning
approaches that enhance performance and mitigate overfitting by
aggregating a set of decision trees (Sipper & Moore, 2021). Neural
network decision trees are interconnected multi-layer nodes, each
executing fundamental computations based on inputs. These ML func-
tions are designed on the structure and functionality of the human brain,
that can be used for both regression and classification problems
(Ghorbanzadeh et al., 2019). Support vector machines (SVMs) embody
classification techniques to identify the optimal hyperplane that effec-
tively partition data into separate categories (Battineni et al., 2019). ML
techniques thus have applications in a variety of fields and can predict
financial outcomes (Krauss et al., 2017), the management of portfolios
(Kvamme et al., 2018), the appraisal of credit (Thennakoon et al., 2019),
and the identification of fraudulent activity (Zhong & Enke, 2019; Bao
et al., 2019).

Supervised learning technologies in ML often encounters key chal-
lenges. One prominent issue is the reliance on labeled data which can be
scarce and costly to obtain, particularly in domains where expert
annotation is necessary. This can lead to biased models or ineffective
generalization of new data (Krenzer et al., 2022). Overfitting poses a
significant concern where ML models memorize the training data
instead of learning underlying patterns, resulting in inferior perfor-
mance for unseen examples (Lopez et al., 2022). Balancing model
complexity to mitigate overfitting while ensuring sufficient capacity to
capture intricate relationships in the data is another ongoing challenge
(Lopez et al., 2022). The quality of labels can vary introducing noise and
ambiguity that can degrade ML model performance (Karimi et al.,
2020). Addressing these challenges requires robust techniques for data
augmentation, regularization, and model evaluation, along with careful
consideration of bias and fairness to build reliable and ethically sound
ML systems (Gonzalez-Sendino et al., 2024; Agu et al., 2024). The rapid
development and integration of Al into various facets of modern life
have created a complex interplay of opportunities and ethical challenges
that demand careful consideration (Ayling & Chapman, 2021; Tadimalla
& Maher, 2024), such as transparency, accountability, privacy, and data
protection (Mazurek & Matagocka, 2019; Novelli et al., 2024; Chaudh-
ary, 2024).

Issues related to unsupervised ML techniques

According to Sarker et al. (2020), unsupervised learning is a method
that involves the investigation of hidden structures and patterns within
data without the use of predetermined output variables. Identifying
significant relationships or patterns within a given set of data inputs is
the primary objective of unsupervised learning. Unsupervised learning
plays a crucial role in anomaly identification as it is used in discovering
data points that drastically deviate from the norm (Torshin & Rudakov,
2015). However, it is common for unsupervised learning to require more
data and more complex algorithms than supervised learning, which is
more computationally costly (Barbierato & Gatti, 2024). Due to the
absence of the same level of guidance that is present in supervised



O. Ali et al.

learning, unsupervised learning is more prone to overfitting than su-
pervised learning (Lohrer et al., 2024). Prominent ML models employed
in unsupervised learning relate to principal component analysis (PCA),
and generative models such as association rule mining and
auto-encoders (Harshvardhan et al., 2020). Principal component analysis
(PCA) for instance is a technique employed to diminish the dimension-
ality of data. It achieves this by transforming data from a
high-dimensional space to a lower-dimensional one while preserving
essential information (Jo et al., 2020). Generative models exemplified
by generative adversarial networks (GANs) and variational auto-encoders
(VAEs) belong to a category of ML models capable of producing novel
data resembling the input data (Harshvardhan et al., 2020). These
models are used to achieve various tasks, including anomaly detection
and image denoising (Choi et al., 2019). A wide range of applications are
associated with unsupervised learning, such as the identification of
fraudulent activity (Bao et al., 2019), the segmentation of customers
(Gomes et al., 2021), the optimization of portfolios (Kedia et al., 2018),
the analysis of credit risk and the study of markets (Umuhoza et al.,
2020).

Unsupervised learning methodologies in ML however faces signifi-
cant challenges. One primary issue is the lack of explicit supervision
making it inherently difficult to evaluate the quality and correctness of
learned representations or clusters of data (Barbierato & Gatti, 2024).
Without labeled data to guide the learning process, determining whether
the discovered patterns or structures are meaningful or spurious be-
comes a critical concern (Akter et al., 2022). Additionally, unsupervised
methods often struggle with scalability and interpretability, particularly
when dealing with high-dimensional or complex data (Karim et al.,
2021). Moreover, the presence of outliers in the data can significantly
impact the performance and stability of unsupervised algorithms,
requiring robust techniques for outlier detection and noise handling
(Lohrer et al., 2024). Overcoming these challenges necessitates the
development of novel algorithms for unsupervised learning along with
comprehensive learning methodologies in ML for evaluating and vali-
dating the learned representations or structures (Taye, 2023; Abbas
et al., 2023).

Issues related to natural language processing (NLP)

Within the realm of Al, natural language processing (NLP) is a subfield
that is dedicated to endowing computers with the ability to understand,
decode, and produce human language (Mei, 2022; Ruffolo, 2022; Xu,
2022). There are many practical uses of NLP within financial services,
the most notable of which is the improvement of the consumer experi-
ence through the implementation of chatbots. For instance, text
pre-processing refers to the process of refining and preparing raw and
uncategorized text data into a format that suits the chosen analysis,
reducing the data volume required for subsequent processing (Yang
et al., 2016). Sentiment analysis for example is used to evaluate emotions
expressed within the text using a combination of supervised and unsu-
pervised algorithms (Fang et al., 2014; Adamopoulos et al., 2018).
Named entity recognition (NER) is a process that identifies and categorizes
specific elements in unstructured text into predefined groups. This
process employs a range of methods from rule-based techniques to ML
models to accomplish this task (Sazali et al., 2016). Another ML tech-
nique called topic modelling identifies topics or themes in a collection of
textual information (Sridhar & Getoor, 2019). Machine translation en-
tails translating material from one language to another while ensuring
the accurate preservation of sentence meaning, grammar, and tense
(Khurana et al., 2023). Similarly, speech recognition enables the tran-
scription of spoken language into written text which is commonly used
in many situations including interviews and chats (Chrupala, 2014).

However, several challenges in NLP remain open and continue to
drive research efforts. One such challenge is the issue of bias in language
models where biases in training data can lead to unfair or discriminatory
outputs (Navigli, 2023). Mitigating bias in NLP models remains a crucial
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area of research to ensure fairness and equity. Another unresolved issue
is the lack of robustness and interpretability in NLP models, particularly
in complex tasks such as question/ answer prompts and natural lan-
guage understanding. Despite considerable progress, NLP systems often
struggle with out-of-distribution inputs and adversarial attacks, high-
lighting the need for more robust and interpretable models (Yuan,
2024). Achieving deeper contextual understanding and common-sense
reasoning in NLP systems remains a formidable challenge as existing
models often lack comprehensive world knowledge and reasoning
abilities (Yu, 2023). Addressing these open challenges in NLP is crucial
for realizing the full potential of NLP and in building more reliable and
trustworthy NLP applications.

Despite many impressive achievements across ML models, significant
challenges remain. One key issue is the need to improve the alignment
between language models and human values and intentions. While the
latest version of GPT-3 (called Instruct GPT) has made progress in this
area, more research is required to ensure that ML models behave in ways
that are consistent with human preferences (Zhang, 2023; Weber-Wulff,
2023; Ouyang, 2022). Another challenge in NLP is the need to develop
models that can understand the context and nuance of human language
rather than simply relying on statistical patterns. This is a prominent
issue as current language models can be fooled by subtle changes in
phrasing or context, and struggle to accurately interpret the intended
meaning of a given piece of text (Choudhury & Asan, 2020; Kreimeyer,
2017).

Issues related to robotics process automation (RPA)

RPA is becoming more important in the financial services industry as
a technology to automate repetitive, rule-based processes performed by
humans. According to Driscoll (2018) and Gotthardt et al. (2020), RPAs
lead to the reduction of operating expenses, the enhancement of effi-
ciency and decreases in human error, as well as improvements in the
entire customer experience. RPA has significant practical application
within the financial services sector. For example, the procedures
involved in establishing and terminating accounts aim to simplify tasks
such as inputting data, verifying identities, and processing documents
(Romao et al., 2019). RPA is also used for automating various operations
such as data entry and verification, and validation within claims pro-
cessing resulting in reduced time and costs (Oza et al., 2020). Similarly,
RPA is deployed to identify and prevent fraudulent activities. It achieves
this by consistently monitoring transactions, identifying irregularities,
and promptly notifying relevant stakeholders (Thekkethil et al., 2021).
Similarly, RPA is used to automate customer service operations and
tasks such as responding to inquiries, handling complaints, and
resolving issues.

Organizations however must also be aware of potential risks to
optimize their RPA investments. One challenge is unrealistic goal setting
(Lok, 2021). More often, businesses set overly ambitious expectations
for RPA implementation, leading to disappointment when the technol-
ogy fails to deliver the promised value. Additionally, organizations that
use RPA solely to reduce headcount miss the potential for innovation
and process improvement (Eikebrokk & Olsen, 2020). Lack of strategic
intent or end-point design can hinder successful RPA projects. Another
risk lies in stakeholder buy-in. Implementing RPA requires engagement
from various levels within the enterprise, including executives, IT em-
ployees, and external stakeholders (Rutaganda, 2017). IT departments
may view RPA skeptically considering it low-value and unstable tech-
nology. Employees might perceive RPA as a threat to their jobs, leading
to resistance or delays in implementation. Ensuring active stakeholder
involvement is crucial for successful RPA adoption. Increased opera-
tional risk arises when organizations deploy robots without a proper
operating model (Bu, 2022). Blurred roles, inadequate training, and
insufficient resources can jeopardize RPA initiatives (Wallace, 2021). To
mitigate this risk, enterprises should implement a digitally augmented
workforce and define clear roles for both humans and bots.
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Fig. 1. Scoping review stages.

While previously discussed challenges can be mitigated with careful
management of RPA projects, there are certain unsolved challenges RPA
is still facing. One unresolved issue is the complexity of automating
cognitive tasks that require human-like reasoning and decision-making
abilities. While RPA excels in automating rule-based processes, tasks
involving unstructured data interpretation and complex decision logic
remain challenging (Lyukevich et al., 2023; Sharma, 2023). As auto-
mation proliferates across organizations, this will require more adher-
ence to regulatory standards, data privacy policies, and ethical
guidelines (Kakade, 2024). Additionally, the human-robot collaboration
paradigm presents challenges in managing the transition and upskilling
of human workers to work alongside software robots effectively (Gervasi
et al., 2024; Robinson, 2023).

Taken together, issues related to problematizing ML led to the
following research question.

Research Question 1: To what extent do Al opportunities overcome
the issues of applying and using ML in financial practice?

Problematizing the rise of artificial intelligence

AI and human intelligence

Many of the challenges of Al have been poorly matched with the
social system to which they are also designed to support (He et al., 2021;
Kruse et al., 2021; X. Huang et al., 2023). While ML consists of a logical
progression towards machines thinking like humans, ML techniques
represent digital frontiers that are not easily understood. Although ML is
based on modern algorithms that have the capacity to identify intricate
patterns that subsequently generate predictions or decisions without
explicit programming guidance (Sarker, 2021), a better understanding
of these processes and systems will increase operational skills and
know-how (Juneja, 2021). Here, ML is yet to achieve the same level of
human reasoning and intelligence in the same way as human thinking
(Ali et al., 2021).

Identifying gaps in Al theory

Given these Al traditions plus considerable issues in applying ML in
practice, a comprehending theory (CT) approach offers a qualified un-
derstanding of phenomena that are not easily understood (Alvesson &
Willmott, 2002). While the scoping review in the current study offers a
process for identifying key AI themes, we broaden current scholarly
contributions to the AI literature by theorizing the emerging gaps be-
tween Al theory and practice. As we discuss below, a common shared
perspective of Al should result in more transparent systems and pro-
cesses that are linked to how people understand the phenomena in ways
where human thinking is replicated through artificial means. However,
as detailed in this review, this is not always the case. Many challenges
exist to which existing Al theory cannot adequately explain. Drawing
from Sandberg and Alvesson (2021), a CT approach to the Al phenom-
enon enables scholars and practitioners to better determine hidden

meanings, to identify underlying forces behind people’s actions, and to
create greater intellectual insight (Reed, 2011). Al in its current form is
not easy for users to comprehend. Users who anticipate a certain
outcome such as speed and efficiency may be disappointed when out-
comes result in unanticipated consequences. Geertz (1973) and Reed
(2011) note that CT extends the action-logics of different contexts by
articulating a better meaning of the phenomena within the context to
which it is applied. By seeking to clarify Al theory through typification, a
“significant conceptualizing could mean that a new phenomenon is
being created” (Sandberg & Alvesson, 2021: p. 499). In the current
paper, we hope to enlighten users’ meaning-making and sensemaking
through a CT approach notably: 1) The purpose should be clear in
determining the phenomenon’s meaning, 2) greater intellectual insight
might enable new meaning that changes the character and nature of the
phenomenon, 3) through a CT approach, an original comprehension of
the meaning of Al can be challenged, 4) Al processes should be
conceptually ordered through discourses, narratives, metaphors and thick
descriptions, and 5) the phenomenon of Al should be informed by several
layers of meaning (Putnam & Banghart, 2017; Reed, 2011). Finally, CT
should facilitate a boundary condition where groups share a mutual un-
derstanding such that the phenomenon becomes credible (Sandberg &
Alvesson, 2021). For instance, given the range of issues in positioning
ML as a device that approximates to human thinking, various Al
boundary conditions are clearly not being met. Later in this study, we
match relevant CT criteria with Al emerging opportunities and chal-
lenges to determine the extent to which the phenomenon is credible
and/or understood. In this study, we problematize the idea that ML
techniques provide clear guidelines and greater intellectual insight for
users leading to the second research question.

Research Question 2: How does a comprehending theory approach
provide greater intellectual insight of the AI phenomena to help close
gaps between theory and practice?

Scoping review planning and methodology

A scoping review is a systematic method employed to comprehen-
sively identify, evaluate, and interpret all existing research relevant to a
specific topic, query, or phenomenon of interest. According to Ali et al.
(2023a), a scoping review provides a succinct overview of the proced-
ures involved in gathering, organizing, and assessing literature. Based
on recognizing the need to pinpoint research gaps and offer recom-
mendations for future research, a scoping review methodology was
considered highly beneficial for the present research (Anderson et al.,
2020). The current study uses evidence maps to uncover gaps in knowl-
edge (Miake-Lye et al., 2016). The prominence of scoping reviews has
been growing across all fields of knowledge and are particularly prev-
alent for studies in information technology and finance (Kamboj &
Rahman, 2015). The current review approach was based on Aromataris
and Munn (2020), and the JBI manual for evidence synthesis, as well as
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Fig. 2. Classification framework.
Adapted from Ngai and Wat (2002).

the PRISMA-ScR checklist and explanation (Tricco et al., 2018), related
to planning, implementation, and summarizing (Fig. 1).

Planning phase

The planning phase involved identifying significant gaps and op-
portunities between theory and practice including developing the re-
view procedure. Procedural protocols were followed to minimize
researcher bias. The Ngai and Wat (2002) framework was used to sub-
divide distinct categories of opportunities and challenges. Every cate-
gorical theme consisted of sub-categories that emerged from the review
papers and research criteria. Fig. 2 illustrates the relevant categories and
subcategories in respect of opportunities and challenges.

The review process of identifying the advantages and disadvantages
of using Al led to a total of 167 articles for analysis. This was followed by
the research inquiry and article selection process respectively (Dabic
et al., 2020). An intensive automated search of online databases was
conducted including a manual examination of publications. Well-known
databases were selected included Science Direct, Scopus, ACM digital
library, IEEE, and Emerald. Following McLean and Antony (2014),
suitable filtering tools were used for each database to improve quality
and limit the scope of accumulating unnecessary data. The researchers
conducted a thorough examination of the titles and abstracts of all ar-
ticles (Golder et al., 2014). This included studying full text papers and
excluding those not relevant to the search terms (Ali et al., 2021). To
better illustrate the development of Al-based ML over the past decade,
the exclusion procedure did not include articles published before 2014
(Table 1).

A backward snowballing technique was used to locate articles not
identified through the scoping process. This included a reference
rundown to locate these articles (Ali et al., 2023b).

Implementation phase

During the implementation phase, specific search terms were
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extracted from selected articles in the relevant field of study (Hu & Bai,
2014; Ali etal., 2018). The following keywords were identified: artificial
intelligence; machine learning; natural language processing; robotics
process automation; opportunities; benefits and/or advantages; and
finance or financial; and challenges or issues or barriers or obstacles
consistent with filtering tools to increase quality yield (Zhang et al.,
2014). Other filters related to the following criteria: publication year (in
English), journal articles and conference papers as source criteria, and
finance and information systems as the research area between the years
2014 to 2024. The titles and abstracts of the articles were examined
manually to ensure they were related to the subject matter (Pucher,
2013; Ali et al., 2018).

Summarizing phase

Table 2 illustrates the total number of articles selected for inclusion.
Initially, 1276 articles were identified through the initial keyword
search. After applying filters, this number was reduced to 753 articles.
Subsequently, a manual review eliminated articles not relevant to the

Table 2
Implementation processes and results.
Databases Implementation Processes Procedures Results
o ACM PROCESS 1: Choosing search 1276
digital Perform a search using the engine keywords:
library, specified keywords. e NLP, Al, RPA, and ML
e Scopus, e Considerations,
e Emerald, challenges, issues,
o IEEE, barriers, and obstacles.
and o Advantage, benefit,
e Science and opportunity.
Direct. o Finance and related
matters.
PROCESS 2: Apply database 753
Filtering tools for databases filters:
were implemented. e Language

o Publication year
o Area of study

PROCESS 3: Reading the title and 316

Articles that have been
selected for review and found
to have an abstract and title
should be excluded.

abstract
o Title review.
e Abstract review.

PROCESS 4: Reading full articles 178
Articles are excluded based o Full article review.
on full-text scanning.
PROCESS 5: Backward snowball 192
Backward snowball technique
technique. o Reference list review.
PROCESS 6: Quality evaluation: 167
Articles are excluded based Related to:
on quality assessment. o Objectives.

e Questions.

e Problem.

o Data used.

e Methodology.

o Outcomes.

Total Articles 167

Table 1
Criteria of the inclusion and exclusion process.
Criteria Inclusion Exclusion Rationale
Type of Scholarly articles Reports and any other To ensure that the research collects data from reputable sources of high academic quality.
publication sources
Peer-reviewed Peer-reviewed Non-peer-reviewed To guarantee the superior quality of articles selected.
Publication Articles published from Articles that were To ensure the precision of the data presented in the scoping assessment, the previous decade was
year 2014 to 2024 published before 2014 selected as an appropriate period for considering the comparatively swift rate of technological
advancements.
Language English language Any language other than English is the designated language for research articles.

English
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Fig. 3. Publications by year.

study’s focus with a priority towards empirical and conceptual articles
related to the study’s subject matter. Consequently, 437 articles were
eliminated while 316 articles were retained. Following this process, a
comprehensive review of the articles was conducted focusing on the
research criteria including the presentation of the results, the method-
ology employed, the approach taken to analyze the data, and the ob-
jectives and research questions addressed. This resulted in an additional
138 articles that were eliminated leaving 178 articles for analysis.
However, the reverse snowball technique led to including an additional
fourteen articles. Overall, the summarizing phase resulted in selecting
192 articles from which a further twenty-five articles were excluded.
This left a total of 167 articles available for analysis (Table 2).

Common attributes of the selected articles

Allocation of Articles by Publication Year: Fig. 3 illustrates the distri-
bution of selected articles based on their publication year. The year with
the fewest number of articles (1) was in 2015 and 2024, while 2021
showed the greatest number of articles (36). Most articles were pub-
lished between 2019 and 2022, reflecting more recent interest in Al.

Allocation of Articles in accordance with the Classification Framework:
The research topic is categorized into two main groups: opportunities
and challenges. This included seventy articles published within the op-
portunities category, while the challenges category comprised 102 ar-
ticles. Integrated insights of AI theory and practice were supplied by
both categories (Fig. 4).

Research classification framework

Table 3a and Table 3b present a detailed classification of research
themes within the proposed framework. Table 3a categorizes studies
based on their primary focus areas related to Al opportunities high-
lighting key domains, sub-categories, with example themes.

Table 3b further refines the research classification framework by
mapping the identified themes of Al challenges to their respective sub-
categories illustrating the depth and breadth of research coverage.

Number of Articles

I ==

2014

2015

2016 2017 2018

==@==Opportunities
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Discussion of emerging themes
Emerging themes 1: opportunities of Al

Al presents significant opportunities for the financial sector although
successful adoption varies depending on institutional capabilities and
resources (Konigstorfer & Thalmann, 2022; Wittmann & Lutfiju, 2021;
Kerkez, 2020). Emerging opportunities center around improving
decision-making, automating processes, enhancing trading and fore-
casting, boosting compliance, reducing costs, and strengthening cyber-
security as illustrated in Table 3a.

Improved decision-making

In the financial sector, Al adoption ability reflects an institutions
capability to effectively understand and internalize Al's strategic po-
tential to innovate in ways that reflect improved decision-making and
operations to achieve better risk compliance and cybersecurity. Those
institutions with lower capabilities to take advantage of AI will struggle
however to move beyond basic implementation. Many opportunities
relate to enhanced decision making across different financial in-
struments including credit assessment, lending decisions, and in-
vestments (Agarwal, 2019). Here, Al models are increasingly employed
to automate and enhance decision-making procedures (Jarrahi, 2018),
that lead to a more precise, expeditious, and well-informed decision--
making framework. Al models are progressively employed for auto-
mated decision-making manifesting a substantial capacity to refine the
credit risk assessment of loan applicants by leveraging diverse and often
non-traditional  datasets (Konigstorfer & Thalmann, 2022).
Robo-advisors for instance not only automate investment strategies but
are also increasingly aligned with complex investment goals such as ESG
principles (Shanmuganathan, 2020; Ahmed et al., 2022; Ashta & Herr-
mann, 2021).

Automating key business processes

As noted earlier, RPA and Al-based customer engagement systems
are only successful when financial organizations grasp the broader
strategic role of automation beyond simple cost-cutting. That is, Al
should be extended to enhancing the customer experience and market
expansion (Shanmuganathan, 2020; McKinsey, 2020). A CT approach
suggests that a more thorough comprehension of Al in practice should
lead firms to modernize their IT systems and strengthen real-time ana-
lytics (Huang & Kuo, 2020; Villar & Khan, 2021), rather than deploying
isolated Al tools without system-wide integration This understanding
extends the action-logics of financial contexts by articulating a better
meaning of the phenomena within the context to which it is applied
(Reed, 2011). In trading and forecasting, institutions that deeply un-
derstand AI’s capabilities for instance can better leverage ML and neural
networks for strategic market advantage, minimizing emotional biases
and optimizing long-term investment strategies (Milana & Ashta, 2021;
Cohen, 2022; Doumpos et al., 2023).

3

2019 2020 2021 2022 2023 2024

==@==Challenges

Fig. 4. Distribution of articles based on classification framework.
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Table 3a
Al opportunities classification framework.
Domain Category Sub-Category Description Examples Sources
Al in the Al Improving the A process comprising a sequence of steps e Process of credit Wei et al. (2016); Gomber et al. (2017); Jarrahi
Finance Opportunities Decision-Making that must be undertaken to identify the assessment. (2018); Bazarbash (2019); Agarwal (2019);
Sector Process optimal course of action. o Process of lending. van Dijck and Alinejad (2020); Helberger et al.

Automating Key
Business Processes

Algorithmic
Trading
Improvement

Financial
Forecasting
Improvement

Improving
Compliance and
Fraud Detection

Reducing
Operational Costs

Strengthening
Cybersecurity
Resilience

A system employed to minimize or
eliminate human involvement,
simplifying, expediting, and enhancing
the accuracy of business workflows.

A system that employs highly
sophisticated mathematical models to
make transaction decisions within
financial markets.

Concentrates on enhancing the
prediction of a company’s financial
future by analyzing historical
performance data.

Emphasizes enhancing measures for
preventing and detecting fraud to
mitigate risks and minimize financial
losses.

Assists organizations in reducing
operational costs, boosting profits, and
facilitating organizational expansion.

Designed to enhance cyber resilience
throughout the industry by establishing
a reliable network of collaboration with
a community of multiple stakeholders.

o Process of investment.
e Process of credit risk
assessment.

o Client assistance.

o Financial advisory
services.

o Tax strategy counseling.
o Establishment of a
banking relationship.

e Suggesting insurance
coverage options.

o Dispensing investment
recommendations

e Equity trading.

e Engaging in transactions
within the foreign
exchange market.

o Stock trading.

e Financial asset prices.
e Consumer loan default.
e Bankruptcies.

o Loan defaults of SMEs.
 Stock price fluctuations.
o Stock market returns.
e Credit risk forecasting.
o Real-time monitoring.
o Financial regulatory
reporting.

o Unusual financial
behavior.

o Risk of financial
irregularities.

e Money laundering
activities.

o Reduce loan default
rates.

e Compliance.

o Detecting financial
fraud.

e Labor costs.

o Cost of transactions.

o Protection from social
engineering.

o Reduce phishing
attempts.

e Monitoring all emails.

(2020); Shanmuganathan (2020); Awotunde
et al. (2021); Ashta and Herrmann (2021);
Chen and Ge (2021); Starnawska (2021);
Ahmed et al. (2022); Konigstorfer and
Thalmann (2022); Galli et al. (2022).
Zeinalizadeh et al. (2015); Rehman et al.
(2016); Kruse et al. (2019): Shanmuganathan
(2020); Mckinsey (2020); Jha et al. (2021);
Wittmann and Lutfiju (2021); Liao and Sundar
(2021); Puntoni et al. (2021); Villar and Khan
(2021); Jaiwani and Gopalkrishnan (2022).

Geva and Zahavi (2014); Chen et al. (2016);
Luo et al. (2019); Martinez et al. (2019); Liu
et al. (2020); Milana and Ashta (2021); Cohen
(2022).

Oskarsdéttir et al. (2018); Sigrist and
Hirnschall (2019); Li and Mei (2020); Ruan

et al. (2020); Konigstorfer and Thalmann
(2020); Marulanda and Sarabia (2021); Petrelli
and Cesarini (2021); Ahmed et al. (2022);
Doumpos et al. (2023).

Bose et al. (2017); Kerkez (2020); Deshpande
(2020); Canhoto (2020); Wyrobeck (2020);
Polak et al. (2020); Kumar et al. (2021); Ashta
and Herrmann (2021); Milana and Ashta
(2021); Fabri et al. (2022); Yasir et al. (2022);
Ahmed et al. (2022).

Patil and Kulkarni (2019); Salah et al. (2019);
Barclays (2019); Konigstorfer and Thalmann
(2020); Kerkez (2020); Macek et al. (2020);
Ashta and Herrmann (2021); Wittmann and
Lutfiju (2021); Akter et al. (2022); Tiron-Tudor
and Deliu (2022); Abdeljawad et al. (2022);
Sundararajan (2022); Dasgupta (2023).
Coventry and Branley (2018); Gutierrez et al.
(2018); Alshamrani et al. (2019); Mashechkin
et al. (2019); Ursachi (2019); Mansour (2020);
Annarelli et al. (2020); Eigner et al. (2021);
Mashtalyar et al. (2021); Basit et al. (2021);
Saeed et al. (2023).

Similarly, in compliance and fraud detection, AI can proactively
predict and prevent financial crimes (Ashta & Herrmann, 2021; Can-
hoto, 2020; Kumar et al., 2021), with the transition from reactive to
predictive capabilities marking a major evolution in strategic risk
management. Operational cost reduction through Al (Konigstorfer &
Thalmann, 2020; Patil & Kulkarni, 2019; Salah et al., 2019) and
cybersecurity improvements using Al-driven NLP tools (Annarelli et al.,
2020; Saeed et al., 2023), illustrate moreover how financial institutions
who better understand how AI can be implemented in practice will be
more likely to transform operational models to sustain long-term inno-
vation. Future AI adoption will increasingly depend not just on financial
resources but on an institutions ability to comprehend and strategically
integrate Al within their organizational frameworks (Saratchandra
et al., 2022).

Shift from tool-based adoption to systemic transformation
Rather than viewing Al as a set of tools, successful institutions will
increasingly treat AI adoption as a systemic transformation. A CT

approach invokes greater intellectual insight that enables new meaning
(Sandberg and Alvesson, 2021), that changes the character and nature of
how institutions apply Al in practice from more isolated Al solutions
towards Al-augmented organizational ecosystems (Huang & Kuo, 2020;
Villar & Khan, 2021). Here, Al should be able to inform every level of
decision-making and customer interaction. Financial institutions will
need to invest in building internal cognitive capabilities such as
cross-functional Al literacy, leadership vision for Al, and a culture of
continuous learning (Saratchandra et al., 2022).

Dynamic capabilities as competitive differentiators/Use of non-traditional
data sources

Institutions that continuously update their comprehension of Al
trends especially in areas like generative Al, explainable Al, and ethical
Al will be better positioned to adapt to emerging challenges and op-
portunities. This invokes the boundary conditions within a CT approach
resulting in greater shared understanding of Al in practice where in the
future, constant re-learning and re-adaptation will help define future
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Table 3b
Al challenges classification framework.
Domain Category Sub-Category Description Examples Sources
Al in the Al Poor The outcomes generated by Al may stem from o Inaccurate training Syam and Sharma (2018); Canhoto and Clear
Finance Challenges accountability for flawed training data or data that is biased and data. (2020); Munoko et al. (2020); Toreini et al.
Sector Al Output not fully representative of knowledge withinthe e Biased data. (2020); Bonson et al. (2021); Lee et al. (2021);

Training Data
Availability and
Quality

Lack of
Appropriate Skills
and Expertise

Legacy
Infrastructure

Data Privacy
Challenges

Selecting the
Optimal ML Model

Poor Adaptability
and Speed of
Response

Al Model
Development
Challenges

field.

An inadequate assessment of data quality may
arise due to factors such as accuracy,
comprehensiveness, coherence, reliability, and
currency.

Lack of essential foundational skills and
business acumen needed to fulfill requisite
responsibilities in the workplace to achieve
organizational objectives.

Outdated computing systems, hardware, or
software that remain operational. Legacy
systems encompass both computer hardware
and software applications.

The field of data security focuses on ensuring
the appropriate management of data. In
practical terms, concerns regarding data
privacy often center on the manner in which
data is shared with third parties.

ML models are trained with a massive amount
of data that may negatively affect model
performance.

Organizations do not respond quickly enough to
opportunities.

The crucial issues that organizations might face
in the process of developing Al models.

o Unrepresentative
data.

o Insufficient amounts
of digitally available
data.

e Incomplete data.

e Inaccurate data.

o Biased data.

e Inconsistent data.

e Lack of various data
privacy requirements.
e Poor programming
skills.

e Poor data analytics
skills.

e Poor ML knowledge.

e Lack of processing
power.

e Lack of storage
capacity.

o Longer processing
times.

e Reduced accuracy.
e Lack of integration.
o Losing control of the
data.

o Legal liabilities.

e Damage to
reputation.

e Unsuitable
algorithms.

o Poor performance.
o Inaccurate
predictions.

e Inability to solve the
problem.

o Potential for data
bias.

o Issues related to
security and privacy.
o Complexity of Al
models.

o Struggles to develop
accurate models.

o Struggle to develop a
well-performing Al
model.

o Issues related to
language
interpretability.

Huang and Rust (2021); Reebadiya et al.
(2021); Ashta and Herrmann (2021); Fabri

et al. (2022); Kozodoi et al. (2022); Mhlanga
(2022); Kochupillai et al. (2022).

Greenspan et al. (2016); Lee (2017); JingJing
et al. (2018); Kruse et al. (2019); Arnold et al.
(2019); Santosh (2020); Ashta and Herrmann
(2021); Zhang and Lu (2021); Milana and
Ashta (2021); Hagendorff (2021); Vetro et al.
(2021); Kernbach et al. (2022); Kolides et al.
(2023); Sawhney et al. (2023); Whang et al.
(2023); Kumar et al. (2023).

Dilsizian and Siegel (2014); Kruse et al.
(2019); Polak et al. (2020); Stone et al. (2020);
Humphreys et al. (2020); Janiesch et al.
(2021); Juneja (2021); Tagde et al. (2021); Pai
et al. (2021); He et al. (2021); Kruse et al.
(2021); A.H. Huang et al. (2023).
Miloslavskaya and Tolstoy (2016);
Wollschlaeger et al. (2017); Kalyanakrishnan
et al. (2018); Zhou et al. (2019); Lee et al.
(2019); Bohr and Memarzadeh (2020); Ryll

et al. (2020); Etengu et al. (2020); Eriksson

et al. (2020); von Solms (2021); Hradecky

et al. (2022); Irani et al. (2023); Irani et al.
(2023); Kar and Kushwaha (2023).

Fire et al. (2014); Mehmood et al. (2016);
Mathews (2016); Mittelstadt and Floridi
(2016); Frenken and Schor (2017); Riikkinrn
et al. (2018); Amiram et al. (2018); Kruse et al.
(2019); Radu et al. (2020); Lee and Shin
(2020)); Lukas et al. (2020); Davenport et al.
(2020); Roszkowska (2021); G. Gong et al.
(2021); Quach et al. (2022); Naz et al. (2022);
Remeikiené and Gaspareniene (2023).
Zhuang et al. (2017); Lamberton et al. (2017);
de Laat (2018); Cewe et al. (2018); Cooper

et al. (2019); Kirchmer and Franz (2019); Yeoh
(2019); Kelly et al. (2019); Lee and Shin
(2020)); Zeng et al. (2022); Chua et al. (2023).

Vassakis et al. (2018); Kroll (2018); Gligor

et al. (2019); Sheel and Nath (2019);
Thowfeek et al. (2020); Wamba-Taguimdje

et al. (2020); Holzinger et al. (2021); Rane and
Narvel (2021); Enholm et al. (2022); Bhatti

et al. (2022); Ishak et al. (2023); Upadhyay

et al. (2023).

Day and Lee (2016); Sohangir et al. (2018);
Krommyda et al. (2020); Mishev et al. (2020);
Stahl et al. (2021); Du and Xie (2021); J. Gong
et al. (2021); Harsha et al. (2022); Zaman et al.
(2023); Gupta et al. (2023). Osterrieder
(2023); Khurana et al. (2023).

industry leaders. Future evolution will also see broader integration of

non-traditional and real-time data sources (e.g., IoT data, social media

sentiment, geospatial data), into Al models used in financial instruments
expanding predictive capabilities and enhancing personalization
(Konigstorfer & Thalmann, 2020). As Al applications in finance become
more powerful, regulatory and ethical challenges will multiply. In-
stitutions with strong AI understanding not just of the technological
aspects but also of ethical, legal, and societal implications, will need to
lead the way in building trust and sustainable adoption.

Emerging themes 2: challenges of Al

Improved technical and cognitive capability

Through the scoping process, significant challenges of using Al were
noticeable. Applying a CT lens to these challenges indicates that suc-
cessful technological adoption requires improved technical and cogni-
tive capability. Poor accountability is often reflected in Al outputs.
Insufficient human oversight for instance in credit scoring makes error
tracking difficult and undermines trust (Bonson et al., 2021; Mhlanga,
2022; Lee et al., 2021; Kozodoi et al., 2022). From a CT perspective, if
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stakeholders cannot understand how Al decisions are made, the ability
to trust outputs is compromised and the gap between technological
capability and cognitive acceptance is blurred (Munoko et al., 2020;
Kochupillai et al., 2022). Al adoption will require institutions therefore
to align technical outputs with human cognitive processes in ways that
enhance transparency, traceability, and organizational trust.

High quality of input data

Al model accuracy depends on high-quality and unbiased input data
(Santosh, 2020; Kolides et al., 2023; Sawhney et al., 2023), while digi-
tization strategies and fragmented legacy systems limit useability
(Zhang & Lu, 2021; Milana & Ashta, 2021). Because data quality issues
may be particularly germane in deep learning applications (Vetro et al.,
2021; Kumar et al., 2023), financial institutions will require improve-
ments in data stewardship and literacy programs to strengthen Al reli-
ability. Skill gaps are also a challenge as employees lack expertise in
programming, machine learning, and data analytics (Pai et al., 2021; He
etal., 2021; Humphreys et al., 2020; Janiesch et al., 2021), necessitating
continuous upskilling (Tagde et al., 2021; A.H. Huang et al., 2023).
Without sufficient human interpretive capacity, the technological po-
tential of Al cannot be fully realized. Organizations must therefore pri-
oritize making long-term investments in employee education and foster
cultures of continuous learning (Polak et al., 2020; Stone et al., 2020), so
that the boundary conditions of Al discussed earlier can be satisfied.

Infrastructure

Infrastructure limitations also pose serious challenges. If financial
institutions rely on outdated and siloed systems, this will hinder large-
scale data integration required for modern AI applications
(Kalyanakrishnan et al., 2018; Etengu et al., 2020; Irani et al., 2023).
From the CT perspective, fragmented infrastructure disrupts organiza-
tional sense-making processes by limiting coherent access to informa-
tion. Future Al evolution will require not just infrastructure upgrades
but comprehensive organizational restructuring to centralize data flows
that support holistic, shared understanding (von Solms, 2021; Hradecky
et al., 2022; Kar & Kushwaha, 2023).

Regulatory scrutiny and privacy

In an environment of heightened regulatory scrutiny, poor data
collection practices and hidden consent agreements can erode consumer
trust (Lee & Shin, 2020; Quach et al., 2022; Lukas et al., 2020; Naz et al.,
2022). Financial institutions face potential financial, legal, and reputa-
tional damage in relation to privacy regulation non-compliance (Kruse
et al., 2019; Roszkowska, 2021; Gong et al., 2021; Remeikiene & Gas-
pareniene, 2023). In addition, the extensive datasets needed for Al
technologies to refine their algorithms and enhance performance may
include sensitive personal information raising substantial privacy con-
cerns (Korobenko et al., 2024). Financial institutions could consider
using federated learning which involves collaborative model training
across financial institutions to increase data privacy and security pro-
tocols (AI Kondaveeti et al. 2024; Cheng et al. 2020). Heightened se-
curity protocols would avoid identity theft, financial fraud, and
reputational damage (Han et al., 2023). A CT process of analysis sug-
gests financial institutions must enhance ethical strategies by priori-
tizing transparency, simplifying consent processes, and educating
consumers and employees about Al-driven data usage.

AI model selection

A technical and strategic challenge is model selection. No single Al
model fits all financial applications and poor model selection can pro-
duce inaccurate or misleading results (Kelly et al., 2019; Zeng et al.,
2022). Poor alignment between model design and fit-for-purpose re-
flects poor contextual comprehension about how Al should be concep-
tually ordered through discourses, narratives, metaphors and thick
descriptions that provide layers of meaning (Putnam & Banghart, 2017;
Reed, 2011). Consequently, Al strategies must promote contextually
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sensitive model selection that accounts for data characteristics, regula-
tory requirements, and interpretability needs (Chua et al., 2023; Lee &
Shin, 2020). Organizations also struggle with poor adaptability and slow
response times. Rapidly changing environments characterized by
evolving risks, increased regulations, and competitive dynamics demand
agile operational frameworks (Gligor et al., 2019; Holzinger et al.,
2021). A CT approach underscores the importance of evolutionary
cognition or the ability of organizations to continuously adjust their
interpretive frameworks in response to external shifts such that com-
panies that successfully adapt to Al integration challenges can maintain
competitive advantage (Wamba-Taguimdje et al., 2020; Sheel & Nath,
2019; Upadhyay et al., 2023).

Research discussions

The aim of this study was to identify the gaps between Al theory and
practice with a second aim to explore the challenges and opportunities
of using ML in the financial sector. The study used a scoping review to
explore the extant literature. We applied a CT approach (Putnam &
Banghart, 2017; Sandberg & Alvesson, 2021), to help explain and typify
how ML phenomena could be better understood and applied given the
opportunities and challenges presented. The overarching aim of the
current study was to broaden and extend current theoretical insights
related to applying ML knowledge in practice. Next, we contribute to the
ongoing relationship and debate between decision-makers and Al-driven
processes. We do this by exploring the theoretical foundations that
enable a deeper understanding of the ethical considerations of Al model
transparency.

Earlier, we proposed two research questions. The first explored the
extent to which AI opportunities overcome the challenges of applying
and using ML in financial practice? An extensive analysis of articles
through the planning, implementation, and summarizing stage led to the
identification of seven opportunities offset by eight challenges
(Tables 3a and 3b). However, while scholars had provided an extensive
range of literature across different themes, applying Al in practice was
not easily understood within and between financial institutions. One
way of perceiving Al opportunities is that they cancel out challenges. To
this end, the study makes two major contributions. First, the study used
a CT approach as a basis to increase user understanding about the
meaning of ML. Many challenges exist for users in financial firms to
which existing Al theory cannot adequately explain. Earlier, we outlined
how a CT methodology enables scholars and practitioners to explore the
hidden meanings of phenomena in ways that users can better anticipate
ML outcomes. For instance, when users can match the increase of speed
and efficiency to their own technological requirements e.g., lending
requirements, the action-logics of different contexts can be provided
leading to greater meaning and sensemaking (Sandberg & Alvesson,
2021). Here, we suggested that the purpose of ML should be clear with
greater intellectual insight manifested in practice. What we found
however by reviewing hundreds of articles across themes was that the
narratives and metaphors of ML were vague and not well understood.
Moreover, our analysis established that many layers of meaning
(Putnam & Banghart, 2017; Reed, 2011), were mostly embodied within
complex technical jargon such that pre-existing AI models were not
fit-for-purpose in meeting financial goals. Financial firms appear to be
slow to match on-the-ground technical skills with the complexity of Al
While financial service firms will benefit from the development of Al
technologies, both technical and social problems are associated with
understanding and implementing Al in practice. Accordingly, the clas-
sification framework developed in this paper represents the first of our
core theoretical contributions through an extensive review of Al-enabled
finance sector challenges and opportunities. The framework provides a
structured view of Al emerging themes for researchers and policymakers
adding to scholarly understanding about which factors are important
when using ML in practice. Moreover, the framework typifies richer
descriptions, examples, and sources of ML problems and opportunities
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Table 4

Comprehending Al Theory and Practice.
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Research Questions

@

CT Criteria
(Sandberg & Alvesson, 2021; p
499-500); see also Corparsson

Example Article Data of
Opportunities that match CT
criteria.

Example Article Data of Challenges
that match CT criteria.

“@

Overview & example of theoretical
Gaps required to create greater
meaning theory and practice.

et al. (2012). (3) 5)
(2
To what extent can hidden ~ Purpose e The adoption of Al owing to its e Poor comprehensive Theoretical Gap:

AI meanings and
functions be better
articulated to create
clearer intellectual
insight into the Al
phenomena?

A comprehensive comprehension
of organizational phenomena
involves discerning their
significance.

Phenomena

Defined by user understanding and
meaning, more or less given,
existing before researchers attempt
to theorize.

Conceptually Ordered
Systematically organize the

suggested theoretical
interpretation of the phenomena
by employing detailed
descriptions, narratives,
discussions, metaphors, or
compelling rhetorical techniques
to clarify the meaning of the
phenomena thoroughly and
distinctly.

Relevance Criteria

It is essential to offer a well-
informed and innovative
understanding of the
characteristics, nature, or
fundamental aspects of
organizational phenomena. This
understanding should delve into
various layers of meaning.

Boundary Condition
The boundary conditions for CT

refer to the group or groups that
collectively hold a defined
understanding of the phenomenon
in question. These phenomena
must be perceived as credible by
the groups utilizing them.

capacity to effectively manage a
diverse array of data, enables
entities like Fintech to venture into
hitherto unexplored domains (
Awotunde et al., 2021).

o The integration and utilization of
RPA (robotic process automation)
in this environment is imperative (
Jha et al., 2021).

o Al models exhibit proficiency in
conveying superior trading signals
to human counterparts, adeptly
identifying unforeseen market
trends within constrained temporal
parameters (Liu et al., 2020).

e Al is a broad concept for creating
models that can understand
language, recognize images, make
decisions, and learn from data (
Agrawal et al., 2019).

o Al signifies progress in
computing capabilities, data
retention, and communication
standards (Biallas & O’Neill,
2020).

o Supervised ML learning
algorithms are applied,
encompassing well-established
linear and logistic regressions
including decision trees (Kaparthi
& Bumblauskas, 2020), random
forests (Sipper & Moore, 2021) &
neural networks (Ghorbanzadeh
et al., 2019) (among others).

o Unsupervised ML learning inter
alia entails the exploration of
latent patterns or structures within
data such as PCA (Jo et al., 2020),
and generative models (
Harshvardhan et al., 2020).

e Al models are becoming more
commonly utilized to automate
and improve decision-making
processes (Jarrahi, 2018).

o Effective data collection creates
the perception that Al interactions
are comparable to human
interactions (Ali et al., 2023a).

e Robotic Process Automation
(RPA) algorithms automate pivotal
business processes (Wittmann &
Lutfiju, 2021).

e Al has been widely adopted in the
finance, healthcare, and
manufacturing industries (Ali

et al., 2023b).

e Advancements in computing
power, data storage, and swift and
dependable communication
protocols promote shared
understanding (Biallas & O’Neill,
2020).

o The evolution of the sharing
economy has empowered
consumers such as the effective
utilization of real-time analytics
and messaging.

10

understanding relates to the
capabilities of bots and their
operational dynamics (Cooper et al.,
2019).

o The fast-paced development of Al
technologies poses a challenge for
workers to keep up with the latest
trends and methods (Dilsizian &
Siegel, 2014).

e Cewe et al. (2018) argue that the
implementation of RPA often
deviates from its intended direction,
leading to considerable expenses
associated with automation that
could have been utilized across
various other processes.

o Users lack a detailed
comprehension of the capabilities
and constraints of algorithms (Chua
et al., 2023).

o A great majority of companies are
not agile about the assimilation and
integration of Al into operational
frameworks (Sheel & Nath, 2019;
Upadhyay et al., 2023).

e Many legacy IT architectures
comprising outdated hardware and
software systems now represent a
challenge, complicating the
integration of modern Al techniques
(Kalyanakrishnan et al., 2018).

o The effectiveness of data for
training Al models is hindered due
to the incomplete digitization of
business processes by established
financial service providers (Zhang &
Lu, 2021)

o The dynamic evolution of Al
technologies presents a challenge
for employees to stay abreast of the
latest trends and techniques (
Dilsizian & Siegel, 2014; Tagde

et al., 2021).

o Transferring data to shared data
lakes is intricate, costly, and
time-consuming (von Solms, 2021;
Hradecky et al., 2022; Kar &
Kushwaha, 2023).

o Financial institutions must ensure
that their data collection and
processing procedures comply with
relevant data protection regulations
(Lee & Shin, 2020).

e Concerns regarding data
protection could potentially impede
the adoption of Al technologies by
diminishing customer trust and
confidence in financial institutions
(Lukas et al., 2020; Naz et al.,
2022).

e Banks need to modernize their IT
architecture however and
strengthen their analytical

The purpose should indicate what
the phenomenon, i.e., Al, is about,
such as articulating a hidden
meaning (Reed, 2011).

Practice Gap:

While AI promises a lot, its
potential purpose is not matched
by its realized purpose. For
example, poor comprehension of
Al, up-to-date skills, and
automation costs.

Theoretical Gap:
Al began in the mid-1950s with a

goal to make machines think like
humans (Sheikh et al., 2023).
Practice Gap:

Al is programmed on the training
data supplied, and it does not think
in sentimental and emotional
terms (Ali et al. 2024).

Theoretical Gap:
Meaning systems ought to offer

thorough explanations that
encompass what, how, and why of
variables (Whetten, 1989).
Practice Gap:

Al-based ML processes are not
clearly articulated, evidenced by
low digitization of business
processes. Legacy systems are
often not compatible with AL

Theoretical Gap:
Multiple layers of meaning are not

always readily apparent. The
underlying structures, routines,
and tacit assumptions are not
immediately observable (Putnam
and Banghart, 2017).

Practice Gap:

In financial firms’ experiences.
Employees do not have equal
experiences which might be
common only to IT scientists and
computer engineers.

Theoretical Gap:

Groups ought to collectively
possess a clear and articulated
understanding of the phenomenon
(Sandberg and Alvesson, 2021).
Practice Gap:

While Al appears to be credible in
terms of its purpose, data
protection concerns all groups
across industries. While many
benefits exist, consumer trust and
confidence is waning since the
credibility of Al is compromised.

(continued on next page)
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Table 4 (continued)
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Research Questions

@

CT Criteria

(Sandberg & Alvesson, 2021; p
499-500); see also Corparsson
et al. (2012).

(2

Example Article Data of
Opportunities that match CT
criteria.

3

Example Article Data of Challenges
that match CT criteria.

“@

Overview & example of theoretical
Gaps required to create greater
meaning theory and practice.

(5)

Intellectual Insight
Advance beyond the

interpretations and perspectives of
individuals in a manner that
surpasses or expands upon their
immediate understandings and
ways of acting.

o Model features facilitate a more
precise, expeditious, and well-
informed process framework,
manifesting a substantial capacity
to refine the credit risk assessment
of loan applicants by leveraging
diverse and often non-traditional
datasets (Konigstorfer &
Thalmann, 2022).

o Fintech firms possess the capacity
to provide innovative and user-
friendly financial services, such as
mobile payments, online banking,
peer-to-peer lending, and
automated investment platforms.

o Customers can enjoy customized
services, access to information, and
entertainment, often at little to no
cost (Liao & Sundar, 2021).

o The integration of varied datasets
within Al-based forecasting models
contributes to the generation of
more nuanced and comprehensive
insights within constrained
temporal parameters, by
substantially reducing the time and
cost associated with forecasting
endeavors (Kingsthorpe &

competencies to create accurate
analysis of client data (Huang &
Kuo, 2020; Villar & Khan, 2021).

o The selection of an algorithm
necessitates a comprehensive
understanding of the nature of a
problem, the data characteristics
required, and a nuanced
appreciation of algorithms strengths
and limitations (Chua et al., 2023).
o Firms are encouraged to
strategically manage costs and boost
revenue opportunities by
meticulously designing intelligent
automation systems, considering
the entirety of end-to-end processes
(Sundararajan, 2022).

e NLP models face difficulties in
comprehending context (Khurana
et al., 2023).

o Likewise, human language
frequently uses multiple words to
express identical concepts, which
presents obstacles in language
processing and algorithm
development (Krommyda et al.,
2020; Khurana et al., 2023).

o Financial organizations encounter
challenges in developing accurate
and high-performing AI models
(Stahl et al., 2021; Zaman et al.,

Theoretical Gap:

Managers seek to perceive
information as both a valuable
resource and a representation of
intelligent and proficient conduct.
Consequently, having ample
information serves as a symbolic
assurance that the appropriate
attitudes toward decision-making
are in place (Feldman and March
1981; p. 178).

Practice Gaps:

Financial firms struggle to develop
end-to-end processes and
understand algorithm design in
choosing among Al decisions.
Financial firms do not always
understand the nature of
algorithms. New insight from Al
practices challenge what has come
before e.g., the progression from
NLP models to Al

Thalmann, 2020).

2023; Gupta et al., 2023).

thus informing financial users about the potential pitfalls and desirable
strategies in advance of action.

Our second theoretical contribution is commensurate with the sec-
ond research question which asked how a comprehending theory
approach provided greater intellectual insight of the Al phenomena to
help close gaps between theory and practice? Here, this question re-
quires greater explanation about the gaps between the theory and
practice of Al and ML. To address this question, we matched relevant CT
criteria based on Sandberg and Alvesson (2021), Putnam and Banghart
(2017), and Feldman and March (1981), with example data of oppor-
tunities that matched CT criteria. Likewise, we repeated the process for
Al challenges. We then contrasted example data for each of the oppor-
tunities and challenges by identifying a range of theoretical and prac-
tical gaps. Our analysis is illustrated in Table 4 with relevant numbered
columns. Column 1 represents the research question, column 2 relevant
CT criteria. Columns 3 and 4 reflect example data matched to CT criteria
for opportunities and challenges, respectively. Column 5 accordingly
illustrates the theory and practice gaps observed from sample data ob-
tained through this review study. While the purpose of Al is clear (col-
umn 2), theory and practice gaps exist between columns 3 and 4, as Al
processes and functions have hidden meanings that are not clearly ar-
ticulated. Although AI promises much, the potential of Al is not always
realized in practice. Similarly, the Al phenomenon can be explained by
user understanding and meaning, where models decipher language,
recognize images, and make decisions (column 2). However, this is
counterbalanced by users who only have a nuanced understanding of the
strengths and limitations of algorithms (column 3), as noted earlier in
respect of technical skill gaps. While the goal of Al in the 1950s was to
make machines think like humans (Sheikh et al. 2023), AI models are
programmed on training data. Currently, they are not yet sophisticated
enough to think in emotional and sentimental ways (Ali et al., 2024).

Similarly, while CT criteria require clear conceptually ordered
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descriptions, narratives, and discourses illustrated by supervised and
unsupervised processes (column 2 of Table 4), these are counter-
balanced with legacy IT systems, outdated hardware and software sys-
tems, and incomplete digitization. While the systems of meaning should
provide in-depth interpretation (Whetten, 1989), the processes of Al are
not clearly articulated. Likewise, layers of meaning should be evident
under the relevance criteria of Al however this assumes that employees
have equal access and know-how of AI processes which might only be
common to IT specialists and engineers. A CT approach suggests that Al
structures, practices, and taken-for-granted assumptions are common-
place (Putnam & Banghart, 2017), yet employees do not have equal
experiences of Al. A boundary condition for a CT approach should be
evident by sharing knowledge across groups (Sandberg & Alvesson,
2021) such as likeminded financial firms in the stock market sharing an
articulated meaning related to ML practices. However, currently data
protection concerns all groups across boundary conditions and trust and
consumer confidence is low. Finally, a CT approach should help scholars
and practitioners to move behind and beyond the meanings of phe-
nomena by creating greater intellectual insight. Managers want infor-
mation to be an instrumental resource (Feldman & March 1981),
however firms will struggle to develop end-to-end processes that can
uniformly utilize AI systems suggesting that Al is not an instrumental
resource with clear ends and means. While adopting Al features and
processes better equip financial firms to deliver innovative outcomes
such as user-friendly services, it is a stretch based on our review to
suggest that many financial firms would be able to methodically design
intelligent automation systems that achieve greater intellectual out-
comes that in turn provide increased customer satisfaction. Table 4 il-
lustrates the discussions.
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Research limitations and future directions

By better appraising the challenges of leveraging real-world Al ap-
plications in finance against the opportunities presented, future re-
searchers and finance experts will be able to develop Al user guidelines
that ensure responsible utilization, strategies for optimizing advanced Al
models in trading scenarios, and frameworks aligning Al-driven in-
teractions with ethical principles. Future research could use the con-
ceptual framework developed in Table 4 from this review to inform
which innovative solutions best meet financial goals. Moreover, future
research might explore what type of innovative approaches are required
to practically implement federated learning as a means to expand the
boundary conditions of ML in practice. Further, providing practical tools
for workforce education is crucial to bridging the skills gap. Strategies
for overcoming data scarcity and privacy concerns along with initiatives
for workforce education offer practical pathways to navigate the chal-
lenges of Al integration in the financial sector.

Expanding on the thematic revelations presented in this study, future
research in the intersection of Al and the finance sector holds significant
promise. The theoretical foundations presented here serve as a robust
starting point to build a comprehensive financial AI model of gover-
nance and practice. Model guidelines moreover cut across disciplinary
boundaries and enhance efficiency and effectiveness when implement-
ing finance service applications within the sector. Also, future research
might focus on comprehensively addressing strategies of accountability
in Al outputs and ways to improve the quality of training data in the
evolution of Al systems. This might include research that explores
advanced Al models in trading scenarios responding dynamically to the
evolving landscape of financial technologies.

Conclusion

This study included a scoping review of Al-based ML opportunities
and threats. Our findings present integrative insights for building novel
research in the finance industry that identifies what these insights look
like in the ongoing evolution of Al in the financial domain. To this end, a
classification framework typifies the relationships in a structured way to
support both researchers and industry practitioners. Moreover, we
applied a CT approach to explore the relationships between theory and
practice based on available research. New opportunities exist for AI's
transformative potential in reshaping the financial landscape, promising
increased efficiency and novel approaches to addressing industry com-
plexities. However, as discussed, gaps between theory and practice
suggest that the Al phenomenon is not clearly understood such that Al
benefits should not be taken-for-granted but carefully explored by
financial institutions.
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