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ABSTRACT 

Understanding future changes and predicting hydrological variables well in advance is 

practically useful in water resources and drought management measures. This doctoral thesis 

presents the new methodologies and the findings based on three primary objectives that aim 

to build artificial intelligence and deep learning hybrid models to forecast drought-related 

hydrological variables comprised of evaporation, evapotranspiration, and soil moisture within 

the key drought-prone regions in Queensland, Australia. Data preprocessing techniques that 

involve feature selection and data decomposition to reveal the patterns or trends in modeling 

data are used in the model hybridization stage where standalone models are integrated with 

these techniques and the significance of their influence in enhancing the model performances 

are tested. In the first objective, the Long Short-Term Memory (LSTM) predictive model is 

hybridized with the Neighborhood Component Analysis (NCA) feature selection technique to 

enhance the model’s predictive efficacy that aims to accurately predict pan evaporation (Ep). 

The second objective aims to develop novel methods to forecast reference evapotranspiration 

(ET) and is achieved by hybridizing the LSTM model with Boruta-Random Forest (Boruta) 

feature selection technique and the Multivariate Empirical Mode Decomposition (MEMD) 

technique to further improve the efficacy. In the third objective, the 1-, 14-, and 30-days ahead 

soil moisture (SM) within the topsoil layer (0–10 cm depth) is forecasted by employing a 

hybrid deep learning forecasting model built using LSTM network coupled with Maximum 

Overlap Discrete Wavelet Transform (moDWT) data decomposition method and Least 

Absolute Shrinkage and Selection Operator (Lasso) feature selection method. When compared 

with benchmark models, all the hybrid models developed in this study registered a 

comparatively high performance with low error performance metrics to demonstrate their 

usefulness in forecasting Ep, ET, and SM values in the present study region. In the practical 

sense, as the models developed in this study provide accurate estimations, their capabilities 

can undoubtedly be employed to successfully manage water resources and drought events. 

Further, this doctoral study shows that artificial intelligence and deep learning models 

developed in this study could be a significant forward step in contributing to the advancement 

of data-driven hydrological forecasting methods that may be useful for understanding the 

future trend of hydrological variables. The outcomes and implications thus contributed to the 

advancement of science while creating socio-economic benefits due to their usefulness in 

water resources and drought event management.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

 

Freshwater resources are essential for the existence of human beings as it used for many 

purposes such as drinking, bathing, irrigating crops, hydropower generation, and other 

recreational activities. It is also a basic need that is required to ensure the existence of wildlife, 

flora, and fauna. Furthermore, it is closely related to developing recurrent drought conditions 

which make a huge impact on the environment creating adverse disasters like bushfires. 

Although 70% of our planet is covered by water, only 3% of it will be available as fresh water. 

Furthermore, two-thirds of freshwater exists in unavailable forms such as frozen glaciers or 

is unreachable to humans and other living beings in different ways. It is estimated that 

approximately 1.1 billion people globally have very limited access to usable water while a 

total of 2.7 billion people are confronted with water scarcity at least one month of the year 

(Fund, 2022). Further, competition for freshwater resources is likely to increase because of 

population expansion, urbanization, and climate change with a greater impact on high water-

demanding sectors like agriculture. By 2050, the population is projected to reach over 10 

billion, and this will require food and water for survival. It is predicted that agricultural 

production will need to increase by almost 70% to fulfill the needs of this increasing 

population (Bank, 2020). Therefore, with continuously increasing demand, in the future, 

freshwater is going to be very limited, scarce, and could become a rare resource in the future.  

 

Among water-demanding activities of human beings like drinking, bathing, recreation, and 

hydropower generation, the agriculture sector can be recognized as one of the main sectors 

responsible for consuming higher volumes of fresh water and thereby possibly leading to 

unnecessary wastages. The usage of water for power generation can be minimized in the 

future with many alternatives, especially solar energy. However, fresh water is massively 

and essentially used as a major input, especially in irrigated agriculture which plays a vital 

role in ensuring food security in the world and no alternatives exist to replace this 

requirement. The land extent acquired by irrigated agriculture out of the total land area 

cultivated is approximately 20 percent, contributing to 40 percent of global total food 

production (Bank, 2020). Further, the productivity per unit land area under irrigated 

agriculture is considered at least two times higher on average than that of rainfed agriculture 

and therefore providing more opportunities for increasing and diversifying crop production. 
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On average, agriculture is responsible for 70 percent of worldwide freshwater withdrawals 

(Bank, 2020). 

  

Under such background, management, conservation, and early identification of excess and 

short supplies of freshwater resources is very important to ensure uninterrupted water supply 

to essential operations and activities. Also, it will be very helpful in the management of 

natural disasters like drought and bushfires while conserving wildlife and the environment.  

Hence, a better understanding and precise forecasting of variations and future trends of 

hydrological parameters like rainfall, relative humidity, SPEI, SPI, evaporation, 

evapotranspiration, and soil moisture in advance will be very helpful. Therefore, this study 

focussed on the development of hybrid deep learning models to predict three important 

hydrological parameters: pan evaporation (Ep), reference evapotranspiration (ET), and soil 

moisture (SM) which is undoubtedly useful in water resources management and early 

identification of developing drought conditions and bushfire hazards.    

 

Evaporation is the process through which a substance changes from a liquid or solid state to 

a vapor (Brutsaert, 2013). The evaporative process depletes the earth’s surface water 

resources, and the pan evaporation (Ep) method is the most popular technique used to 

quantify this evaporative water loss. Water loss from on-farm storage and earth surface by 

evaporation is crucial as low soil moisture impacts to crop and pasture development, 

particularly in drought-prone areas. For instance, it is estimated that evaporation can account 

for up to 40% of storage volume loss annually in northern New South Wales and Queensland 

in Australia. In the long run, the evaporative process can be significantly accountable for the 

depletion of water storage used for drinking, bathing, irrigating crops, hydropower 

generation, and other recreational activities. Also, the evaporation process can accelerate the 

drying of natural water bodies and consequently deprive the drinking water for wildlife while 

excessive evaporation conditions particularly in dry spells develop drought conditions and 

natural disasters like bushfires. Therefore, predicting evaporation is a crucial factor to be 

considered in the current situation in the world. 

 

Evapotranspiration is the combination of two distinct processes whereby water is lost from 

the crop via transpiration and from the soil surface by evaporation respectively (Sobrino et 

al., 2005). Around the world, evapotranspiration is a topic of intense research because this 

process significantly depletes the soil moisture causing water stresses particularly to the 
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crops and developing drought and bushfire conditions. Therefore, predicting 

evapotranspiration in advance is highly useful in climatic characterization, water 

management, designing and operating irrigation projects, and figuring out crop water 

requirements. Furthermore, it is credited with helping to get early knowledge of natural 

disasters like bushfires, drought, and the importance of water as a crucial component for the 

sustainability of life (Abdullah et al., 2015).  

 

Soil moisture (SM) refers to the water that is present in the soil and is crucial for sustaining 

plant growth as part of the soil-plant-atmosphere water cycle (Liao et al., 2018). Monitoring 

SM gives the knowledge for developing management methods that will best protect natural 

ecosystems from the threat of climate change while also minimizing the harm caused by 

precipitation deficiencies. In addition to this, SM information can greatly help geoscientists 

and the appropriate authorities to manage finite water resources needed for agriculture and 

other human activities, and manage the possible problems associated with decreased SM  

levels (Zhang et al., 2017). For instance, it can aid with drought monitoring, bushfire, and 

flood forecasting activities and enable more precise water, energy, and carbon budgeting 

(tern, 2022). So, early evaluation of SM reserves and monitoring of changes in available SM 

could help in developing risk reduction strategies and ensures the successful execution of 

government initiatives (McNairn et al., 2012).  

 

Precise evaporation, evapotranspiration, and soil moisture forecasting models under climate 

change, especially in agricultural regions, can help stakeholders to make better decisions 

about water planning and resource management. Also, the projected above information is 

crucially important for early warning system design as well as controlling hydrological and 

agricultural drought situations. Additionally, the ability to predict evaporation, 

evapotranspiration, and soil moisture at the micro-scale and having advanced or projected 

knowledge of these variables would help farmers and farm managers to make proactive, 

sustainable decisions for effective irrigation, grazing, and water quality monitoring at ground 

level. Also, this knowledge could be used to create a knowledge-based system for tracking 

water resources and enhancing precision agriculture while it can have a significant impact 

on predicting bushfire hazards in advance and helping for reducing fire risk and prevalence 

(Marcar et al., 2006).  
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Predictive models based on machine learning can now be used in many different contexts 

because of the recent improvements in computing power. Deep learning, which is an 

advancement of machine learning algorithms incorporated with climatic and hydrological 

variable forecasting will provide a better understanding of the risks and repercussions of 

climate change and provide important information for mitigating such risks. Free and easy 

access and availability of big data sets also accelerated the popularizing and utilization of 

deep learning technologies in forecasting model development. Since predicting is crucial to 

the sustainability of climatology, hydrology, and agriculture, it is an active topic of research. 

Most technological advancements have relied on a systematic layered improvement 

approach, which is also how novel models for hydrological and agricultural applications are 

being developed. Therefore, this research is exploring new and sophisticated deep learning 

predictive models hybridized with feature optimization and multi-resolution analysis 

methodologies to predict pan evaporation, reference evapotranspiration, and soil moisture 

across Queensland, Australia.  

 

1.2 Statement of the problem 

 

Water shortages are a growing reality, particularly in arid and semi-arid areas. It is 

intensified further since rainfall is becoming less frequent and less predictable due to climate 

change’s alteration of long-established weather patterns. Furthermore, it causes dry seasons 

to turn into droughts which is a socioeconomic risk that poses serious challenges to 

groundwater reservoirs, resulting in water scarcity, failed crops, damaged habitats, 

unprecedented climate crises like bushfires, wildlife threats, and lost social or recreational 

opportunities (Mpelasoka et al., 2008, Riebsame et al., 2019). For instance, in 2019, a 

bushfire catastrophe burned around 20% of forests and claimed the lives of nearly a billion 

wild animals in Australia (Society, 2022).  Under drought conditions, water losses are 

increased due to natural phenomena like evaporation, evapotranspiration, and thereby 

intensifying the magnitude of water scarcity which causes significant impacts on high water-

demanding agricultural activities and consequently reduces crop production and resulting 

extinction of natural wildlife habitats.  The best approach to manage the challenges rising 

due to water scarcity is to use weather and climate data to make significant decisions while 

taking anticipated climate change into account (Government, 2019). Weather and climatic 

data can be strategically utilized for ensuring the smooth running of agricultural operations, 

water resource management, and strategic planning under water-scarce conditions.   
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Queensland is the second largest land area of states in Australia with more than 84 % of the 

land being utilized for water-demanding agricultural activities. But a large portion of 

Queensland experiences drought, land degradation, decreased profitability, increased debt, 

and human hardship due to less rainfall, especially during the ENSO-EI Nino period 

(Government, 2019). In 2020, the Queensland government declared that drought is expected 

to hit 67.4% of Queensland’s geographical areas (Queensland, 2020). Also, the 

unprecedented bushfire crisis is impacted many parts of Queensland, particularly in summer. 

For example, in Queensland, a bushfire from November to December 2018 damaged a large 

number of homes, several buildings and vehicles, wildlife, crops, and pastures and burned 

1.4 million hectares of land (Agency, 2022). Because of that, it is crucial to take action to 

mitigate the existing situation using a reliable method. The Queensland government 

proposed that regional climatic variations and climate predictions are vital solutions to 

planning and managing agricultural land (Government, 2019). In this scenario, evaporation, 

evapotranspiration, streamflow, radiation, soil moisture, and drought-affected factors are 

essential considerations when managing and taking strategic planning for existing problems.  

 

Since these uncertainties directly affect income and food security, the government and 

policymakers need stronger forecasting models making them to determine any possible 

future reductions and associated dangers to food security. Such forecasting systems will be 

promisingly helpful in implementing strategic plans to avoid reductions in water resources, 

crop yields, and dangers to food security. This demonstrates the critical importance of 

advanced artificial intelligence models, which can aid in decision-making in water resource-

depleting conditions, farming systems, precision agriculture, climate change, and natural 

disasters by generating predictions more precisely. 

 

Reliable artificial intelligence predictive models with higher accuracy could be an important 

avenue for predicting drought-connected factors like evaporation, evapotranspiration, and 

soil moisture. However, the most crucial and pressing concern with choosing the non-

redundant and most significant input (predictor) data that is still a challenge in developing 

forecasting models. This is because the usage of irrelevant inputs might introduce 

unnecessary problems during the model’s execution, that is increasing the model’s 

complexity while decreasing the model’s forecasting accuracy. To overcome this problem 

this study uses feature selection algorithms such as NCA, Boruta, and Lasso in all models 

developed that can identify the best input parameters using comparison with real features. 

5



 

Climatic and hydrological variables exhibit complicated temporal behaviour with non-

stationarity aspects such as trends, seasonal changes, periodicity, and leaps in time series, 

which may impair the accuracy of data-driven models (Adamowski and Chan, 2011). Deep 

learning is an effective and novel method in artificial intelligence and machine learning that 

is widely used in all science and industrial fields in the big data era (Emmert-Streib et al., 

2020). The DL model can successfully be used for time series prediction and providing 

solutions for issues related to utilizing climatic and hydrological variables. Literature proves 

that, among DL methodologies, Long Short-Term Memory (LSTM) network is widely used 

in the prediction of hydrometeorological and other variables due to its remarkable 

performances. To further improve the prediction model performance capability and 

overcome issues existing in time series big data sets, this study uses advanced data 

decomposition techniques, MEMD, and moDWT in all its model development efforts. 

 

1.3 Objectives    

       

The main purpose of this doctoral research is to develop hybrid DL forecasting models for, 

𝐸𝑃, 𝐸𝑇 and 𝑆𝑀 using three different approaches in Queensland based on satellite and 

ground-based datasets to produce high-quality journal articles. It precisely targets to 

accomplish the following goals: 

 

Objective 1: Developing an Evaporation Prediction Model 

 

This objective focus to develop and evaluate the deep learning NCA-LSTM model, a 

combined approach where the LSTM prediction model coupled with the NCA feature 

selection technique to forecast daily 𝐸𝑃 using satellite, and ground-based data and comparing 

it with standalone LSTM, DNN, RF, ANN, and DT models in Queensland. No evidence is 

found in the literature to confirm that the LSTM model along with NCA proposed in this 

objective to forecast 𝐸𝑃 has been employed in Queensland, Australia. Furthermore, the NCA 

algorithm has shown a lack of sensitivity to the increased number of irrelevant features and 

good performances with high-dimensional data sets (Wei Yang, 2012). Since data for this 

objective are mainly extracted from satellite (AIRS spectrometer) and ground (SILO-

Queensland) data sources and they are high-dimensional (Liu, 2015); NCA is an ideal 

feature selection algorithm for this objective. Also, LSTM is selected under this objective 
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because it performed well in time series forecasting models as it can continuously update 

from the rid system to the next forecast using its input, output, and forget gate information 

in respective memory blocks (Ghimire et al., 2019). Hence, the proposed NCA-LSTM model 

will be a precise DL predictive model to forecast daily 𝐸𝑃. This work was published in the 

Journal of Hydrology (Scopus Quartile 1). 

 

Objective 2: Deep Multi-Stage Reference Evapotranspiration Forecasting Model 

 

This objective aims to develop and evaluate a three-phase hybrid MEMD-Boruta-LSTM 

model to forecast 𝐸𝑇 using satellite data and to compare with hybrid MEMD-Boruta-DNN, 

MEMD-Boruta-DT, and a standalone LSTM, DNN, and DT model in Queensland. No 

evidence has been found in the literature to prove that the three-phase hybrid LSTM model 

with MEMD and Boruta has been employed to predict 𝐸𝑇 in Queensland, Australia. 

Therefore, the proposed model in this objective will fill an important knowledge gap. The 

other reason for training a three-phase hybrid model for this purpose is that it yields high 

performances with relatively low errors (Al-Musaylh et al., 2018). The MEMD and Boruta 

data pre-processing techniques are employed here for further model improvement because 

they are the most powerful and enhanced signal decomposition and feature selection 

techniques used for nonlinear or intermittent time-series analysis (Ren et al., 2014). This 

work was published in the Journal of IEEE Access (Scopus Quartile 1). 

 

Objective 3: Development of a novel three-phase hybridized deep soil moisture 

forecasting model 

 

This objective entails constructing a multi-step hybrid moDWT-Lasso-LSTM soil moisture 

(𝑆𝑀) forecasting model in the 0-10 cm depth for 1 day, 14 days, and 30 days in advance 

with satellite data from NASA-Giovanni and ground data from SILO data sources in 

Queensland, Australia. Due to the nonstationary and nonlinear features of the obtained data, 

the extracted data were pre-processed using the Maximum Overlap Discrete Wavelet 

Transform (moDWT) decomposition method and the Least Absolute Shrinkage and 

Selection Operator (Lasso) feature selection algorithm. Then, the suggested three-phase 

hybrid moDWT-Lasso-LSTM forecasting model was created using the deep learning Long 

Short-Term Memory (LSTM) algorithm. The performance of the suggested moDWT-Lasso-

LSTM model was statistically compared with benchmarked alternative machine learning 

models to confirm its viability. This paper is submitted to the Journal of Stochastic 
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Environmental Research and Risk Assessment and is under review process. (Scopus 

Quartile 1) 

 

1.4 Significance of the research 

 

This study produced highly reliable and accurate hybrid DL models for forecasting 𝐸𝑃 , 𝐸𝑇, 

and 𝑆𝑀 mainly based on satellite and ground-based data; the findings will be very useful in 

drought event management, water resources management, and strategic planning to prepare 

for drought, and water scarcity, and to practice sustainable agriculture in Queensland. Pan 

evaporation provides a very close estimation of water loss as a height measurement due to 

evaporation from soil, vegetation, and water resources used for irrigation activities, drinking 

purposes, recreation activities, and hydropower generation. By multiplying 𝐸𝑃  value with the 

surface area of water storages, the volume of water loss due to evaporation (which is one of 

the major causes of water loss from water storages) can be calculated. Early identification of 

evaporative loss is very useful in planning and implementing irrigation schedules. 

Furthermore, in the long run, it is helpful in crop and land use planning and genetic 

improvements of commercial crops. In addition, 𝐸𝑇 gives a very close estimation of water 

loss from vegetation by evaporation and transpiration. If 𝐸𝑇 can be predicted precisely, 

farmers can have a better understanding of the amount of water to be added to their crops 

through irrigation and avoid unnecessary water losses. Furthermore, 𝑆𝑀 gives a sound 

understanding to farmers about the water availability of the soil and helps them in making 

decisions for better crop plans. The 𝑆𝑀 can offer timely information for quick decision-

making during the growing season, such as types of crops to be grown, prioritizing the crops 

to be irrigated and accurately determining the total area to be cultivated. Therefore, as early 

warning decision support systems, the precise predictions of Ep, 𝐸𝑇, and 𝑆𝑀 assist farmers in 

developing their short-term irrigation and crop plans as well as policymakers and government 

authorities in implementing better long-term strategic plans for trade development, managing 

disaster conditions, and securing rural livelihood. Furthermore, long-term predictions are 

useful in future strategic planning such as genetic improvement of crops, infrastructure 

upkeep, monitoring and revaluation of the farm’s capability and management plan, awareness 

of animal welfare concerns and community expectations, financial record keeping, and 

analysis. This will significantly aid in the development of drought preparedness strategies and 

will lessen the risks associated with drought and water resource management. 

In addition to the above socio-economic benefits expected, this study will also fill an 
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important research gap in science and technology as all models proposed here to predict 𝐸𝑃 , 

𝐸𝑇, and 𝑆𝑀 in Queensland are hybrid DL networks. In comparison to competing machine 

learning and DL models, these new hybridized sophisticated model architectures have 

outperformed them in terms of offering more sensible answers to challenges encountered in 

the real world. This study mainly uses data extracted from satellite and ground sources, and 

evidence has not been found in the literature to confirm that the approaches proposed in this 

study to forecast 𝐸𝑃 , 𝐸𝑇 and 𝑆𝑀 have been used for any past study for Queensland, Australia. 

 

1.5 Thesis layout 

 

The schematic representation of the overview of the thesis is shown in Figure 1. It clearly 

defines the graphical abstract for easier understanding and the need for an accurate and 

reliable predictive tool for evaporation, evapotranspiration, and soil moisture. In this thesis, 

there are seven chapters makeup as follows: 

 

Chapter 1 

 

The objectives of this study are presented in this chapter along with the background 

information, problem statement and significance for the research. 

 

Chapter 2 

 

This chapter briefly explains previous research works conducted to use machine learning and 

artificial intelligence models for predicting Ep, ET and SM. It also covers the research gaps in 

predicting Ep, ET and SM by using artificial intelligence models. 

 

Chapter 3 

 

Chapter 3 establishes the context for the next chapters by describing the study region, data, 

and general approach used in this investigation. While the specific study area, data, and 

methods are discussed in the corresponding chapters, this chapter offers general viewpoints. 

 

Chapter 4 

 

This chapter includes the journal paper that has been published in a top-tier journal in 
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hydrology (https://doi.org/10.1016/j.jhydrol.2022.127534). To predict one of the main water 

loss parameters, pan evaporation in the drought-prone region of Queensland, Australia, this 

chapter covers the construction of a hybrid Long Short-Term Memory (LSTM) predictive 

model paired with Neighbourhood Component Analysis (NCA) for feature selection. It 

compares the developed hybrid model (NCA-LSTM) with competitive benchmark models. 

This chapter covers the first objective of this study. 

 

Chapter 5 

 

This chapter includes the published paper in the journal IEEE Access, 

(https://doi.org/10.1109/ACCESS.2021.3135362). This chapter focuses on a unique three-

phase deep Long Short-Term Memory (LSTM) forecasting model with Boruta-Random 

Forest (Boruta) and Multivariate Empirical Mode Decomposition (MEMD) algorithms to 

forecast evapotranspiration in drought-prone regions. This chapter covers the second 

objective of this study. 

 

Chapter 6 

 

This chapter includes the article submitted to the Journal of Stochastic Environmental 

Research and Risk Assessment and is under review process. This chapter focuses on 

developing three phase hybrid deep (0-10 cm) depth SM forecasting model using the 

Maximum Overlap Discrete Wavelet Transform (moDWT) method, the Least Absolute 

Shrinkage and Selection Operator (Lasso), and Long Short-Term Memory (LSTM) network 

for 1, 14 and 30 days in advance.  

 

Chapter 7 

 

This chapter presents the synthesis of the study with concluding remarks, novel contributions, 

limitations, and recommendations for future works. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter briefly discusses the previous studies conducted to forecast Ep, ET and SM using 

machine learning and deep learning methodologies with data pre-processing techniques and 

the research gaps.  

 

2.1 Previous studies in Ep prediction and research gaps 

 

Many past research studies have experimented to employ data-driven machine learning 

techniques to predict Ep using various parameters. Goyal et al. (2014) developed Artificial 

Neural Network (ANN), Least Square Support Vector Regression (LSSVR), Fuzzy Logic 

(FL), and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) models to predict daily Ep, and 

the results are evaluated against empirical methods proposed by Hargreaves and Samani 

(HGS) and the Stephens–Stewart (SS). The findings of this study have shown that FL and 

LSSVR techniques are superior to the traditional approaches in daily evaporation estimations. 

Deo et al. (2016) developed Relevance Vector Machine (RVM), Extreme Learning Machine 

(ELM), and Multivariate Adaptive Regression Spline (MARS) models to predict monthly 

evaporative losses using meteorological parameters as predictor variables for Amberley 

weather station, Australia. According to the results, the RVM model appeared to be more 

accurate in the prediction of evaporation loss. Kisi et al. (2016) developed decision tree-based 

machine learning methods such as Chi-square Automatic Interaction Detector (CHAID) and 

Classification and Regression Tree (CART) to predict daily Ep in Turkey and compared that 

with the neural network model. This study revealed that, neural networks performed better 

compared to the decision tree-based machine learning models. Wang et al. (2017) developed 

Fuzzy Genetic (FG), LSSVR, MARS, M5 model tree (M5Tree), and Multiple Linear 

Regression (MLR) for eight stations around Dongting Lake basin in China to estimate daily 

Ep and results showed that FG and LSSVR outperform over other machine learning models. 

Malik et al. (2017) developed Multi-Layer Perceptron Neural Network (MLPNN), Co-Active 

Neuro-Fuzzy Inference System (CANFIS), Radial Basis Neural Network (RBNN) and Self-

Organizing Map Neural Network (SOMNN) models to predict monthly Ep in the Indian 

central Himalayas region, and it has revealed the superiority of CANFIS over other 

techniques. However, none of the above research has been tried hybridizing of machine 

learning models with advanced feature selection methods for Ep prediction. 
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Recently, many researchers tend to use deep learning AI techniques to develop predicting 

models because of its high learning capability from big data. Majhi et al. (2020) developed 

LSTM, Multilayer Artificial Neural Networks, and empirical methods like Hargreaves and 

Blaney–Criddle model for Ep prediction. In this study, the LSTM model was able to show its 

superior capability to predict daily evaporative losses against selected benchmark models. 

Abed et al. (2021) developed Extreme Gradient Boosting, Elastic Net Linear Regression, and 

LSTM models to predict monthly Ep and used two empirical techniques namely Stephens-

Stewart and Thornthwaite for the performance assessment. The results showed that LSTM 

offered the most precise monthly Ep prediction from all the studied models for both stations 

in Malaysia. Abed et al. (2022) developed Convolutional Neural Network (CNN), Deep 

Neural Network (DNN), and Random Forest (RF) to estimate monthly Ep of Malaysian 

weather stations. The results showed that the CNN approach was an acceptable model than 

other comparison models. Kisi et al. (2022) developed LSTM model with grey wolf 

optimization (GWO), single LSTM, and advanced machine learning methods for Ep 

prediction using limited climatic variables as input. The outcomes showed that the LSTM-

GWO model performed well than other models. Although above research used advanced deep 

learning models to forecast Ep, those deep learning models are very rarely hybridized with 

data pre-processing techniques like feature selection in Ep prediction studies which can further 

improve the model performances with big time series data.  

 

Furthermore, we are unaware of any research employing NCA algorithm incorporated with 

deep learning to predict daily Ep or using the deep learning NCA-LSTM hybrid model for any 

other purposes. Therefore, the current study attempts to build a hybrid Ep forecasting model 

by employing LSTM network coupled with Neighbourhood Component Analysis (NCA) 

feature selection technique using satellite and ground-based data. This study selected LSTM 

as the forecasting algorithm since the literature demonstrates that among DL techniques, the 

Long Short-Term Memory (LSTM) network is frequently used in the prediction of hydro-

meteorological and other variables because of its exceptional performances. NCA is selected 

as the feature selection technique in this study since its remarkable capabilities shown in 

previous works are likely to increase the overall forecasting skill of a predictive model. This 

study is a novel experience in the data science field as it is found to be the first time that 

LSTM is being hybridized with NCA and employed in daily Ep predictions using satellite and 

ground-based data.  
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2.2 Previous studies in ET prediction and research gaps 

 

Researchers also have developed data-driven machine learning models to forecast 𝐸𝑇 and 

these models have shown superior performances despite the non-linear behaviour of  𝐸𝑇 (Wu 

et al., 2020). For instance, Fan et al. (2018) developed tree-based RF, M5Tree, gradient 

boosting decision tree (GBDT), and extreme gradient boosting (XGBoost) models to predict 

daily 𝐸𝑇.  According to the results, the XGBoost and GBDT models have been recommended 

for daily 𝐸𝑇 estimation in different climatic zones of China. Tikhamarine et al. (2019) 

developed ANN-embedded grey wolf optimizer (ANN-GWO), multi-verse optimizer (ANN-

MVO), particle swarm optimizer (ANN-PSO), whale optimization algorithm (ANN-WOA) 

and ant lion optimizer (ANN-ALO) hybrid models to forecast monthly 𝐸𝑇 in India and 

Algeria. The results showed that ANN-GWO model provided better performance at both 

study stations.  Nourani et al. (2020) employed ensemble MLR, SVR, ANFIS, ANN, and 

MLR models for 𝐸𝑇 forecasting and the results showed that ensemble MLR model performed 

well compared to all other models. However, none of the above research has been tried 

hybridizing of machine learning models with advanced data decomposition technique to 

predict  𝐸𝑇. 

 

 Saggi and Jain (2019) developed Deep Learning-Multilayer Perceptrons (DL-MLP), 

Generalized Linear Model (GLM), RF, and Gradient-Boosting Machine (GBM) models to 

predict 𝐸𝑇 in the Indian districts of Hoshiarpur and Patiala, The results showed that DL-MLP 

model outperformed the others comparative models. Yin et al. (2020) developed a hybrid bi-

directional LSTM model to forecast daily 𝐸𝑇 in three meteorological stations in central 

Ningxia, China. The performance of the hybrid Bi-LSTM model was evaluated by the 

Penman-Monteith method and the results showed that the hybrid Bi-LSTM model provides 

the best forecast performance at the selected meteorological stations. Ferreira and da Cunha 

(2020) developed a DL multi-step 𝐸𝑇 forecasting model with hybrid CNN-LSTM for 53 

weather stations located in Minas Gerais, Brazil and assessed in comparison with standalone 

LSTM, CNN and traditional machine learning models (ANN and RF). According to the 

performance analysis, the hybrid CNN-LSTM model outperformed all the comparison 

models. Salam and Islam (2020) developed Random Tree (RT), Bagging and Random 

Subspace (RS), RF, and SVM models to predict daily 𝐸𝑇  in Bangladesh. Considering high 
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prediction accuracy, RT and RF models have been suggested for daily 𝐸𝑇 prediction of 

Bangladesh. Above literature does not provide evidence for use of two-phase multistep deep 

hybrid models coupled with data pre-processing for 𝐸𝑇 prediction. 

Moreover, multi-stage deep neural network-based 𝐸𝑇 forecasting has not yet been 

investigated. This project is focused on creating a novel multi-stage hybridized MEMD-

Boruta-LSTM deep neural network to anticipate daily 𝐸𝑇 based on satellite and ground data 

to fill this knowledge gap. 

 

2.3 Previous studies in SM prediction and research gaps 

 

Data-driven predictive models have shown comparatively higher competency in soil moisture 

prediction (Prasad et al., 2019) and many researchers have conducted experiments to forecast 

soil moisture using data-driven models. For instance, Jamei et al. (2022) developed Extreme 

Gradient Boosting (XGBoost) and Categorical Boosting (CatBoost), two modern ensemble-

based ML models, integrated with the Empirical Wavelet Transform (EWT) to predict daily 

root zone soil moisture (RZSM) in Ardabil and Minab regions (highly cold semi-arid and 

highly warm semi-humid regions and their performances were compared with rival models. 

The results have demonstrated the superior performance of the EWT-CatBoost and EWT-

XGBoost models over the other counterpart models in forecasting multi-step ahead RZSM at 

Ardabil and Minab sites, respectively. Jamei et al. (2023) developed bidirectional 

gated recurrent unit (Bi-GRU), cascaded forward neural network (CFNN), adaptive boosting 

(AdaBoost), genetic programming (GP), and classical multilayer perceptron neural 

network (MLP) models using, Boruta gradient boosting decision tree (Boruta-GBDT) feature 

selection and multivariate variational mode decomposition (MVMD) techniques to predict 

daily Surface Soil Moisture (SSM) models in Iran's dry and semi-arid regions. According to 

the results, MVMD-Boruta-GBDT-CFNN outperformed all other hybrid models in one and 

seven days ahead soil moisture forecasting in all tested sites. Basak et al. (2023) two data-

driven models based on Naive Accumulative Representation (NAR) and Additive 

Exponential Accumulative Representation (AEAR) developed at post-wildfire site in 

southern California. According to the results, AEAR model provided more accurate forecasts 

than existing models for time horizons of 10–24 hours. Above studies have not tried multi-

step SM forecasting using machine learning model incorporated with feature selection and 

data decomposition algorithms.  
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Cai et al. (2019) developed Deep Learning Regression Network (DNNR), Linear Regression 

(LR), SVM, and ANN models to predict SM  in Beijing. The results showed that the DNNR 

model performed well related to other models. ElSaadani et al. (2021) developed ConvLSTM, 

CNN, and LSTM models in south Louisiana in the United States to predict SM and results 

showed that the ConvLSTM model performed well than other comparative models. 

Suebsombut et al. (2021) developed LSTM-based models to forecast SM values in Chiang 

Mai province, Thailand and its results show that the LSTM-based model performs well in 

predicting soil moisture. Li et al. (2022) developed residual learning encoder-decoder (EDT-

LSTM), LSTM, and encoder-decoder LSTM models to predict SM of 13 sites spread across 

different countries. The target EDT-LSTM model offered a new tool to predict SM better than 

other models. Zeynoddin and Bonakdari (2022) developed genetic and teacher–learner-based 

algorithms (GA and TLA) coupled with LSTM for SM forecasting in Quebec, Canada and 

results showed that TLA-LSTM found to be more computationally effective than GA-LSTM 

model. Although many research are conducted based on LSTM network as mentioned above, 

three phase hybrid LSTM models have not been developed in any of those studies. 

This is a fresh experience as literature is not providing any evidence for using lasso feature 

selection and moDWT data decomposition techniques in SM prediction works. Additionally, 

this study has implemented solutions to address boundary condition-related problems that, in 

real-world scenarios, add errors to forecasts and which have not been adequately addressed 

in many recent hydrological research works that used wavelet transform techniques for data 

decomposition. That is also an initiative step in prediction studies that uses wavelet transform 

data decomposition procedures. Furthermore, this proposed algorithmic combination, referred 

to as the moDWT-Lasso-LSTM model, filling a research gap in soil moisture prediction as it 

has not yet been assessed in any other geographic location in the world.  
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CHAPTER 3: DATA AND METHODOLOGY 

This chapter gives a summary of the study locations, description of data, and brief account of 

the methodology used to develop the hybrid deep learning predictive models. Different study 

locations were accomplished within the study region for each of the objectives which are 

explained in depth in each of the chapters. When the general methodology is provided in this 

chapter, distinct model development methodologies are discussed in respective chapters. The 

study area is described next followed by data description and general methodology employed 

in this work for the development of hybrid deep predictive models.  

 

3.1 Study area 

 

This study is undertaken in Queensland, Australia, where around 84% of the state’s land 

resources are utilized for agriculture (DOAWE, 2020). Diverse sites were selected in the arid 

and semi-arid regions in the study site, Queensland, Australia. Figure 2 shows the map of 

selected sites in this study.  Land resources of these selected sites are mainly used for farming 

operations to produce a wide range of agricultural products.  

 

3.2 Data description 

 

Since this study is based on a prediction of Ep, ET, and SM, a range of climatic and 

hydrological data are used to develop predictive models. Particularly, satellite data mainly 

from NASA’s Goddard Online Interactive Visualization and Analysis Infrastructure 

(GIOVANNI) database while ground data from Scientific Information for Land Owners 

(SILO-Queensland) database were used to extract daily data in this study. Table 1 describes 

the data that was used to execute each objective, along with the sources they obtained and 

other pertinent information. 
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Figure 2: Study sites used to develop forecasting models in Queensland, Australia 

 

3.2.1 Satellite data 

 

NASA’s Goddard Online Interactive Visualization and Analysis Infrastructure (GIOVANNI) 

is a remote sensing database and can be sourced from several platforms/instruments with 

various spatial and temporal resolutions, observations, disciplines, and measurements 

(NASA, 2022). Giovanni offers a clear and user-friendly approach to access, view, and 

analyze an enormous amount of earth science remote sensing data. In this study, Atmospheric 

Infrared Sounder (AIRS) system, Global Land Data Assimilation System (GLDAS) model, 

and Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System 

(FLDAS) platforms were used to extract predictor variables for the Ep, ET, and SM forecasting 

models development. 
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3.2.2 Ground-based data 

 

The SILO data source provides Australian climate data from 1889 to the present which is 

operationally managed by Queensland Government (SILO-Queensland, 2022). SILO offers 

daily meteorological data for a variety of climate variables in gridded and ground-based data 

formats. In this study, ground-based data for predictor variables and target variables (Ep and 

ET) were extracted from the SILO database for further improvement of models’ 

performances. 

 

Table 1: Specifics about all the data used in this study 

 

 

  Data Source Study period 

Forecasted 

Horizon 

O
b

je
ct

iv
e 

1
 

Paper1 

Predictors: 

Atmospheric Infrared 

Sounder (AIRS) 

spectrometer +SILO 

31 August. 2002 

to 22 September 

2020 

Daily 
Meteorological satellite and 

ground variables 

Target: 

Pan Evaporation 

O
b

je
ct

iv
e 

2
 

Paper2 

Predictors: 

Atmospheric Infrared 

Sounder (AIRS) and 

Global Land Data 

Assimilation System 

(GLDAS) model+SILO 

01 February 

2003 to 19 April 

2011 

Daily 
Meteorological satellite and 

ground variables 

Target: 

Evapotranspiration 

O
b

je
ct

iv
e3

 

Paper3 

Predictors: 
GLDAS and Famine 

Early Warning Systems 

Network (FEWS NET) 

Land Data Assimilation 

System (FLDAS)+SILO 

01 January 2005 

to 31 December 

2020  

1 day, 14 

days, and 30 

days 

Meteorological satellite and 

ground variables 

Target: 

Soil Moisture 
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3.3 General methodology 

 

The proposed novel Ep, ET, and SM models were developed using an Intel Core i7 @ 3.3 GHz 

and 16 GB memory computer; configured with freely available DL libraries: Keras (Ketkar, 

2017) and TensorFlow (Abadi et al., 2016) in Python (Sanner, 1999). The data pre-processing 

methods like data decomposition and feature selection were implemented using MATLAB 

R2019b and R software packages, while ‘‘matplotlib’’ and ‘‘seaborn’’ tools in Python were 

used for visualizations. All target models were superior based on deep LSTM networks that 

can capture higher-order nonlinear features in predictor datasets (Majhi et al., 2020).  

 

Before developing deep learning and machine learning models, data pre-processing was 

carried out to work efficiently with nonlinear and nonstationary time series input data. Data 

pre-processing is widely used in artificial intelligence model hybridizing and various research 

studies have shown that it helps to enhance the model’s performance. In this study, feature 

selection and data decomposition techniques were employed as data pre-processing tools. The 

data pre-processing techniques used in this study include Neighbourhood Component 

Analysis (NCA), Boruta-Random Forest (Boruta), and Least Absolute Shrinkage and 

Selection Operator (Lasso) feature selection methods and Multivariate Empirical Mode 

Decomposition (MEMD), and Maximum Overlap Discrete Wavelet Transform (moDWT) 

data decomposition methods. Additionally, suitable scaling or normalization is necessary to 

prevent the dominance of inputs with wide numeric ranges, which could counteract the 

impacts of values with a smaller range. In this study, data are scaled to common values using 

normalization. The results are unaffected by the normalization because the data are 

normalized between [0,1], which is an invertible range (Hsu et al., 2003). The normalization 

is done by using Eq. (1)  (García et al., 2016); 

 

                          𝑿𝒏 =
𝑿𝒂𝒄𝒕𝒖𝒂𝒍−𝑿𝒎𝒊𝒏

𝑿𝒎𝒂𝒙−𝑿𝒎𝒊𝒏
                                                                               (1) 

 

,where Xn, 𝑋𝑎𝑐𝑡𝑢𝑎𝑙, 𝑋𝑚𝑎𝑥, and 𝑋𝑚𝑖𝑛 represent the normalized, actual, maximum, and 

minimum values of predictor variable data, respectively.  

 

After processing data, target hybrid predicting models were developed on deep LSTM neural 

network. In this research, several forecasting models are taken into consideration to assess the 
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target models’ performances in forecasting evaporation, evapotranspiration, and soil moisture 

since it is very important to evaluate and confirms the target models’ viability in utilization 

over other existing models. Models used for evaluation purposes are standalone Long Short-

Term Memory network (LSTM), Artificial Neural Network (ANN), Deep Neural Network 

(DNN), Decision Tree (DT), Random Forest (RF), two-phase Neighbourhood Component 

Analysis (NCA) based LSTM (NCA-LSTM), Boruta-Random Forest (Boruta) based LSTM 

(Boruta-LSTM), Boruta based DNN (Boruta-DNN), Boruta based DT (Boruta-DT), Lasso 

based LSTM (Lasso-LSTM), Lasso based DNN (Lasso-DNN) and Lasso based ANN (Lasso-

ANN) and three phase Multivariate Empirical Mode Decomposition (MEMD) and Boruta-

Random Forest (Boruta) based LSTM (MEMD-Boruta-LSTM), MEMD and Boruta based 

DNN (MEMD-Boruta-DNN), MEMD and Boruta based DT (MEMD-Boruta-DT), Maximum 

Overlap Discrete Wavelet Transform (moDWT) and Least Absolute Shrinkage and Selection 

Operator (Lasso) based LSTM (moDWT-Lasso-LSTM),  moDWT and Lasso based DNN 

(moDWT-Lasso-DNN), moDWT and Lasso based ANN (moDWT-Lasso-ANN). Figure 3 

illustrates a brief overview of artificial intelligence (AI) based on all hybrids deep learning 

and machine learning models and data preprocessing techniques used in this doctoral research 

thesis. 

 

The developed models were evaluated by using a wide variety of statistical metrics such as 

Pearson’s correlation coefficient (r), Determination of Coefficient (R2), Mean Squared Error 

(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Willmott's Index 

(WI), Nash–Sutcliffe Efficiency (NS), and the Legates-McCabe’s index (LM). Diagnostic 

plots, such as box plots, scatter diagrams, Taylor plots, stem plots, and time series plots are 

also used for a thorough review in addition to the use of numerical assessment measures.  

 

All models’ development, performances of the target, and comparative models using metrics 

and diagnostic plots were discussed accordingly in the respective chapters. 
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CHAPTER 4: PAPER 1 - DEVELOPMENT AND 

EVALUATION OF HYBRID DEEP LEARNING LONG 

SHORT-TERM MEMORY NETWORK MODEL FOR PAN 

EVAPORATION ESTIMATION TRAINED WITH 

SATELLITE AND GROUND-BASED DATA 

 

4.1 Introduction 

 

This chapter is an identical replication of the article that was published in the Journal of 

Hydrology, Volume 607, April 2022. 

 

This work aims to construct a precise deep hybrid artificial intelligence model to predict pan 

evaporation (Ep). To develop a target predictive model, satellite, and ground-based daily-

scale big data in drought-prone regions in Queensland, Australia was utilized to train, validate, 

and test the model which was constructed on deep Long Short-Term Memory (LSTM) 

network. Model accuracy was increased by selecting significant predictor variables to target 

variable Ep with Neighbourhood Component Analysis (NCA) feature selection technique 

before training the model. The proposed target LSTM model coupled with NCA denoted as 

NCA-LSTM model performances were evaluated against competitive benchmark models, 

i.e., standalone LSTM, other types of DL models, single hidden layer neuronal architecture 

and decision tree-based method using statistical metrics and analytical plots in the testing 

phase. Concerning the predictive efficiency, the proposed NCA-LSTM hybrid model, 

improved with feature selection, outperforms all benchmark models, indicating its future 

utility in the prediction of daily Ep.  
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4.3 Links and implications 

 

Pan evaporation (Ep) measures the evaporative loss from the earth’s surface and water 

storage. The evaporative process is one of the major natural phenomena that is responsible 

for depleting the usable water resources utilized for agricultural production, drinking water 

supply, recreation activities, and hydropower generation. This evaporative process also can 

develop drought conditions and bushfire threats in severe dry spells and can adversely affect 

the existence of wildlife and the environment. Prediction of Ep in advance gives many 

opportunities for making strategic plans to battle with consequences created by water scarcity 

conditions due to evaporative losses in short and long-run contexts. Therefore, developing 

deep learning predicting model for precise prediction of Ep is highly beneficial and the 

proposed Ep predicting model developed in this research work will be gap filling great 

initiative for future use. However, it is suggested that the efficiency of the proposed hybrid 

deep learning model can be enhanced by signal decomposition techniques (E.g., Ensemble 

Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN), etc). So future researchers can combine 

the proposed hybrid NCA-LSTM model in this study with appropriate signal decomposition 

technique and it will promisingly enhance the current proposed model performances and will 

be a useful predictive tool in the field of hydrology. And also, future researchers can further 

develop this proposed model training methodology for forecasting Ep in long-run scenarios 

(E.g., One month ahead of Ep forecasting) which will be more useful in long-run strategic 

planning.  

 

However, Ep only gives an estimate of water loss due to the evaporative process and it does 

not account for the water loss due to the transpiration process of plants and trees which makes 

the vegetative cover on the earth’s surface.  So, considering only the Ep for quantifying water 

loss will give an underestimate and can be insufficient in many situations. Therefore, this 

study in its second objective focused to develop a deep learning model to forecast 

Evapotranspiration (ET) which is a hydrological parameter quantifying water loss due to both 

evaporative and transpiration processes. The next chapter will explain the research outcome 

of this second objective in detail.          
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CHAPTER 5: PAPER 2 - DEEP MULTI-STAGE REFERENCE 

EVAPOTRANSPIRATION FORECASTING MODEL: 

MULTIVARIATE EMPIRICAL MODE DECOMPOSITION 

INTEGRATED WITH THE BORUTA-RANDOM FOREST 

ALGORITHM 

 

5.1 Introduction 

 

This chapter is an identical replication of the article that was published in the Journal of IEEE 

Access, Volume 9, December 2021. 

 

This work aims to design a novel multi-stage deep learning hybrid Long Short-Term Memory 

(LSTM) predictive model that is coupled with Multivariate Empirical Mode Decomposition 

(MEMD) and Boruta-Random Forest (Boruta) algorithms to forecast evapotranspiration (ET) 

in the drought-prone regions of Queensland, Australia. Daily satellite and ground-based big 

data was used to build the proposed multi-stage deep learning hybrid model, i.e., MEMD-

Boruta-LSTM, and the performance of the model was compared against competing 

benchmark models including hybrid MEMD-Boruta-DNN, MEMD-Boruta-DT, and 

standalone LSTM, DNN, and DT models in testing phase using statistical metrics and 

diagnostic plots. The testing results showed that the target MEMD-Boruta-LSTM hybrid 

model attained the lowest relative error and the highest efficiency relative to benchmark 

models for all study sites. Thus, the proposed multi-stage deep hybrid MEMD-Boruta-LSTM 

model surpassed all other benchmark models in terms of predictive efficacy and proved its 

value in the forecasting of the daily ET.  
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the PMF-56 equation have also been developed to esti-
mate ET using climatic data. Among them, the PMF-56
equation is widely used due to its accuracy and stabil-
ity [2]. Other than empirical methods, many researchers have
developed data-driven Artificial Intelligence (AI) models to
forecast ET and these models have shown superior perfor-
mances despite non-linear behaviour of ET [3]. For instance,
Nourani, et al. [4] employed ensemble Multiple Linear
Regression (MLR), Support Vector Regression (SVR), Adap-
tive Neuro-Fuzzy Inference System, Artificial Neural Net-
work (ANN), andMultiple Linear Regression (MLR) models
for ET forecasting and the ensemble MLR model has shown
the best performance. Tikhamarine, et al. [5] examined the
comparative potential of ANN-Embedded Grey Wolf Opti-
mizer, Multi-Verse Optimizer, Particle Swarm Optimizer,
Whale Optimization Algorithm and Ant Lion Optimizer to
predict monthly ET in India and Algeria.
Deep Learning (DL) techniques such as the Temporal

Convolution Network [6] and the ensemble of Convolutional
Neural Networks (CNN) [7] which are comparatively more
advanced and precise than the above traditional machine
learningmethods have also been recently employed to predict
ET . The Long Short-Term Memory (LSTM) network is a
DL neural technique that has been used to predict hydro-
logical variables like water quality [8], solar radiation [9],
and streamflow [10], and rainfall-runoff [11]. Several recent
studies have shown the exceptional performance of LSTM
model in predicting hydrological time series [67]–[70]. The
key advantage of the LSTM model is its ability in using
sequential data as inputs instead of independent training sam-
ples and this feature ensures the model’s capability in dealing
with more extended historic hydrologic observations with
temporal dependence [71], which is a common characteristic
related with many types of hydrological time series [66].
However, less research has been carried out to predict ET
using LSTM based models. Yin, et al. [12] proposed a new
hybrid bi-directional LSTM model to forecast short term
daily ET in data scarce regions.

In recent years, use of AI models have become more
popular in resolving problems related to many various hydro-
logical aspects [72]. For instance, DTmodel has been used to
map the flood susceptible areas in Kelantan, Malaysia which
performed with greater accuracy in comparison with fre-
quency ratio (FR) and logistic regression (LR) methods [74].
The DNN model has been employed in water resource man-
agement e.g. development of spatial-temporally continuous
evapotranspiration model [75], development of model for
mapping suitable groundwater extraction location [76] and
shown better performances compared to benchmark models.
LSTM is also extensively used for flood forecasting [77], and
predicting water table [8], etc.

To further enhance the forecasting model capabilities,
hybrid models have been developed in the recent past
by many researchers. Ferreira and da Cunha [13] devel-
oped a DL multi-step ET forecasting model with hybrid
CNN-LSTM and assessed in comparison with standalone

LSTM, CNN and traditional machine learning models (ANN
and RF). According to the performance analysis, the hybrid
CNN-LSTMmodel outperformed all the comparison models.

In addition, two-phase hybrid models which are capable
of yielding high performances with relatively low errors
are explored [14]. For example, Prasad, et al. [15] devel-
oped a two-phase hybrid Extreme Learning Machine (ELM)
model to forecast soil moisture coupled with the Ensem-
ble Empirical Mode Decomposition (EEMD) data pre-
processing method and the Boruta-random forest optimizer
(Boruta) feature selection method. This model was superior
to the other comparative models and yielded a relatively
accurate performance with a small number of errors.

The Multivariate Empirical Mode Decomposition
(MEMD) is a data pre-processing method that is an
improved extension of standard Empirical Mode Decompo-
sition (EMD) for multichannel data [16] and works effi-
ciently in time series nonlinear and nonstationary signal data
pre-processing [17]. For instance, Prasad, et al. [15] and
Ali, et al. [18] proposed new multi-stage models coupled
with MEMD to forecast solar radiation and drought thereby
showing superior performance when compared with other
models.

Boruta-random forest (Boruta) is a feature selection tech-
nique [19] that can identify significant input parameters
using a comparison with real features to those of random
probes [20]. Boruta has been utilized successfully as a
feature selection technique in hybrid models to forecast
soil moisture [20], [21], streamflow [22], [23], and air
quality [24].

However, ET forecasting based on multi-stage deep neural
networks is yet to be explored. To address this research
gap, this study is focused on developing a novel multi-stage
MEMD-Boruta-LSTM deep neural network to forecast daily
ET based on satellite and ground data. DT and DNN models
which have been widely employed in prediction of various
hydrological parameters are selected for model performance
comparison with target model in this study.

II. THEORETICAL OVERVIEWS
In this section, the MEMD, Boruta, and LSTM are described
in detail. The models used for comparison purposes in this
study: Deep Neural Network (DNN) [9] and Decision Tree
(DT) [25] are not explained in detail as they are well-known
algorithms.

A. MULTIVARIATE EMPIRICAL MODE
DECOMPOSITION METHOD
The MEMD is an advanced version of EMD proposed by
Rehman and Mandic [16] which is capable of dealing with
multivariate signals and resolved the mode mixing issue by
using white Gaussian noises [26]. The MEMD method can
be described as follows [16]:

I. Generate a suitable number of direction vectors.
II. Calculate projections of the multiple inputs along with

different directions in an n-dimensional space.
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III. Identify local maxima projections and obtain multi-
variate envelope curves through them and subsequently
calculate the mean.

IV. Extract the detail using the difference of the mean enve-
lope curve and original signal until the stopping criteria
is satisfied for a multivariate Intrinsic Mode Function
(IMF) [27].

The mathematical formulae of the MEMD can be found
elsewhere [16], [28].

B. FEATURE SELECTION: BORUTA-RANDOM FOREST
OPTIMIZER ALGORITHM
The algorithm can be briefly explained as follows [19], [29]:

Let xt ∈ Rn be the group of predictors for the set of T
and yt ∈ R be the target for n number of inputs, where
t = 1, 2, . . . ,T .

I. Create a randomly ordered duplicated (shadow) vari-
able, x′t for xt and then predict the target yt .

II. Calculate Mean Decrease Accuracy (MDA) for every
xt and x′t over all trees, mtree (=500 in this
study) [1], [30]:

MDA

=
1

mtree

∑mtree

m=1

×

∑
tεOOB I

(
yt= f (xt)

)
−
∑

tεOOB I
(
yt= f

(
xnt
))

|OOB|
,

(1)

where I (∗) is indicated function, OOB (Out-of-Bag) is
a predictive error, yt = f (xt) is predicted value before
permuting and, yt = f

(
xnt
)
is predicted value after

permuting.
III. Compute the Z-score as:

Z− score =
MDA
SD

(2)

where, SD is the standard deviation of accuracy loss and,
then maximum Z-score (Zmax) is determined among
duplicated attributes.

IV. Following that, predictors are identified as ‘‘Unimpor-
tant’’ when Z− score < Zmax and ‘‘Confirmed’’ as
important when Z− score > Zmax during the process.

C. TIME SEQUENTIAL PREDICTIVE METHOD: LONG
SHORT-TERM MEMORY NETWORK
The LSTM is a special Recurrent Neural Network
(RNN) [32] related to conventional artificial neural networks
that are mainly used to identify patterns in sequences of
data [33]. The LSTMs operates with special units, denoted as
memory blocks that consist of input, output, and forget gates
and these memory blocks continuously update and control
the information flow [34]. The calculations are described in
4 steps as follows [35]:

I. The LSTM layer decides which information should be
forgotten or remembered, based on the last hidden layer

output ht−1 and the new input xt by using ‘‘forget gate’’
f t :

f t = σ
(
wf
[
ht−1, xt

]
+ bf

)
(3)

where wf is the weight matrix; bf is the bias vector and
σ (. . .) is the logistic sigmoid function.

II. The LSTM layer decides what information needs to be
stored in the new cell state ct that is represented by the
new candidate cell state C t after updating information
by using ‘‘input gate’’ it :

C t = tanh
(
wC

[
ht−1, xt

]
+ bC

)
(4)

it = σ
(
wi
[
ht−1, xt

]
+ bi

)
, (5)

where tanh (. . .) is the hyperbolic tangent function.
III. The old cell state C t−1 updates to C t by the ‘‘forget

gate’’ f t to remove unnecessary information and the
‘‘input gate’’ it to get a new candidate cell state C t :

C t = f t ∗ C t−1 + it ∗ C t (6)

IV. Finally, the output ht is derived using ‘‘output gate’’ ot
and the cell state C t :

ot = σ
(
wo
[
ht−1, xt

]
+ bo

)
(7)

ht = ot ∗ tanh (C t) (8)

III. MATERIALS AND METHOD
A. STUDY REGION AND DATASET
This study is centred in Queensland (QLD) Australia, where
84% of the total land resources are used for agricultural oper-
ations [36]. The Queensland government declared 67.4%
of the land area of Queensland drought-affected in the year
2020 [37]. Therefore, developing a precise model to forecast
water losses due toET is useful for strategic planning in water
resources management in the state.

The three examined sites located in arid and semi-arid
areas in QLD, Australia selected for this study are Gat-
ton −152.34

◦

E, 27.54
◦

S, Fordsdale –152.12
◦

E, 27.72
◦

S
and Cairns –145.75

◦

E, 16.87
◦

S (see Figure 1). The land
resources of these selected sites are mainly used for agricul-
tural purposes.

To construct a target hybrid model, data for eight daily
predictive climatic variables for the period 01 February
2003 to 19 April 2011 were extracted from the databases
of NASA’s Goddard Online Interactive Visualization and
Analysis Infrastructure (GIOVANNI) - Atmospheric Infrared
Sounder (AIRS) and GLDAS model satellite and Scientific
Information for Land Owners (SILO). The GIOVANNI pro-
vides easy and user-friendly access to visualize and analyse
the vast amount of Earth Science-related remote sensing
data [38] that can be extracted easily without the require-
ment for advanced prior knowledge of complex remote
sensing datasets. In addition, SILO data source provides
ground-based data for predictor variables and it assists to
further improve the model’s performance. This database is
operationally managed by the Queensland Government [39].
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FIGURE 1. Study sites in Queensland, Australia where the proposed
MEMD-Boruta-LSTM model was implemented.

TABLE 1. List of satellite-based Goddard Online Interactive Visualization
and Analysis Infrastructure (GIOVANNI) and the ground-based Scientific
Information for Land Owners (SILO) predictor variables used to forecast
daily Reference Evapotranspiration (ET ). Note: Atmospheric Infrared
Sounder (AIRS) and GLDAS model are the two platforms in the GIOVANNI
data source.

Missing data due to instrumental and equipment failures were
filled with daily mean data of previous years [40]. Table 1
shows a summary of predictive variables and sources of data.
For the target variable that is daily ET, point-based data is
extracted from the SILO database.

B. DEVELOPMENT OF THE PROPOSED MULTI-STAGE
DEEP HYBRID MEMD-BORUTA-LSTM MODEL
The proposed multi-stage MEMD-Boruta-LSTM model was
developed using an Intel Core i7 @ 3.3 GHz and 16 GB
memory computer; built using freely available DL libraries:
Keras [46] and TensorFlow [47] in Python [48]. The
MEMDdata pre-processingmethod and Boruta feature selec-
tion method were implemented using MATLAB R2019b and
R respectively, while ‘‘matplotlib’’ and ‘‘seaborn’’ tools in

Python were used for visualizations. The MEMD-Boruta-
LSTM hybrid model was developed using historical time
series inputs as follows:

Stage 1: In this study, before performing MEMD, firstly,
all nine variables (eight predictors + target) (see Table 1)
were partitioned into 50% for training (i.e., 1500 data points)
and other 50% for testing (i.e., 1500 data points) for all study
sites [49] to avoid having a different number of Intrinsic
Mode Functions (IMFs). Deo, et al. [50] pointed out that,
if the complete dataset (training, cross-validation, and testing)
is decomposed together without partitioning as explained
above, future data (that is testing and yet unseen data by the
forecasting model at a particular time step) would uninten-
tionally add bias into the forecast. Thus, it is an important
requirement during the decomposition stage to avoid incor-
porating future datasets that are to be used in the testing phase
with the calibration dataset i.e., training and cross-validation
in this study.

The MEMD was performed in the decomposition process
independently for each training, and testing data partitions for
both predictor and target variables for all three sites. In this
process, the recommended predefined parameters: ensemble
number (N = 500) and amplitude of the added white noise
(ε = 0.2) were applied [51]–[54]. All the first IMFs of pre-
dictor and target variables were pooled into one set. All the
second IMFs of predictor and target variables were pooled
into one set. This pooling was carried out until the ith IMFs
including residuals.

Stage 2: Boruta-random forest is a feature selection tech-
nique available in R. Random Forest tree-based algorithm
is embedded in this feature selection technique [21]. This
feature selection algorithm is used to identify the significantly
corelated predictor variables to the target variable in each
IMFs and residuals using historical lagged data at (t-1).

Stage 3: After identifying the significantly corelated pre-
dictor variables for the model development, respective data
of those variables were normalized to remove the variance
of features [55] by converting them into (0− 1) range using
equation (9):

Xn =
Xactual − Xmin
Xmax − Xmin

(9)

where Xactual , Xmax , and Xmin represent input data for actual,
maximum, and minimum values respectively.

Stage 4: The LSTM model was employed to forecast
daily ET in each IMF and residual using significantly core-
lated predictor variable data at (t-1) lag. To prepare the best
model design, hyperparameters for the target model (MEMD-
Boruta-LSTM) were identified using the Hyperopt library
in Python [56], [57]. Hyperopt is one of the hyperparam-
eter optimization algorithms that performed better than the
Grid search and Random search algorithms as it ensures
comparatively less time in the model training process while
increasing the accuracy of the model [58]. Thereby opti-
mal architecture of the hybrid MEMD-Boruta-LSTM model
was used to predict daily ET. Finally forecasted ET in each
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FIGURE 2. Workflow diagram detailing the necessary steps taken to design proposed deep hybrid MEMD-Boruta-LSTM model for
daily evapotranspiration (ET ) forecast. Note: ET = Evapotranspiration, MEMD = Multivariate Empirical Mode Decomposition,
IMF = Intrinsic Mode Function, LSTM = Long Short-Term Memory. The details of predictors are given in TABLE 1.

IMF and a residual were cumulated to calculate forecasted
daily ET for each study site. Figure 2 presents the workflow
of the proposed multi-stage MEMD-Boruta-LSTM model.
The same procedure is followed to develop hybridized DNN
and DT with MEMD-Boruta (i.e., MEMD-Boruta-DNN and
MEMD-Boruta-DT models). Developed standalone LSTM,
DNN, and DT models and hybrid MEMD-Boruta-DNN and
MEMD-Boruta-DT were used as benchmark models for the
model performance comparison.

C. MODEL PERFORMANCE EVALUATION
Model performances are evaluated using the statistical met-
rics [41]–[45] given below to confirm whether the target

predictive model is superior to other benchmark models and
is sufficiently qualified for ET prediction in QLD,

I. Correlation Coefficient (r): The correlation coeffi-
cient measures the strength of the relationship between
two variables and the values range between −1.0 and
1.0 [62]. The value given for perfect forecasting mod-
els is equal to +1 indicating strong positive relation-
ship of forecasted values derived from the model with
actual values, (10) as shown at the bottom of the next
page.

II. Root Mean Square Error
(
RMSE;mmday−1

)
: This

measures the average model-performance error
between predicted value (EFORp ) and observed value
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(EOBSp ) [63]. The RMSE value can range from 0 to∞
and it becomes zero for the best predictive models.

RMSE =

√
1
N

∑N

i=1

(
ET FOR,i − ETOBS,i

)2
,

0 ≤ RMSE <∞ (11)

III. Mean Absolute Error
(
MAE;mmday−1

)
: This error

value provides an assessment of the actual forecast-
ing errors in terms of the total number of observa-
tions [21].MAE can range from 0 to∞ and it becomes
zero for best predictive models. TheMAE gives a more
precise measure of average model error than the RMSE
since it is not influenced by extreme outliers [41].

MAE =
1
N

∑N

i=1

∣∣∣ET FOR,i − ETOBS,i∣∣∣ ,
0 ≤ MAE <∞ (12)

IV. Relative Root Mean Squared Error (RRMSE): The
RRMSE is used to measure overall forecasting accu-
racy of the models and always gives positive val-
ues [21]. If the value for RRMSE is less than 10%,
model performance is considered to be outstanding,
while model performance is considered to be good if it
is lying between 10% to 20%. If the value for RRMSE
error lies between 20% to 30%, model performance
is considered as fair. If the value for RRMSE error is
higher than 30% model performance is considered to
be poor [64].

RRMSE =

√
1
N

∑N
i=1

(
ET FOR,i − ETOBS,i

)2
1
N

∑N
i=1 ET

OBS,i
× 100

(13)

V. Relative Mean Absolute Percentage Error (RMAE):
The relative mean absolute percentage error measures
the size of the error in percentage terms.

RMAE =
1
N

∑N

i=1

∣∣∣∣ET FOR,i − ETOBS,iETOBS,i

∣∣∣∣×100 (14)

VI. Nash-Sutcliffe Index (NS): TheNS [43] measures how
well the plotted line between observed data and simu-
lated data fits into 1:1. TheNS is equal to 1, if themodel
forecasted data is perfectly matched to the observed
data. NSE = 0 indicates that the model predictions are
as accurate as the mean of the observed data while, Inf

TABLE 2. Summarized results of MEMD process.

< NSE < 0 indicates that observed mean is a better
predictor than the model [62].

NS = 1−

∑N
i=1

(
ETOBS,i − ET FOR,i

)2
∑N

i=1

(
ETOBS,i − ETOBS

)2
 ,

−∞ < ENS ≤ 1 (15)

VII. Willmott’s Index (WI ): Willmott index is a standard-
ized measure of the degree of model prediction error
and the value for WI ranges from 0 to 1, whereas this
value equals 1 for best predictivemodels, (16) as shown
at the bottom of the page.

VIII. Legate and McCabe Index (LM): The LM is an
advanced assessment index based on WI and NS val-
ues. This index can be used to assess the goodness-
of-fit of a hydrologic or hydro climatic model and is
more effective than correlation and correlation-based
measures (e.g., the Coefficient of Determination (r2),
WI and NS) [41]. The value for LM ranges from −∞
to 1, whereas this value equals one for best predictive
models.

LM = 1−

 ∑N
i=1

∣∣ET FOR,i − ETOBS,i∣∣∑N
i=1

∣∣∣(ETOBS,i,−ETOBS,i)∣∣∣
 ,

−∞ < LM ≤ 1 (17)

IX. Absolute Percentage Bias (APB%): The APB gives the
error of forecasted values as a percentage concerning
the observed values. The optimal value for APB is zero
and lower-magnitude values closer to zero reflect good
accuracy of the model [65].

APB =

[∑N
i=1

(
ETOBS,i − ET FOR,i

)
× 100∑N

i=1 ET
OBS,i

]
(18)

r =

∑N
i=1

(
ETOBS,i − ETOBS.i

) (
ET FOR,i − ET FOR

)
√∑N

i=1

(
ETOBS,i − ETOBS,i

)2√∑N
i=1

(
ET FOR,i − ET FOR,i

)2 , −1 ≤ r ≤ 1 (10)

WI = 1−

 ∑N
i=1

(
ETOBS,i − ET FOR,i

)2
∑N

i=1

(∣∣∣(ET FOR,i − ETOBS,i)∣∣∣+ ∣∣∣(ETOBS,i − ETOBS,i)∣∣∣)2
 , 0 ≤ WI ≤ 1 (16)
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TABLE 3. Summarized results of Boruta feature selection process.

TABLE 4. List of selected predictor variables identified in each IMF and residual used to develop hybrid MEMD-Boruta-LSTM, MEMD-Boruta-DNN and
MEMD-Boruta-DT models in Cairns site.

X. Kling-Gupta Efficiency (KGE): The KGE measures
the goodness-of-fit of the model. This metric can be
decomposed into the contribution of mean, variance,
and correlation on the model performance [45]. Per-
fectmodels will give value one for theKGE index [65].

KGE

= 1−

√√√√
(r − 1)2 +

(
CV FOR

CVOBS

)2

+

(
ET FOR,i

ETOBS,i
− 1

)2

(19)

where CV = Coefficient of Variation, where ETOBS,i

and ET FOR,i are observed and forecasted ith value of
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the evapotranspirationET,ETOBS,i andET FOR,i are the
observed and forecasted average of ET and N is the
total number of data points of the test dataset.

IV. RESULTS AND DISCUSSIONS
In the decomposition process, training and testing datasets for
Gatton and Fordsdale sites were decomposed into 12 IMFs
and a residual component (i.e. 104 (=8 × 13) predictors)
whereas 11 IMFs and a residual component (i.e. 96 (=8 ×
12) predictors) were generated by decomposing training and
testing datasets for the Cairns site (see Table 2). In the Boruta
feature selection process, 99 predictor variables were iden-
tified as significantly corelated to the target variable ET in
all IMFs and the residual of Gatton, while 98 and 88 pre-
dictor variables were identified for Fordsdale, and Cairns
sites respectively (see Table 3). Table 4 shows the selected
final predictor variables in each IMF and the residual used
to develop target hybrid MEMD-Boruta-LSTM model and
benchmark models in Cairns site. Identified hyperparameters
for the LSTM in target model through the hyperparameter
optimization process are listed in Table 5.

The performance of the multi-stage deep MEMD-Boruta-
LSTM model and other comparative models: MEMD-
Boruta-DNN, MEMD-Boruta-DT, LSTM, DNN and, DT in
the testing phase were assessed using statistical metrics cal-
culated using equations (10) to (19), visual graphs, and error
distributions between forecasted and observed ET.
Table 6 shows the results derived for statistical met-

rics: Correlation Coefficient (r), Root Mean Squared Error
(RMSE; mm day−1), Mean Absolute Error (MAE; mm
day−1), Willmott’s Index (WI), Nash-Sutcliffe coefficient
(NS), and Legates and McCabe’s (LM). According to the
results shown in table 6, the proposed multi-stage deep
MEMD-Boruta-LSTM model has yielded the highest r , WI,
NS, and LM and lowest RMSE and MAE values over the
other benchmark models at all study sites. For instance, val-
ues scored for r, WI, NS, and LM by this proposed model
for the Gatton site where it showed the best performances
among all study sites are 0.9668, 0.9723, 0.8960, and 0.6996
respectively and higher than the respective values scored by
other benchmark models. Furthermore, for the same site,
this proposed model scored 0.5307 and 0.4204 for RMSE
and MAE respectively, and these are the lowest recorded
values. These results indicate that the proposed multi-stage
deep hybrid MEMD-Boruta-LSTM model can be confi-
dently employed for forecasting daily ET and for achieving
higher forecasting accuracy compared to counterpart models
(MEMD-Boruta-DNN and, MEMD-Boruta-DT) and stan-
dalone models (LSTM, DNN, and DT).

In terms of the Absolute Percentage Bias (APB%) error
and Kling-Gupta Efficiency (KGE) calculated in the test-
ing phase, Figure 3(a) and 3(b) show that the proposed deep
multi-stage MEMD-Boruta-LSTM model generates better
performance in terms of APB% error percentage and KGE
respectively. Figure 3(a) illustrations that the proposed
MEMD-Boruta-LSTM model has scored the lowest APB

TABLE 5. List of hyperparameters for the LSTM model. The optimal
parameters used for all sites are boldfaced (in blue). Note: ReLU, Uniform,
He_uniform, Glorot_uniform, and adam stand for the rectified linear
units, uniform initializer, He uniform variance scaling initializer, Glorot
uniform initializer, and adaptive moment estimation respectively.

error percentage (9.2-12.3%) while other all comparative
models’ APB error percentages are within (11.6-19.7%)
range for all sites. According to Figure 3(b), the proposed
MEMD-Boruta-LSTM model has yielded the highest KGE
values (0.89-0.91) while, KGE values are less than 0.86 for
other all benchmark models for all sites. These results also
provide strong evidence to recognize the superior potentiality
of the proposed multi-stage MEMD-Boruta-LSTM model in
daily ET forecasting over the other benchmark models.

The radar plots in Figure 4 demonstrate the proposed deep
multi-stage MEMD-Boruta-LSTM model yielded the lowest
values for RRMSE,% and RMAE,% for all sites (12.59% and
10.89% at Gatton, 16.21% and 15.06% at Fordsdale, 12.47%
and 11.29% at Cairns respectively). Further, all values scored
for RRMSE and RMAE for all sites by this proposed deep
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TABLE 6. Performance evaluation of the proposed hybrid MEMD-Boruta-LSTM model in the testing phase for the comparative counterpart models in
terms of the Pearson’s Correlation Coefficient (r), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Willmott’s Index (WI), Nash Sutcliffe
coefficient (NS) and Legates and McCabe’s (LM). The best model is boldfaced (in blue).

FIGURE 3. Bar graphs show the comprehensive assessment of the performance of the proposed MEMD-Boruta-LSTM model
against the counterpart models, based on the (a) Absolute Percentage Bias (APB, %) error and (b) Kling-Gupta Efficiency (KGE)
in the testing phase for the all study sites. The best model for all sites is boldfaced (in blue).
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5.3 Links and implications 

 

Evapotranspiration is the main causative natural phenomenon that contributes to the water 

losses from croplands by evaporation and transpiration. By multiplying forecasted ET with 

the relevant crop factor, which is a unique value for individual crops, the water loss due to 

evapotranspiration can be estimated in advance. This will help to make precise irrigation 

schedules, drought event management, and long-term strategic planning for the future in 

drought-prone areas. All these usefulnesses are ultimately likely to bring significant financial 

benefits to the farmers, in arid and semi-arid regions where agricultural practices are adversely 

affected by the scarcity of water resources. Further, this initiative, which has produced a new 

modelling methodology for ET forecasting paving the way for future studies with a wider 

scope of investigating the terrestrial consistency of the proposed MEMD-Boruta-LSTM 

hybrid model, together with its accuracy. Moreover, the potential use of multi-stage MEMD-

Boruta-LSTM for multi-step ahead long-term ET like one month, six months, or one year 

ahead forecasting can be researched. Further, instead of the MEMD technique for data 

decomposition, the Variation Mode Decomposition (VMD) technique can be used with 

Boruta-LSTM to build up a new two-stage deep forecasting model to forecast ET. 

 

However, EP and ET which are discussed in objective 1 and 2 respectively give an estimate 

of water loss. Water availability in soil is also a crucial factor to be considered simultaneously 

with the water loss due to evaporation and evapotranspiration in water resources management, 

drought monitoring, and early identification of bushfires and flood disasters. Soil moisture 

(SM) is a hydrological parameter that gives the knowledge and estimate of water availability 

in soil and is almost equally useful as EP and ET in drought event management. Therefore, 

the third objective of this PhD study focused to develop a deep learning model to forecast soil 

moisture (SM) on topsoil (0-10 mm depth). The next chapter will explain the research outcome 

of this third objective in detail.          
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CHAPTER 6: PAPER 3 - SOIL MOISTURE FORECASTING 

AT 1 DAY, 14 DAYS, AND 30 DAYS AHEAD HORIZON 

WITH 3-PHASE DEEP LEARNING LONG SHORT-TERM 

MEMORY NETWORK, WAVELET, AND LASSO 

REGRESSION moDWT-Lasso-LSTM APPROACH. 

 

6.1 Introduction 

 

This chapter is an identical replication of the article that is submitted to Journal of  Stochastic 

Environmental Research and Risk Assessment. 

 

This study develops a multi-step forecasting model for soil moisture (SM) in the 0-10 cm 

depth using a data-driven deep learning hybrid approach by incorporating satellite and ground 

data. Due to the nonstationary and nonlinear characters of the collected data, the original data 

were decomposed using the Maximum Overlap Discrete Wavelet Transform (moDWT) 

decomposition and then selected its features using the Least Absolute Shrinkage and Selection 

Operator (Lasso). The deep learning Long Short-Term Memory (LSTM) algorithm was then 

employed to construct the target proposed 3-phase hybrid moDWT-Lasso-LSTM model for 

1 day, 14 days, and 30 days ahead SM forecasting in Bundaberg Queensland, Australia. This 

proposed model’s performance was statistically compared to benchmarked alternative 

machine learning models to confirm its viability. Statistical metrics and forecasting error plots 

were used to assess the performance of the target model against alternative models. The results 

revealed that, in comparison to other techniques, the 3-phase hybrid deep moDWT-Lasso-

LSTM is showing comparatively low errors. This study ascertains that the suggested 3-phase 

hybrid deep multi-step moDWT-Lasso-LSTM model can be successfully employed as a 

viable data-driven device for multi-step SM forecasting in the topsoil layer (0-10 cm depth). 
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Abstract 13 

To develop agricultural risk management strategies, identifying water deficits early in the 14 

growing cycle is beneficial. Using a data-driven deep learning hybrid approach, this study 15 

develops a multi-step soil moisture forecasting model for 1 day, 14 days, and 30 days in the 16 

Bundaberg region in Queensland, Australia. To develop the proposed model, Geospatial 17 

Interactive Online Visualization and Analysis Infrastructure (satellite) data are combined with 18 

ground observations. Due to the periodicity, transientity, and trends in soil moisture in the top 19 

layer, time series datasets are relatively complex. Therefore, we decomposed these using the 20 

Maximum Overlap Discrete Wavelet Transform (moDWT) method to identify the best 21 

correlated wavelet and scaling coefficients of the predictor variables with the target top layer 22 

moisture, while the proposed 3-phase hybrid moDWT-Lasso-LSTM model is fully trained 23 

using the Least Absolute Shrinkage and Selection Operator (Lasso) method. Using Hyperopt 24 

algorithm, the optimal hyperparameters of the model were identified using a deep learning 25 

LSTM method and compared with benchmarked machine learning models. In total, nine 26 

models were developed, including three standalone models (e.g., LSTM), three models with 27 

feature selection (e.g., Lasso-LSTM), and three hybrid models with wavelet decomposition and 28 

feature selection (e.g., moDWT-Lasso-LSTM). To compare the target model with alternative 29 

models, we used statistical metrics such as Correlation Coefficient, Determination of 30 

Coefficient, Mean Absolute Error, Mean Absolute Scaled Error, Symmetric Mean Absolute 31 

Percentage Error, Root Mean Squared Error, Nash-Sutcliffe Index, Willmott Index, Legates 32 

and McCabe Index, scatter plots, and forecasting error plots. In comparison to alternative 33 

methods, the hybrid deep moDWT-Lasso-LSTM produced relatively few errors. Based on this 34 

study, we demonstrate that the moDWT-Lasso-LSTM 3-phase hybrid model can be 35 

successfully used as a data-driven device for forecasting multistep soil moisture in Bundaberg, 36 

Queensland, Australia. 37 
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1. Introduction  38 

Soil moisture, as part of the soil-plant-atmosphere water cycle, refers to the water that 39 

is present in the soil and is essential for maintaining plant growth Liao et al. (2018).  It is a key 40 

factor in determining irrigation water requirements (Chang et al., 2015). Forecasting soil 41 

moisture is very useful in understanding the future trends of soil moisture levels in advance 42 

and accordingly managing water stress conditions affecting crops and planning the irrigation 43 

schedules while conserving limited water resources. The land resources of the Bundaberg 44 

region in Queensland, Australia, the region considered in this study for developing a soil 45 

moisture forecasting model are extensively used for growing commercial crops. Thus, such a 46 

soil moisture forecasting model will be very beneficial for agricultural operations in this region.      47 

Data-driven predictive models have shown comparatively higher competency in soil 48 

moisture prediction (Prasad et al., 2019a) and other hydro-meteorological variables prediction 49 

like evaporation (Jayasinghe et al., 2022, Ghorbani et al., 2018), precipitation (Ortiz-García et 50 

al., 2014, Silverman and Dracup, 2000), drought (Khan et al., 2020, Belayneh et al., 2016), 51 

evapotranspiration (Jayasinghe et al., 2021, Zhu et al., 2020) and river flow (Deo and Şahin, 52 

2016, Huang et al., 2014). Jamei et al. (2022) employed data-driven predictive tools to forecast 53 

soil moisture and in their work, Extreme Gradient Boosting (XGBoost) and Categorical 54 

Boosting (CatBoost), two modern ensemble-based ML models, were integrated with the 55 

Empirical Wavelet Transform (EWT) to predict long-term multi-step ahead daily root zone soil 56 

moisture (RZSM) in highly cold semi-arid and highly warm semi-humid regions (Ardabil and 57 

Minab, respectively) and their performances were compared with rival models. The results 58 

have demonstrated the superior performance of the EWT-CatBoost and EWT-XGBoost models 59 

over the other counterpart models in forecasting multi-step ahead RZSM at Ardabil and Minab 60 

sites, respectively. Jamei et al. (2023) again in 2023, constructed multi-level pre-processing 61 

model frameworks using NASA's Soil Moisture Active Passive (SMAP)-satellite datasets and 62 

apply it to multi-step (one and seven days ahead) daily forecasting of Surface Soil Moisture 63 

(SSM) in Iran's dry and semi-arid regions. In this experiment, Boruta Gradient 64 

Boosting Decision Tree (Boruta-GBDT) feature selection and Multivariate Variational Mode 65 

Decomposition (MVMD) techniques are integrated with advanced Machine Learning (ML) 66 

models, that are Bidirectional Gated Recurrent Unit (Bi-GRU), Cascaded Forward Neural 67 

Network (CFNN), Adaptive Boosting (AdaBoost), Genetic Programming (GP), and classical 68 

Multilayer Perceptron neural network (MLP). According to the results, MVMD-Boruta-69 

GBDT-CFNN outperformed over all other hybrid models in one and seven days ahead soil 70 

moisture forecasting in all tested sites. The study done by  Basak et al. (2023) is also an another 71 

recent examples for data driven approach to forecast soil moisture and in this study, two data-72 
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driven models based on Naive Accumulative Representation (NAR) and the Additive 73 

Exponential Accumulative Representation (AEAR) are developed and tested.   74 

Among data intelligence approaches, Deep Learning (DL), which is the latest 75 

generation of artificial intelligence systems is now becoming a popular category and is 76 

employed with great performance in industrial and scientific research (Emmert-Streib et al., 77 

2020). The superiority of DL techniques in learning complex nonlinear functions of input data 78 

with low-level information allows them to successfully capture and extract the detailed features 79 

of big row input data sets, accumulated over decades, that are easily available for research 80 

initiatives. The LSTM algorithm is one of the DL artificial intelligence approaches which is 81 

being utilized to forecast hydrological and other variables like water quality (Zhang et al., 82 

2018a), solar radiation (Ghimire et al., 2019a), rainfall-runoff (Gauch et al., 2021), and 83 

streamflow (Fu et al., 2020), and some studies has been conducted to recognize the feasibility 84 

of using LSTM-based model in predicting SM. In south Louisiana in the United States, 85 

ElSaadani et al. (2021) investigated that, among the  spatial-temporal models tested, the 86 

ConvLSTM outperformed other Convolutional Neural Network (CNN) and LSTM-based 87 

models in SM prediction. To improve the soil moisture prediction accuracy, Li et al. (2022) 88 

experimented with unique residual learning encoder-decoder model (EDT-LSTM). This trial 89 

utilized data from 13 sites spread across in different countries, and the model demonstrated 90 

improved accuracy in 1,3,5,7 and 10 days ahead forecasting of moisture levels in 5 cm deep 91 

surface soil layers. Suebsombut et al. (2021) has developed Long-Short Term Memory 92 

(LSTM)-based models to forecast SM values in Chiang Mai province, Thailand and its results 93 

shown that, LSTM-based model performs well in predicting soil moisture. Another recent 94 

study conducted by Zeynoddin and Bonakdari (2022) proposed two DL methods which are 95 

Genetic and Teacher–Learner-based Algorithms (GA and TLA) coupled with LSTM 96 

for SM forecasting in Quebec, Canada and results shown that TLA-LSTM found to be more 97 

computational-effective and therefore the better option than GA-LSTM. 98 

To further enhance forecasting model capabilities, many researchers have been 99 

developing hybrid models in the recent past. It is common for researchers to combine data pre-100 

processing techniques with forecasting models when designing hybridised models. The pre-101 

processing methods work well with nonlinear and nonstationary time series data. In artificial 102 

intelligence model hybridization, feature selection is a popular data pre-processing method and 103 

a variety of research studies have shown that it enhances the model's performance. The purpose 104 

of this process is to reduce the high dimensionality of input data by screening out the most 105 

corelated input data sets to the target variable data set as a first step in advanced data-driven 106 

model development (Jayasinghe et al., 2022). For example, Iterative Input Selection (IIS) to 107 
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forecast streamflow (Prasad et al., 2017), Boruta-random forest (Boruta) to forecast 108 

evapotranspiration (Jayasinghe et al., 2021), soil moisture(Ahmed et al., 2021a), and 109 

streamflow (Ahmed et al., 2021c), and Neighbourhood Component Analysis (NCA) to forecast 110 

pan evaporation (Jayasinghe et al., 2022), and soil moisture (Ahmed et al., 2021b) are used as 111 

feature selection techniques in developing hydrological prediction models. The research 112 

published by Jamei et al. (2023), that explained above in detail also has employed Boruta-113 

GBDT feature selection technique. The Lasso feature selection method which is used in this 114 

study also has been employed in hydrological forecasting studies. For instance, Alizadeh et al. 115 

(2020) in their study to develop Support Vector Regression (SVR) based model for monthly 116 

stream flow prediction at the Karaj River in Iran, Lasso and Particle Swarm Optimization-117 

Artificial Neural Networks (PSO-ANN) feature selection methods are used to select mostly 118 

corelated input variables to the target variable. The results indicated that Lasso input selection 119 

is more accurate over the PSO-ANN algorithm and therefore improve the accuracy of model 120 

forecast. Chu et al. (2020) has also employed Lasso feature selection technique along with 121 

Fuzzy C-means (FCM) classification and Deep Belief Networks (DBN) deep learning model 122 

(Lasso-FCM-DBN) to forecast streamflow at  gauge stations in the Tennessee River catchment, 123 

USA and found that Lasso-FCM-DBN approach enhance the performance 124 

of streamflow prediction compare to ANN. However, this feature selection technique has not 125 

so far been employed with any deep learning approach in soil moisture forecasting model 126 

development.  127 

Along with feature selection, wavelet decomposition is a common data pre-processing 128 

step in data intelligence model hybridization. Because of periodicities, transients, and trends, 129 

hydrological and water resources time series data are complex. This complex data can be 130 

decomposed into sub-time series data by using wavelet transform algorithms, which are more 131 

interpretable for data-driven models. As a result, wavelet decomposed data often improve 132 

model performance and are therefore widely used in hydrological and water resources-related 133 

prediction applications. Jamei et al. (2022)’s study explained above in detail is a recent research 134 

example that employed wavelet decomposition as a data-pre-processing technique. EWT has 135 

been employed to perform wavelet decomposition in this experiment. The wavelet 136 

decomposition methods widely used in recent model hybridization works are Discrete Wavelet 137 

Transformation (DWT), Maximum Overlap Discrete Wavelet Transform with Multi 138 

Resolution Analysis (moDWT-MRA), Maximum Overlap Discrete Wavelet Transform 139 

(moDWT), and 𝑎 ́ trous (AT) algorithm (Quilty and Adamowski, 2018).  For instance, Prasad 140 

et al. (2017) employed moDWT in their hybrid IIS-moDWT-ANN model designed for 141 

forecasting streamflow and it has shown better accuracy than the counterpart single and hybrid 142 
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benchmark models. Adib et al. (2021), in their study for predicting one-day-ahead snow depth 143 

(SD) in the North Fork Jocko snow telemetry (SNOTEL) station situated in the city of 144 

Missoula, Montana State of the United States, tested different wavelet transform (WT) 145 

approaches including discrete wavelet transform (DWT), maximal overlap discrete wavelet 146 

transform (MODWT), and multiresolution-based MODWT (MODWT-MRA) along with 147 

autoregressive integrated moving average (ARIMA), and artificial intelligence (AI) models. In 148 

comparison to standalone ARIMA and AI models, hybrid ARIMA-AI models were found to 149 

produce more accurate results showing the wavelet technique's capacity to enhance the model 150 

performances.  151 

It is important to note that DWT and moDWT-MRA can add errors to the forecast due 152 

to boundary condition-related issues and can provide better results than realistically achievable 153 

in the actual world. Therefore, they cannot be used in real-world situations. By using moDWT 154 

and AT wavelet transform algorithms with correct practices, boundary condition related issues 155 

can be resolved (Quilty and Adamowski, 2018). These boundary condition issues, their impact 156 

to the model forecast and remedies to overcome them will be discussed later in detail under the 157 

theoretical overview section of this paper. However, many recent hybrid forecasting model 158 

development studies, including the above examples that employed wavelet transform 159 

techniques to decompose hydrological and water resources related data, have not adequately 160 

considered above constraints, and instead have used DWT and moDWT-MRA regardless of 161 

their shortcomings. Furthermore, moDWT and AT wavelet transform algorithms, which do not 162 

add errors to model forecasts due to boundary condition issues, are not much used in 163 

hydrological predation as DWT and moDWT-MRA, so they still need to be explored. 164 

In this study, time series data from satellites and ground stations are combined. The 165 

methodology section provides detailed information about the types of data collected and their 166 

resolutions and sources. Data of satellite sensor variables can lower the accuracy of 167 

hydrological variable predictions (Nikolopoulos et al., 2013, Yong et al., 2012) and this issue 168 

can be minimized by integrating ground-based and satellite-based data together, as this study 169 

does. Ghimire et al. (2018) have used data from Goddard's Online Interactive Visualization and 170 

Analysis Infrastructure (GIOVANNI) combined with reanalysis data from the European Centre 171 

for Medium Range Weather Forecasting (ECMWF) to forecast long-term solar radiation. 172 

Additionally, Ahmed et al. (2021b) used a combination of satellite GLDAS data, ground 173 

Scientific Information for Landowners (SILO) data, and meteorological indices to predict soil 174 

moisture. 175 

Due to the high dimensionality of hydrological time series extracted in large volumes, 176 

the data for this study require feature selection and wavelet decomposition data pre-processing 177 
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techniques. Thus, this hybridizing excise used moDWT and Lasso algorithms for wavelet 178 

decomposition and feature selection, respectively, along with LSTM data-driven DL network. 179 

This is a novel experience as no evidence found in literature explaining use of lasso feature 180 

selection and moDWT data decomposition techniques in SM prediction works. Further, this 181 

study has taken remedies to overcome boundary condition related issues which are adding 182 

errors to the forecasts in real world situations. That is also a forwarding step in prediction 183 

studies that uses wavelet transform data decomposition procedures. Furter, this proposed 184 

combination of algorithms that abbreviated as moDWT-Lasso-LSTM model has not yet been 185 

tested in another geographic location and thus fills a gap in soil moisture prediction research.  186 

 187 

The objectives in this study are threefold: 188 

 189 

(1) To develop deep learning methods for forecasting soil moisture (SM) at 10 cm depth, 190 

integrating moDWT data decomposition methods with Lasso methods as feature selection 191 

procedures to produce a prediction model based on LSTM utilizing satellite data from 192 

GIOVANNI and ground data from SILO.  193 

(2) To employ the hybrid moDWT-Lasso-LSTM model in multi-step SM forecasting, i.e., 1 194 

day (t+1), 14 days (t+14) and 30 days (t+30) ahead SM forecasting. 195 

(3) To compare the objective model with benchmark models: LSTM, DNN, and ANN 196 

(standalone models), Lasso-LSTM, Lasso-DNN, and Lasso-ANN (2- phase hybrid models) 197 

and moDWT-Lasso-DNN and, moDWT-Lasso-ANN (3-phase hybrid models). 198 

 199 

Above objectives have been established in this study to design a precise SM 200 

forecasting model for short-, medium- and long-term SM predictions and to confirm its 201 

comparative advantage. SM as a major form of water resource exists on the earth is 202 

influencing the agricultural production and consequently affecting food security. Like the few 203 

other forms of water resources available in the globe, SM is also a limited resource and having 204 

growing demand due to expansion of agricultural production. Under SM depleted conditions, 205 

demand for water from water storages for irrigation purposes is increased while restricting 206 

water for other purposes like drinking and recreational activities. Presently on average, 207 

agriculture is accountable for 70 percent of total worldwide freshwater withdrawals (Bank, 208 

2020).  Precise SM predictions will be very helpful in early identification of moisture stress 209 

to the crops and actual irrigation water requirements in advance. Furthermore, precise SM 210 

predictions will be helpful in minimizing water wastage in irrigation activities, early notifying 211 

of crop production fluctuations and at last conserving valuable water resources. Considering 212 
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above benefits of having precise SM forecasting tool, this study sets its primary objective to 213 

design SM forecasting model using LSTM deep learning algorithm with Lasso feature 214 

selection and moDWT wavelet transform data decomposition algorithm. Further, this study 215 

aims to employ this proposed model in 1 day (t+1), 14 days (t+14) and 30 days (t+30) multi 216 

step SM forecasting scenarios. This will give an opportunity to observe its usefulness in short-217 

, medium- and long-term forecasting time horizons. Wide range of forecasting time horizons 218 

are important in implementing remedial actions against SM stress conditions in different 219 

levels. For instance, short term SM predictions may be important in taking prompt actions 220 

against potential sudden crop failures due to moisture stress while long term SM predictions 221 

may require in making strategic plans to cope with future drought conditions, conserving 222 

water resources and ensuring stable crop production in long run. In addition, by comparing 223 

the proposed model with competitive rival models, this study aims to recognize the 224 

performance improvement without overestimating the proposed model capabilities. The 225 

research objectives in this study will make way forward in further improvement of precision 226 

of SM prediction and thereby adding valuable contribution to the SM prediction studies.  227 

 228 

2. Theoretical overview  229 

This section describes the moDWT, Lasso, and LSTM algorithms used in the current 230 

study to build up the model. This study used ANN and DNN as benchmark models for assessing 231 

the target model's performance, which are relatively very recent machine learning models with 232 

neural networks like LSTM. These benchmark models are intentionally selected as they are 233 

advanced and therefore best possible competitive rivals to the data driven forecasting algorithm 234 

used in this study for the proposed model, i.e., LSTM.  Use of such newer and advanced 235 

benchmark models for comparison purpose is very important for evaluating the proposed 236 

model performance without overestimation and overconfidence. 237 

The theoretical foundation of the single neural layer ANN machine learning model is 238 

described in earlier research publications by Deo et al. (2018), Deo and Şahin (2017). In the 239 

discipline of hydrology, ANN is an extensively utilized algorithm and previous studies revealed 240 

its competency in prediction tasks.  Prasad et al. (2018), for instance, developed an ANN-CoM 241 

based multi-model ensemble committee machine learning strategy to forecast monthly soil 242 

moisture at four farming locations in Murray-Darling Basin, Australia. Volterra, Random 243 

Forest, M5 tree, and ELM models are used for ANN-CoM model validation. Compared to the 244 

other models, the ANN-CoM model has shown high competency in capturing the nonlinear 245 

dynamics of soil moisture level. Shirsath and Singh (2010) constructed ANN and Multiple 246 

Linear Regression (MLR) models, as well as Penman, Priestley-Taylor and Stephens and 247 
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Stewart models for pan evaporation estimation and the estimation results were statistically 248 

compared with observed pan evaporation. The comparison reveals that the ANN model 249 

outperforms other models. Ghimire et al. (2019b) has described the theoretical background and 250 

mathematical formulae of DNN algorithm in detail in a previous study. DNN algorithm is a 251 

further improvement of ANN which is also progressively used by researchers in the field of 252 

hydrology. It consists of multiple neural layer network architecture and categorized under DL 253 

subset of machine learning family. El Bilali et al. (2023) built up an interpretable based ML 254 

framework to forecast daily pan evaporation utilizing hourly climate datasets and used DNN 255 

along with Extra Tree, XGBoost, SVR models in their exercise. Interpretability of models in 256 

predicting daily pan evaporation has been evaluated by employing the Shapely Additive 257 

explanations (SHAP), Sobol-based sensitivity analysis, and Local Interpretable Model-258 

agnostic Explanations (LIME).  The results shown good consistency of the ML model 259 

performances with the real hydro-climatic process of evaporation in a semi-arid environment. 260 

Sezen et al. (2019) has employed DNN, ANN, combined conceptual model and regression tree 261 

(RT) data driven models to model daily rainfall-runoff in karst Ljubljanica catchment and its 262 

sub-catchments in Slovenia with different geological attributes. The results of the study 263 

demonstrated that combined conceptual model yielded better modelling 264 

performance.   Furthermore, Jayasinghe et al. (2022) and Ghimire et al. (2021) have used DNN 265 

as a benchmark model for evaluating  respective target models in their research works to 266 

forecast evaporation and streamflow respectively. 267 

 268 

2.1 Decomposition method: Maximum Overlap Discrete Wavelet Transform (moDWT) 269 

Maximum Overlap Discrete Wavelet Transform (moDWT) decomposition method 270 

decompose complex time series data with multiple periodicities, transients, and trends into high 271 

and low frequency sub time series which is termed as wavelet and scaling coefficients. Those 272 

wavelets and scaling coefficients resulted from moDWT are defined as follows (Quilty and 273 

Adamowski, 2018):  274 

 275 

𝑊𝑗,𝑡 = ∑ ℎ𝑙
𝐿−1
𝑙=0 𝑋𝑗−1,𝑡−2𝑗−1𝑙𝑚𝑜𝑑 𝑁          (1) 276 

𝑉𝑗,𝑡 = ∑ 𝑔𝑙
𝐿−1
𝑙=0 𝑋𝑗−1,𝑡−2𝑗−1𝑙𝑚𝑜𝑑 𝑁          (2) 277 

  278 

,where  𝑋  is a time series input vector with 𝑁 values; 𝑗 = 1,2, … , 𝐽, and 𝐽 represents the level 279 

of decomposition at the time 𝑡; the 𝑗𝑡ℎ level wavelet (𝑊𝑗,𝑡) and scaling (𝑉𝑗,𝑡) filters of moDWT 280 

are represented as ℎ𝑙 and 𝑔𝑙, respectively, and 𝐿 is the  𝑗𝑡ℎ level filters’ width. 281 
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The moDWT can overcome some issues that can be seen related with other data 282 

decomposition algorithms such as DWT and moDWT multi resolution analysis (moDWT-283 

MRA).   In some situations, when decomposing data using various wavelet transforms, output 284 

values of decomposition process (Coefficients) cannot be calculated correctly (without adding 285 

errors) due to unavailability of time series observations needed in the calculation relative to a 286 

particular time point considered. The sources accountable for adding such errors termed as 287 

boundary conditions. For instance, DWT and moDWT-MRA which has been adapted in earlier 288 

research works has a boundary condition that arise due to its need for future data at a particular 289 

time point considered in calculating its ultimate decomposed output values termed as detail and 290 

approximation coefficients. When historical time series data is used, future data is available 291 

relative to a particular data point considered which detail and approximation coefficients are to 292 

be calculated. However, future data is not accessible in real world scenario for correctly 293 

calculating the detail and approximation components and therefore models developed using 294 

DWT and moDWT-MRA process will be unable to do accurate forecast of SM in practical 295 

implementations. The moDWT is a good remedy to address this boundary condition issue 296 

related with future data in calculating detailed and approximation coefficients in real world 297 

scenario connected with DWT and moDWT-MRA leading to produce inaccurate forecast in 298 

real world situations. The moDWT only uses the current time data of time series observations 299 

related to the considering data point along with the past time series data and not involve with 300 

future data when calculating its decomposition outputs: wavelet and scaling coefficients 301 

(Quilty and Adamowski, 2018). However, moDWT process cannot correctly calculate its 302 

decomposition outputs, i.e., wavelet and scaling coefficients for the data points at the beginning 303 

of time series data set as this calculation process need past time series data relative to the 304 

particular data point considered. As past time series data are not available for data points at the 305 

beginning of the data set, all wavelet and scaling coefficients calculated for early data points 306 

are incorrect and termed as boundary condition affected wavelet and scaling coefficients. The 307 

number of incorrect or boundary condition affected wavelet and scaling coefficients is 308 

dependent on decomposition level and wavelet filter used in this process. The total number of 309 

incorrect wavelet and scaling coefficients can be calculated using the Eq.(3) (Quilty and 310 

Adamowski, 2018) and according to this equation high decomposition levels and wavelet filters 311 

with higher lengths tend to increase the total number of incorrect wavelet and scaling 312 

coefficients.  313 

𝐿𝐽 = (2𝐽 − 1)(𝐿 − 1) + 1                                                                                                            (3)  314 

 315 
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, where 𝐿𝐽 represents the number of wavelet and scaling coefficients affected by the boundary 316 

condition for decomposition level 𝐽 and a wavelet filter of length 𝐿. 317 

In order to improve model forecasting accuracy, it is necessary to remove all these 318 

boundary condition affected incorrect wavelet and scaling coefficients that are derived at the 319 

beginning of the data set. High decomposition levels and lengthy wavelet filters will result in 320 

more incorrect wavelet and scaling coefficients that must be removed from the data set, 321 

resulting in an inadequate number of correct wavelet and scaling coefficients for model 322 

training. In order to further improve the model performance, appropriate selection of 323 

decomposition levels and wavelet filters is essential. Quilty and Adamowski (2018), Percival 324 

and Walden (2000) describe future data issues in detail. The optimal decomposition level and 325 

wavelet filter type cannot be found by using any thumb rule. The number of boundary 326 

conditions affected (incorrect) wavelet and scaling coefficients should not be increased 327 

unnecessarily, as it leaves inadequate correct wavelet and scaling coefficients to run the model. 328 

However, the Eq.(4) can be used for calculating the maximum decomposition level ( 𝐽) that 329 

can be adapted (Al-Musaylh et al., 2020, Ghimire et al., 2019b): 330 

 331 

𝐽 = 𝑖𝑛𝑡(𝑙𝑜𝑔2𝑁)                 (4) 332 

 333 

2.2 Feature selection method: Least Absolute Shrinkage and Selection Operator (Lasso) 334 

In this study, the Lasso algorithm (Tibshirani, 1996) is employed as a feature selection 335 

technique after decomposition of input time series variables by the moDWT algorithm. 336 

Suppose that the dataset consists of 𝑝 input variables and 𝑁 observations. Let  𝑋 =337 

[𝑥1, 𝑥2, … , 𝑥𝑝] ∈ ℝ𝑁×𝑝 is the input data matrix, in which each column denotes an input variable 338 

and 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁]𝑇 ∈ ℝ𝑁 is the response variable where the response value at observation 339 

𝑗 is represented by 𝑦𝑗 and 𝑥𝑗 is a vector containing 𝑝 characteristics. Lasso resolves (Karevan 340 

and Suykens, 2016), 341 

 342 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑦 − 𝑋𝑇𝛽‖2 + 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1          (5) 343 

 344 

𝐿1 = 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1                                                                                                                        (6) 345 

 346 

By applying a 𝐿1- penalty for the regression coefficients, the Lasso technique degrades least-347 

squares by shrinking the regression coefficients (𝛽̂) to zero. The variables are chosen to be 348 

included in the model during this feature selection procedure if their coefficients after the 349 
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shrinking step are still non-zero. This process minimizes the prediction error by reducing the 350 

complexity of the model. 351 

 352 

2.3 Data driven forecasting model: Long Short-Term Memory network (LSTM) 353 

The LSTM is a unique type of Recurrent Neural Network (RNN) (Cho et al., 2014) in 354 

connection with traditional artificial neural networks that can recognize intrinsic characteristics 355 

of time sequence predictors and targets, considering the recurrent patterns and tendencies  356 

throughout  long stretches of time (Manaswi, 2018). Input, output, and forget gates are the main 357 

components of the special units, or memory blocks, that the LSTMs use to operate and these 358 

memory blocks regulate the flow of information and are continuously updated (Chen et al., 359 

2018). The 4 steps calculations are described as follows (Zhang et al., 2018b): 360 

 361 

I. The forget gate 𝑓𝑡 is used by the LSTM layer to determine which data should either be 362 

discarded or retained depending on the most recent hidden layer output  ℎ𝑡−1 , and the 363 

new input 𝑥𝑡: 364 

 365 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                   (7) 366 

 367 

, where 𝑤𝑓 stands for weight matrix; 𝑏𝑓 stands for bias vector and 𝜎(… ) stands for sigmoid 368 

logistic function. 369 

 370 

II. After information is updated by utilising a “input gate” 𝑖𝑡 , the LSTM layer determines 371 

which signal must be kept in the newly formed cell state 𝑐𝑡, that is denoted as the new 372 

candidate cell state 𝐶̅𝑡 :  373 

 374 

𝐶̅𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)               (8) 375 

 376 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                             (9) 377 

 378 

 , where hyperbolic tangent function is denoted by 𝑡𝑎𝑛ℎ(… ) 379 

 380 

III. The “forget gate” 𝑓𝑡 removes unwanted information from the old cell state 𝐶𝑡−1 to 𝐶𝑡 and 381 

the “input gate” 𝑖𝑡 obtains a new candidate cell state 𝐶̅𝑡:  382 

 383 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̅𝑡                                                (10) 384 

 385 

IV. The cell state 𝐶𝑡 and the “output gate” 𝑜𝑡 are then used to calculate the output ℎ𝑡: 386 

 387 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                            (11) 388 

 389 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)                          (12) 390 

 391 

3. Methodology 392 

 393 

3.1. Study region  394 

Bundaberg region-152.32°𝐸, 24.91°𝑆 𝑖𝑠 the targeted site in this study for which the 395 

proposed model is designed. This land extends 6,444 square km located in Wide-Bay Burnett 396 

region of Queensland state, Australia. Bundaberg region has subtropical climate with warm 397 

wet summers and mild winters.  In this region, the average annual temperature and rainfall is 398 

around 20°C and 774mm respectively and the majority of the rain falls in the summer. Average 399 

daily maximum temperature during the hot summer which prevails from November to March 400 

is above 28°C. January is the warmest month of the year in Bundaberg and the average 401 

maximum and minimum temperatures during this month are 30°C and 23°C respectively. The 402 

average minimum and maximum temperatures during July which is the coldest month of the 403 

year in Bundaberg are 14°C and 21°C respectively. The seasonal fluctuation of Bundaberg 404 

monthly rainfall is significant and receiving its highest rain fall during February with an 405 

average of 120 mm. September is reported to be the month that Bundaberg receives lowest 406 

rainfall in the year, and it is 28 mm in average. The perceived humidity varies greatly in this 407 

region while experiencing mild seasonal variation in the average hourly wind speed throughout 408 

the year (Spark, 2023, Government, 2023). According to Bundaberg Regional Council 409 

population statistics estimates, this area’s total resident population has reached up to 100,118 410 

in year 2021 with a population density of 15.54 persons per square km. The total worthiness of 411 

agricultural, forestry and fishing sector in this region is considered to be approximately $1.2 412 

billion. This region is regarded as the food bowl capital in Australia representing 12% of 413 

Queensland’s total agriculture production. Due to this region’s fertile soils, favourable climate 414 

and steady water supply, well diversified agricultural operations are carried out and wide range 415 

of crops are grown. For instance, this region contributes to produce 50 per cent of Australia’s 416 

macadamia production and it represents the largest proportion of country’s macadamias 417 

production.   This region is also leading in terms of avocado production in Australia becoming 418 
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the region that allocate largest land extent for avocado farming in Australia. Further, this 419 

region’s contribution for mandarin, sweet potato, passionfruit and pasture production are 420 

highly significant (Bundaberg-Regional-Council, 2023, bundaberg-agtech-hub, 2023, 421 

Growers, 2023). Above information confirms that, Bundaberg region is providing very 422 

welcoming platform for the agricultural industries while allowing this sector to be dominant in 423 

the region. Therefore, evolving a precise forecasting model to predict the soil moisture for 1,14, 424 

and 30 days ahead is strategically important in early identification of water deficit and surplus 425 

conditions affecting crop production in the region.  Further, it will be helpful in employing 426 

precision irrigation practices in the region which consequently contributing to preserve the 427 

valuable water resources for future and other water demanding activities. Thus, Bundaberg 428 

region is selected for this study which aims to develop a deep learning artificial intelligence 429 

model to forecast soil moisture.  430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

Figure 1. Study site geographical location and land use of the region and surrounding areas 443 

(pinterest, 2023)   444 

 445 

3.2. Data collection 446 

To conduct this research, satellite and ground based daily climatic data of 15 predictive 447 

and target variables from January 1, 2005, to December 31, 2020 are collected for the selected 448 

study site. This whole time period consists total of 5844 data points.  Satellite-based data 449 

including data for target variable, i.e., Soil Moisture (SM) (0-10cm depth) are collected from 450 

two data platforms of Goddard Online Interactive Visualization and Analysis Infrastructure 451 

(GIOVANNI) namely, Global Land Data Assimilation System (GLDAS) and Famine Early 452 

Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) with 0.01 453 
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degree spatial resolution. Giovanni is a web interface that facilitate various users to analyse 454 

gridded data captured from various satellite and surface observations by National Aeronautics 455 

and Space Administration (NASA), United State of America. The  GIOVANNI offers simple 456 

access to examine and analyse a massive amount of remote sensing data relevant to Earth 457 

Science (Teng et al., 2014). The ground-based data used for this study is collected from the 458 

Scientific Information for Landowners (SILO) database for the same time frame. The 459 

Queensland Government handles the operation of this database (Morshed et al., 2013). A list 460 

of the data sources and predictor variables used in this study, together with their corresponding 461 

acronyms, are shown in Table 1.  462 

 463 
Table 1.  Satellite-based Goddard Online Interactive Visualization and Analysis Infrastructure 464 

(GIOVANNI) Global Land Data Assimilation System (GLDAS) spectrometer satellite and Famine 465 

Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) spectrometer 466 

with Scientific Information for Land Owners (SILO) ground-based predictor variables used to develop 467 

the proposed hybrid moDWT-Lasso-LSTM model and other benchmark models  468 

 469 

Data Source Name of Predictor Variable Acronym Unit 

GIOVANNI-

Satellite data 

FLDAS 

Model 

Soil Temperature (0-10cm depth) ST0-10 K 

Soil Temperature (10-40cm depth) ST10-40 K 

Soil Temperature (40-100cm depth) ST40-100 K 

Soil Moisture (10-40cm depth) SM10-40 kgm-2 

Soil Moisture (40-100cm depth) SM10-40 kgm-2 

Soil Moisture (100-200cm depth) SM10-40 kgm-2 

GLDAS 

Model Ground Water Storage GWS 
mm 

SILO-Ground based 

data 

Maximum Temperature max-temp 

 

Minimum Temperature min-temp 

 
 

 
 

Solar radiation radiation MJm-2 

Relative humidity at the time of maximum 

temperature rh-tmax % 

Relative humidity at the time of minimum 

temperature rh-tmin % 

Mean sea level pressure mslp hPa 

Rainfall  rain mm 

Reference Evapotranspiration ET mm 

 470 

Above 15 predictive variables are selected based on results of correlation matrix and 471 

trial runs excluding and including predictor variables having different levels of correlation with 472 

the target variable.  Those trials, shown that the predictor variables having a weaker correlation 473 

with the target variable reduces the forecasting accuracy of all models tested. Therefore, to 474 
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improve the forecasting accuracy of the models, predictor variables that shown high or 475 

reasonable correlation with the target variable are selected. In that sense other layer soil 476 

moisture data (SM10-40, SM10-40, SM10-40) which shown good correlation with target layer 477 

(SM 0-10) soil moisture data are considered.  478 

3.3. Computers and software used in the study 479 

  The proposed multi-stage moDWT-Lasso-LSTM model and all other benchmark 480 

models are developed using a computer configured with an  Intel Core i7 @ 3.3 GHz processor 481 

and 16 GB of memory loaded with freely downloadable deep learning libraries of Keras 482 

(Ketkar, 2017) and TensorFlow (Abadi et al., 2016)  in Python. The moDWT data decomposing 483 

algorithm and Lasso feature selection algorithm are run on MATLAB R2019b and Python 484 

respectively. Further, ‘‘matplotlib’’ along with ‘‘seaborn’’ tools in Python are utilised for 485 

producing graphical illustrations to visualize the result in depth.  486 

 487 

3.4. Data lagging  488 

Row data of all 15 predictor variables are time lagged against row data of target 489 

variable, i.e., SM accordance with forecasting lead times t+1, t+14, and t+30 respectively. In 490 

case of lagging data for t+1 SM forecasting, all data are stacked in a way that, data of predictor 491 

variables at each time point in predictor data sequence are always coinciding with I day ahead 492 

data of target variable. Similarly, in case of t+14 and t+30 SM forecasting, data of predictor 493 

variables at each time point are always coinciding with 14 and 30 days ahead target variable 494 

data respectively.  495 

 496 

3.5. Data decomposition using moDWT for developing three phase hybrid models 497 

This research adapted moDWT as the data decomposing algorithm to decompose 498 

lagged data of predictor variables in the case of developing three-phase hybrid models named 499 

as moDWT-Lasso-ANN, moDWT-Lasso-DNN and moDWT-Lasso-LSTM. However, data of 500 

target variable are not decomposed using moDWT as it is not providing additive reconstruction 501 

function (Quilty and Adamowski, 2018, Percival and Walden, 2000).   502 

 Considering there are no rules to determine the optimal decomposition level and 503 

wavelet filter type for a decomposition process, trial and error procedures are used in this study, 504 

as is common practice in similar studies. However, the Eq. (4) which is discussed in theoretical 505 

overview section of this paper is used for calculating the maximum decomposition level and in 506 

this research, it gives value 9. According to the Eq. (3) such higher decomposition level 507 

increases the number of incorrect wavelet and scaling coefficients, and it further increases 508 
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when such higher decomposition level combines with wavelet filters with longer wavelength. 509 

Therefore, in this study three different decomposition levels i.e., 2, 4 and 6 which are below 510 

this highest decomposition level are selected for trial-and-error process. In this study, 511 

commonly used 7 wavelet filters having different wavelet lengths belonging to three different 512 

wavelet families are used and they are as follows: Haar (wavelet length equal to 2), db2, db4 513 

and db6 (wavelet lengths equal to 4, 8 and 12 respectively) belonging to Daubechies family 514 

and fk4, fk8 and fk14 (wavelet lengths equal to 4, 8 and 14 respectively) belonging to Fejer-515 

Korovkin family. Thus, 21 trails are carried out to find out the best combination of 516 

decomposition level and wavelet filter for each 3-phase hybrid model in a particular lead time. 517 

As three lead times (t+1, t+14 & t+30) and three 3-phase hybrid models (moDWT-Lasso-518 

ANN, moDWT-Lasso-DNN and moDWT-Lasso-LSTM) are tested in this study, a total of 189 519 

trials are conducted to find out the best combinations of decomposition level and wavelet filter 520 

relevant to each scenario.  521 

Therefore, although many wavelet filters belonging to many wavelet families are 522 

available, current study limits to use only above 7 wavelet filters for trials due to time 523 

constraints and to avoid complexity of the study. The lengthiest wavelet filter considered is 524 

fk14 and wavelet filters with higher lengths than that are not considered as they tend to increase 525 

the number of boundary condition affected wavelet and scaling coefficients. When this filter is 526 

used with decomposition level six, i.e., combination of heights decomposition level and highest 527 

wavelet filter length in this study scenario, according to the Eq. (3), the number of boundary 528 

condition affected, or incorrect wavelet and scaling coefficients will equal to 820.  Although 529 

this value is differed with different combinations of wavelet filter and decomposition levels, 530 

820 wavelet and scaling coefficients (that is the maximum possible number of boundary 531 

condition affected wavelet and scaling coefficients) are removed to ensure that all trials that 532 

are distinguished each other due to different wavelet filter, decomposition level and forecasting 533 

model combinations get the same data set. Similarly, 820 data points are removed from the 534 

beginning of the data sets that are used for standalone and 2-phase hybrid models.   535 

 536 

 537 

 538 

3.6. Feature selection process using Lasso for developing 2 phase and 3 phase hybrid 539 

models 540 

Feature selection is carried out using Lasso feature selection algorithm to find the 541 

mostly correlated predictor variables to the target variable for the case of developing 2-phase 542 

hybrid models, i.e., Lasso-ANN, Lasso-DNN and Lasso-LSTM. For this purpose, 543 
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undecomposed predictor variable data is used for each lead time scenario separately and only 544 

the undecomposed data of selected predictor variables are chosen to feed the 2-phase hybrid 545 

forecasting models. Further, the Lasso feature selection algorithm is employed to find the 546 

mostly corelated wavelet and scaling coefficient data series derived from original predictor 547 

variable data series in the data decomposition process carried out using moDWT for 548 

development of 3-phase hybrid models, i.e., moDWT-Lasso-ANN, moDWT-Lasso-DNN and 549 

moDWT-Lasso-LSTM. This task is performed for each model and lead time scenarios 550 

separately.  551 

 552 

3.7. Data normalization 553 

In this study, the data ranges for each predictor variable in the data sets prepared for 554 

forecasting models vary across all model scenarios. Thus, variables with larger data ranges can 555 

be unnecessarily favoured in model forecasting over inputs with narrow ranges regardless of 556 

their intrinsic relationship. Before the data driven models are fed with data, data normalization 557 

is carried out using Eq (13) to scale the data within 0-1 range. In data normalization, the training 558 

and testing data partitions of a particular model scenario is taken together as training model 559 

parameters will not be able to generalize the unseen data if they are done separately.   560 

 561 

𝑋𝑛 =
𝑋𝑎𝑐𝑡𝑢𝑎𝑙−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                               (13) 562 

 563 

, where  𝑋𝑎𝑐𝑡𝑢𝑎𝑙, 𝑋𝑚𝑎𝑥, and 𝑋𝑚𝑖𝑛 denotes the input data for actual, maximum, and minimum 564 

values respectively.  565 

 566 

3.8. Hyperparameter optimization 567 

To construct best forecasting model designs, Hyperopt hyperparameter optimization 568 

algorithm which is available in the Python Hyperopt library (Bergstra et al., 2015, Komer et 569 

al., 2019) is used to identify the target and all other benchmark model’s hyperparameters for 570 

each lead time forecast separately and training data partitions are used in this process. In 571 

comparison to Grid search and Random search, the Hyperopt hyperparameter optimization 572 

technique performs better since it can speed up the model training process while improving 573 

model accuracy (Putatunda and Rama, 2018). The list of hyperparameters and their search 574 

space used in hyperparameter optimization processes are given in Table 2 while optimal 575 

hyperparameters which are identified through the hyperparameter optimization process for 576 

designing the target LSTM and all other benchmark model architectures are given in Table 3.  577 

78



  578 

Table 2. List of hyperparameters and their search space used in hyperparameter optimization 579 

process Note: ReLU and Adam stand for the Rectified Linear Units and Adaptive Moment Estimation 580 

respectively. 581 

 582 

Model 
Name of Model 

Hyperparameters 

Search Space for Optimal 

Hyperparameters 

L
S

T
M

 

LSTM Layer 1 [50, 70, 100, 150] 

LSTM Layer 2 [50, 70, 100, 150] 

LSTM Layer 3 [50, 70, 100, 150] 

Dense Layer [1] 

Epochs [100, 200, 500] 

Activation Function  [ReLU] 

Optimizer [Adam] 

Dropout Ratio [0.1, 0.2] 

Batch Size [5,10,20,30] 

D
N

N
 

Hidden neuron 1 [10, 20, 30] 

Hidden neuron 2 [10, 15, 25] 

Hidden neuron 3 [5, 10, 20] 

Dense Layer [1] 

Epochs [30, 50, 100, 200] 

Activation Function [ReLU] 

Optimizer [Adam] 

Dropout Ratio [0.1, 0.2, 0.3,0.4,0.5] 

Batch Size [3, 5, 10] 

A
N

N
 

Hidden neuron  [10, 20, 30] 

Dense Layer [1] 

Epochs [30, 50, 100,300,1000,2000] 

Activation Function  [sigmoid, tanh, ReLU] 

Optimizer [Adam] 

Dropout Ratio [0.3, 0.4, 0.5] 

Batch Size [3,5,10] 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 
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Table 3. List of optimal hyperparameters selected by hyperparameter optimization process 591 

for LSTM, DNN and ANN models designing at t+1, t+14 and t+30 lead times.  592 

   593 

Lead 

Time 

(Days) 

Model 

Layer 1 Layer 2 Layer 3 
Batch 

Size 
Epochs No. of 

Neurons  

Activation 

Function 

Dropout 

ratio 

No. of 

Neurons 

Activation 

Function 

Dropout 

ratio 

No. of 

Neurons 

Activation 

Function 

Dropout 

ratio 

t+1 MoDWT-Lasso-LSTM 50 ReLU 0.1 150 ReLU 0.1 50 ReLU 0.1 20 500 

 MoDWT-Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 100 

 MoDWT-Lasso-ANN 20 ReLU 0.3             10 100 

 Lasso-LSTM 50 ReLU 0.1 150 ReLU 0.1 50 ReLU 0.1 20 500 

 Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 100 

 Lasso-ANN 20 ReLU 0.3             10 100 

 LSTM 50 ReLU 0.1 150 ReLU 0.1 50 ReLU 0.1 30 500 

 DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 100 

  ANN 20 ReLU 0.3             10 100 

t+14 MoDWT-Lasso-LSTM 100 ReLU 0.3 150 ReLU 0.2 100 ReLU 0.1 10 500 

 MoDWT-Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1       5 200 

 MoDWT-Lasso-ANN 20 ReLU 0.3             10 100 

 Lasso-LSTM 100 ReLU 0.3 150 ReLU 0.1 50 ReLU 0.1 30 500 

 Lasso-DNN 20 ReLU 0.4 10 ReLU 0.1 5 ReLU 0.1 10 100 

 Lasso-ANN 20 ReLU 0.3             10 100 

 LSTM 50 ReLU 0.1 100 ReLU 0.2 50 ReLU 0.1 10 200 

 DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 50 

  ANN 30 ReLU 0.3             10 100 

t+30 MoDWT-Lasso-LSTM 50 ReLU 0.2 100 ReLU 0.2 50 ReLU 0.1 10 200 

 MoDWT-Lasso-DNN 30 ReLU 0.5 20 ReLU 0.2 10 ReLU 0.1 5 300 

 MoDWT-Lasso-ANN 20 ReLU 0.3             10 100 

 Lasso-LSTM 50 ReLU 0.2 100 ReLU 0.2 50 ReLU 0.1 10 200 

 Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 5 300 

 Lasso-ANN 10 ReLU 0.2             10 100 

 LSTM 50 ReLU 0.2 100 ReLU 0.2 50 ReLU 0.1 10 200 

 DNN 10 ReLU 0.5 25 ReLU 0.1 5 ReLU 0.3 3 300 

  ANN 20 ReLU 0.3             10 100 

 594 

3.9.   Data partitioning and data feeding to models 595 

 596 

In this study for all model scenarios, first 75 % of respective data set is allocated for 597 

training purpose while the rest, 25 % is allocated for testing purpose and that allows both 598 

training and testing data partitions get adequate data for successful model running. Although 599 

total of 5844 data points are initially considered, due to the above explained data pre-processing 600 

works (data lagging, data decomposition and data removal) number of data points finally 601 

utilized at model running stages for each lead time scenario is reduced. So that in case of t+1 602 

lead time SM forecasting, all models are fed with 5023 data points while in cases of t+14 and 603 

t+30 lead time SM forecasting 5010 and 4994 data points are fed to the forecasting models 604 

respectively. As the first 75 % of total data set is used for the training purpose in all cases, 605 

number of data points used in training phase in t+1, t+14 and t+30 forecasting scenarios are 606 

3767, 3757 and 3745 respectively. So that, 1256, 1253 and 1249 data points (last 25 % of the 607 

entire data set) are left for testing phase in t+1, t+14 and t+30 forecasting scenarios 608 
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respectively. For instance, in t+1 lead time case, daily data points from 01/04/2007 to 609 

23/07/2017 are used for training purpose while, daily data points from 24/07/2017 to 610 

30/12/2020 are used for testing purpose. 611 

Original undecomposed lagged data of predictor variables and data of target variable 612 

are used to training and testing the standalone models, i.e., ANN, DNN and LSTM for each 613 

lead times. In case of developing 2 phase hybrid models, i.e., Lasso-ANN, Lasso-DNN and 614 

Lasso-LSTM, lagged data of predictor variables selected by Lasso feature selection algorithm 615 

along with target variable data are used. Lagged decomposed data of predictor variables 616 

selected by Lasso feature selection algorithm along with undecomposed target variable data 617 

are used for developing 3-phase hybrid models, i.e., moDWT-Lasso-ANN, moDWT-Lasso-618 

DNN and moDWT-Lasso-LSTM. In the training phase of all model development cases, the 619 

model can see both input and output variable data. During the testing phase, however, the model 620 

can see only the input variable data and has no access the target variable data in the forecasting 621 

process. As the testing phase time point range is also historical with respect to the current time, 622 

realistically, future data of target variable with respect to all testing phase time points are 623 

available. For setting up a situation exactly similar to the real-world application of the model, 624 

target variable data are not made available for the forecasting process and instead let the model 625 

to forecast values for the target variable for each lead time with respect to each testing phase 626 

time point using the respective historical data of input variables using the skills developed in 627 

the training phase. Forecasted values of target variable are then compared with real future 628 

values of target variable available for all testing phase time points and evaluated the accuracy 629 

using statistical and graphical tools. Figure 2 illustrates the schematic view of the all model 630 

development process including the 3-phase hybrid moDWT-Lasso-LSTM model for multi-step 631 

SM forecasting at t+1, t+14 and t+30 lead times. 632 

 633 

3.10 Performance evaluation  634 

When developing machine learning models, evaluating the model performance is 635 

crucial. It determines whether a model is suitable for certain applications, compares it with 636 

rival models, and identifies areas for improvement (Pearce and Ferrier, 2000). As a result, for 637 

SM forecasting at selected sites for the same datasets, the proposed moDWT-Lasso-LSTM 638 

model and other benchmark models are evaluated considering forecasting accuracy and errors. 639 

 640 

(i) Pearson’s Correlation Coefficient  (𝑟) 641 

The following equation (Eq.14) is used to derive the value of 𝑟,which expresses how 642 

closely forecasted (𝑆𝑀𝐹𝑂𝑅)  and observed (𝑆𝑀𝑂𝐵𝑆) values are coincided (Moriasi et al., 2007). 643 
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The values given for this metric are always floating in between -1 to +1 and it equals +1 when 644 

perfectly strong and positive correlation exist between two variables (such as the forecasted 645 

and observed SM).  In contrast, perfectly strong and negative correlations exist between two 646 

variables gives value of -1.  The value r will be equal to zero if there is no relation between any 647 

two variables. However, in this instance, there should be a high and positive correlation 648 

between the estimated values by the forecasting model and  observed values to consider the 649 

forecasting model to be competent enough in prediction works, thus r value should close or 650 

equal to +1 (Van Vuren, 2020). 651 

 652 

𝑟 =
∑ (𝑆𝑀𝑂𝐵𝑆,𝑖−𝑆𝑀𝑂𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(𝑆𝑀𝐹𝑂𝑅,𝑖−𝑆𝑀𝐹𝑂𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝑆𝑀𝑂𝐵𝑆,𝑖−𝑆𝑀𝑂𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁
𝑖=1

2
√∑ (𝑆𝑀𝐹𝑂𝑅,𝑖−𝑆𝑀𝐹𝑂𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

2
, −1 ≤ 𝑟 ≤ 1                           (14) 653 

 654 

(ii) Determination of Coefficient (R2) 655 

The determination of coefficient (𝑅2) can be explained as the proportion of the variance 656 

in the dependent variable that is predicted by the independent variables (Chicco et al., 2021). 657 

it ranges between -∞ and +1. +1 is considered as the best value.   658 

 659 

𝑅2 = 1 −
∑ (𝑆𝑀𝐹𝑂𝑅,𝑖−𝑆𝑀𝑂𝐵𝑆,𝑖)

2𝑁
𝑖=1

∑ (𝑆𝑀𝑂𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝑆𝑀𝑂𝐵𝑆,𝑖)
2𝑁

𝑖=1

, −∞ ≤ 𝑟 ≤ 1                                                  (15)                                                             660 

 661 

(iii)   Root Mean Square Error (𝑅𝑀𝑆𝐸; 𝑘𝑔𝑚−2 )  662 

Regression model performances are typically evaluated using the RMSE (Eq.16). This 663 

metric computes the average of prediction error generated by forecasting models, that is the 664 

average difference among the forecasted value (𝑆𝑀𝐹𝑂𝑅) and the observed value (𝑆𝑀𝑂𝐵𝑆) 665 

(Willmott and Matsuura, 2005). The value of RMSE can be anywhere between 0 and ∞, but as 666 

model performance increases, the value of RMSE is shifting towards zero. 667 

 668 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑀𝐹𝑂𝑅,𝑖 − 𝑆𝑀𝑂𝐵𝑆,𝑖)2𝑁

𝑖=1 , 0 ≤ 𝑅𝑀𝑆𝐸 < +∞                 (16) 669 

 670 

(iv)  Mean Absolute Error  (𝑀𝐴𝐸; 𝑘𝑔𝑚−2)  671 

The MAE (Eq.17)  is measuring the actual forecasting errors in relation to the total 672 

number of observations (Prasad et al., 2019b); MAE value is fluctuating between 0 and ∞, 673 

however for ideal predictive models, it becomes zero. As the value given for MAE is unaffected 674 
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by extreme outliers it provide more reliable estimation of the model’s average error relative to 675 

the RMSE (Legates and McCabe Jr, 1999). 676 

 677 

𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑆𝑀𝐹𝑂𝑅,𝑖 − 𝑆𝑀𝑂𝐵𝑆,𝑖)|𝑁

𝑖=1 , 0 ≤ 𝑀𝐴𝐸 < +∞                            (17) 678 

 679 

(v) Mean Absolute Scaled Error (MASE)  680 

The MASE (Eq.18) proposed by Hyndman and Koehler (2006) is also can be used as a 681 

measurement of forecast accuracy and major advantage of this statistical tool is that, the result 682 

is independent of the scale of the data. This measures the accuracy of a forecasting model in 683 

terms of the in-sample MAE value generated by one period a head naïve forecast method. When 684 

the forecasting model performance is better than the average one-step, naïve forecast computed 685 

in sample, the value for MASE will be less than 1 and contrarywise, it is greater than 1 if the 686 

forecast is inferior than the in-sample average one-step, naïve forecast (Hyndman, 2006) 687 

 688 

𝑀𝐴𝑆𝐸 =
1

𝑁
(

∑ |𝑆𝑀𝐹𝑂𝑅,𝑖−𝑆𝑀𝑂𝐵𝑆,𝑖|𝑁
𝑖=1

1

𝑁−𝑚
∑ |𝑆𝑀𝑂𝐵𝑆,𝑖−𝑆𝑀𝑂𝐵𝑆,𝑖−𝑚|𝑁

𝑖=𝑚+1

)                    (18) 689 

 690 

(vi) Symmetric Mean Absolute Percentage Error (SMAPE) 691 

The SMAPE was first proposed by Armstrong and Forecasting (1985) and it is a 692 

modification of Mean Absolute Percentage Error (MAPE) to avoid the issue of being infinite 693 

or undefined due to zeros in the denominator (Makridakis et al., 2008). Like MASE, SMAPE is 694 

also a scale-independent metrics and thus ideal for comparing performances of forecasting 695 

algorithms (Hyndman and Koehler, 2006). Smaller percentage values indicate high levels of 696 

accuracy in the forecasting models.  697 

 698 

𝑆𝑀𝐴𝑃𝐸 =
200

𝑁
∑

|𝑆𝑀𝐹𝑂𝑅,𝑖−𝑆𝑀𝑂𝐵𝑆,𝑖|

(|𝑆𝑀𝐹𝑂𝑅,𝑖|+|𝑆𝑀𝑂𝐵𝑆,𝑖|)

𝑁
𝑖=1 %                                                                          (19) 699 

 700 

(vii) Willmott’s Index  (𝑊𝐼) 701 

This index (Eq.20) is applicable to a variety model performances issues since it is 702 

relatively flexible and more logically measures the model precision than other existing indices 703 

(Willmott et al., 2012). This value is ranging from 0 to 1, although the optimum predictive 704 

models give value of 1 for this metric.  705 

 706 
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𝑊𝐼 = 1 − [
∑ (𝑆𝑀𝑂𝐵𝑆,𝑖−𝑆𝑀𝐹𝑂𝑅,𝑖)

2𝑁
𝑖=1

∑ (|(𝑆𝑀𝐹𝑂𝑅,𝑖−𝑆𝑀𝐹𝑂𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|+|(𝑆𝑀𝑂𝐵𝑆,𝑖−𝑆𝑀𝑂𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|)𝑁
𝑖=1

2] , 0 ≤ 𝑊𝐼 ≤ 1                         (20) 707 

 708 

(viii) Nash-Sutcliffe Index (𝑁𝑆)  709 

The value of  NS (Eq.21) (Nash and Sutcliffe, 1970) shows how closely the depicted 710 

line between the predicted values and observed values fits within 1:1 ratio. If the predicted data 711 

from the model and observed data match exactly, the NS will be equal to 1. While -Inf < NS < 712 

0, implies that the model is not a better predictor than the observed mean, the NS = 1, implies 713 

that the model estimations match the observed data’s mean in terms of accuracy (AgriMetSoft, 714 

2019). 715 

 716 

  𝑁𝑆 = 1 − [
∑ (𝑆𝑀𝑂𝐵𝑆,𝑖−𝑆𝑀𝐹𝑂𝑅,𝑖)

2𝑁
𝑖=1

∑ (𝑆𝑀𝑂𝐵𝑆,𝑖−𝑆𝑀𝑂𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1

] , −∞ < 𝑁𝑆 ≤ 1                            (21) 717 

 718 

(ix)  Legate and McCabe Index (LM)  719 

The LM value (Eq.22) is more advanced evaluation metric compared to WI and NS 720 

values. When assessing the quality of a hydrologic or hydroclimatic model’s fit, this index is 721 

more helpful than correlation based metrics like 𝑊𝐼, Coefficient of Determination (𝑅2),  and 722 

NS  (Legates and McCabe, 1999). Optimal predictive models will give value of one for LM, 723 

while it ranges between -∞ and 1. 724 

 725 

 𝐿𝑀 = 1 − [
∑ |𝑆𝑀𝐹𝑂𝑅,𝑖−𝑆𝑀𝑂𝐵𝑆,𝑖|𝑁

𝑖=1

∑ (|(𝑆𝑀𝐹𝑂𝑅,−𝑆𝑀𝐹𝑂𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|+|(𝑆𝑀𝐹𝑂𝑅−SM𝑂𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|)𝑁
𝑖=1

2] , −∞ < 𝐿𝑀 ≤ 1                         (22) 726 

 727 

In Equations (14-22), 𝑆𝑀𝑂𝐵𝑆 is daily observed soil moisture (0-10cm depth) and 𝑆𝑀𝐹𝑂𝑅 728 

is daily forecasted soil moisture (0-10 cm depth), 𝑆𝑀𝑂𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅  and 𝑆𝑀𝐹𝑂𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅   are the mean of the 729 

values of 𝑆𝑀𝑂𝐵𝑆 and  𝑆𝑀𝐹𝑂𝑅 respectively,  𝑖 is the time of the occurrence, and 𝑁 denotes the 730 

overall quantity of data points used in the testing phase. 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 
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4. Results and discussion 774 

 The summary of the descriptive statistics values of all predictor and target variable data 775 

is given in Table 4 and Goos and Meintrup (2015), Brown Breslin et al. (2020)  discuss the 776 

calculations and interpretations of those descriptive statistics in detail. Descriptive statistics 777 

provide information about central tendency (mean, median) and variability (standard deviation) 778 

of the data set and shape and the frequency of data distribution. The mean and median values 779 

of data sets of many of the variables used in this study are almost coinciding to each other 780 

indicating that data values of each dataset are very symmetrically distributed. However, the 781 

difference between mean and median values of rh-tmin, SM100-200 and SM40-100 data sets 782 

are slightly higher compared to that of other data sets reflecting slight skewness in their data 783 

distribution. ET data set is having the lowest standard deviation value indicating that, its data 784 

values are more clustered around the mean and is having narrowest range of data dispersion. 785 

SM40-100 is having the highest standard deviation value indicating the widest range of data 786 

dispersion among all variables considered in this study. In addition to SM40-100, data values 787 

of SM100-200, GWS, rh-tmax, rh-tmin, rain and SM10-40 data sets are also spread in a 788 

relatively wider range compared to the other variables. Skewness of the data sets of this study 789 

is also calculated to interpret the row data distribution. If the skewness value is less than -0.5, 790 

the distribution is said to be left-skewed or negatively skewed, with the data points 791 

concentrating on the right side and the tail being longer on the left. If the skewness value is 792 

more than 0.5, the distribution is considered as positively skewed or right skewed with data 793 

points cluster on the left side of the distribution and the tail is longer on the right side. If the 794 

skewness value is between -0.5 and 0.5, data distribution is considered to be roughly symmetric 795 

and normally distributed. Based on above criteria, the data set of rain is exceptionally right-796 

skewed or positively skewed and data are more clustered around the left tail while right side 797 

tail of the distribution is longer.  The data set of SM100-200 is showing very slightly right 798 

skewed distribution.     The data set of rh-tmin is left-skewed or negatively skewed where data 799 

points cluster on the right side and the tail is longer on the left side of the distribution. However, 800 

the skewness values of other variables indicates that their data sets are more symmetrical and 801 

normally distributed. To further understand the row data distribution, Kurtosis of input and 802 

target variable data sets also calculated. The Kurtosis value will be close to three for the 803 

symmetric and normal data distributions. Such distributions are referred to as mesokurtic 804 

distributions. In circumstances, such the Kurtosis value is lower than three, the data distribution 805 

is termed as Platykurtic distribution. In such distributions, less data points will be located along 806 

the tail with low presence of extreme values relative to the normal distribution. If the Kurtosis 807 

value is greater than 3, data distribution is referred as Leptokurtic data distribution. In such 808 
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situations, data distribution contains more extreme values at the tails. Among the data sets used 809 

in this study, Rain and the rh-tmin data sets scored Kurtosis values of 132.1285  and  5.6520 810 

respectively and higher than value 3 indicating that those data sets having more outliers than 811 

data sets of other variables. Further, according to the above criteria used for interpreting data 812 

sets using Kurtosis, all other data sets can be recognized as data distributions with less outliers.  813 

Depending on descriptive statistics discussed above, many data sets used in this study can be 814 

identified as data sets closer to the normal and symmetrical distributions.   815 

 816 

    Table 4.  The summary of the descriptive statistics values of all predictors and target variable 817 

data 818 

Variable Mean Median 
Standard 

Deviation  
Skewness Kurtosis 

SM             22.6082 21.5707 3.8999 0.3591 -1.2382 

max-temp        27.3613 27.7000 3.5232 -0.3439 -0.1983 

min-temp    16.6750 17.3000 4.7370 -0.4436 -0.5403 

radiation      18.5636 18.7000 5.9020 -0.2629 -0.6063 

rh-tmax       50.4473 50.6000 11.8674 -0.0096 1.1172 

rh-tmin         91.5993 96.0000 11.5819 -2.1140 5.6520 

ET             3.9792 3.9000 1.3571 0.1223 -0.8611 

mslp        1017.5165 1017.7000 4.9808 -0.2450 -0.1818 

ST40-100       300.7142 301.8777 4.6184 -0.3690 -1.3350 

ST10-40       300.8481 302.3685 5.2255 -0.3879 -1.2737 

ST0-10        300.8051 302.5193 5.8458 -0.3975 -1.2068 

rain             2.6492 0.0000 10.9918 9.3525 132.1285 

SM10-40         80.7710 78.4010 10.3539 0.2873 -1.3730 

SM100-200      253.8943 248.9959 19.3150 0.5340 -0.9635 

SM40-100       150.0634 145.4409 21.7223 0.3255 -1.3311 

GWS           939.5838 939.7291 14.6149 0.0610 -0.3491 

 819 

Table 5 summarizes the results of trial-and-error to find the best combination of 820 

decomposition level and wavelet filter for 3-phase hybrid model development. In most cases, 821 

best suited combinations differ from each other except in moDWT-Lasso-LSTM and moDWT-822 

Lasso-DNN at t+1. The best model forecasts are obtained using decomposition level 4 and 823 

wavelet filter "haar" for those two cases.  824 

 825 

 826 

 827 

 828 
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Table 5.  Summary of best decomposition levels and wavelet filters resulted from trial-and-829 

error process for 3-phase hybrid models at t+1, t+14 and t+30 lead times. 830 

 831 

Model 

t+1 t+14 t+30 

Decomposition 

level 

Wavelet 

filter 

Decomposition 

level 

Wavelet 

filter 

Decomposition 

level 

Wavelet 

filter 

moDWT-Lasso-LSTM 
4 haar 4 fk4 2 fk4 

moDWT-Lasso-DNN 4 haar 4 db4 4 haar 

moDWT-Lasso-ANN 2 haar 4 db6 4 db4 

 832 

When decomposition level 4 is employed, time series data of each predictor variables 833 

are decomposed in to 4 wavelet coefficient data series and 1 scaling coefficient data series 834 

regardless of which wavelet filter is combined. Figure 3 graphically illustrates the 835 

decomposition results given for the predictor variable: SM10-40 when decomposition level 4 836 

and wavelet filter “haar” are used. (i.e., decomposition level and wavelet filter combination 837 

which confirms the best model performances in moDWT-Lasso-LSTM and moDWT-Lasso-838 

DNN at t+1 lead time). The total number of predictor variables increased up to 75 (=15 (no. 839 

original predictor variables) × 4 (no. of wavelet coefficients) + 15 (no. original predictor 840 

variables) × 1 (no. of scaling coefficient)) when decomposition level 4 is used for data 841 

decomposition. When decomposition level 2 is used for data decomposition, total number of 842 

predictor variables is increased up to 45 (=15 × 2+ 15 × 1).  However, Lasso feature selection 843 

algorithm which is employed next to identify the mostly corelated predictor variables to the 844 

target variable (SM) reduces the number of wavelet and scaling coefficients data series being 845 

qualified for using in the forecasting model training and testing. Different wavelet and scaling 846 

coefficients data series are selected by Lasso algorithm with respective to each decomposed 847 

data sets derived using different combinations of decomposition level and wavelet filters that 848 

used in 3-phase model development. Further, majority of coefficient data series selected by 849 

Lasso feature selection algorithm are scaling coefficients of predictor variables. Table 6 shows 850 

the summery of wavelet and scaling coefficient data series selected by Lasso feature selection 851 

algorithm with respect to all 3-phase hybrid models at t+1 lead time. According to the summery 852 

explained in this table (Table 6), in case of predictor variable: SM10-40, second, third and 853 

fourth wavelet coefficient data series (W2, W3, W4) and scaling coefficient data series (V) 854 

depicted in Figure 3 are selected by Lasso feature selection algorithm for model development 855 

of moDWT-Lasso-LSTM and moDWT-Lasso-DNN at t+1 lead time.  856 

 857 

 858 
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Figure 3. Wavelet and scaling data series resulted from moDWT decomposition process given 859 

for the predictor variable: SM10-40 when decomposition level 4 and wavelet filter “haar” is 860 

used at t+1 lead time. 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 
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Table 6. Summary of selected wavelet and scaling coefficients by Lasso feature selection 876 

technique at t+1 lead time for 3-phase hybrid model development. 877 

 878 

Model 

Predictor variables of 

which wavelet 

coefficients data series 

selected by Lasso 

Wavelet 

coefficients 

(W) data 

series 

selected by 

Lasso 

Predictor variables 

of which scaling 

coefficients (V) data 

series selected by 

Lasso  

Total no. of 

wavelets and 

scaling 

coefficients data 

series selected 

moDWT-Lasso-LSTM SM10-40 W2,W3,W4 min-temp 12 

SM100-200 W4 radiation 

GWS W4 
ST0-10 

rain 

SM10-40 

SM100-200 

GWS 

moDWT-Lasso-DNN SM10-40 W2,W3,W4 min-temp 12 

SM100-200 W4 radiation 

GWS W4 ST0-10 

rain 

SM10-40 

SM100-200 

GWS 

moDWT-Lasso ANN rh-tmin W2 min-temp 11 

SM10-40 W2 radiation 

rh-tmax 

ST0-10 

rain 

SM10-40 

SM100-200 

SM40-100 

GWS 

 879 

In case of developing 2-phase hybrid models (i.e., Lasso-LSTM, Lasso-DNN and 880 

Lasso-ANN) number of predictor variables selected by Lasso feature selection algorithm for 881 

t+1, t+14 and t+30 lead times are 10 (i.e., min-temp, radiation, rh-tmax, rh-tmin, ST0-10, rain, 882 

SM10-40, SM100-200, SM40-100 and GWS), 13 (i.e., max-temp, min-temp, radiation, rh-883 

tmax, rh-tmin, mslp, ST40-100, ST0-10, rain, SM10-40, SM40-100, SM100-200 and GWS) 884 

and 12 (i.e., max-temp, min-temp, radiation, rh-tmin, mslp, ST40-100, ST0-10, rain, SM10-40, 885 

SM100-200, SM40-100 and GWS) respectively.  886 

 887 

 888 
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Table 7.  Values scored in the testing phase for statistical metrics used to evaluate the proposed hybrid 889 

moDWT-Lasso-LSTM and benchmark models for lead times t+1, t+14 and t+30. The best values 890 

scored for relevant statistical metrics are boldfaced. 891 

 892 

Model 

t+1 

r R2 RMSE MAE MASE 
SMAPE 

(%) 
LM WI 

moDWT-Lasso-LSTM 0.97290 0.92469 0.97808 0.76623 4.39700 3.48910 0.78021 0.98270 

moDWT-Lasso-DNN 0.97243 0.90801 1.05142 0.83664 4.80102 4.28050 0.76069 0.97023 

moDWT-Lasso ANN 0.96755 0.87927 1.25829 0.99296 5.69808 4.32120 0.71597 0.97211 

Lasso-LSTM 0.96916 0.86992 1.24185 0.99203 5.69274 4.29820 0.71543 0.97145 

Lasso-DNN 0.96398 0.78780 1.49764 1.22490 7.02904 5.26880 0.64963 0.95672 

Lasso-ANN 0.96310 0.86976 1.30536 1.02215 5.86556 4.45690 0.70762 0.96990 

LSTM 0.96728 0.89932 1.08161 0.85262 4.89270 3.76450 0.75543 0.97789 

DNN 0.96628 0.66048 1.70606 1.38637 7.95562 5.81720 0.60344 0.93937 

ANN 0.95478 0.81781 1.58090 1.25067 7.17693 5.51210 0.62531 0.95712 

 
t+14 

 
r R2 RMSE MAE MASE 

SMAPE 

(%) 
LM WI 

moDWT-Lasso-LSTM 0.96012 0.89224 1.18054 0.96482 0.79649 4.01170 0.72280 0.97491 

moDWT-Lasso-DNN 0.96149 0.87398 1.19683 0.94721 0.78195 4.13590 0.72846 0.97264 

moDWT-Lasso ANN 0.95139 0.85932 1.29359 1.06966 0.88304 4.67810 0.69336 0.96854 

Lasso-LSTM 0.93999 0.87467 1.34597 1.05395 0.87006 4.30280 0.69719 0.96878 

Lasso-DNN 0.95380 0.88453 1.20330 0.96490 0.79655 4.73540 0.72340 0.97344 

Lasso-ANN 0.95167 0.85824 1.30455 1.06954 0.88293 4.65450 0.69340 0.96818 

LSTM 0.94245 0.86700 1.36678 1.05309 0.86935 4.71900 0.69744 0.96750 

DNN 0.95413 0.77293 1.48918 1.18204 0.97581 5.06000 0.66115 0.95493 

ANN 0.93540 0.77400 1.59018 1.28029 1.05692 5.54800 0.63298 0.95122 

 
t+30 

 
r R2 RMSE MAE MASE 

SMAPE 

(%) 
LM WI 

moDWT-Lasso-LSTM 0.96497 0.91564 1.13674 0.91126 0.45417 3.98600 0.73774 0.97849 

moDWT-Lasso-DNN 0.95820 0.88818 1.15259 0.95784 0.47738 4.31100 0.72481 0.97516 

moDWT-Lasso ANN 0.95528 0.88467 1.22855 1.00449 0.50063 4.44910 0.71140 0.97286 

Lasso-LSTM 0.95051 0.88685 1.22393 0.96703 0.48196 4.22980 0.72169 0.97307 

Lasso-DNN 0.95665 0.85161 1.26631 0.99443 0.49562 4.30100 0.71429 0.96852 

Lasso-ANN 0.93237 0.81717 1.46481 1.22684 0.61145 5.34670 0.64752 0.95895 

LSTM 0.95436 0.87888 1.20148 0.97581 0.48634 4.32890 0.71917 0.97277 

DNN 0.95139 0.77771 1.47242 1.15331 0.57480 4.91300 0.66865 0.95562 

ANN 0.93926 0.83699 1.40469 1.16230 0.57928 5.09100 0.66607 0.96294 

 893 

 894 

 895 

 896 

 897 
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Table 7 displays the calculated values of statistical metrics: Pearson’s Correlation 898 

Coefficient (r), Coefficient of Determination (R2), Root Mean Squared Error (RMSE; kgm−2), 899 

Mean Absolute Error (MAE; kgm−2), Mean Absolute Scaled Error (MASE), Symmetric Mean 900 

Absolute Percentage Error (SMAPE), Legates and McCabe Index (LM) and Willmott’s Index 901 

(WI) which are used to evaluate the performance of the target model (moDWT-Lasso-LSTM) 902 

and other benchmark models. The proposed deep moDWT-Lasso-LSTM model has produced 903 

the highest values for r, R2 LM and WI  while producing the lowest values for RMSE, MAE,  904 

MASE and SMAPE in comparison to that of all the benchmark models, as evidenced by the 905 

testing phase results provided in Table 7 in t+1 and t+30 lead time SM forecasting. In case of 906 

t+14 lead time SM forecasting, the proposed moDWT-Lasso-LSTM model has been able to 907 

score the highest values for R2 and WI and lowset value for RMSE and SMAPE while scoring 908 

the second highest values for r and LM and second lowest value for MAE and MASE. In the 909 

same lead time, moDWT-Lasso-DNN has scored highest values for r and LM and lowest value 910 

for MAE and MASE while scoring the second highest values for R2 and WI and second lowest 911 

value for RMSE and SMAPE. i.e., moDWT-Lasso-LSTM and moDWT-Lasso-DNN has 912 

alternatively scores the best and second-best values in t+14 lead time SM forecasting. Above 913 

results in general confirms that the proposed moDWT-Lasso-LSTM model outperforms the 914 

other benchmark models used in this study. Further, it has shown comparatively higher 915 

consistence in securing its position as the best model across all lead times than any other models 916 

tested. Although, moDWT-Lasso-DNN has demonstrated performances very parallel to the 917 

moDWT-Lasso-LSTM in case of t+14 lead time, it has been unable to shown consistency as 918 

the best model across all lead times. 919 

 In case of t+1 lead time, the values given for MASE for all the tested models is greater 920 

than 1 indicating that accuracy of all the models including the proposed model are inferior to 921 

the in-sample average one-step, naïve forecast. However, the proposed model scored the 922 

nearest value to the value 1, i.e., 4.39700 in t+1 lead time confirming that it is the best model 923 

out of all other models tested in this study in terms of MASE. But in case of t+14 and t+30 lead 924 

times, values scored for MASE by all the tested models in this study are less than 1 indicating 925 

that, accuracy of all models are better than the in-sample average one-step naïve forecast. It is 926 

showing that, competent SM forecasting tool is needed to make accurate SM predictions in long 927 

term ahead forecasting situations. Therefore, the proposed model by current research is 928 

worthful, as it is shown more capabilities than the other benchmark models in many scenarios.   929 
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water needed on a particular day. If adequate moisture is available in the soil, irrigation is not 986 

necessary and can be skipped. If soil moisture is not adequate, only the deficit should be 987 

compensated via irrigation. Reliable SM information is very useful in such decision-making.    988 

Further, SM forecasts are important to be considered in the application of fertilizer. Containing 989 

adequate amount of moisture in soil is essential for dissolving nutrients in fertilizers and make 990 

them available to the plant. SM ease the plant to absorb important nutrients and thereby 991 

maximize the fertilizer use efficiency while reducing the wastage. Especially in areas where 992 

there is no access to irrigation water and farming is totally rely on rainfall, knowing reliable 993 

information of moisture level in soils beforehand some activities like land preparation, planting 994 

and fertilizer applications will be very useful.  Further, it is forwarding step in current day 995 

context as many farmers are moving towards precision agriculture to cut down cost of 996 

production, minimize wastage and conserve resources and inputs.  997 

Under such background, this study has designed a multi-step wavelet 3-phase hybrid 998 

deep learning soil moisture forecasting (moDWT-Lasso-LSTM) model using Lasso regression 999 

optimization and moDWT decomposition algorithms for soil moisture forecasts in Bundaberg 1000 

in Queensland, Australia. The daily input data period from January 1, 2005, to December 31, 1001 

2020 were obtained from satellite data bases of NASA’s (GIOVANNI)- Global Land Data 1002 

Assimilation System (GLDAS) and Land Data Assimilation System (FLDAS) and ground data 1003 

base of SILO. To attain an accurate model, extracted data was decomposed by moDWT and 1004 

then selected features using Lasso algorithm for 1(t+1), 14 (t+14), and 30 (t+30) days ahead. 1005 

With the incorporation of LSTM, moDWT, and Lasso, the proposed deep learning multi-step 1006 

moDWT-Lasso-LSTM hybrid model was created, and its performance was evaluated using 1007 

statistical score measures and contrasted with the performance of the other eight comparison 1008 

models namely, moDWT-Lasso-DNN, moDWT-Lasso-ANN, Lasso-LSTM, Lasso-DNN, 1009 

Lasso-ANN, LSTM, DNN, and ANN.  1010 

The proposed moDWT-Lasso-LSTM hybrid model yielded improved performance in 1011 

forecasting SM for 1, 14 and, 30 days ahead relative to the other benchmark models and this 1012 

was particularly clear for t+1 and t+30 lead times. But in case of t+14 lead time, moDWT-1013 

Lasso-DNN has shown performances very parallel to that of moDWT-Lasso-LSTM according 1014 

to the statistical metrics discussed in Table 7. However, when visualizing results of box plots 1015 

of (|FE|) and stem plots of NS, the suggested moDWT-Lasso-LSTM model accomplished better 1016 

performances than moDWT-Lasso-DNN and any other benchmark models in all lead times. 1017 

This reaffirmed the usefulness of the suggested moDWT-Lasso-LSTM model over the other 1018 

benchmark models in predicting SM.  1019 
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However, with respect to the statistical matrix: MASE, all models including the 1020 

proposed model is showing the weakest performances at t+1 lead time compared to t+14 and 1021 

t+30 lead times. But most of models scored best values for most of the other statistical tools in 1022 

t+1 lead time compared to t+14 and t+30 lead times. However, as MASE is considered to be 1023 

more reliable tool for assessing forecasting models, what is interpreted by other statistical tools 1024 

can be excluded and it is better to make the conclusion based upon MASE values.  Although 1025 

the proposed model has shown comparatively higher accuracy in t+1 lead time than other 1026 

models, as discussed earlier, MASE value reflects that, its accuracy is still lower than naïve 1027 

forecast accuracy at t+1. Naïve forecasting is doing predictions in a simple way, i.e., it uses the 1028 

actual observed values from the last time step as the forecast of the next time step without 1029 

considering any other factors and adjustments. In real world condition, with respect to our 1030 

study, it uses today’s SM value as the forecasted value of SM for tomorrow. So it implies that, 1031 

it is more reliable to use today’s actual SM value as a clue for tomorrow’s (t+1 lead time) SM 1032 

value rather than trusting on SM values forecasted by sophisticated models in case of practical 1033 

situation that anyone needs to know one day ahead SM forecast. Realistically, it can be expected 1034 

that, one day ahead SM value can be very similar to current day SM value as variables like SM 1035 

may not be remarkably change in very short time unless it is influenced by   any other climatic 1036 

factor like sudden rain. Therefore, relying on proposed model or any other benchmark models 1037 

used in this work for t+1 lead time SM forecasting cannot be recommended according to the 1038 

current study. But in case of t+14 and t+30 SM forecasting, proposed model accuracy is higher 1039 

than naïve forecast accuracy according to the MASE value and further it has shown higher 1040 

performances against other benchmark models. So that, the proposed model can be practically 1041 

employed in t+14 and t+30 SM forecasting in the selected study region.  Furthermore, this 1042 

research only considers 1 day, 14 days and 30 days ahead SM forecasting as an initial step. The 1043 

number of lead times used in this study will not be enough to visualize any consistent trend of 1044 

forecasting model performances across the lead times with the increase of lead time length. 1045 

However, further increasing the lead time length can causes consistent and significant changes 1046 

in model performances. So that, future researchers can carry out new studies to find out such 1047 

trends of forecasting ability of models with extended forecasting periods (with increased lead 1048 

time lengths) and to find solutions for them. Furthermore, future research can consider 1049 

developing SM prediction tools to forecast SM for long time durations (For instance SM 1050 

forecast for one month duration) and that can be more important than short duration SM 1051 

forecasting in water resecures management strategic planning.  1052 

The input data values used in this study are continuously being recorded by data 1053 

collecting institutions and they are up to date until current time and will be up to date at any 1054 
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time point considered in the future and therefore model has access to the required historical 1055 

input data at any real time. Further, the wavelet transform data decomposition procedure 1056 

followed in this study does not need future data to calculate its wavelet and scaling co-efficient 1057 

which is used to feed the forecasting algorithm instead of row data. Some wavelets transform 1058 

data decomposition procedures are needing future data being available to them for calculating 1059 

their coefficient values and thereby making the forecasting models less useful in the real-time 1060 

scenario. So that, the proposed model can be practically implemented in real-time situations as 1061 

required historical input data can be accessed at any time point in future and also it is trained 1062 

to forecast SM with zero involvement with future data.  1063 

Further, applying of moDWT data decomposition algorithm to the time series data set 1064 

used in this study has generally shown a trend of increasing the data driven model 1065 

performances. So that, future studies which uses lengthy time series climatic data can trial 1066 

employing moDWT or any other wavelet transform methods to convert complex data patterns 1067 

into simplified high and low frequency wavelet time series. Further, it is noticed that data 1068 

driven model performances are varied based on selection of decomposition levels and wavelet 1069 

filters that distinguished upon wavelet family and filter length. So that, it can be recommended 1070 

to do trials and error procedure considering time and cost constraints to find out best suited 1071 

decomposition levels and wavelet filters specific to relevant study scenarios, if this type of data 1072 

decomposition algorithms is used.         1073 

Current study’s new modelling strategy for 1, 14, and 30 days ahead SM forecasting 1074 

has brought forward other several potential directions for future research with a wider focus. 1075 

For instance, this proposed 3-phase hybrid moDWT-Lasso-LSTM model has developed 1076 

targeting Bundaberg region in Australia and has shown a promising success to employ this in 1077 

the region for SM forecasting.  As it is not realistic to consider whole Queensland or Australia 1078 

due to time and other resources constraints this study has to confine into such a region covering 1079 

relatively smaller geographical area. Therefore, this methodology or similar concept can be 1080 

tested in other regions in Australia or elsewhere in the world to examine the geographical 1081 

consistency.  1082 

Further, this model is developed to forecast soil moisture in topsoil layer, i.e., 0-10 cm 1083 

depth. The depth of the active root zone of crops mainly varied with crop type or genetics, the 1084 

development stage of the crop, and soil properties. Some crops are having tap roots that 1085 

penetrate deeply into the soil, while other crops develop many shallow lateral roots.  Annual 1086 

crops own shallow root systems, and their depth varies rapidly in a short time with their growth. 1087 

Even, perennial crops in their early growth stages are having shallow roots absorbing moisture 1088 

from the topmost soil layers and they are gradually penetrating to deep soil layers. Further, the 1089 
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crops grown in soils with unfavourable soil properties and conditions (E.g., soils with shallow 1090 

bedrock or hard layers (Clay), soils compacted due to heavy use of machinery) will tend to 1091 

have root systems mainly concentrated in topmost soil layers. The root system of many crops 1092 

is concentrated in the top layers of the soil and near to the base of the plant and further, in most 1093 

plants, the concentration of moisture-absorbing roots is usually high in the upper top quarter of 1094 

the root zone. Due to these characteristics, under good soil conditions with no restrictions for 1095 

moisture and nutrient absorption and no disturbances for root development, soil moisture 1096 

extraction by plants typically follow a conical water uptake pattern. That is 40 % of total 1097 

moisture uptake is absorbed from the first one-fourth of the total crop rooting depth, while 1098 

30%, 20%, and 10% of total moisture uptake is absorbed from the 2nd, 3rd, and 4th quarters of 1099 

total crop rooting depth respectively. So, moisture extraction is most rapid in the topmost layers 1100 

of the soil.  Further, the evaporative water loss is also very high in the upper few inches of the 1101 

soil. So, the topmost soil layer is more vulnerable to the rapid diminution of water creating a 1102 

high soil water potential gradient.(Lincoln, 2023, Nebraska, 2023, Technology, 2023). 1103 

Therefore, due to the above reasons, this study deliberately focused to design a SM forecasting 1104 

model for the top-most soil layer (0-10 cm). However, future researchers can consider 1105 

examining the usefulness of proposed methodology in forecasting SM in more deeper soil 1106 

layers as it is also equally important in water resources management.  1107 

Further, another decomposition method called 𝑎 ́ trous (AT) algorithm (Quilty and 1108 

Adamowski, 2018) (which also a good remedy for future data issue) instead of the moDWT 1109 

technique coupled with Lasso or any other feature selection technique combined with LSTM 1110 

can be used to create a novel three-stages deep hybrid SM predicting model. Moreover, future 1111 

researchers can experiment the potentiality of the suggested moDWT-Lasso-LSTM model in 1112 

prediction of important drought indices such as Palmer drought severity index (PDSI), 1113 

standardized precipitation index (SPI), and standardized precipitation and evaporation index 1114 

(SPEI).  1115 
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6.3 Links and implications 

 

Soil moisture describes the water availability in soil which is essential for sustainable plant 

growth. It is also can be used as a useful indicator for understanding trends, chances, and 

magnitudes of drought conditions. Soil moisture directly affects the growth of vegetative 

cover in natural habitats of wildlife like forests, jungles, and bushes. The growth of vegetative 

cover is very important as it supplies food for wildlife’s existence. In addition, it directly 

affects the commercial crop production. Low soil moisture levels will eventually develop 

drought conditions which can cause bushfire threats and adversely affect the existence of 

wildlife as it led to an inadequate supply of water and food. Therefore, the research work done 

under 3rd objective of this PhD study to design a deep learning forecasting model to predict 

SM in different soil layers in 1,14 and 30 days ahead is highly advantageous, and the proposed 

model will be a future useful tool in managing disaster conditions caused by water resources 

scarcities. However, this research was carried out as a case study extracting data only from 

the Bundaberg region in Queensland. Due to time constraints, it was not feasible to consider 

more sites that would represent a larger geographical area in Australia or elsewhere in the 

world. But this study has developed a fresh modelling strategy for 1, 14, and 30 days ahead 

SM forecasting and it is showing several potential directions for future research with a wider 

focus. For instance, future studies might be researched on the terrestrial consistency and 

accuracy of this proposed moDWT-Lasso-LSTM hybrid model. Further, other decomposition 

methods (For instance, Multivariate Variational Mode Decomposition (MVMD) algorithm 

(ur Rehman and Aftab, 2019)) instead of the moDWT technique coupled with Lasso or any 

other feature selection technique combined with LSTM can be used to create a novel three-

stages deep hybrid SM predicting model. Moreover, future researchers can experiment with 

the potentiality of the suggested moDWT-Lasso-LSTM model in the prediction of other 

drought-related parameters such as precipitation and relative humidity and other important 

drought indices such as Palmer drought severity index (PDSI), standardized precipitation 

index (SPI), and standardized precipitation and evaporation index (SPEI).  
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CHAPTER 7: CONCLUSION AND FUTURE SCOPE 

 

7.1 Synthesis  

 

This thesis has enhanced the science of hydrological prediction by developing highly precise 

hybrid deep learning artificial intelligence models empowered by computational optimization 

methods. These have been focused on developing more precise 𝐸p, ET, and SM forecasting 

hybrid DL models mostly using satellite data in Queensland, Australia. The objectives 

expected in this complete research are: (1) developing a deep NCA-LSTM model to predict 

daily 𝐸𝑃 and performance evaluation against other benchmark models: LSTM, DNN, RF, 

ANN, and DT models, (2) developing three-phase multivariate sequential hybrid MEMD-

Boruta-LSTM, model to forecast daily 𝐸𝑇 and performance evaluation against MEMD-

Boruta-DNN, MEMD-Boruta-DT, and standalone LSTM, DNN and DT models, (3) 

developing a hybrid multi-step moDWT-Lasso-LSTM model to predict SM in the 0-10 cm 

depth and performance evaluation against eight benchmark models i.e.,  three standalone 

models (e.g., LSTM), three  2-phase hybrid models with feature selection (e.g., Lasso-LSTM) 

and two 3-phase hybrid models with feature selection and decomposition (e.g., moDWT-

Lasso-DNN). 

 

The 𝐸𝑃 provides a very accurate estimate of the height at which water is lost due to evaporation 

from water storage. The volume of water loss owning to evaporation which is one of the main 

causes of water loss from water resources can be determined by multiplying the 𝐸𝑃 value by 

the surface area of water storage. Thus, the entire amount of water loss from water storage 

used for irrigation purposes, drinking, bathing, hydropower generation, and other recreational 

activities can be estimated, and appropriate water resource planning and irrigation schedules 

may then be established. Also, evaporation progression can quicken the drying of natural water 

bodies and consequently deprive the drinking water for wildlife while excessive evaporation 

conditions particularly in dry spells develop drought conditions and natural disasters like 

bushfires. Therefore, predicting 𝐸𝑃 is a crucial factor to be considered in the current situation 

in the world and it is a vital solution for early water resource planning especially in arid and 

semi-arid regions. The first goal of this research was to develop a novel, precise deep learning 

hybrid LSTM model incorporating Neighbourhood Component Analysis (NCA) feature 

selection method to identify the most effective predictor variables as a useful tool to predict 
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 𝐸𝑝. The daily input data, which covered the period from August 31, 2002, to September 22, 

2020, were extracted from GIOVANNI-AIRS satellites and trustworthy SILO data produced 

by the Queensland government. The model test location within the drought-prone region of 

Queensland, Australia were Amberley, Gatton, and Oakey, and Townsville. The target deep 

learning NCA-LSTM model was developed by integrating LSTM and NCA; its performance 

was assessed using statistical score measures and compared to that of existing benchmark 

models, including LSTM, DNN, RF, ANN, and DT. Comparing the NCA-LSTM hybrid 

model to other benchmark models, it performed better at predicting daily  𝐸𝑝, which was 

particularly noticeable for the study locations in Amberley, Gatton, and Oakey. However, the 

statistical metrics for the Townsville research site indicated that the proposed model 

performed less effectively than at the other study sites. Despite this performance gap that has 

a site-specific signature, the suggested NCA-LSTM hybrid model nevertheless outperformed 

the other benchmark models by a wide margin for this study site. This reinforced the ability 

of the NCA-LSTM hybrid model to forecast daily  𝐸𝑝 effectively.  

 

Additionally, ET provides an estimate of the amount of water lost by crops via transpiration 

and from the soil surface by evaporation. Thus, the second objective is to create a brand-new 

deep learning multi-stage hybrid MEMD-Boruta-LSTM model that can be used as a useful 

tool to anticipate daily ET utilizing satellite-based and ground-based data. Input data has been 

decomposed into IMFs using MEMD and the most correlated IMFs were screened by the 

Boruta feature selection algorithm by incorporating with the LSTM network. The 

GIOVANNI-AIRS, GLDAS model satellites, and the SILO ground daily-based input data 

were extracted for the Gatton, Fordsdale, and Cairns’ test sites located in the drought-prone 

region of Queensland, Australia for the period from 01 February 2003 to 19 April 2011. The 

novel multistage deep learning MEMD-Boruta-LSTM hybrid model was created by 

integrating LSTM with MEMD and Boruta and its performance was assessed using statistical 

score metrics and compared to that of other hybrid and standalone models, including MEMD-

Boruta-DNN, MEMD-Boruta-DT, LSTM, DNN, and DT. In terms of normalized 

performance measures, the target MEMD-Boruta-LSTM model produced the highest values 

for r, NS, WI, and LM and the lowest values for RMSE, MAE, RRMSE, and APB across all 

locations. All these results offered compelling proof of the proposed MEMD-Boruta-LSTM 

model performed better in forecasting ET at a daily forecasting horizon than the comparable 

hybrid and standalone models.  
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Furthermore, Soil moisture (SM) refers to the water availability in the soil and is crucial for 

sustaining plant growth. Forecasting SM gives the knowledge to develop adaption and 

management strategies to protect natural ecosystems from the threat of climate change owing 

to precipitation deficiencies while geoscientists and the appropriate authorities can prioritize 

the areas needed for water allocations. SM forecasting is useful in scheduling irrigation 

programs, drought monitoring, and early identification of bushfire and flood threats. 

Therefore, the third objective of this study focuses to design a precise and effective data-

driven AI model for SM forecasting.  In this study, a multi-step hybrid deep learning moDWT-

Lasso-LSTM model was developed to forecast SM (up to 10 cm depth on topsoil) for 1, 14, 

and 30 days in advance. The daily satellite data from the Global Land Data Assimilation 

System (GLDAS) and Land Data Assimilation System (FLDAS) and ground data from SILO 

were extracted from January 1, 2005, to December 31, 2020, for Bundaberg region in 

Queensland, Australia. To create a robust and accurate model, retrieved data was decomposed 

by the moDWT method and then selected best features by the Lasso algorithm before 

incorporating it with the LSTM network. The performance of this target moDWT-Lasso-

LSTM model was assessed using statistical score measures and compared to the eight 

comparator models separately for each 1, 14, and 30 days, including moDWT-Lasso-DNN, 

moDWT-Lasso-ANN, Lasso-LSTM, Lasso-DNN, Lasso-ANN, LSTM, DNN, and ANN. In 

comparison to the benchmark models, the target moDWT-Lasso-LSTM model produced 

overall better results when forecasting SM for 1, 14, and 30 days ahead. This confirmed the 

developed moDWT-Lasso-LSTM model’s efficacy in forecasting SM for 1, 14, and 30 days 

in advance. 

        

In addition to the above socioeconomic benefits anticipated, the outcome of this PhD study 

covered a significant research gap in science and technology as all models suggested here to 

forecast Ep, ET, and SM in Queensland are hybridized DL networks. Furthermore, most of 

the data utilized in this study are taken from satellite and ground sources, and there is no 

evidence in the literature to support the use of the methods suggested in this study to forecast 

Ep, ET, and SM in Queensland, Australia. 
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7.2 Novel contributions of the study  

 

The development of hybridized deep learning models for hydrological forecasting is one of 

the advanced contributions made by this PhD thesis. In addition to creating novel deep 

hydrological predictive models, further unique methodological advancements include as 

follows: 

 

7.2.1 Two-phase deep and machine learning models 

 

One of the major contributions of this PhD study is designing two-phase models i.e., original 

standalone models integrated with the feature selection methods. For instance, the LSTM 

network was combined with the feature selection method, Neighbourhood Component 

Analysis (NCA) to create NCA- LSTM model for predicting evaporation that was compared 

with the standalone LSTM, DNN, ANN, RF, and DT. Furthermore, the Least Absolute 

Shrinkage and Selection Operator (Lasso) feature selection method coupled with LSTM, 

DNN, and ANN models to build up novel Lasso-LSTM, Lasso-ANN, and Lasso-DT models 

used as comparative models in soil moisture forecasting scenarios. 

 

7.2.2 Three-phase deep and machine learning models 

 

A major contribution of this PhD thesis is the design of three-phase hybrid models coupled 

with feature selection and data decomposition techniques. When designing ET forecasting 

models, three-phase deep learning hybrid models with Multivariate Empirical Mode 

Decomposition (MEMD) and Boruta-Random Forest (Boruta) algorithms were developed as 

MEMD-Boruta-LSTM, MEMD-Boruta-DNN, and MEMD-Boruta-DT. Furthermore, another 

three-phase model with Maximum Overlap Discrete Wavelet Transform (moDWT) 

decomposition and the Lasso feature selection techniques integrated with LSTM, DNN, and 

ANN denoted as moDWT-Lasso-LSTM, moDWT-Lasso-DNN, and moDWT-Lasso-ANN 

were created in multistep soil moisture forecasting scenario. The moDWT-Lasso-LSTM 

model was the highest performed hybridized approach over the moDWT-Lasso-DNN and 

moDWT-Lasso-ANN models in soil moisture forecasting for 1 day, 14 days, and 30 days in 

advance. 
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7.3 Limitations of the current study and Recommendations for future research 

 

Although this study made foremost contributions to a PhD on research, it had some limitations 

and suggestions for future research, and are discussed in this section as follows: 

 

• Only seven study sites in Queensland (used as a case study) were selected to develop 

models in this study. Future research can include more locations that represent the entire 

drought prone regions in Australia or elsewhere.  

 

• Incorporated with Variation Mode Decomposition (VMD) or Improved Complete 

Empirical Ensemble Mode Decomposition with Adaptive Noise (ICEEMDAN) 

techniques could also improve the efficiency of the proposed models. 

 

• Target models could also incorporate optimizer algorithms, such as the Quantum-

Behaved Particle Swarm Optimization (Q-PSO) or the Firefly Optimizer Algorithm 

(FFA). 

 

• Data intelligent standard statistical tool, Bayesian Model Averaging (BMA) can be used 

to rank the model performance and avoid the hurdle of model uncertainties that may result 

in overly confident inferences and risky agricultural decisions. 

 

• The suggested models can be experimented with to predict important drought indices 

such as the Palmer drought severity index (PDSI), standardized precipitation index (SPI), 

and standardized precipitation and evaporation index (SPEI). 

 

• Some additional feature selection algorithms like the Rule-and-Tree-based algorithm, 

multivariate adaptive regression spline (MARS), iterative input selection (IIS), or joint 

mutual information maximization feature selection (JMIM) can be further incorporated 

to increase the efficacy of the models. 

 

• Dimensionality reduction algorithms can be used as a data transform pre-processing 

method, such as principal component analysis (PCA), non-negative matrix factorization 

(NNMF), and linear discriminant analysis (LDA). 
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In conclusion, this PhD study has contributed in a novel way to the practical issues of 

hydrological forecasting by combining deep learning and optimization techniques in data 

science. Proposed new hybridized forecasting approaches are very computationally efficient 

and have low latency that could be easy to use for real-world problems with having access to 

upgrade the models. This could enhance hydrological forecasting, acting as a key tool for 

applications in water resource and agricultural management. 
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APPENDIX A: RESEARCH HIGHLIGHTS AND 

GRAPHICAL ABSTRACT 

A.1 Paper 1 

 

Research Highlights 

 

• Research aims to design a deep learning hybrid model for Pan Evaporation prediction. 

• Neighbourhood Component Analysis is used for feature selection.  

• Long Short-Term Memory network is used as the prediction algorithm.  

• Target deep learning hybrid model outperforms competing benchmark models. 

• The outcomes are useful for the accurate estimation of evaporative water loss. 

 

Graphical Abstract 

 

Outline of the study areas, data sources, and model development methodology and procedures 

used in research work based on the first objective explained in the journal paper forwarded 

in this chapter.  

 

Figure 4: Graphical abstract of objective  
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A.3 Paper 3 

 

Research Highlights 

 

• This research aims to design a multi-stage deep learning hybrid model to forecast Soil 

Moisture. 

• Maximum Overlap Discrete Wavelet Transform is used to decompose data. 

• Lasso algorithm is used for feature selection.  

• Long Short-Term Memory network is used as the prediction algorithm. 

• Target multi-stage deep learning hybrid model beats competing benchmark models. 

• The outcomes are useful to forecast Soil Moisture in the topsoil layer. 
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APPENDIX B: PRESENTATION IN HDR SYMPOSIUM  

B.1 Presentation in HDR Symposium 2020 
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