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                ABSTRACT 

There has been remarkable growth in the use of smartphone applications as a means 

of describing human movement. Accelerometer sensors in smartphones can be used to 

detect human movements and define gait characteristics. Photogrammetry approaches 

are used to study human gait for a variety of purposes such as medical, forensic and 

sport performance. This is a shift from insole sensors which were widely used to study 

human movements in recent decades. Importantly, each of the mentioned techniques 

can provide sets of data leading to a better understanding of human gait. For example, 

data extracted from insole sensors can be related to force and pressure, accelerometers 

mainly provide spatial-temporal parameter data, and photogrammetry data can better 

describe joint location (kinematics) during walking. 

However, there is a lack of research literature assessing the accuracy of such 

smartphone use. Thus, the main aim of this work was to provide evidence for the 

applicability of smartphones as an effective tool for collecting biomechanical data and 

assessing human gait during walking. The current research work aimed to fill this gap 

in the literature by using a set of objectives comparing smartphones with other 

techniques.  

The first objective was to identify existing accelerometer measurement data obtained 

from smartphone devices and evaluate this data by comparing captured data with 

camera image-based photogrammetric data. The data were collected during walking 

trials. Smartphones were attached to the subject’s knee joints, and cameras were placed 

around a 5m-walkway at specific positions. Ten subjects (with no prior injury, 

disability or illness) were recruited and asked to perform a two steps walking trial, 

with five repetitions. The results indicated that the linear location values for the whole 

stance phase are relatively similar and closer to that of a camera’s 3D location in the x 

y planes (Z direction) (R= 0.935) which supports the hypothesis of our research that 

the smartphone can be utilised as tool for gait characteristics measurements.  

The remaining research objectives were to develop a new methodology for smartphone 

sensor device analysis of spatiotemporal gait parameters, and to compare the 

spatiotemporal data between the smartphones and F-Scan insole sensors during 

walking.  Data were collected from both the triaxial accelerometer embedded in the 
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Samsung S9 cameras and insole sensors. Two smartphones, one attached to each lower 

limb, were used in this experiment. Thirty subjects were asked to walk along a 10-m 

walkway at a laboratory setting at the Exercise and Sport Science Centre at the 

University of Southern Queensland (USQ). Data for the four parameters of step time, 

stride time, cadence and walking speed were collected during walking. The results 

pointed out close data readings from both devices. For example, the step time findings 

were (0.68±0.02 insole) and (0.69±0.03), and the stride time findings were (1.21±0.05 

insole) and (1.21±0.05).  

From the results of the four parameters, it was noticed that there is a high agreement 

between the smartphone and insole sensor when measuring gait parameters. 

Furthermore, these results demonstrated that the smartphone sensor can efficiently 

measure the spatiotemporal gait parameters of healthy adult participants. Thus, 

smartphone sensors can provide reliable data without the need for expensive devices. 

Finally, the proposed study will help experts work more efficiently and objectively, 

and at less expense when evaluating gait.  
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1  CHAPTER 1 INTRODUCTION  

INTRODUCTION 

      This chapter provides a general overview of the research topic. It presents the 

research gap, objectives, questions, significance and the scope of the research. It also 

outlines the structure of the thesis. 

  

1.1 Overview 

        The importance of measuring and analysing gait variability has drawn the 

attention of many researchers and experts from different fields. The concept of human 

gait analysis is being used by specialists in wide range of fields such as sports, 

medicine, allied health and security (Tan et al. 2015; Akhtaruzzaman et al. 2016). 

As limbs move, they generate a specific locomotion that is defined as human 

gait. These movements include walking, running and jumping. The study of human 

gait is considered to be one of primary methods providing significant information to 

assist human health. Human locomotion is described in terms of gait parameters such 

as walking cadence, velocity, step/stride length and step/stride time. A person’s 

walking pattern can be assessed by gait analysis to determine abnormalities as well as 

any significant variation in gait parameters and potential consequences of those 

abnormal patterns. According to  Muheidat et al. (2017), there are strong links between 

human gait characteristics and different medical conditions as proved in clinical 

research. Also, research shows that changes in certain gait parameters may be 

predictive of future falls and adverse events in older adults such as a physical 

functional decline (Viccaro et al. 2011; Taylor et al. 2012). Moreover, the progression 

of diseases affecting mobility has been monitored using the analysis of gait  (Samà et 

al. 2012). Winter (2009) stated that Human Movement’s biomechanics is considered 

to be a discipline that illustrates, analyses and assesses human movement. Winter 

(2009) emphases that this scientific area has attracted the attention of specialists, 

experts, rehabilitation engineers, doctors, athletes and therapists. 
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As a result of human gait analysis’s many applications, an assortment of 

technologies are being created and investigated to evaluate and assess it. Most of the 

systems can be categorized into wearable devices, walk-on devices, radar and motion 

systems, and vision based devices and techniques (Liu et al. 2011; Nessler et al. 2015; 

Iosa et al. 2016). Many factors affect system choice: cost, portability and active 

involvement by the user. Many systems are suitable for only the laboratory or clinic 

setting, e.g. GAITRite Electronic mat and the Vicon motion capture system (Peters et 

al. 2014; Mjøsund et al. 2017) . 

 

A wearable device is an electronic device that can be attached to the body or 

embedded in a garment, and is able to record information about the user’s body 

movements by analysing the signals produced by the device’s transducers (Del Rosario 

et al. 2015). Wearable sensors have experienced a remarkable growth in application, 

such as in the security, medical and commercial fields. They provide accurate and 

reliable information about human movements and activities, so they can be very 

beneficial in human movement studies. With  regular movements, wearable sensors 

can manage and evaluate chronic diseases such as obesity (Turner et al. 2015). 

Wearable sensors are also valuable tools for athletes; enhancing their personal health 

status because they can provide individualised feedback during training sessions, 

evaluate running and dynamic sway in the gait of athletes, etc. (Blank et al. 2014; 

Moran et al. 2015; Brodie et al. 2016). 

 

The characteristics of wearable sensors (low power, small size and light 

weight) allow researchers to monitor movement and gait characteristics over long 

periods of time (Gong et al. 2015). In addition, they should not affect the performance 

of subjects as they can be attached or embedded into clothing or smartphones. Several 

sensors can be embedded in smartphones, such as accelerometers, gyroscopes and 

magnetometers. Obtaining accelerometer data from smartphones has become a very 

interesting subject in current studies, with successful application and good results 

(Manor et al. 2018; Nelms et al. 2020).  Accelerometer sensors can be used to obtain 

data related to a user’s gait without obstructing the user as he/she walks. Many recent 

gait studies have used smartphone sensors (Fernandez-Lopez et al. 2016): human 

movement (Bulbul et al. 2018) and sport (Kos et al. 2018).  
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In this research, a new technique will be applied to the study of human 

movement using smartphone sensor accelerometer data. Hence, the purpose of this 

research is to develop a low-cost, high quality and easily used approach by replacing 

the photogrammetry technique and insole sensors with a smartphone sensor. However, 

no such study has been done exactly same comparison before to obtain biomechanical 

measures and smart body-wear devices for gait.  

1.2 Gap in the research 

        From a review of the literature (detailed in the second chapter), it can be seen that 

human movements and gait characteristics have been studied using various devices 

such as cameras, and pressure and force sensors. However, these devices have some 

disadvantages such as being costly, requiring space, being time consuming and 

requiring active involvement from the user. Recently, research scientists have become 

interested in developing new measures based on smartphone technology, but the 

existing literature has not reported any work that: 

a) Suitability of smartphones compared to photogrammetry techniques 

b) Suitability of smartphones compared to insole sensors.  

These ideas to evaluate the smartphone can increase the validity of smartphone in gait 

analysis research. 

Therefore, the research gaps in the field of human gait analysis are: 

1) Evaluate smartphone accelerometer technology as a replacement for current 

photogrammetry techniques using imaging sensors. 

2) Develop a set of human movement measures using advanced technologies.  

1.3 Research Questions  

There are a number of crucial questions for this research. These questions are: 

1) To determine the existing measures suitable from body-wear devices for gait 

research: 

a) What are the types of smartphone sensors to be evaluated in this research 

and why? 

b) Why it is crucial in gait study to put the body-wear sensors in lower limb?  

2) To evaluate the most suitable set of devices by comparing the data resulting 

from smartphone accelerometer sensors with camera images data. 
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3) To evaluate smartphone based biomechanical measurements for the study of 

gait characteristics using a cohort of 30 adults: 

a) What protocols should be used in this research? 

b) How will spatiotemporal gait data be analysed?  

4) What are the benefits of using the proposed methodology in the field of gait 

analysis? 

5) Are commercial accelerometer smartphone sensors suitable for determining 

gait human movements? 

6) How to use the new statistical testing methods to analysis gait data of healthy 

groups.  

1.4 Objectives  

The main aim of this research is to study a new technique to evaluate 

smartphone-based biomechanical measures for gait characteristic analysis. To achieve 

this aim, four objectives were formalised:  

1) To identify research gaps in the existing literature regarding the 

introduction of a new evaluation technique for smartphone sensor devices 

which can be achieved by: 

a) Determining existing accelerometer measurements obtained from 

smartphone devices  

b) Comparing captured data with camera image-based photogrammetric 

data. 

2) To develop a new methodology for smartphone sensor device analysis of 

spatiotemporal gait parameters. 

3) To determine the suitability of new gait parameters characteristics to 

identify and relationship between Smartphone and Insole sensors.   

4) To evaluate the performance quality of the proposed methods using 

different statistical methods and comparing the results of the novel 

methodology with those of the most commonly used methods discussed in 

published works. 
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1.5 Limitations of the research 

 This research has three limitations that should be acknowledged. These are: 

1) Synchronization of accelerometers with digital cameras (possible timing 

errors).  

2) Use of commercial smartphone sensors which may not be the most accurate.  

For example accelerometer sensor characteristics are Vender:STC, version:1 , 

max range:78:453m/s2 and Resolution:0.002 m/s2  

3) Walking at speed and running were not tested during this investigation because 

of the limited dimensions of using wiring system.   

 

1.6 Significance of the research 

 Completing this research will bring a number of benefits to conducting human gait 

analysis. These benefits are:   

1) Analysis of various aspects of gait, including turns, gait initiation and 

termination, or inter-cycle variability. 

2) Demonstration that smartphone sensors, such as accelerometers, can provide 

accurate and efficient data compared to the photogrammetry technique in gait 

studying. 

3) Development of a new technique to analyse the spatiotemporal parameters with 

less money, effort and time. 

 

1.7 Structure of the thesis 

This thesis consists of five chapters and each chapter provides important information 

on that study. The rest of the thesis is structured as follows: 

• Chapter 1 is the introductory chapter, explaining the background and 

definition of human gait, the research problems and aims, the research 

objectives, the significance of the research and the structure of the thesis.  
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• Chapter 2 forms the literature review, presenting the importance of human gait 

analysis, non-wearable and wearable systems, close range photogrammetry 

and the smartphone platform. 

• Chapter 3 is divided into two parts and describes the instrumentation used to 

perform the study’s experiments. The first part shows the measurement 

systems used to measure kinematics of the lower limb movements, the test 

protocol, camera calibration and photogrammetric data capture, data collection 

from the accelerometer’s smartphone sensor, calculation, and statistics. This 

part compares and validates the use of the smartphone and camera. The second 

part describes the new evaluation methodology for spatial parameters. It shows 

the equipment, the plantar pressure measurement system, participants, protocol 

test, data collection and processing, and statistical analysis. 

• Chapter 4 presents the accelerometer test, photogrammetry test, insole 

sensors, kinematics and spatiotemporal parameter results while walking in 

different trials. It also presents the analysis techniques used to evaluate and 

validate the presented methods.  

• Chapter 5 presents the main discussions points of the research conducted, and 

the conclusion of the thesis.  

• Chapter 6 presents the conclusion of the thesis and the future work. 
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2   CHAPTER 2 LITERATURE REVIEW 

 

This chapter provides both a background to human gait analysis and a literature 

review of its major elements, as well as citing some of its applications. It then focuses on 

gait analysis method by highlighting non wearable and wearable devices that are used to 

study gait and human movement and critically reviewing the advantages and disadvantages 

of both types of methods. The chapter also gives a brief of smartphone platforms and 

smartphone techniques and sensors. 

 

2.1  Introduction 

Currently, many research projects have addressed human gait analysis. The very 

beginning of the research on this type of analysis was in the 19th century. The majority of 

such projects needed to study the variety  of parameters that characterise gait, so they have 

focused on achieving quantitative objective measurements of these parameters to be 

applied in the various fields such as sports (Howell et al. 2017), and medicine (Schwenk et 

al. 2014). Two approaches are used to analyse gait parameters. The first one used is the 

semi-subjective method, which uses traditional scales. This can be done by patient walking 

and it is usually followed by a survey in which the patient is asked to provide a subjective 

evaluation of the quality of his/her gait. (Lord et al. 2012) This method gives subjective 

measurements, which may have a negative effect on the diagnosis, follow-up and treatment 

of the pathologies (Muro-de-la-Herran et al. 2014). In contrast, the second approach 

benefits from the remarkable growth in technology via devices and techniques such as 

camera floor sensors which allow an objective evaluation of different gait parameters, 

resulting in more efficient measurements and providing specialists with a large amount of 

reliable information on patients’ gaits. Consequently, the error margin caused by subjective 

techniques can be reduced.  

This chapter is divided into several sections and sub-sections based on the objectives and 

aims of this research. A general introduction is described in section 2.1. Section 2.2 is 

describing basic introduction into gait analysis protocol.  Section 2.3 explains the 

importance of gait analysis in human movement studies. Section 2.4 explains the gait 
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analysis methods and provide brief about the gait study systems such as non-wearable and 

wearable sensors. Section 2.5 is about close range photogrammetric technique, and 2.6 is 

about mobile platform.  

2.2  Gait analysis 

Human walking is a periodic movement of the body segments and includes repetitive 

motions (Winters et al., 2012). To describe this periodic movement, the human gait must 

be studied. Gait analysis is a method for evaluating the dynamic position and coordination 

during movement (Kavanagh and Menz, 2008). It can help in rehabilitation and therapy to 

note all the gait properties such as lower limb rotations and tilts, knee movement and foot 

placement (Bernardes & Oliveira 2017; Mirek et al. 2018). 

 

To identify the functional importance of the different motions generated at the individual 

joints and segments, human walking patterns can be analysed by phases. There are eight 

different gait phases of the normal walking gait cycle: initial contact, loading response, 

midstance, terminal stance, pre-swing, initial swing, mid-swing, and terminal swing  as 

shown in Figure 2.1 (Tao et al. 2012). 
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2.3 Human Gait Applications 

2.3.1  Clinical purposes 

Understanding human gait helps specialists to make more comprehensive diagnoses 

and provide more effective treatments for those who have ailments affecting their ability 

to walk normally. This awareness can thus be used to deliver better care to patients. 

According to (Anderson et al. 1997) , human gait analysis has been considered as a useful 

tool for physicians, therapists and clinicians for rehabilitation purposes in order to evaluate 

gait conditions of patients and then make appropriate treatment decisions. 

Baker (2006) once treatment has commenced, human gait analysis can also be used to 

monitor patient progress and to predict subsequent treatment outcomes. Experts have 

employed such analysis to choose suitable orthoses for patients with abnormal walking 

conditions or to evaluate the efficiency of these devices (Brehm et al. 2011). 

Other researchers have used human gait variables along with classification techniques to 

categorise patients into certain groups, and this is critical to such issues as the diagnosis of 

neuromuscular disorders (Yousefi & Hamilton-Wright 2014) or the prediction of falling 

behaviour (Begg & Kamruzzaman 2005). 

 

Figure 2.1: Gait phases in a normal gait cycle. Stance period and swing period 
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2.3.2 Security purposes 

Human gait analysis protocols were employed to identify and recognise people at a distance 

(Lee & Grimson 2002; Kale et al. 2003). One of the essential applications of recognition 

people using human gait analysis is for security purposes, where it can be used along with 

other techniques to detect criminals (Iwama et al. 2013). The researcher derived gait 

signature for the human walking pattern as each lower extremity has different pattern, thus 

they can be recognised by their walking style (Sun et al. 2016) . 

Gait is a more valuable biometric than the others according to the fact that biometrics such 

as iris and face details are not easily recognised by surveillance applications at low 

resolution (Sulovská et al. 2013) .  

 

2.3.3 Sports purposes 

Athletes and sports professionals can benefit from gait analysis throughout 

monitoring performance parameters. That can lead to the detection of abnormalities and 

possibly increase athletic performance and reduce the risk of injury. 

Parker et al. (2008) examined balance control during gait in concussed and uninjured 

athletes and non-athletes and they were assessed for their gait performance. 

They found supposition that participation in high-impact sports has a measurable and 

possibly detrimental effect on balance control during gait. 

Athletic performance 

Watanabe & Hokari (2006) used gait analysis, particularly the kinematical analysis, to 

introduce a method that helps to make useful measurements to evaluate sports skills 

quantitatively. 

Di Stasi et al. (2013) studied the differences between the gait characteristics of two groups 

of athletes, namely those who passed and those who did not pass the criteria of return-to-

sport (RTS) six months after anterior cruciate ligament (ACL) reconstruction. They found 

that there are some differences between the two groups. In addition, they observed that 

those who did not pass the criteria of RTS had more abnormal and asymmetrical gait 

behaviours. These findings enable clinicians to have a testing criteria to recognise athletes 

with such abnormalities after ACL construction. They may also improve the sports 

medicine specialist's ability to identify athletes with a higher risk of secondary injury 
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2.3.4 Footwear design purposes  

The footwear industry may also benefit from studies of human gait characteristics. 

According to Keenan et al. (2011), findings and results from such studies should be 

considered in future recommendations and designs of footwear. Bamberg et al. (2008) 

found that the footwear proved highly capable of detecting heel-strike and toe-off, as well 

as estimating foot orientation and position. As footwear plays an important role in 

correcting pathological gait and providing good foot support, the performance of some 

footwear has been studied regarding gait characteristics (Cheung & Zhang 2006). In 

addition, (Csapo et al. 2010) illustrated the importance of using suitable footwear in gaining 

good foot health. 

It is well established that experts from any discipline need to follow the scientific approach 

when it comes to providing a solution for a particular problem or answering a specific 

question, and this particularly relates to footwear.  

2.4 Gait Analysis Methods  

Generally, human walking is a periodic movement of the body segments and includes 

repetitive motions(Winters et al. 2012). To describe this periodic movement, the human 

gait must be studied. 

Gait analysis is a method for evaluating the dynamic position and coordination during 

movement (Kavanagh & Menz 2008). It can help therapists and other experts to note all 

the gait properties such as lower limb rotations and tilts, knee movement and foot 

placement. Two different methods to analyse human gait are non-wearable sensors and 

wearable sensors. 

 

2.4.1  Non-wearable sensors  

 Non-wearable sensor (NWS) refer to sensors that are located on fixed places such as mats 

that the subject walks on (Muro-de-la-Herran et al. 2014) enabling the sensors to capture 

data regarding gait. Such systems might be categorised into two groups. The first group is 

based on image capture. In this group, one or more optic sensors are used to capture the 

subject’s gait data and through digital image processing different parameters of the 

objective measurements can be taken (Courtney et al. 2001). Furthermore, there are another 
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types of optic sensor such as laser range scanners (LRS) (Tanabe et al. 2017), infrared 

sensors and Time-of-Flight (ToF) cameras (Nakamura 2016). In contrast, the other system 

uses pressure sensors. The sensors here are located along the floor and the gait data will be 

gathered through pressure sensors and ground reaction force sensors (GRF).   

Usually, the non-wearable sensors bring a high level of accuracy by using new gait 

spatiotemporal parameters (Panero et al. 2018) . However, because this method uses highly 

specialized equipment, it is expensive.  

 

2.4.1.1 Image capturing 

 Image capturing is one of the processes used in gait studies. This process depends 

on using several digital or analogue cameras to obtain the gait information (Pratheepan et 

al. 2009). It also uses filters to obtain various characteristics of images. For example,  

 

Figure 2.2: the snapshot of silhouette images of two walking people and their  

 

Threshold filtering can convert images to black and white, and there are different 

ways to collect data to measure gait variables such as calculating the number of light or 

dark pixels or segmenting the background of the image. These methods have been widely 

studied in order to identify people by their walk (Chang et al. 2009) as shown in Figure 

2.2. corresponding GEI’s Gait Energy Image  (Chang et al. 2009). 

 

2.4.1.2 Pressure sensor 

Pressure sensors are electronic devices that capture physical force contact to 

generate some sort of a response used to measure gait pressure and force when the subject 
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walks on these mats as shown in Figure 2.3. It can provide very high performance and 

accurate measurements (Arafsha et al. 2018). Pressure sensors are divided into two types: 

force platforms and pressure measurement systems and both systems quantify the centre of 

pressure (Robertson et al. 2018). However, pressure measurement systems are useful for 

quantifying the pressure patterns under a foot over time but cannot quantify horizontal or 

shear components of the applied forces (Robertson et al. 2018). Pressure sensor have 

clinical applications such as the prevention of pressure ulcer (Liu et al. 2014). Liu et al. 

(2014)  found the floor mat is available for the measurement of GRF and it cannot measure 

more than one stride.  

 

Figure 2.3: presser sensor showing marked start and stop boxes (Arafsha et al. 2018) 

 

2.4.2 Advantages and disadvantages of Non-wearable sensors  

The parameters of simultaneous analysis of multiple gait can be obtained by using 

a number of approaches. All systems are do not attach sensors to the body. Complex 

analysis systems are more precise and have more measurement capacity with better 

repeatability and reproducibility (Muro-de-la-Herran et al. 2014). However, they have less 

of an external factor interference because of a controlled environment. The process of 

undertaking measurements is controlled in real time by the specialist. At the same time, 

normal subject gait might be different because of the walking space restrictions required 

by the measurement system. Using an expensive equipment and tests are impossible to 

monitor a real life gait outdoor environment (Muro-de-la-Herran et al. 2014). 
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2.4.3 Wearable sensors 

A wearable sensor (WS) is a category of devices that can be worn by a subject. A 

wearable sensor is an inexpensive, convenient, and efficient manner of providing useful 

information for multiple health-related applications (Tao et al. 2012).  

These sensors are more flexible than NWSs because they can be used inside and outside 

the laboratory. In addition, they collect the subject's gait features during everyday activities. 

Such sensors may be worn on several parts of the body, such as feet, knees, thighs or waist. 

A variety of wearable sensors has been used to analyse gait characteristics, such as 

accelerometers, gyroscopes, flexible goniometers, electromagnetic tracking systems 

(ETSs), sensing fabrics and force sensors (Tong & Granat 1999; Bonato 2003) . Based on 

these sensors, either one or a collection of sensors may be used for various gait analysis 

applications depending on the required information. The basic principles and features of 

these motion sensors and systems are described below. 

 

2.4.3.1 Accelerometer 

This sensor is one of the most used sensors in human movements and gait analysis 

research. An accelerometer basically uses the fundamentals of Newton’s Laws of Motion, 

which say that the acceleration of a body is proportional to the net force acting on the body 

(Muro-de-la-Herran et al. 2014). Based on this principle and using the physical changes in 

the displacement of the proof mass, with respect to the reference frame, the acceleration 

can be measured electrically. Two types of those sensors, piezoresistive sensors and 

capacitive accelerometers, are employed for measuring the motion status in the human gait 

(Bouten et al. 1997). By attaching these accelerometers to the feet or legs, the 

acceleration/velocity of the feet or legs in the gait to perform gait analysis (Zeng & Zhao 

2011). Aaccelerometers are one of the most often sensors employed in gait analysis 

research. Accelerometer sensors are generally more user friendly and less invasive (Jarchi 

et al. 2018). They provided an extensive report of accelerometry-based gait analysis 

systems and applications, with additional emphasis on trunk accelerometer. Burgos et al. 

(2020)  demonstrated the accuracy and reliability of in-ear accelerometer sensor to perform 

gait classification, between the activities walking and running. The data was collected from 

fourteen participants using a three-dimensional accelerometer sensor. 

http://www.webopedia.com/TERM/D/device.html
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Another study demonstrated that a dual-accelerometer system previously validated 

in a laboratory setting also performs well in semi free-living conditions. Although these 

results are promising and progressive, further work is needed to expand the scope of this 

measurement system to detect other components of behaviour (e.g., activity intensity and 

sleep) that are related to health.(Narayanan et al. 2020). 

Xiao et al. (2016) introduced statistical methods for predicting the types of human 

activity at sub‐second resolution using triaxial accelerometer data. Their findings indicate 

that prediction of activity types for data collected during natural activities of daily living 

may actually be possible. 

 

2.4.3.2 Gyroscope 

A gyroscope is an angular velocity sensor. It measures inertial force, an apparent 

force proportional to the angular rate of rotation in a rotating reference frame. The angular 

rate can be measured by detecting the linear motion from the inertial effort and performing 

an integration of the gyroscopic signal. Gyroscopes based on other existing operating 

principles include electronic, microchip-packaged MEMS, solid-state ring lasers, fiber 

optic gyroscopes, and the extremely sensitive quantum gyroscope. A gyroscope can also 

be used for the measurement of the motion and posture of the human segment in gait 

analysis by measuring the angular rate (Altun & Barshan 2010; Ayrulu-Erdem & Barshan 

2011). For example, to realize the reorganization of the various gait phases, the angular 

velocity and angle of feet or legs during the gait can be determined by attaching a gyroscope 

to human feet or legs. Most gait analysis studies combine a gyroscope and accelerometer 

to build a complete initial sensing system. 

 

2.4.3.3 In-shoe systems 

According to (Hsiao et al. 2002) in-shoe pressure sensor systems are one of the 

wearable sensors used to record the distribution of the pressure under the foot sole. This 

technology has emerged as a popular tool in many areas of clinical application and it 

possesses great potential as a useful tool in ergonomics research, such as in gait control and 

fall prevention. Various devices are available, which differ in size, sensor number, sensor 

type and therefore their response to loading and their accuracy. The strengths and 

weaknesses of each system in terms of validity and repeatability influence the 
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appropriateness of each device for specific tasks in both clinical and research settings (Price 

et al. 2016). After fitting these sensors in suitably sized shoes, they are to be connected to 

a computer to capture the data through a software such as F-Scan research (Motawea et al. 

2019). Figure 2.4 show one of this system. 

 

Figure 2.4: In-sole Sensor 

 

2.4.3.4 Magnetoresistive (MR) sensors 

Magnetoresistive (MR) sensors are linear magnetic field transducers based either 

on the intrinsic magnetoresistance of the ferromagnetic material (sensors based on the 

spontaneous resistance anisotropy in 3D ferromagnetic alloys, also called anisotropic 

magnetoresistance (AMR) sensors), or on ferromagnetic/non-magnetic heterostructures 

(giant magnetoresistance multilayers, spin valve and tunnelling magnetoresistance (TMR) 

devices)(Freitas et al. 2007). 

 

2.4.3.5 GPS 

The invention of the global positioning system (GPS) in the 1990s offered an 

optional strategy for the measurement of speed and position in the field, with the possibility 

of circumventing some of the limitations and minimising others (Townshend et al. 2008). 

GPS has been deemed a good way to study the movement of the human body , such as 

rotation and leg angles although it does not allow the researcher to conduct large-scale 

studies (Terrier & Schutz 2003).  In addition, position and orientation errors tend to grow 

in an unrestrained way , and it is generally believed that the double integration of 
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acceleration signals is not sufficiently accurate for the long-term monitoring of human 

motion (Foxlin 2002). 

 

2.4.4 Advantages and disadvantages of wearable systems  

The WS-based methods are conducted in laboratories or controlled conditions 

where data retrieval devices such as accelerometer, Gyroscope, Magnetoresistive (MR) 

sensors, In-shoe systems and GPS set to measure gait variables as the subject walks on a 

clearly defined walkway.  The advantage of these systems are accurate analysis and 

monitoring of gait through daily activities or in the long term - Cheaper systems -Allows 

the possibility of deployment in any place, not needing controlled environments - 

Increasing availability of varied miniaturized sensors - Wireless systems enhance usability 

- In clinical gait analysis, promotes autonomy and active role of patients Disadvantage (Tao 

et al. 2012). WS systems make it possible to analyse data outside the laboratory and capture 

information about human gait during the person’s everyday activities (Muro-de-la-Herran 

et al. 2014) .                                                                                                                                                                 

Power consumption restrictions due to limited battery duration - Complex algorithms 

needed to estimate parameters from inertial sensors - Allows analysis of limited number of 

gait parameters - Susceptible to noise and interference of external factors not controlled by 

specialist (Muro-de-la-Herran et al. 2014). 

 

2.5 Close range photogrammetry 

In close-range photogrammetry (CRP), the camera is close to the subject and typically 

hand-held. It has become an accepted, powerful and readily available technique for 

engineers, scientists and others who wish to utilise images to make accurate 3D 

measurements of complex objects (Luhmann et al. 2014). This technique is used to track 

the 3-D position of a set of fiducial points which are constituted from either retroreflective 

(passive) or light-emitting (active) markers. The subsequent analysis of this information is 

analysed helping to estimate 3-D position data from digitized and noisy image data by 

using the geometrical properties of central projection from multi-camera observations. 

It also has been used in the medical field (Chong et al. 2008; Chong 2011) as shown in 

Figure 2.5 and physiotherapeutic applications (Chong et al. 2008). 
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Figure 2.5: (Left) CMT imaging of the arm and hand; (Right) CMT imaging of the palm 

and fingers. Note the scale bar for quality control(Chong 2011). 

 

In addition to the high precision and accuracy of the 3D multi-image photogrammetric 

technique such as (Chong, 2012; De Menezes et al., 2010), several advantages are 

provided. These advantages include its low cost when compared to other 3D measurement 

technologies (Chong, 2011; Chong, 2007), non-invasiveness (Ladeira et al., 2013), 

instantaneous data capture ability (Wong et al., 2008), ability for data post processing 

(Luhmann, 2010), and rapid data acquisition capability (Ladeira et al., 2013). 

 Galantucci et al. (2012) used system based on Digital Close-Range 

Photogrammetry with brand new equipment “stereoscopic digital cameras” to measure the 

facial soft tissue structures, useful for diagnostics and for the monitoring of therapies in 

medical and orthodontic applications. The scanner provides accuracy and reliability, is not 

invasive and very compact, simple and easy for physicians and doctors. 

Another study developed a low-cost hardware/software system based on close range 

photogrammetry to track the movement of a person performing weightlifting (Colorado & 

Santos 2015). The goal is to reduce the costs to the trainers and athletes dedicated to this 

sport when it comes to analyse the performance of the sportsman and avoid injuries or 

accidents. Also, Al-Kharaz and Chong (2021) presented close-range photogrammetry 
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technique to measure ankle kinematics during active range of motion in place. The finding 

of this study was that measurement of ankle kinematics during active range of motion 

AROM using the CRP technique was highly reliable and had perfect test-retest 

reliability (0.89).  

 

2.5.1 Digital Video Camera 

Recently, digital video cameras have been employed  to capture human body 

movement and model the 3D surface of specific dynamic parts of the body such as the arm 

(D'Apuzzo 2003), the foot (Al-Baghdadi et al. 2011) as shown in Figure 2.6. In 

photogrammetry, different cameras located in different positions are used to measure or 

track the object (Luhmann 2014).In general, though, there are major limitations in utilising 

video camera systems to capture human movements. Firstly, such cameras have a limited 

number of image frames per second so they become useless to monitor and record a body’s 

movement during a fast gait.  Secondly, there can be long processing time depending on 

the number of cameras that require conversion of video clips to stereo images which are 

essential to derive a 3-D model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: (left) Video image of raised heel; (right ) processed 3D surface model (Al-

Baghdadi et al. 2011).  

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/test-retest-reliability
https://www.sciencedirect.com/topics/medicine-and-dentistry/test-retest-reliability
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2.5.2 Data Acquisition 

Data acquisition in photogrammetry is concerned with obtaining reliable information  

about the properties of surfaces (Whitehead & Hugenholtz 2014). This is accomplished 

without physical contact with the objects, the most obvious difference being with 

surveying. 

The remotely received information can be grouped into four categories: geometric 

information, physical information, semantic information and temporal information 

(Ganapuram et al. 2009). 

 

2.5.3 Data processing and analysis of photogrammetric methods 

To generate 2D or 3D digital models of an object, digital image capturing and 

photogrammetric processing, including several well-defined stages, are used (Bistacchi et 

al. 2015). By using stereo image pairs, 3D data acquisition can be performed. Stereo 

photogrammetry is considered to be a fundamental approach for 3D mapping and object 

reconstruction using 2D images or based on a block of overlapped images (Tuovinen et al. 

2013). Given a set of images depicting a number of 3D points from different 

viewpoints, bundle adjustment can be defined as the problem of simultaneously refining 

the 3D coordinates describing the scene geometry, the parameters of the relative motion, 

and the optical characteristics of the camera(s) employed to acquire the images, according 

to an optimality criterion involving the corresponding image projections of all points. 

Bundle adjustment minimises the total re-projection error with respect to all 3D point and 

camera parameters.  

 

 

  

2.5.4 Video Camera Calibration 

In photogrammetry, camera calibration is considered an important step in order to 

extract matric information from 2D images (Davison et al. 2007). This means the 

calibration can correct the camera distortion and determine the relation between the 

camera’s natural units (pixels) and the real-world units (for example, millimetres or 

inches). Thus, the camera’s calibration is significant step towards getting a highly accurate 

representation of the real world in the captured images. This technique can be accomplished 

by various methods such as dense reconstruction, object localisation and camera 

localisation. During the process of camera calibration, the interior orientation of the camera 

https://en.wikipedia.org/wiki/Stereoscopy
https://en.wikipedia.org/wiki/Stereoscopy
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Correspondence_problem
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is determined. Foxlin et al. (2014) stated that all the metric characteristics of the camera 

needed for photogrammetric processes are described by interior orientation data. The 

interior orientation includes such elements as camera-calibrated focal length, the position 

of the perspective centre with respect to the fiducial marks, image quality measures and 

distances between fiducial marks to measure the coordinates. 

 

2.6 Smartphone Platform 

Smart mobile phones have become easy to obtain socially over the past ten years 

around the world. These smart devices provide a high technology platform for people as 

users and developers to explore mobile computing possibilities that present a promising 

ability for enhancing prevention, treatment and health issues (Pop-Eleches et al. 2011). 

This option has increased the demand for new mobile health (m-Health). Mobile 

developers have  uses the benefits  of this technology to maintain communication with 

patients and clinicians, as well as self-monitoring some health issues (Direito et al. 2014). 

In particular, Android mobile devices have  been chosen by many m-health applications 

such as phones or tablets, as the target device to supply a more convenient user experience 

that has led to a  rapidly increasing number of m-health pal Stores (Sinha et al. 2017). Also,  

Vos et al. (2016) used smartphone for supports personalized running experiences for less 

experienced runners. The ubiquitous nature of smartphone technology makes it an ideal 

platform through which to monitor human movement remotely without the cost of purchase 

and the inconvenience of use (Del Rosario et al. 2015) .  

Tran and Phan (2016) designed and constructed a system to identify human actions 

using integrated sensors in smartphones and all Human activities recognition system is 

written on Windows and Android platforms and operate in real time. 

Therefore, this research has selected the Android platform to represent mobile 

software platforms. Sony Z5 and Samsung S9 smart phone devices have been utilised for 

experiments. 

 

2.6.1 Technical Specification 

This research has used two smartphone. The first device is a Sony Z5 that has the 

following specifications: Weight: 154g, Dimensions: (146 x 72 x 7.3mm), OS: Android 

6.0.1, Screen size: 5.2-inch, Resolution: (1080 x 1920) CPU: Snapdragon 810 RAM: 3GB 

Storage: 32GB Battery: 2900 mAh. The second device is a Samsung S9 which has the 
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following specifications: height 5.81” (147.7 mm), width 2.7” (68.7 mm), depth 33” (8.5 

mm), and weights (163 g), and screen size 5.8” (147.3 mm). 

 

2.6.2 Smartphone Sensors 

In most smartphones devices, there are a variety of sensors: Compass Magnetometer, 

Proximity sensor, Accelerometer, Ambient light sensor, and Gyroscope (Su et al. 2014). 

Recently, manufactured smartphone devices have adopted micro technologies to determine 

device orientation such as gyroscope accelerometers and micro electromechanical systems 

(MEMS) (Baldini et al. 2016). This research has focused solely on the efficiency of the 

accelerometer. Consequently, the review is focused on the one sensor of the Android 

application. 

The accelerometer comprises up to three accelerometers, one for each axis-x, y, and z as 

illustrated in Figure 2.7 (Yousefian 2017). Each one calculates changes in the speed over 

time along a linear path. Combining all three accelerometers, the movement of the device 

in any direction and the current orientation of the device can be detected.  

 

 

Figure 2.7: The accelerometer measures changes along the x, y, and z-axes.  
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The MEMS accelerometers in smartphone devices can provide accurate data of 

user’s movements and may be helpful for gait analysis, evaluation, validation and 

monitoring (Tian & Chen 2016). Nishiguchi et al. (2012) evaluated the accuracy and 

validity of a smartphone accelerometer. The obtained outcomes by the smartphone showed 

statistically significant and reasonable agreement with the same parameter results obtained 

by the tri-axial accelerometer. Similarly, Chan et al. (2011) studied the abilities of the 

accelerometer in a smart mobile device for determination of gait events from walking over 

a flat surface. The outcomes confirm that it is possible to obtain features from the 

accelerometer of an iPhone such as step detection, stride time and cadence. Galán-Mercant 

et al. (2014)  have further evaluated the reliability and accuracy of the accelerations with a 

smartphone in an Extended Timed Get Up and Go test. The results show that the internal 

sensor in the iPhone device is sufficiently accurate and reliable to validate and evaluate the 

kinematic patterns. 

These studies have shown acceptable results which can enhance the smartphones’ 

reliability for gait analysis. In addition, the built-in sensors of these smartphones devices 

can be as acceptable as IMUs. Thus, this research has explored the use of smartphones 

devices to analyse the walking measurements in real time for the estimation in gait analysis.  

 

2.7 Summary 

This chapter addresses the importance of studying human movement and gait 

characteristics. Also, this chapter demonstrates that many studies have used different 

methods and techniques to analyse human movements and gait characteristics the literature 

review shows that many studies have used photogrammetry techniques in science and 

engineering to make accurate 3D measurements of objects.  Also, this research explained 

the gait analysis methods that are using in gait studies such as non-wearable devices and 

wearable devices. The advantages and disadvantages of both methods are explained in 

detail.  

This section also found that by using smartphone sensors, gait research has 

continued to expand in the last decade. However, there is a lack of research investigating 

close-range photogrammetry with smartphones in terms of kinematics and need to develop 

a new technique to evaluate the spatiotemporal parameters via using accelerometers 

sensors measures. Therefore, the current work aims to fill this research gap by providing 

an understanding of the gait study methods, using new strategies and different ideas.  
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This aim has been achieved by applying a set of objectives to introduce a new 

technique for evaluating smartphone sensor devices in chapter 3. The first objective is to 

determine the suitability measures obtainable from Smartphone devices and comparing 

captured data with camera image-based photogrammetric data. 

The second objective develops a new methodology for smartphone sensor devices 

to analyse spatiotemporal gait parameters. The third objective is to determine the suitability 

of new gait parameters characteristics to identify and the relationship between Smartphone 

and Insole sensors. Finally, this study evaluated and validated the performance’s quality of 

the proposed method by using different statistical methods and comparing the results of the 

innovative methodology with those of the most used methods in published works. 
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3 CHAPTER 3 METHODOLOGY 

3.1  Overview 

This chapter describes how the objectives of the research were achieved. The 

main focus is the introduction of new protocols to collect accurate human gait data 

using cameras, smartphones and insole sensors.  

This chapter has two parts. The first part (Section 3.2) begins by describing the 

methods applied to study the kinematics (distance and positions) of lower limbs during 

walking in the frontal plane. The structure of the measurements systems is illustrated 

in Section 3.2.1. The gait protocol used to perform camera calibration and capture 

photogrammetry data is explained in Sections 3.2.2 and 3.2.3. The smartphone 

calibration is then performed in Section 3.2.4, and data acquisition is illustrated in 

Section 3.2.5. The experimental measurements and analyses are addressed in Section 

3.2.6. The methods reported in this part achieve the first objective.  The second part of 

the chapter includes the methods applied to study the new evaluation methodology 

comparing smartphone accelerometer sensors and insole shoes sensors (Section 3.3.1), 

equipment (Section 3.3.2), participants’ characteristics (Section 3.3.4), data collection 

(Section 3.3.5), and statistical analysis (Section 3.3.6).  

This chapter also describes the materials and devices used during the data 

collecting procedures. The sampling strategy and conditions of participants are also 

introduced. The second part reports on the achievement of the second and third 

objectives 

This research seeks to develop a new set of body wear-based (wearable) 

biomechanical measures for gait characteristics study. The system includes video 

cameras and smartphone accelerometer sensors. The set of body wear is verified by 

calculating data from the accelerometer sensors embedded in the smartphone and 

digital camera data. Then, data from the smartphone sensors and camera images is 

compared. Figure 3.1 shows the steps followed in the research methodology. 
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3.2 Kinematics (distance and positions) 

3.2.1 Subjects and case description 

To develop and evaluate the idea of the first part of this research, 10 male 

individuals aged between 30 and 45 years, weight 70-90 kg were recruited in the study 

as shown in Table 3.1. Participant weight is either in the normal range (Body Mass 

Index falls within a weight range that is not associated with an increased risk 

for weight-related diseases and health issues) or 20kg or more overweight. Participants 

had no previous injuries, trauma, illness or any related disorders.   

Figure 3.1: Research methodology outline (first part of methodology) 
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Individual participants were fitted with the smartphone device around their right leg. 

Each subject was asked to walk two steps at their normal walking speed, and data was 

gathered. At the beginning of the test, the subject will turn on the program (inbox tool) 

manually and then start walking and record data for the test. 

 

Table 3.1: Participants’ characteristics   

Participants Height(cm) Weight(kg) Age 

Subject 1 176 80 45 

Subject 2 185 100 42 

Subject 3 173 90 36 

Subject 4 171 93 33 

Subject 5 178 81 30 

Subject 6 177 82 30 

Subject 7 176 71 34 

Subject 8 174 81 35 

Subject 9 179 84 40 

Subject 10 168 70 38 

 

This research will develop a new set of body wear-based (wearable) 

biomechanical measures for gait characteristic study. The system used in this research 

includes video cameras and smartphone accelerometer sensors. The set of body wear 

is verified by calculating data from the accelerometer sensors embedded in the 

smartphone and digital camera data, and compares the data from the smartphone 

sensors and camera images data. Figure 3.1 shows the steps followed in the first part 

of the research methodology.  

  

3.2.2  Research protocol 

To develop and evaluate the idea of the first part of this research, 10 normal 

males aged between 25 and 35 years were recruited. Their weight was in the normal 

range (Body Mass Index falls within a weight range that is not associated with an 

increased risk for weight-related diseases and health issues) or 20kg overweight. They 

were fitted with a smartphone around the right leg. Each subject was asked to walk 
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two steps at their normal walking speed, and data was gathered from each subject. At 

the beginning of the test, each subject turned on the program (inbox tool) manually 

and commenced walking, and the test data was recorded for each subject. The use of 

human subjects in this research was approved by the University of Southern 

Queensland Human Research Ethics Committee (No H20REA267). 

3.2.3 Camera calibration and photogrammetric data capture   

3.2.3.1  Camera calibration 

Camera calibration is considered a vital stage in photogrammetric studies to 

improve the accuracy of the measured coordinates (𝑥, 𝑦) of an image. For this reason, 

in this study, four JVC cameras were calibrated by finding the interior orientation 

parameters(𝑋0,𝑌0, 𝐹), radial distortion parameters (𝐾1, 𝐾2, 𝐾3) and lens 

alignment (𝑃1, 𝑃2, 𝑃3 ) to obtain accurate results. The selected cameras were calibrated 

individually using a self-calibration technique (Remondino & Fraser 2006; Udin & 

Ahmad 2011) with an object distance of 900 mm as shown in Figure 3.2. The test-field 

used to calibrate the camcorders consisted of a grid of 10 rows and 10 columns of steel 

pins (100 pins in total) which were attached to a polycarbonate board of 12 mm 

thickness. The pins had different elevations ranging from 10 mm to 60 mm above the 

surface of the board, and retro-reflective targets of 5 mm diameter were attached on 

each pin. The RMS tolerance specified for the target coordinates were 0.05 mm across 

the X, Y and Z axes for each of the camcorders. 

Calibration was also required as the lens parameter values were required for the 

subsequent photogrammetric application (Chong et al. 2008). In calibration, nine sets 

of convergent video clips of the test-field were captured from four different camera 

station positions, individual frames were extracted from the clips, and the frames were 

processed using the off-the-shelf camera calibration software, Australis®.  Result of 

camera parameter after run the bundle in the Australis program are clarified in 

Appendix B2. 
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Figure 3.2: Camera calibration target board 

The PLPC (Principle Lens Parameter Computation) technique (Chong 2011) was used 

to determine the lens parameters during an imaging session,  as shown in Figure 3.3.  

 

 



 

 

30 

 

 

Figure 3.3: Focal length where xp and yp are the coordinates of a point in the camera 

coordinate system and c=focal length  (Chong 2011) 

3.2.3.2 Video camera recording data 

Capturing video clips for the legs and thighs during gait was achieved using a 

close-range photogrammetric system (CRPS), as shown in Figure 3.4, using four HD 

Panasonic Lumix video cameras. These video cameras were utilised to extract clear 

frame (image) as related to the smartphone testing. The researcher converted the 

frames into 3D modelling to obtain the 3D coordinates of the target. 
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3.2.4 Smartphone accelerometer calibration 

Sensor calibration is a method of improving sensor performance by removing 

structure errors in the sensor outputs (Li et al. 2015). Many researchers have developed 

different calibration techniques for the proposed sensor output model. For example, 

Bekkeng (2009)  evaluated gyro parameters through a Kalman filter using a computer 

controlled rate table and a homemade temperature chamber. Olivares et al. (2009) used 

a rotation plate and an automatic level topographic instrument.  

In this research, the smartphone accelerometer sensor calibrations were 

achieved using a motion capture system. To reach the sensor calibration by motion 

capture system, optoelectronic cameras were used to collect 3D data. Ten Qualisys 

computerised motion analysis system (Qualisys 2.14, Gothenburg, Sweden) infrared 

motion cameras were utilised for testing at the Gait Laboratory at the University of 

Southern Queensland as shown in Figure 3.5. The MCS-based motion capture system 

is increasingly applied to the continuous indoor and outdoor ambulatory motion 

measurements in the daily life. Three cameras were positioned at the back of the 

walkway, three cameras at the front of the walkway, and two cameras on each side of 

the walkway. These cameras were designed to obtain the three-dimensional 

coordinates of the retro-reflective markers that were positioned on the smartphone 

Figure 3.4: Four digital HD Panasonic Lumix cameras 
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screen. This calibration was started by putting one target on the smartphone screen at 

the same position of the smartphone accelerometer sensor and dropping the 

smartphone to the ground where the motion capture cameras captured it as seen in 

Figures 3.6 and 3.7. A motion capture system works with specific targets so we need 

to use this target to read the phone movement.  

After that, 3D data was collected from both the smartphone sensor and the 

motion capture system. Qualisys Track Manager Software was used to collect the 3D 

data of the motion capture system. Qualysis track manager setting up process and 

specifications described in Appendix B1. 

 

Figure 3.5: Setup of motion capture system 

 

3.2.4.1 Correlation sensor and motion capture system data 

      In this work, the sensor data during movement should be the same as the data that 

comes from the motion capture system (MCS).  However, the first frame in the sensor 

reading (𝑋𝑠, 𝑌𝑠, 𝑍𝑠)  will not be the same as the first frame (MCS)  (𝑋𝑐, 𝑌𝑐, 𝑍𝑐) 

because the start time measurement is different. The sensors’ coordinates will be 

generated from the output measurements of MCS as shown in Figure 3.8. The 3D 

Conformal Transformation method was adopted as the mathematical method to 

connect both systems.  
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Figure 3.7: Motion capture system with front view capture 

 

Figure 3.6: Motion capture system with side view capture 

Target 
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Figure 3.8: Motion capture system simulated sensor 

 

3.2.5 DATA ACQUISITION  

The data was stored on an Android phone and analysed offline through the 

extraction of features in time and frequency. The current study employed a smartphone 

sensor accelerometer. This sensor was located next to the lower limb of the body; the 

right leg of each subject’s body. Smartphones were placed there because “the human 

body is made out of numerous exceedingly adaptable fragments, and the upper body 

movement of people is particularly complicated as far as precision estimations” (Liu 

et al. 2007). Accelerometer data was measured by a tri-axial which provided 

simultaneous measurements in three orthogonal directions for analysis of all of the 

vibrations being experienced by a structure. These sensors were located on the front 

side of the leg in front of the camera as presented in Figure 3.9 A and B. In addition, 

smartphone sensors can provide a variety of valuable data. For instance, a device can 

recognise a subject’s physical activity, such as walking or running, by analysing 

accelerometer data. This information can be collected over a period to identify daily 

habits.  

Smartphone Target 
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Figure 3.9 A and B shows the collected camera data. Two photogrammetric 

control boards were installed at the left and right of the floor mat to provide a control 

for the camera resection with scaling. The coordinates of the target in the two boards 

were calculated with a bundle adjustment technique. The captured digital images of 

the different dimensions of the calibration plate were downloaded to a PC with 

Australis software (v 6.06). This method enabled calibration, avoidance of lens 

distortion errors and determination of foot axis using a bundle adjustment.  

 These data were recorded when the red light installed in the right board and 

connected to the sensor in the floor mat (as displayed in Figure 3.9 A) came on. To 

increase the accuracy of the synchronization time between the smartphone, camera and 

floor mat we used a timer plus the light as shown in Figure 3.9 B.  Data collection 

began when the heel-down portion pressed on the floor mat and continued until the 

toe-off portion of the gait.  Appendix B3 illustrates the 25 photographs of one step for 

one subject from one camera only from the heel strike to toe off. 
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Figure 3.9: A and B: Collection smartphone sensors and camera data 
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3.2.5.1   Accelerometer sensor data 

Accelerometer sensors measure the acceleration forces acting on an object in 

order to determine the object's position in space and monitor the object's movement. 

To collect data, an accelerometer analyzer application was used to capture the 

accelerometer data. This application provided the speed, which was 50Hz in this 

research.  It also provided the x-axis, y-axis and z-axis. These axes represent the 

horizontal/sideways movement of the participant (x-axis), upward/downward 

movement (y-axis), and forward/backward movement (z-axis). Figure 3.10 explains 

these axes which are related to a subject. Each accelerometer axis provides a signal 

which provides a frame. Every test was labeled with subject’s name and test’s time. In 

this research we used the positive peak in the acceleration signal in the interior-

posterior direction as the instant of heel contact (Brandes et al. 2006).  

 

 

 

 

Figure 3.10: Sample acceleration signals for walking. Normal gait (A) and disability 

gait (B) 
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3.2.6 Experimental measurements and analyses 

Investigation involved measuring the motion gait of a participant’s leg during 

a movement, and determining the type and accuracy of data obtained from the sensors. 

Depending on the idea of this research, it can be divided into two phases. First, the 

researcher compared data obtained from the camera and sensor to evaluate the 

accelerometer measurement. Four Panasonic Lumix cameras were used to record 

participants’ movements. Therefore, images were extracted from video cameras. 

These images were converted into 3D modelling to obtain the 3D coordinates of 

targets (𝑋𝑐, 𝑌𝑐, 𝑍𝑐). The other device, sensors embedded in smartphones, provided 

three coordinates (𝑋𝑠, 𝑌𝑠, 𝑍𝑠).  Throughout the gait cycles, several frames were 

created depending on the sensor readings. Despite the limitations of this research in 

synchronising sensors with digital cameras and using commercial sensors, the 

preliminary results suggested that the implementation of sensor measurements was 

indeed feasible. The following steps of Experiment 1 included: 

1- Fix the target on the smartphone  

2- Fix the smartphone to the subject’s leg 

3- Calibrate the camera 

4- Let the subject walk 

5- Record the data from cameras’ sensors  

6- Analyse and evaluate the data.   
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3.3 Temporal spatial parameters 

3.3.1 Overview 

Spatiotemporal gait parameters are related to adverse health issues such as risk of fall 

(Kalron & Achiron 2014; Bang & Shin 2016). Recently, gait analysis researchers have 

used different instruments to evaluate gait parameters to study the risk of falling. 

Several technologies utilise insoles for specially designed shoes (Howell et al. 2013). 

An insole sensor was shown to be suitable to determine human movement parameters 

such as the stance and swing phases (Martínez-Martí et al. 2014). The insole sensor is 

also able to measure a number of spatiotemporal gait parameters: swing time, stride 

length, step time and cadence (Noshadi et al. 2014). Other studies using insole pressure 

sensor data enabled the planning of ways to reduce plantar pressure among diabetic 

patients (Zequera & Solomonidis 2010).Thus, the purpose of the second part of the 

research methodology was to: 1) investigate two smartphones in determining 

spatiotemporal gait parameters (step time, stride time, cadence and walking speed) and 

2) evaluate the validity of a smartphone-based tri-axial accelerometer to assess gait 

characteristics. The second part of the research methodology is outlined in Figure 3.11.  
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3.3.2 Equipment 

To perform the second part of our research we used two types of equipment (two 

insole sensors and two smartphones Samsung S9). 

 

3.3.2.1  The plantar pressure measurement system (insole sensors) 

The plantar pressure measurement system is comprised of:  

a- 3000E F-scan in-shoe sensors sampling at 100 Hz to capture COP excursions in the 

anterior-posterior (AP) and mediolateral (ML) directions as shown in Figure 3.12. 

From these, contact area, direction of sway, distance, direction travelled by the COP, 

and variability of distance travelled by the COP was obtained using F-Scan Research 

ver. 6.70-03 software  

Figure 3.11: Research methodology outline (second part) 
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b- Small size and 0.5 mm thickness force pressure sensors were used to measure the 

load between the ground support and human foot (Noce 2005; Rana 2009) as shown 

in Figure 3.13. These thin sensors are sufficient to enable non-intrusive measurements 

and are ideal for measuring the forces and pressure without testing the dynamics of the 

subjects. Appendix C1 provides more details about the insole sensor specification. 

 

In this research Force Resistance Sensors (FRS) were selected due to their electronic 

simplicity, inexpensiveness, moderate accuracy (better than ± 5% of full use force 

(780 kPa)) and ability to observe the load of the foot during gait (slow or fast walking 

and running) (Noce 2005). 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Insole sensor 
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3.3.2.2  Smartphone Samsung S9 

As shown in Figure 3.14, the Samsung Galaxy S9 has a height of 5.81” (147.7 mm), 

width of 2.7” (68.7 mm), depth of 33” (8.5 mm), weight of 163 g and screen size of 

5.8” (147.3 mm). The application used in our research was inbox tools as shown in 

Figure 3.15. 

Figure 3.13: In-shoe pressure system 
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Figure 3.14: Samsung Galaxy S9 

 

 

Figure 3.15: Physics tool app with linear accelerometer reading   
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3.3.3 Participants 

In the second part of this research, 20 healthy adult subjects aged between 20 

and 40 years were recruited. Their mass and height were 60 to 95 kg and 156 to 180cm, 

respectively, as presented in Tables 3.2 and 3.3. All walked continuously for at least 

10 meters without help or assistance devices. Some demographic properties were 

obtained from each participant: age, gender, height, weight and shoe size. All subjects 

gave written consent at the beginning of the trials.  A human ethics application was 

approved by the Human Research Ethics Committee at the University of Southern 

Queensland (No H20REA267). 

 

Table 3.2: Demographics for group of 10 males 

Participants Height/cm Weight/kg Age 

Subject 1 176 80 45 

Subject 2 185 100 42 

Subject 3 173 90 36 

Subject 4 171 93 33 

Subject 5 178 81 30 

Subject 6 177 82 30 

Subject 7 176 71 34 

Subject 8 174 81 35 

Subject 9 179 84 40 

Subject 10 168 70 38 
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Table 3.3: Demographics for group of 10 females   

Participants Height/cm Weight/kg Age 

Subject 1 159 62 19 

Subject 2 168 50 22 

Subject 3 164 69 24 

Subject 4 168 69 27 

Subject 5 164 29 25 

Subject 6 165 69 23 

Subject 7 166 68 27 

Subject 8 168 64 24 

Subject 9 169 60 23 

Subject 10 170 55 21 

 

 

3.3.4 Data collection and processing  

After consent, the subjects were asked to walk along a 10-meters long walkway 

for a short warm-up trial. Before recording of the trial, each participant was given three 

minutes to practice the procedure, thus minimising walking errors without alteration 

of step characteristics. Data were collected for the gait spatiotemporal parameters: step 

time, stride time, cadence and walking speed. In the trial, the participant was shown a 

standard gait procedure from standing position to stepping onto the floor using the 

3000E F-scan in-shoe sensors sampling at 100 Hz. After inserting the 3000E F-scan 

in-shoe sensors inside the subject’s shoes (Figure 3.16) five walking trials were 

recorded for each subject. Nine steps were collected per straight-line walk for each of 

the five trials. In order to collect high accuracy plantar pressure data, the average of the 

three middle steps was taken from the nine steps for each trial, see Figures 3.1.7 and 3.1.8. 

The best trial recordings were chosen for processing using F-scan research software. In 

other words, we choose the clearest outcome data from the insole sensor after check 

the reading stable.  
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Figure 3.16: A and B: An example for two people wearing insole sensors and 

smartphones during the test    
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Figure 3.17: Trial with nine steps of the accelerometer for one subject 

        Figure 3.18: Nine steps from F-scan of insole sensor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The smartphone was attached to each subject’s lower limbs in order to collect 

spatial parameter data. The tests were completed and the data were collected 

simultaneously for both the smartphones and insoles sensors.  The differences were 

detected, and some basic features of both patterns for the insole sensor and 

accelerometer sensor could be observed. First, the insole pattern in forward and 

upward directions was more stable most of the time because its work depended on the 

leg pressure sensor. For the smartphone, the pattern showed more stable steps in 5-7 

(as shown in Figure 3.17) because the accelerometer data depended on the walk. In 

other words, acceleration change was small at the beginning and end of walking. 
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Moreover, the smartphone accelerometer forward and upward directions data show 

some noise and negative signals in the pattern, but we used the positive signals only. 

The change of sign of the positive peak in the acceleration signal in the 

anterior-posterior direction was taken as the instant of the foot contact Ducharme et al. 

(2018). In steps time and stride time the data calculated the average of the time for the 

three middle steps (5-7) steps. The time of these three steps was added and divided by 

3, and the same was done for stride time but for three strides. The processing of 

cadence was calculated based on the equation stated in the work of Silsupadol et al. 

(2017). The walking speed was computed by dividing the distance along the entire 

walkway over the time. Finally, to validate the accelerometer’s ability to detect the 

number of steps, the subject walked nine steps depending on the lap distance on a flat 

floor indoors with no obstacles nearby. 

 

3.3.5 Statistical analysis 

A repeated measure analysis of variance (ANOVA) was used with the four 

factors with a post-hoc Bonferroni correction to determine statistical differences (mean 

differences) between each two factors (conditions). The P value would be significant 

if it was less than 0.025, according to the analytical regression equations of (Perneger, 

1998). 

Mean, standard deviation and interclass correlation coefficient measures were 

applied in this study to evaluate the performance of the proposed method.  Those 

measures were computed for each subject’s trials and then the average of the mean, 

standard deviation and interclass correlation coefficient were collocated. Interclass 

correlation coefficients (ICC) using for comparison between the two systems for all 

four parameters. 

Blind-Altman plots were used to provide the bias and limit of agreement (LOA) 

between smartphone sensor and insole sensor data, as well as to evaluate the developed 

study method.  

To assess the validity between the insole sensors and smartphones for each trial, the 

Pearson correlation was also used in this analysis. To investigate the effectiveness of 

the smartphones as opposed to the insole sensors in determining spatiotemporal gait 

parameters (step time, stride time, cadence and walking speed), box plots were used 

based on the Pearson correlation coefficient. The box plots consist of three parts: 
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upper, lower and middle. The upper part of the plot box denotes the 75th percentile, 

the lower part denotes the 25th percentile, while the central part refers to the median 

50th percentile which is sometimes called the centre. 

For further evaluation of the study, the behaviours of the smartphones and insole 

sensors were analysed and tested for spatiotemporal gait parameters using R-squared 

(R2). 

 

3.4 Summary  

 This chapter demonstrates a new developed methodology for conducting human 

gait analysis. It also introduces new protocols for collecting gait accelerometer 

measures, photogrammetry images and spatiotemporal data with higher accuracy. This 

research illustrates how to determine and evaluate smartphone accelerometer 

technology to replace current photogrammetry techniques using imaging sensors. It 

also illustrates how to collect and process the data of spatiotemporal human gait 

parameters for four devices (two smartphones and two insole sensors) of different 

groups using a cohort of 30 adults. Finally, this chapter explained the experimental 

measurement and analysis of the first and second parts of this research. 
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4 CHAPTER 4: TRIAL RESULTS AND ANALYSIS 

4.1  Introduction  

Human movement and gait characteristics have been studied using a variety of 

devices such as cameras and pressure and force sensors. These devices, however, have 

some disadvantages such as cost of purchase, space requirements and processing time. 

Scientists are currently interested to develop new measurement methods based on 

advanced electronic technology. 

This chapter presents the results of the research based on the methodology 

introduced in Chapter 3. The first part of this chapter represents the achievement of the 

first objective (to which we referred in Chapter 1). The accelerometer measurements 

obtained from smartphone devices and new camera and smartphone sensor measurement 

data results are presented in Section 4.2. These results achieve Objective 1. They validate 

the accuracy of the presented method. Vertical distance was measured during the main 

phases of gait from heel strike to toe-off. An analysis and comparison of the 

photogrammetry, accelerometer and floor mat sensor data shows that it is more accurate 

and that this accuracy is significant. 

 The second part of this chapter presents the results of the new methodology for the 

smartphone sensor device to analyse spatiotemporal gait parameters to achieve Objective 

2. We investigated the use of two smartphones to determine spatiotemporal gait 

parameters (step time, stride time, cadence and walking speed) by collecting 

spatiotemporal human gait parameter data with four devices (smartphones and insole 

sensors) for different groups using a cohort of 30 adults. To achieve the third and fourth 

research objectives we determined the effectiveness of the characteristics of the gait 

parameters to identify the relationship between smartphone and insole sensors and used 

different statistical methods to evaluate the performance of the proposed method. All 

statistical analyses were performed using SPSS Version 24 and Excel 2010.  
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4.2  Evaluating smartphone accelerometer for existing 

and new measurement 

  Smartphone accelerometer and camera data were record and computed based on 

the method explained in part one of the methodology chapter.  The researcher tested the 

sensors by choosing an application to capture sensor data of speed, accuracy and types of 

file to make the analysis of data easier and quicker. Also, the researcher found the 

accelerometer data may affected by the mounting of the sensor depends on the sensor 

model. For that, different examine have been achieved in this research to check the ability 

of the smartphone sensor to recognise the gait parameters.   Next, the researcher tested 

the accelerometer by putting a smartphone on the leg of an individual who then walked. 

At the same time, digital cameras were used to record the individual walking.  

It is not clear if the inconsistency in data verification is affected by the walking activities 

or by the mounting of the sensor. 

 

In this test we used 10 frames for each subject’s gait, and the results show that 

the output data for both the sensors and the cameras are almost the same: Figures 4.1, 

4.2 and 4.3.  Each figure represents the target movement for each step, starting from the 

heel strike and ending in the toe off. The distance between the heel strike and tow off is 

calculated using equation (1) 

 

            D  =                                                                 ………. (1) 

 

D=distance 

(x1, y1) =coordinates of the first point 

(x2, y2) =coordinates of the second point 

 

Regrading to the above equation the outcome showed five frames as shown in 

Figurers (4.1-4.3). The aim was to experiment new technique throughout testing fewer 

subjects. The following results were mainly focused on measuring position and distance 

in x and y direction of the frontal plane.  
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In the following figures we see good agreement between the accelerometer data 

and photogrammetry data. In terms of knee movement, each subject has a different 

movement form heel strike to toe-off. In Figure 4.1 shows the high agreement in the first 

movement but start to be slightly different when the subject move. Notably, Figure 4.2 

shows a distinct difference from starting with a step whilst still the same movement for 

both readings (photogrammetry and accelerometer sensor). This could be because of the 

synchronization of movement initiation for both devices so the camera captures data 

before the smartphone accelerometer. The figures below show the consistency of the 

obtained results, with each of the following figures representing one subject. The 

accelerometer and photogrammetry show that the vertically measured distance was 

approximately similar.  

            

Figure 4.1: Subject 1 accelerometer sensor data versus photogrammetry data 

For the third participant, we can see the high agreement between both readings in the 

phases of complete step (Figure 4.3).    
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Figure 4.2: Subject 2 accelerometer sensor data versus photogrammetry data 

            

         Figure 4.3: Subject 3 accelerometer sensor data versus photogrammetry data 

To further validate the accuracy of our technique, 10 healthy males, with no issues 

that could in any way affect their gait, were recruited for study in gait phases from heel 

strike to toe-off. The trials were recorded for each person and the results (mean and 

standard deviation) of the right foot are displayed in Table 4.1. 

The 25 frames of gait were divided into five phases (heel strike, loading response, 

midstance, heel-off, and toe-off) and the number of frames between each two phases were 

different according to limb position. Figures 4.4 to 4.13 represent the knee movement for 

each subject (each figure is comprised of two parts: A and B). A provides camera photos 
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extracted from the video for each subject’s movements. Each spot in the figure represents 

the 3D coordinates of the target. B represents the accelerometer sensor reading frames of 

the smartphone. 

The mean, SD and R values for heel strike, loading response, midstance, heel-off and toe-

off for each subject are summarized in Tables 4.1 to 4.10. Heel strike, loading response, 

midstance, heel-off and toe-off stride from the two devices gave excellent agreement 

(R value >0.90) in most of the results.  

For Subjects 1 and 2, the heel strike phase shows less agreement between the 

photogrammetry and accelerometer data, but the agreement increases until the toe-off 

phase (Figure 4.4 A and B and Figure 4.5 A and B). Figure 4.6 A and B represent Subject 

3’s data and shows less agreement in loading response, heel–off and heel strike (R= 0.63, 

0.75 and 0.78) respectively as shown in table 4.3.   Subject 4’s data results show high 

agreement between both data (R> 0.87) in all phases except the Midstance (R=0.73), see 

Figure 4.7 and table 4.4. Furthermore, Figure 4.8 represent the movement of subject 5 

and it shows less agreement in the heel strike phase where (R= 0.75) table 4.5,   but subject 

6 has less agreement in heel-off as shown in table 4.6 . For Subjects 7 and 10, the data 

shows high agreement with (R ≥ 0.89) in all phases. See Figures 4.10 and 4.13, and Tables 

4.7 and 4.10. Only the heel-strike and Midstance phases showed less agreement (R= 0.68 

and R=67) in subject 8, while in Subject 9 (R> 80) in all phases as shown in table 4.9. All 

the above results show some differences in agreement between the photogrammetric and 

accelerometer obtained data in some phases such as heel strike, Midstance and loading 

response, which may be due to the way of walking or the gait posture. 
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Figure 4.4: 25 frames for photogrammetry (A) and accelerometer measures (B) for first 

subject. 

 

Table 4.1: Correlation between photogrammetry and accelerometer measures in the load 

phases of gait for first subject. 

Variables Photogrammetry 

technique (m) 

Accelerometer 

measure(m) 

R 

 Mean     SD Mean       SD  

Heel strike 1.50  0.21 1.35   0.21 0.64 

Loading response 2.96 0.52 1.62 0.28 0.87 

Midstance 4.08 0.32 3.53 0.44 0.90 

Heel off 5.57 0.25 5.13 0.56 0.91 

Toe off 6.45 0.31 7.89 1.25 0.95 
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Figure 4.5: 25 frames of photogrammetry (A) and accelerometer measures (B) sensors 

for second subject. 

 

Table 4.2: Correlation between photogrammetry and accelerometer measures in load 

phases of gait for second subject 

Variables  Photogrammetry 

technique (m) 

Accelerometer 

measure (m) 

R 

  Mean     SD Mean     SD  

Heel strike  1.91 0.48 1.38 0.50 0.75 

Loading response  2.54 0.43 1.21 0.28 0.83 

Midstance  4.14 0.42 1.24 0.38 0.94 

Heel off  5.89 0.56 2.26 0.21 0.99 

Toe off  8.60 1.53 4.99 1.43 0.98 
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Figure 4.6: 25 frames of photogrammetry (A) and accelerometer measures (B) sensors 

for third subject 

 

Table 4.3: Correlation between photogrammetry and accelerometer measures in load 

phases of gait for third subject 

Variables Photogrammetry 

technique (m) 

Accelerometer 

measures (m) 

R 

 Mean     SD Mean       SD  

Heel strike 0.76 0.31 0.68 0.32 0.78 

Loading response 2.10 0.21 0.88 0.11 0.63 

Midstance 5.46 1.77 2.70 0.86 0.83 

Heel off 8.20 0.72 3.39 0.09 0.75 

Toe off 9.79 1.69 6.40 1.29 0.94 
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Figure 4.7: 25 frames of photogrammetry (A) and accelerometer measures (B) sensors 

for fourth subject. 

 

Table 4.4: Correlation between photogrammetry and accelerometer measures in load 

phases of gait for fourth subject 

Variables Photogrammetry 

technique(m) 

Accelerometer 

measures(m) 

R 

 Mean     SD Mean       SD  

Heel strike 1.44 0.34 0.92 0.26 0.96 

Loading response 2.66 0.42 0.92 0.30 0.88 

Midstance 2.77 0.92 2.20 0.82 0.73 

Heel off 6.48 2.10 6.17 1.41 0.95 

Toe off 9.20 1.10 6.83 0.48 0.89 
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Figure 4.8: Vertical and horizontal positions for 25 frames of photogrammetry (A) and 

accelerometer measures (B) for fifth subject. 

 

Table 4.5: Correlation between photogrammetry and accelerometer measures in load 

phases of gait for fifth subject.  

Variables Photogrammetry 

technique(m) 

Accelerometer 

measures(m) 

R 

 Mean     SD Mean       SD  

Heel strike 1.24 0.39 1.15 0.49 0.75 

Loading response 2.52 0.23 2.15 0.41 0.88 

Midstance 3.03 0.74 2.76 0.67 0.98 

Heel off 8.04 1.20 8.27 2.81 0.83 

Toe off 12.58 1.23 12.89 0.55 0.96 
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Figure 4.9: 25 frames of photogrammetry (A) and accelerometer measure (B) for sixth 

subject. 

 

Table 4.6: Correlation between photogrammetry and accelerometer measure in load 

phases of gait for sixth subject 

Variables Photogrammetry 

technique(m) 

Accelerometer 

measure(m) 
R 

 Mean     SD Mean       SD  

Heel strike 1.41 0.21 0.26 0.13 0.93 

Loading response 1.29 0.30 0.94 0.22 0.99 

Midstance 1.90 0.36 1.52 0.29 0.99 

Heel-off 2.79 0.47 2.00 0.29 0.79 

Toe-off 4.50 1.20 3.95 1.05 0.99 
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Figure 4.10: 25 frames of photogrammetry (A) and accelerometer measures (B) for 

seventh subject. 

 

Table 4.7: Correlation between photogrammetry and accelerometer measures in load 

phases of gait for seventh subject 

Variables Photogrammetry 

technique(m) 

Accelerometer 

measures(m) 
R 

 Mean     SD Mean       SD  

Heel strike 1.09 0.67 0.57 0.36 0.98 

Loading response 2.07 0.31 1.24 0.19 0.98 

Midstance 3.17 0.37 1.91 0.23 0.97 

Heel off 3.78 0.57 2.91 0.44 0.96 

Toe off 6.87 0.44 5.98 0.81 0.93 
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Table 4.8: Correlation between photogrammetry and Accelerometer measure in load 

phases of gait for eighth subject. 

Variables Photogrammetry 

technique(m) 

Accelerometer 

measure(m) 
R 

 Mean     SD Mean       SD  

Heel strike 1.32 0.10 0.78 0.08 0.68 

Loading response 1.42 0.56 0.82 0.16 0.98 

Midstance 2.74 0.18 1.37 0.14 0.67 

Heel off 5.34 1.06 2.93 0.63 0.85 

Toe off 8.98 0.73 8.26 3.80 0.99 

Figure 4.11: 25 frames of photogrammetry (A) and accelerometer measures (B) for 

eighth subject. 
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Figure 4.12: 25 frames of photogrammetry (A) and accelerometer measures (B) for 

ninth subject. 

 

Table 4.9: Correlation between photogrammetry and Accelerometer measures in load 

phases of gait for ninth subject. 

Variables Photogrammetry 

technique(m) 

Accelerometer 

measure(m) 

R 

 Mean     SD Mean       SD  

Heel strike 0.96 0.49 1.26 0.69 0.98 

Loading response 2.72 0.90 2.08 0.66 0.98 

Midstance 4.95 0.75 3.33 1.06 0.95 

Heel off 6.29 0.13 3.99 0.59 0.81 

Toe off 8.40 0.89 8.17 1.28 0.99 
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Figure 4.13: 25 frames of photogrammetry (A) and accelerometer measures (B) for 

tenth subject. 

 

Table 4.10: Correlation between photogrammetry and Accelerometer measures in load 

phases of gait for tenth subject 

Variables Photogrammetry 

technique(m) 

Accelerometer 

measure(m) 

R 

 Mean     SD Mean       SD  

Heel strike 0.97    0.53 1.08     0.58 0.99 

Loading response 1.47   0.30 2.09     0.42 0.99 

Midstance 3.88   1.59 4.25     0.80 0.89 

Heel off 6.22   0.52 5.65     0.47 0.98 

Toe off 10.15  1.55 9.63     1.84 0.99 
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In summary, from the obtained results, we can notice that specific opportunities exist for 

smartphone-based gait assessment as an alternative to conventional gait assessment. 

Furthermore, a smartphone-based gait assessment could provide reliable information 

about changes in the spatiotemporal gait parameters.  

4.3 Spatiotemporal gait parameters 

In this part of our research, a number of experiments were conducted to evaluate the 

performance of the proposed method. Smartphone data based on accelerometer and F-

scan were used in this study. As mentioned in Section 3.3.1, the purpose of the second 

part of the research methodology was to: Validate the smartphone sensor device by 

analysing spatiotemporal gait parameters. The quality of the new validated method can 

demonstrated by collecting spatiotemporal human gait parameter data for four devices 

(two smartphones and two insole sensors) with different groups using a cohort of 30 

adults. Beside, determine the effectiveness of the characteristics of the gait parameters to 

identify and relationship between Smartphone and Insole sensors. In addition, we used 

different statistical method to evaluate the performance of the proposed method. The first 

test dataset was calculated from 10 subjects. The dataset for each subject was divided into 

three trials, and each participant walked 10m. The mean, standard deviation and interclass 

correlation coefficient measures were applied to evaluate the performance of the proposed 

method.   These measures were computed for each subject and the average of the means, 

standard deviations and interclass correlation coefficients were calculated.  Data were 

analysed with SPSS 23.0 (IBM Inc) and Excel 2013.  

 

4.3.1  Performance quality of the developed method based on reliability 

and validity  

During walking trials, the results showed values closer or similar to those recorded 

by the insole shoes and smartphone for all four parameters (step time, stride time, 

Candace and walking speed). Table 4.11 shows the average measure for all subjects.  

Reliability using the mean and SD was used to evaluate the proposed approach.  These 

measures were recorded for using both insole and smartphone devices. Based on the 

obtained results presented in Table 4.11, we can see that the minimum SD was achieved 

when the smartphone device was used.  
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Table 4.11: Average of mean and SD for 10 subjects with four parameters.  

 Parameters  

Measures Step time (s) Stride time(s) Cadence(steps/min) Walking speed (m/s) 

 Insole 

shoes 

Accelerometer 

measure 

Insole shoes Accelerometer 

measure 

Insole shoes Accelerometer 

measure 

Insole 

shoes 

Accelerometer 

measure 

L  R L R L R L  R L  R L  R L R L R 

Mean  0.74 0.75 0.78 0.85 1.29 1.3 1.31 1.33 50.85 46.17 45.8 45.34 0.92 0.91 0.91 0.91 

SD 0.02 0.03 0.06 0.05 0.05 0.05 0.04 0.07 2.74 1.76 1.46 2.38 0.04 0.03 0.04 0.03 

 

To investigate the effectiveness of the characteristics of the four factors of gait to identify 

the relationship between smartphone and insole shoes, the mean and SD measurements 

were used in this study, as shown in Figures 4.14, 4.15, 4.16 and 4.17. Figures 4.14 

represented the mean and SD for the Insole sensor data for left step. Figure 4.15 

represented the mean and SD for the accelerometer measure data for left step for 10 

subjects.  Figure 4:16 and 4:17 represented the Mean and standard deviation for four 

factors (right steps) for 10 subject for insole sensors data and accelerometer data 

respectively. From the obtained results, we can see that the four parameters (step time, 

stride time, cadence and walking speed) for left and right legs have reported a good results 

in term of SD. Based on the literature, the smartphone’s obtained results indicate that the 

four parameters can be used to assess gait. The gait spatiotemporal parameters extracted 

from the smartphone device showed a good agreement compared to the insole shoes 

sensor. 
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Figure 4.14: Mean and standard deviation for four factors insole sensors data (left step) 

for 10 subject. 

 

   

Figure 4.15: Mean and standard deviation for four factors accelerometer data (left 

steps) for 10 subject. 
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Figure 4.16: Mean and standard deviation for four factors insole sensors data (right 

steps) for 10 subject. 

          

           

Figure 4.17: Mean and standard deviation for four factors accelerometer data (right 

steps) for 10 subject. 

           

Regarding validity, the interclass correlation coefficient was employed in this 

study to evaluate the performance of the proposed method. Four spatio-temporal gait 

parameters of ten subjects were determined using two smartphones and two insole shoes.  

Our findings show that there were some differences in the trials but they did not 

affect our results. The main reason for this is the gait time may vary for the same subject 

in each trial. In addition, the results of both devices (insole shoes and smartphones) show 

that the maximum time for the four parameters (step time, stride time, cadence and 
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walking speed) of all subjects was 0.85s, 1.33s, 50.58 min and 0.92m/s respectively. These 

results demonstrate that the smartphone has the ability to record good reliability measures 

for gait assessment.   

The interclass correlation coefficient (ICC) for the four parameters (step time, 

stride time, cadence and walking speed) was calculated. We used the following value to 

check agreement between the device results: .90 to 1.00 as very high, 0.70 to 0.90 as high, 

and 0.50 to 0.70 as moderate, 0.30 to 0.50 as low, and less than 0.30 as insignificant. 

These metrics and ranges of values were used by Mukaka (2012), Muheidat et al. (2017) 

and Howell et al. (2020).    

The ICC was computed for 10 subjects, and the average for each subject was 

calculated.  The ICC was used to evaluate the validity of the smartphone device. Tables 

4.12, 4.13.4.14 and 4.15 show the ICC results using the four parameters. The ICC showed 

closer readings between the smartphones and insole shoes.  

The step time, stride time, cadence and walking speed achieved excellent to fair 

results of ICC among all the subjects with an average ICC 41-96. Based on the literature, 

the ICC in this study is acceptable.  

Finally, the proposed approach using smartphone and insole achieves the best 

performance in terms of the mean, SD and ICC. This smartphone method can help 

researchers in recording gait characteristics such as step time, stride time, cadence and 

walking speed with accurate and reliable results, and it potentially reduces the costs of 

obtaining data. 
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Table 4.12: Differences in step time for each individual (number of trials=3) 

 Left step (L)  Right step (R)  

Subject

s ID 

Insole Accelerometer 

Measures   
 Insole Accelerometer 

Measures 
 

Mean(s)± SD(s) Mean(s)± SD(s) ICC Mean(s)± SD(s) Mean(s)± SD(s) ICC 

ID1 0.74±0.02 0.78±0.06 0.75 0.74±0.03 0.85±0.05 0.88 

ID2 0.74±0.02 0.81±0.05 0.71 0.77±0.04 0.8±0.04 0.71 

ID3 0.71±0.11 0.69±0.08 0.96 0.73±0.11 0.85±0.11 0.93 

ID4 0.737±0.017 0.77±0.02 0.93 0.72±0.02 0.74±0.01 0.75 

ID5 0.69±0.02 0.68± 0.02 0.70 0.67±0.02 0.68±0.02 0.76 

ID6 0.7±0.01 0.72±0.02 0.41 0.72±0.01 0.85±0.05 0.55 

ID7 0.71±0.01 0.78±0.02 0.76 0.75±0.01 0.78±0.01 0.85 

ID8 0.75±0.06 0.73±0.05 0.98 0.77±0.06 0.81±0.09 0.93 

ID9 0.72±0.02 0.74±0.01 0.81 0.72±0.02 0.74±0.01 0.75 

ID10 0.68±0.03 0.69±0.04 0.96 0.7±0.02 0.7±0.01 0.81 
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Table 4.13: Differences in stride time for each individual (number of trials =3) 

 Left step (L)  Right step (R)  

Subjects ID 

Insole Accelerometer 

Measures  
 Insole Accelerometer 

Measures 
 

Mean(s)± SD(s) Mean(s)± SD(s) ICC 
Mean(s)± SD(s) Mean(s)± SD(s) ICC 

ID1 
1.29±0.05 1.31±0.04  0.88  1.30±0.05 1.33±0.07  0.87 

ID2 
1.29±0.01 1.29±0.01 0.85  131.±0.01 1.28±0.02  0.88 

ID3 
1.31±0.19 1.25±0.22  0.96 1.31±0.2 1.3±0.18  0.98 

ID4 
1.26±0.03 1.27±0.05  0.91 1.28±0.03 1.28±0.03  0.94 

ID5 
1.25±0.05 1.27±0.03  0.95 1.24±0.04 1.23±0.04  0.98 

ID6 
1.3±0.01 1.31±0.04  0.63 1.29±0.04 1.33±0.07  0.70 

ID7 
1.3±0.02 1.29±0.01 0.77  1.3±0.001 1.29±0.01  0.88 

ID8 
1.31±0.19 1.25±0.22 0.96  1.31±0.02 1.3±0.08  0.91 

ID9 
1.29±0.008 1.3±0.03  0.81 1.29±0.02 1.31±0.03  0.97 

ID10 
1.26±0.05 1.27±0.03  0.95 1.26±0.04 1.24±0.03  0.95 

 

 

 

 

 

 

 

 



 

 

72 

 

Table 4.14: Differences in Cadence for each individual (number of trials =3) 

 Left step (L)  Right step (R)  

Subjects ID 

Insole Accelerometer 

Measures  
 Insole Accelerometer 

Measures  
 

mean± SD 

(steps/min) 

mean± SD 

(steps/min) 

ICC 
mean± SD 

(steps/min) 

mean± SD 

(steps/min) 

ICC 

ID1 
50.85±2.27 45.82±1.46  0.79 46.17±1.76 45.34±2.38  0.72 

ID2 
46.58±0.6 46.37±0.49  0.78 45.76±0.29 46.06±0.29  0.63 

ID3 
46.69±6.93 49.65±8.12 0.94  46.85±7.24 46.84±6.88  0.98 

ID4 
47.56±1.184 47.19±1.92 0.93  46.74±1.12 46.86±1.12  0.96 

ID5 
47.6±1.91 47.31±1.22 0.94  48.17±1.5 48.64±1.36  0.96 

ID6 
50.07±2.83 46.89±0.56 0.53  45.30±1.6 45.68±1.84  0.61 

ID7 
45.25±0.25 46.37±0.49  0.85 45.43±0.72 45.75±0.45  0.89 

ID8 
47.38±6.16 50.77±6.56  0.93 47.6±6.43 47.61±6.11  0.94 

ID9 
48.24±0.3 47.75±1.22  0.61 47.37±0.35 47.01±0.91  0.68 

ID10 
48.10±1.57 47.31±1.22  0.97 48.39±0.79 48.3±0.89  0.89 
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Table 4.15: Differences in walking speed for each individual (number of trials =3) 

 Left step (L)  Right step (R)  

Subjects 

ID 

Insole 
Accelerometer 

Measures  Insole 
Accelerometer 

Measures  

Mean(m/s)±  

SD(m/s) 

 

mean(m/s) ± 

SD(m/s) 

 

ICC 

mean(m/s)± 

SD(m/s) 

 

mean(m/s)± 

SD(m/s) 

 

ICC 

ID1 0.90±0.02 0.90±0.01  0.63 0.91±0.02 0.91±0.02 0.69 

ID2 0.90±0.01 0.89±0.02 0.93 0.88±0.02 0.88±0.01 0.85 

ID3 1.00±0.22 0.98±0.16 0.97 0.93±0.12 0.87±0.10 0.80 

ID4 0.90±1.00 0.90±0.03 0.70 0.90±0.01 0.91±0.01 0.82 

ID5 0.92±0.03 0.93±0.05 0.83 0.90±0.03 0.93±0.01 0.76 

ID6 0.92±0.01 0.9±0.01 0.79 0.93±0.01 0.92±0.02 0.90 

ID7 0.92±0.02 0.88±0.01 0.71 0.88±0.02 0.89±0.01 0.82 

ID8 0.88±0.05 0.90±0.06  0.83 0.88±0.04 0.91±0.05 0.88 

ID9 0.90±0.01 0.89±0.01  0.80 0.92±0.01 0.90±0.01 0.98 

ID10 0.95±0.02 0.95±0.01  0.97 0.96±0.01 0.95±0.04 0.90 

 

The smartphones and insole shoes show agreement and offer high performance 

quality results. This scheme was implemented and tested on a benchmark database which 

used only ten subjects with three trials. According to the results in (Mnati & Chong 2020), 

a smartphone versus insole shoe technique yielded promising results with high agreement. 

To improve the our results and make it more reliable we increased the number of subjects 

and trials, based on smartphone and insole sensors, was presented in this chapter; it was 

conducted and tested with a whole database, 20 subjects 10 men and 10 women; aged 20 

and 40 years; mass and height 60 to 95 kg and 156 to 180cm, respectively), using five 

trials.  
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The second phase of results were discussed the smartphones vs insole shoe 

technique of a whole dataset, with 20 subjects. This method improved performance by 

increasing the performance results using new statistic measures with a whole dataset. 

The results of each subject lower limb were reported in terms of mean and SD, 

as shown in Tables 4.15 and 4.16. Where, the results of 20 subjects left and right legs 

are described in details in Appendix C2.  These statistical measures are used by many 

researchers to evaluate their research methods (Silsupado et al., 2020; Hollman et al., 

2016). The results of all experiments were analysed using SPSS 23.0. Tables 4.15 and 

4.16 show the average (for 20 subjects) of four parameters for left and right insole 

sensor and smartphone, based on mean and SD. 

 

Table 4.16: Performance of proposed method based on four parameters - left insole  

sensor and smartphone for five trials m/s 

 

 

 

 

 

 

Variable 

 

Insole  Smartphone 

Mean SD  Mean SD 

Step time(s) 0.68 0.03  0.67 0.03 

Stride time(s) 1.22 0.06  1.22 0.06 

Cadence(steps/min) 50.05 0.92  49.35 1.03 

Walking time(m/s) 1.03 0.05  1.02 0.05 
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Table 4.17: Performance of the proposed method based on four parameters – right  

insole sensor and smartphone for five trials  

 

 

The mean and SD for each subject based on the four parameters were computed. 

The average was calculated for each parameter for both insole sensors and smartphones. 

Based on the results in Tables 4.16 and 4.17, the mean and SD for insole and smartphone 

based on the three parameters yielded approximately the same results except cadence. 

The results demonstrated that the smartphone has the ability to measure the 

spatiotemporal parameters of healthy people.  

Two of the twenty subjects participating in this study were randomly selected to perform 

25 trials. This procedure was performed to collect more data, leading to a better 

understanding of the proposed study in terms of the comparison between smartphones 

and insole sensors. In other words, the more trials have taken, the closer average will get 

to the true value. The results for each subject is based on four parameters (step time, stride 

time, cadence and walking speed), and are reported in terms of mean ± SD,  and then the 

average of mean ± SD  was calculated for all subjects, as shown in Table 4.16. The results 

for the smartphone measure demonstrate that the developed study achieved a perfect  

results when comparing smartphone and insole sensors. Of the four parameters, the step 

time results performed best in terms of average of mean and SD for all subject compared 

with other parameters. In the Table 4.17, it could be seen that the smartphone pair 

achieved a good results compared with that of the insoles in the four parameters (step 

time, stride time, Cadence and walking speed.  

 

 

Variable 

 

Insole  Smartphone 

Mean SD  Mean SD 

Step time(s) 0.68 0.02  0.69 0.03 

Stride time(s) 1.21 0.05  1.21 0.05 

Cadence(steps/min) 49.81 0.78  49.41 0.96 

Walking speed 

(m/s) 
1.01 0.05  1.01 0.05 
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Table 4.18: Results for mean ± SD for 25 trials 

 

The P-value was used to determine significance by presenting the agreement 

between the smartphones and insoles. The differences between the data derived from the 

insole sensor and smartphone were (P-value >0.05), reflecting the similarity between 

these two devices, as shown in Table 4.18. Results confirm the hypotheses formulated 

prior to this study and therefore are supportive of the increased adoption of smartphones 

for collecting spatiotemporal data instead of insole sensors.  

Table 4.17 shows the summary of results based on the Pearson correlation coefficient (r) 

and P-value between smartphones and insole sensors for all subjects in 25 trials. Analysis 

used the range of (r) values 0.90-1.00 considered very high, 0.70-0.90 high, 0.50-0.70 

moderate, 0.30-0.50 low and less than 0.30 negligible (Silsupadol et al. 2019).  The P-

value was calculated for all parameters through insole and smartphone (left and right). 

The results in Table 4.18 show that each parameter for insole and smartphone could be 

statistically evaluated by a specific set of P-values.  

 

 

 

 

 

Parameters   

 

Insole  Smartphone 

Right  Left    Right      Left 

mean ± SD   mean ± SD  mean ± SD  mean ± SD 

Step time(s) 0.76 ± 0.03  0.74 ± 0.03  0.78 ± 0.03                            0.73 ± 0.03 

Stride time(s) 1.30 ± 0.05  1.31 ± 0.05  1.27 ± 0.24         1.31 ± 0.05 

Cadence(steps/min) 45.41 ± 1.75   45.78 ± 1.62   45.75 ± 1.60  45.73 ± 1.74 

Walking time(m/s) 0.92 ± 0.09     0.89 ± 0.08  0.90 ± 0.06  0.89 ± 0.07 
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Table 4.19: Summary of results agreement between accelerometer measures and insoles 

for two subjects with 25 trials 

 

4.3.2  Performance of the study based on Bland Altman plots 

Bland Altman plots were used to assess this study’s ability to investigate the effectiveness 

of the variables (step time, stride time, cadence, and walking speed). Bland Altman plots 

are another way to examine the agreement and systematic error between the smartphones 

and insoles (Howell et al. 2020). The x-axis represents the average of the two systems’ 

values while the y-axis represents the difference between the two values. The Bland 

Altman graph has three horizontal lines that provide more information about the acquired 

data.  The solid line, called the bias, represents the average differences between the two 

values, and the two dashed lines represent the limit of agreement (LOA).  Bland Altman 

plots show bias and 95% limits of agreement when comparing the spatiotemporal gait 

parameters derived from the smartphones and insole sensors, as shown in Figure 4.18. If 

95% of the values fall between the dashed lines, the difference is normally distributed 

(Myles & Cui 2007). Based on the obtained results in Figure 4.18, we can observe that 

there are no big differences in the obtained results when the smartphones and insole 

sensors were used, indicating that there is an agreement between both devices. From these 

results, it is evident that the smartphone has the ability to determine spatiotemporal gait 

parameters, and to evaluate the validity of a smartphone-based tri-axial accelerometer to 

assess gait characteristics.  

Variable 

 

Right  Left 

Pearson r P-value  Pearson r P-value 

Step time(s) 0.79 0.42  0.79 0.26 

Stride time(s) 0.92 0.31  0.88 0.08 

Cadence(steps/min) 0.80 0.47  0.88 0.08 

Walking time(m/s) 0.82 0.46  0.80 0.94 
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Figure 4.18: Bland-Altman plot for Samsung smartphone attached to subject’s body and 

insole sensors for two subjects with 25 trials. Each dot represents a single step. The solid 

line is the bias, with dashed lines representing the upper and lower of error LOA. 

 

4.3.3 Performance of the developed study based on 25-cross validation 

To investigate the effectiveness of the smartphones as opposed to the insole sensors 

in determining spatiotemporal gait parameters (step time, stride time, cadence and 

walking speed), box plots were used based on the Pearson correlation coefficient. The 

box plots consist of three parts: upper, lower, and middle. The upper part of the plot box 
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denotes the 75th percentile, and the lower part presents the 25th percentile, while the 

central part refers to the median 50th percentile which is sometimes called the centre. The 

highest and lowest values in the box plot are marked using a line extending from the top 

to the bottom of the box. The box plot shows agreement between smartphones and insole 

sensors at the same time point based on the Pearson correlation coefficient. In further 

investigations, the performance of the proposed method through 25-cross validation using 

the smartphone was used in this study. The proposed method was tested 25 times, and all 

results were recorded. From Figures 4.19 A and B we can see that the Pearson correlation 

coefficient ranged between 0.79 and 0.92 for both the left and right. In Figure 4.19A, the 

value of the maximum Pearson correlation coefficient was 0.98% for stride time left, 

while the minimum value was 0.68% for walking speed left. On the other hand, the 

maximum and minimum Pearson correlation coefficient for the right limb was 0.98% and 

0.65% for stride time and step time, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Box plot for Pearson correlation coefficient of smartphones and insole 

sensors: A shows the left leg and B shows the right leg. 
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For further evaluation of the study, the performance of the smartphones and insole 

sensors were analysed and tested for spatiotemporal gait parameters using R-squared 

(R2). The scatterplot of the insole sensor versus smartphone device with the least square 

regression, line and correlation of determination (R2) which is used to evaluate as well as 

to show the agreement between smartphones and insole sensors for all gait parameters. 

The constant values of a and y-intercept b were used to outline the model's performance, 

with the correlation of determination (R2), was employed. Reliable results were found for 

all four parameters: step time, stride time, cadence and walking, based on the value a, b 

and R2. Furthermore, it was noticed that there is agreement between the smartphones and 

insole sensors, which reported the same or similar results. The results for the left leg were 

R2= 0.81, 0.88, 0.8 and 0.80 for step time, stride time, cadence and walking, respectively, 

while results for the right leg were R2= 0.85, 0.96, 0.87 and 0.81 for step time, stride time, 

cadence and walking, respectively. 

Figures 4.20, 4.21, 4.22 and 4.23 represent four parameters of left and right legs of 

the first subject. Step time shows high agreement for left and right legs with R2 > 0.80 

Figure 4.20. Figure 4.21 shows less agreement in the left leg R2 = 0.88 compare to the 

right leg R2 = 0.96 in stride time. For Cadence R2 = 0.87 for both left and right legs as 

shown in Figure 4.22. Also, the results were slightly different in the walking speed 

parameter R2= 0.80 for left and R2= 0.81 for the right leg. Furthermore, for subjects 2 

with 25 trials, R2 for left and right legs was 0.83 and 0.84 respectively as shown in Figure 

4.24.  Figure 4.25 shows that less agreement between insole and smartphone measures in 

stride time, R2= 0.75 for left and R2 = 0.83. In Cadence, both left and right legs R2 = 0.77 

and R2= 0.70 as shown in Figure 4.26. Figure 4.27 shows that right leg data in walking 

speed has higher agreement than the left leg.  

 Finally, the experimental outcomes indicate that the developed method can measure 

the spatiotemporal parameters of healthy people: step time, stride time, cadence and 

walking speed, using both insole sensors and smartphones. 
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Figure 4.21: Scatterplot of smartphone device vs insole sensor for left and right legs’ 

stride time for first subject 

 

Figure 4.20: Scatterplot of smartphone device versus insole sensor for left and right 

legs’ step time for first subject. 
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Figure 4.22: Scatterplot of smartphone device versus insole sensor for left and right 

legs’ cadence for first subject. 

 

 

Figure 4.23: Scatterplot of smartphone device versus insole sensor for left and right 

legs’ walking speed for first subject. 



 

 

83 

 

 

Figure 4.24: Scatterplot of smartphone device versus insole sensor for left and right 

legs’ step time for second subject. 

 

 

Figure 4.25: Scatterplot of smartphone device versus insole sensor for left and right 

legs’ step time for second subject. 
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Figure 4.26: Scatterplot of smartphone device versus insole sensor for left and right 

legs’ cadence for second subjects. 

 

 

Figure 4.27: Scatterplot of smartphone device versus insole sensor for left and right 

legs’ walking time for second subject. 
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4.4 Summary 

This chapter has addressed the results of the research objectives.  The results are 

divided into two parts: kinematic (accelerometer with photogrammetry) and 

spatiotemporal (accelerometer with insole sensors) results. The obtained results support 

our hypothesis that smartphone devices can provide close readings and gait measurements 

in comparison to the camera by taking the accelerometer reading as a parameter to 

compare the location of the limb during the stance phase of the gait. Also, the second part 

of the results demonstrate that the accelerometer sensor is efficient in its measurement of 

the spatiotemporal gait parameters of healthy adult participants. Thus, it can provide 

reliable data; negating the need for expensive devices.  
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5 CHAPTER 5: DISCUSSION  

5.1 An Overview 

This chapter discusses and evaluates the efficiency of the developed method. This 

research aimed to investigate the gap in chapter one. So, the first part of this research 

is focused on determining the existing accelerometer measures obtainable with 

smartphone devices, and investigating the smartphone device application and sensors 

to understand how they can be used in gait analysis research. It also introduces a new 

technique of smartphone sensor devices by comparing the captured data with camera 

images based photogrammetric data. The first part of the thesis is achieved the first 

objective in this research.  

The second part of this research seeks to validate the smartphone sensor device by 

analysing spatiotemporal gait parameters. The quality of the new method examined 

the efficacy of accelerometer sensors in a pair of Android smartphones (one for each 

leg) as opposed to an insole sensor in determining spatiotemporal gait parameters.  

Also, investigated the effectiveness of gait parameters characteristics to identify the 

relationship between smartphone and insole sensors. The spatiotemporal gait 

parameters of 30 healthy participants in different cohort were assessed with insole 

sensors and smartphones. 

Various studies have defined methods to assess body and leg movement via 

photogrammetry or accelerometers sensors. Photogrammetry has gained popularity in 

kinematic gait analyses such as those of ankle movement (Al-Kharaz & Chong 2020). 

This study determines the gender differences in ankle mobility. Twenty participants 

(10 females and 10 males) were recruited, and 14 retro-reflective targets were mounted 

on the skin of each participant’s right foot. The results show that the sagittal range of 

motion in the plantar flexion turn in place is significant. The maximum mean angle of 

internal/external ankle rotation for males and females is very similar (there is no 

significant difference). These results may contribute to a better understanding of the 

influence of gender on ankle mobility. 
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Another study was presented by Yuan et al. (2002) in which a real-time 

photogrammetric system that incorporated multithreading and a graphic processing 

unit (GPU) provided an accelerated solution for extracting 3D human body dynamics 

in real-time. The system includes a stereo camera with preliminary calibration, from 

which left-view and right-view frames are loaded. Then, a dense image-matching 

algorithm is married with GPU acceleration to generate a real-time disparity map 

which is further extended to a 3D map array obtained by photogrammetric processing 

based on the camera orientation parameters. These 3D features are extracted and 

visualised in real-time by multithreading, from which human movement dynamics 

(e.g., moving speed, knee pressure angle) are derived. The results reveal that a real-

time photogrammetric system is an effective real-time solution to monitor 3D human 

body dynamics. This proposed system has great potential for applications such as 

motion tracking, 3D body information extraction and human dynamics monitoring. 

 

Furrer et al. (2015) proposed the different assessed method by smartphone application 

and motion capture system. a smartphone device used to compare the motion capture 

systems. In their study, 22 healthy young adults were assessed with a smartphone 

application and a motion capture system. The reliability of their proposed method was 

evaluated using the correlation coefficient and standard error. They demonstrated that 

there was agreement in the obtained results of the systems. 

 

Another study was presented by (Phoophuangpairoj 2016) which analysed knee 

extension exercises using a smartphone accelerometer. This research developed a 

method to analyse a knee extension exercise using an accelerometer. The important 

factors affecting the effectiveness of the exercise to relieve knee pain were recognized. 

Regression analysis was applied to obtain a suitable equation to compute the knee 

angle from accelerometer data. Then, by applying signal processing, all knee angles 

were divided into small frames and used to identify the characteristics of the knee 

extension exercises. The results showed that the proposed method could efficiently 

determine the degree at which the leg was held, the length of time for which the leg 

was held, and the angular velocity at which the leg was lowered and raised. No research 

has focused on integrating two approaches such as photogrammetry and accelerometer 

for the purpose of gait analysis.  
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5.2 Smartphone versus photogrammetry measure 

accuracy 

To our knowledge, this is the first study to compare and validate the use of 

smartphones versus cameras. Our hypothesis assumed that smartphone devices could 

provide close readings and gait measurements comparable to the camera by taking the 

accelerometer reading as a parameter to compare the location of the limb during the 

stance phase of the gait.  

 

The results revealed some outstanding findings regarding smartphone use as a 

gait measurement device during human walking and running. It is worth noting that 

the linear location values for the whole stance phase are relatively similar and closer 

to that of a camera’s 3D location in the x y planes (Z direction) which represents the 

linear location of the knee. Importantly, the correlation coefficient between the 

measurement of smartphone and camera was R= 0.935. Also, the relationship between 

the smartphone and camera is positive (R =0.87) which supports the hypothesis that 

the smartphone can be utilised as tool for the measurement of gait characteristics. 

During the toe-off segment of gait, the results showed a P value 0.56, giving an 

indication that this technique can produce similar values to that of a photogrammetry 

in some phases of the gait. There are some limitations in this research such as the small 

number of participants and the number of trials performed. Thus, further studies are 

required employing different types of smartphone devices, recruiting more subjects, 

and studying different gait parameters.  

 

5.3 Smartphone versus insole sensors measure accuracy  

In this part of our research, a new method was presented to study the four gait 

spatiotemporal parameters of healthy adult participants. This research developed an 

innovative method to extract the most important features from 10 subjects. The results 

showed the efficiency of the alternative devices in detecting the gait parameters of 

healthy adult participants; reporting close or similar results. Smartphone sensors can 

provide reliable data, inexpensively.  

 

In this work, an innovative method was used to extract the most important 

features from 20 subjects. One of the most important findings was that the measures 
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of the smartphone device agree with the insole shoe sensors when measuring 

spatiotemporal parameters. The effectiveness of the proposed model was tested with 

two Android smartphones, two insole sensors and 20 healthy adult participants. The 

study used different statistical methods (ANOVA, Bland-Altman, linear regression, 

and Pearson correlation coefficient) to measure the reliability and validity of 

smartphone use. Smartphone use was also compared with four other existing methods. 

This study demonstrated that the developed model achieved the best performance in 

terms of a correlation coefficient.   

 

The obtained results show that, by using two Android smartphone devices with 

insole shoe sensors, a high level of agreement was obtained, allowing for a good range 

of acceptable alternatives to assess spatiotemporal parameters. Besides, our findings 

demonstrate that the smartphone can be used as a reliable and valid tool in 

spatiotemporal gait analysis of healthy adults. This method can help clinicians to work 

more efficiently, and to objectively evaluate gait with easy to use and interesting work 

as well as reduce cost. A future work is needed to investigate the ability of smartphones 

to detect the differences between adults and older people in their way of walking and 

to ascertain whether it is sensitive enough to detect differences in gait patterns. 

Furthermore, we can apply big data and different devices to study the spatiotemporal 

parameters of the insole sensors and smartphones for healthy and non-healthy people.  

We compared the developed method with some existing methods based on 

validation studies and other well-known methods. The following studies presents the 

comparison of performances among the developed methods and the other four reported 

methods (Furrer et al 2015; Park and Kim 2018; Hollman et al. 2016; Clark et al, 

2016).  

 

Regarding the validation study, Furrer et al. (2015) proposed the same method 

of validation as our study; a smartphone device used to compare the motion capture 

systems. In their study, 22 healthy young adults were assessed with a smartphone 

application and a motion capture system. The reliability of their proposed method was 

evaluated using the correlation coefficient and standard error. The validity of the 

smartphone application and motion capture-derived values were compared with the 

Pearson correlation coefficient and Bland-Altman limits of agreement. They 

demonstrated that there was agreement in the obtained results of the systems. 
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Another study was presented by Park and Kim (2018) in which the reliability 

and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait 

parameters of stroke patients when attached to the body were confirmed. In their study, 

the gait parameters were measured and evaluated using a smartphone accelerometer 

and GAITRite analysis. Thirty participants were asked to walk 10 meters. Then three 

parameters:  gait velocity, cadence and step length were computed using smartphone-

based accelerometers. The results were validated with a GAITRite analysis system. 

Average excellent reliability (ICC2 ≥.98) of correlation coefficient was reported. They 

observed that a high correlation between the smartphone-based gait parameters and 

the GAITRite analysis system-based gait parameters was achieved. 

 

To provide a more thorough evaluation of the developed method, it was also 

compared with existing studies in the literature most of the studies utilizing a 

smartphone device to study the gait parameters applied one or two measurements to 

evaluate the obtained data. It was also found that many studies were conducted with a 

limited number of subjects using limited trials to compute gait parameters. 

Furthermore, these studies used only one or two measures to evaluate performance 

results. One of the studies was presented by Hollman et al. (2016). They developed a 

method for comparison of variability in spatiotemporal gait parameters between 

treadmill and overground walking conditions. In their study, 20 healthy participants 

aged between 22 and 27 years walked for 6 minutes on a treadmill and overground. A 

different set of parameters was used and measured in that study. They focused on the 

importance of the consideration of gait variability when using treadmills for research 

or clinical purposes because of its potential to lead to invariant gait patterns.  

 

In 2013, Clark et al. provided a method to assess the validity of overground 

walking, recording the spatiotemporal data using a criterion reference-based three-

dimensional motion analysis system. In their study, a different set of parameters (gait 

speed, step length and time, stride length, and time) were measured.  

According to Clark et al. (2013), we used step time, stride time, cadence and walking 

speed for a comparison of spatiotemporal gait parameters between smartphone and 

insole sensors. Furthermore, the Bland-Altman 95% bias and limits of agreement, 

linear regression and statistical analysis using mean and SD were also employed to 
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evaluate the obtained measures and to assess the agreement between the two systems. 

The comparison between the devices showed excellent agreement.  

 

In summary, from all the obtained results above, we can see that specific 

opportunities exist for smartphone-based gait assessment as an alternative to 

conventional gait assessment. Furthermore, a smartphone-based gait assessment could 

provide reliable information about changes in spatiotemporal gait parameters. 
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6 CHAPTER 6 CONCLUSION 

This chapter introduces the overall findings of this research. In addition, it suggests 

some areas for future possible research. 

 

6.1 Conclusion  

 As gait research using smartphone sensors continues to expand, new strategies 

and different ideas are offered in this research. This thesis shows that an accelerometer 

sensor in a smartphone can provide significant results in terms of accuracy in 

comparison to that of the photogrammetry technique and insole sensors. This new 

approach can be used widely in research and clinical environments to obtain accurate 

data for kinematics and kinetics. Our hypothesis assumed that smartphone devices 

could provide close readings and gait measurements comparable to the camera by 

taking the accelerometer reading as a parameter to compare the location of the limb 

during the stance phase of the gait. This part of the thesis is achieved the first objective 

of this research. 

 The current work concludes that accelerometer sensors embedded in the 

smartphone can be used as a significant and easy method to obtain gait characteristics. 

Moreover, the proposed application running on Android could be useful as a diagnostic 

aid tool for analysing human movement.  

Even though the proposed method has some limitations, it can be considered a new, 

cheap and effective method; saving time, money and physical space compared to the 

photogrammetry technique.  

 The research also aimed to evaluate the smartphone technique design and 

implementation for measuring and studying participants’ spatiotemporal gait 

parameters. To achieve second objective, a new methodology has been developed to 

study the spatiotemporal parameters of healthy people: step time, stride time, cadence 

and walking speed, using both insole sensors and smartphones.  

 

           In this research, an innovative method to analysis spatiotemporal gait 

parameters was used to extract the most important features from 30 subjects. One of 

the most important findings was that the outcomes of the accelerometer sensor 
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embedded in smartphone device was convergent to the insole shoe sensor’s data when 

measuring spatiotemporal parameters. The effectiveness of the developed model was 

validated with two Android smartphones. Determine the suitability of new gait 

parameters characteristics to identify and relationship between Smartphone and Insole 

sensors achieved objective three.   

 

Objective four has been achieved by evaluate and validate the performance quality of 

the proposed methods, this study used different statistical methods (ANOVA, Bland-

Altman, linear regression, and Pearson correlation coefficient) to measure the 

reliability and validity of smartphone use. Smartphone use was also compared with 

four other existing methods. It was demonstrated that the developed model had better 

readings in terms of a correlation coefficient.   

               The obtained results showed that, by using two Android smartphone devices 

with insole shoe sensors, a high level of agreement was obtained, allowing for a good 

range of acceptable alternatives to assess spatiotemporal parameters. Our findings 

demonstrate that the smartphone can be used as a reliable and valid tool in the 

spatiotemporal gait analysis of healthy adults. This method can help clinicians evaluate 

gait more efficiently, objectively and with greater ease; provide interesting work as 

well as reducing cost.  

 

6.2 Future work  

 We believe that this research can be developed further to play a role in 

changing the way gait assessment is conducted in the fields of sport, rehabilitation, etc. 

There are possibilities of future research related to the concept explored in this thesis. 

First, developing new algorithm to interpret the accelerometer in terms of position and 

acceleration. 

Second, additional studies will be needed to investigate the ability of smartphones to 

detect the differences between adults and older people in their way of walking and to 

ascertain whether it is sensitive enough to detect differences in gait patterns. 

Third, future research can focus on using new smartphones applications with different 

sensors. The findings could also be used to develop new techniques for sport and 

exercise purposes. 
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 Fourth, big data may also be applied to different devices to study the spatiotemporal 

parameters of insole sensors and smartphones for healthy versus non-healthy people 

and women versus men. 

Fifth, many other human gait characteristics can be examined using this new approach. 

For instance, cadence, stride length, step length, stance time and EMG. 
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8 APPENDIX A  

Ethics Clearance Forms 

A.1 Participant Information Sheet 

To: Participants 

Full Project Title: Biomechanical measures from using smart body-

wear sensors for gait analysis 

Principal Supervisor: Dr. Albert Chong 

Principal Researcher: Mustafa Al-lami 

 

I am a PhD student at the University of Southern Queensland and my research is related 

to the area of analyse human gait by using smartphone and floor and insole shoes 

sensors. Through my PhD, I aim to introduce an alternative methodology to conduct 

human gait studies. I identified a gap in the research in this area and I believe that 

through my research I will be able to provide an alternative, cheap and easy to use 

method for gait movement study by using Smartphone. It will help the resrachees and 

the normal people to study and know the gait characteristic. I would therefore like to 

invite you to take part in this research project. 

 

You are invited to participate in this research project because I believe that this 

research will be beneficial for the health assessment and sport and most of researches 

that are related with study human movement.  

Please read the following statements carefully. They have been written to explain all 

the procedures involved so you can make a fully informed decision to participate or 

not. Feel free to ask questions about any information in the document. You may also 

wish to discuss the project with a relative, friend or doctor. 

Once you understand what the project is about and agree to take part in it, please sign 

the Consent Form. By signing the Consent Form, you indicate that you have 

understood the information and that you give your consent to participate in the research 

project. 
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1. Purpose of Research  

The propose of this research is to develop a set of body wear-based biomechanical 

measures for gait characteristic study. The suggested method will help experts to 

reduce time, effort and money. This research is a part of a PhD degree.  

 

2. Procedure  

Participation in this project will involve: 

 Visiting the venue 

Participants need to come to the Photogrammetry lab which is located on the ground 

floor in S block at USQ/Toowoomba. 

 Preparation for pressure capturing 

Participants walk with smartphone attached on his/her leg. Also will be given 

appropriate sized shoes with insole sensors inside them, and then be connected to a 

computer. 

 Smartphone and Pressure recording 

Participants will be asked to walk along the lab (about 10 metres) to record the 

Smartphone data and pressure beneath the feet. 

 After recording 

One of the investigators will remove the smartphone and the shoes with the sensors. 

The whole experiment will take approximately 20-30 minutes. Some basic 

characteristics will be recorded about each participant, namely: age, gender, height and 

weight. All the researchers involved in this study will be available during the study to 

provide assistance and answer any participant questions. The participants will be a part 

of a novel study and if they wish to have any follows ups on the final results of the 

study, they can contact the researchers. There will be almost no any kind of risks during 

the trials as the participants will be walking at their normal speed and the researchers 

will make sure that the walkway is clear. In addition, this research does not involve 

any kind of health or foot assessment. 
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3. Confidentiality  

The raw pressure and smartphone records for each participant will be immediately 

downloaded and then stored in a password protected research computer at USQ, which 

no one has access to other than the researchers involved in the study. The data will be 

stored until the PhD studies have been completed. Any information obtained in 

connection with this project that can identify participants will remain confidential. 

Personal information such as names or images that can lead to the identification of the 

participant will not be included at any stage of this study. Information regarding gender 

and weight of participants may be published but information regarding participant 

identity will be removed.  

 

4. Voluntary Participation 

Participation is entirely voluntary. If you do not wish to take part you are not obliged 

to. If you decide to take part and change your mind later, you are free to withdraw 

from the project at any stage. Any information already obtained from you will be 

destroyed. Before you make your decision, a member of the research team will be 

available to answer any questions you have about the research project. You can ask 

about any information you want. Sign the Consent Form only after you have had a 

chance to ask questions and have received satisfactory answers. 

 

5. Queries or Concerns 

Should you have any queries regarding the progress or conduct of this research, you 

can contact the principal researcher: 

Dr. Albert Chong 

Faculty of Engineering and Surveying 

Room Z412 

University of Southern Queensland 

Tel (+61) 7 4631 2546 , Mobile: 0420534762 

 

If you have any concerns or complaints about the ethical conduct of the project you 

may contact the University of Southern Queensland Manager of Research Integrity 

and Ethics on +61 7 4631 2214 or email researchintegrity@usq.edu.au. 

 

 

 

mailto:researchintegrity@usq.edu.au


 

105 

 

A.2 Consent Form 

To: Participants 

Project Details 

Full Project Title: Biomechanical measures from using smartphone sensors for gait 

analysis 

 

Research Team Contact Details 

 

 

 

 

 

 

By signing below, you are indicating that you:  

Participant Name  
  

Participant 

Signature 
 

  

Date  

 

 Have read and understood the information document regarding 

this project. 

☐Yes / 

☐No 

 Have had any questions answered to your satisfaction. 
☐Yes / 

☐No 

 Are over 18 years of age? 
☐Yes / 

☐No 

 Understand that if you have any additional questions, you can contact the 

research team.                                                          ☐Yes / ☐No 

 I understand that while information gained during the study may 

be published, I will not be identified and my personal results will 

remain confidential. 

 Agree to participate in the project.                             ☐Yes / ☐No 

 

 

☐Yes / 

☐No 

 
 

Supervisor Details 

Dr. Albert Chong  

Mobile: 0420534762 
Albertkon-fook.chong@usq.edu.au 
 

  

 

Supervisor Details 

Dr. Albert Chong  

Mobile: 0420534762 
Albertkon-fook.chong@usq.edu.au 
 

  

Principal Investigator Details  

 Mustafa Al-lami   

Mobile: 0470019362 
u1070577@umail.usq.edu.au  
 

  

 

Principal Investigator Details  

 Mustafa Al-lami   

Mobile: 0470019362 
u1070577@umail.usq.edu.au  
 

  

mailto:Albertkon-fook.chong@usq.edu.au
mailto:Albertkon-fook.chong@usq.edu.au
mailto:Albertkon-fook.chong@usq.edu.au
mailto:Albertkon-fook.chong@usq.edu.au
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Please return this sheet to a Research Team member prior to 

undertaking the focus group. 

 

 I have read the Participant Information Sheet and the nature and purpose of the 

research project has been explained to me. I understand and agree to take part. 

 I understand the purpose of the research project and my involvement in it. 

 I understand that I may withdraw from the research project at any stage and that 

this will not affect my status now or in the future. 

 I confirm that I am over 18 years of age. 

 I understand that while information gained during the study may be published, I 

will not be identified and my personal results will remain confidential. 

 I understand that the scan recorded of my plantar surface during the research will 

be stored in a password protected computer at the University of Southern 

Queensland and access will only be granted to the researchers involved in the 

study. 

 

 

Name of participant................................................... 

Signature...............................                    Date.................. 

 

If you have any concerns or complaints about the ethical conduct of the project you 

may 

contact the University of Southern Queensland Manager of Research Integrity and 

Ethics on 

+61 7 4631 2214 or email researchintegrity@usq.edu.au. 
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9 Appendix B  

   Qualysis and photogrammetry results  

B.1 Qualysis track manager setting up process and 

specifications 
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B.2 Result of camera parameter after run the bundle in 

the Australis program  

 

Australis Bundle Adjustment Results File: Bundle.txt 

 

                                        28 February, 2018   01:12:49 

 

 

       Quick Summary 

             Project: D:\PhD\18-1-2018 test\HSHSHSHSHSHSHSHS\C1\New 

folder\system calibration after run bundle.aus 

          Adjustment: Preferred control points specified 

Simulated Network: No 

Folding Method: Standard 

                  Scaling: N/A 

                      Units: mm 

    Number of Points: 49 

    Number of Images: 4 

Number of Scale Bars: 0 

Number of Iterations: 6 

Elapsed CPU Time: 0.069  seconds 

 

 

 

 

             Adjusted Exterior Orientation Parameters (angles are decimal degrees, XYZ 

are mm) 

 

Results for Station  Image001    FileName  10.tif     Camera camera 1     Lens  

 

 Station    Initial      Total        Final      Initial         Final 

 Variable    Value     Adjustment     Value    Standard Error  Standard Error 

 

    X       494.0622     31.6230    525.6853    1.0000E+003    1.6972E+001 

    Y      2051.8775    -11.2287   2040.6488    1.0000E+003    1.8076E+001 

    Z      1904.4410    -77.8125   1826.6285    1.0000E+003    4.4889E+001 

   AZ      -178.6760      2.2615   -176.4145    1.0000E+003    9.7939E-001 

   EL       -64.9149      0.0753    -64.8396    1.0000E+003    4.5755E-001 

 ROLL       180.4669     -2.0742    178.3927    1.0000E+003    9.1646E-001 

 

 

Results for Station  Image002    FileName  10.tif     Camera camera 2     Lens  

 

 Station    Initial      Total        Final      Initial         Final 

 Variable    Value     Adjustment     Value    Standard Error  Standard Error 

 

    X      1105.9302      2.9359   1108.8661    1.0000E+003    5.1826E+000 
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    Y      1613.4308    -29.9528   1583.4780    1.0000E+003    6.7286E+000 

    Z      1598.8974   -186.7591   1412.1383    1.0000E+003    1.8386E+001 

   AZ       131.2186     -3.8940    127.3246    1.0000E+003    5.6107E-001 

   EL       -68.4245      2.9299    -65.4946    1.0000E+003    2.4996E-001 

 ROLL      -133.4908      3.4881   -130.0027    1.0000E+003    5.9794E-001 

 

 

Results for Station  Image003    FileName  10.tif     Camera camera 3     Lens  

 

 Station    Initial      Total        Final      Initial         Final 

 Variable    Value     Adjustment     Value    Standard Error  Standard Error 

 

    X      1110.5142     13.6875   1124.2018    1.0000E+003    9.7756E+000 

    Y      2050.0382    -49.0996   2000.9386    1.0000E+003    1.6225E+001 

    Z      2103.0787   -136.5942   1966.4845    1.0000E+003    4.5359E+001 

   AZ       134.9721     -0.6003    134.3718    1.0000E+003    1.0587E+000 

   EL       -65.6355     -0.6527    -66.2882    1.0000E+003    4.6096E-001 

 ROLL      -134.3709      0.7794   -133.5915    1.0000E+003    1.0528E+000 

 

 

Results for Station  Image004    FileName  10.tif     Camera Camera 4     Lens  

 

 Station    Initial      Total        Final      Initial         Final 

 Variable    Value     Adjustment     Value    Standard Error  Standard Error 

 

    X       531.6483     35.3051    566.9534    1.0000E+003    1.5578E+001 

    Y      1683.4639      0.9659   1684.4297    1.0000E+003    9.8792E+000 

    Z      1669.5326    -68.8904   1600.6422    1.0000E+003    3.5557E+001 

   AZ      -168.1994      2.6009   -165.5985    1.0000E+003    1.2180E+000 

   EL       -76.2523      0.0036    -76.2487    1.0000E+003    2.9025E-001 

 ROLL       174.8448     -2.4672    172.3776    1.0000E+003    1.1862E+000 

 

 

                       Summary of Image Coordinate Residuals (units are micrometres) 

 

  Sta          RMS of Image Residuals       Number of non-rejected 

   #                      x         y         xy       points 

Image001      2.52      2.61      2.57         49 

Image002      8.06      5.09      6.74         47 

Image003      3.25      3.44      3.35         49 

Image004      3.03      3.30      3.17         49 

 

 

           Total Residuals (RMS)                        Degrees of 

          x         y         xy           Sigma0          Freedom     Observations   Parameters   

Constraints 

      4.73      3.71      4.25         10.533             286           388           211          109 
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              Standard Errors From Limiting Error and Total Error Propogation (XYZ are 

in mm) 

 

                        Limiting               Total                      Sightings 

                     Sigma Estimates       Sigma Estimates           #    List     

111111111122222222223 

           Label    sX     sY     sZ      sX     sY     sZ     RMS  Rays  

123456789012345678901234567890 

              A1  0.4336 0.4177 0.8435  0.4448 0.4313 0.8483   3.2    4   YYYY 

              A2  0.3166 0.3866 0.8810  0.3189 0.3925 0.8841   3.1    4   YYYY 

              A3  0.2743 0.3858 0.9659  0.2755 0.3905 0.9695   3.7    4   YYYY 

              A4  0.3033 0.4113 1.0729  0.3055 0.4192 1.0814   4.4    4   YYYY 

              A5  0.3838 0.4033 0.8839  0.3867 0.4074 0.8908   3.9    3   YNYY 

              A6  0.5298 0.4370 0.8583  0.5486 0.4483 0.8751   3.3    3   YNYY 

              B1  0.4293 0.3246 0.8407  0.4373 0.3285 0.8442   3.7    4   YYYY 

              B2  0.3153 0.3174 0.9055  0.3169 0.3191 0.9078   5.4    4   YYYY 

              B3  0.2746 0.3329 1.0071  0.2753 0.3344 1.0095   4.4    4   YYYY 

              B4  0.2938 0.3330 0.9994  0.2949 0.3344 1.0030   4.0    4   YYYY 

              B5  1.8086 1.0283 5.0453  1.9145 1.0902 5.3141   1.2    4   YYYY 

              B6  0.4412 0.3203 0.9037  0.4548 0.3248 0.9175  11.3    4   YYYY 

              C1  0.3587 0.2952 1.0112  0.3605 0.2965 1.0138   5.0    4   YYYY 

              C2  0.3195 0.3229 1.1595  0.3206 0.3246 1.1634   4.0    4   YYYY 

              C3  0.2804 0.2946 0.9418  0.2812 0.2954 0.9441   3.0    4   YYYY 

              C4  0.3253 0.3449 1.2058  0.3267 0.3467 1.2125   3.9    4   YYYY 

              C5  0.3856 0.2914 0.8398  0.3918 0.2938 0.8473   6.7    4   YYYY 

              C6  0.4269 0.2953 0.9899  0.4337 0.2968 1.0009   4.0    4   YYYY 

              D1  0.3712 0.3045 1.1604  0.3738 0.3059 1.1662   3.0    4   YYYY 

              D2  0.3261 0.3013 0.9537  0.3271 0.3023 0.9563   3.3    4   YYYY 

              D3  0.2922 0.3000 1.0641  0.2927 0.3006 1.0665   4.3    4   YYYY 

              D4  0.3128 0.3074 1.0725  0.3134 0.3079 1.0753   4.5    4   YYYY 

              D5  0.3664 0.3024 0.9430  0.3680 0.3033 0.9471   6.9    4   YYYY 

              D6  0.4754 0.3157 1.1350  0.4853 0.3173 1.1530   1.8    4   YYYY 

              E1  0.3528 0.3326 1.0463  0.3545 0.3340 1.0513   5.2    4   YYYY 

              E2  0.3318 0.3927 0.8983  0.3336 0.3964 0.9036   3.8    4   YYYY 

              E3  0.3102 0.3437 1.2058  0.3111 0.3448 1.2125   3.2    4   YYYY 

              E4  0.3075 0.3867 0.8985  0.3091 0.3895 0.9049   5.5    4   YYYY 

              E5  0.4151 0.3623 1.1979  0.4188 0.3638 1.2105   4.6    4   YYYY 

              E6  0.4439 0.3396 1.0282  0.4493 0.3409 1.0399   1.3    4   YYYY 

              F1  0.3412 0.4125 0.9730  0.3427 0.4158 0.9796   2.2    4   YYYY 

              F2  0.3080 0.3950 1.0746  0.3089 0.3966 1.0802   1.3    4   YYYY 

              F3  0.3098 0.4241 1.2150  0.3108 0.4263 1.2244   1.3    4   YYYY 

              F4  0.3420 0.4334 1.2096  0.3435 0.4357 1.2207   2.3    4   YYYY 

              F5  0.3810 0.4088 1.0630  0.3829 0.4103 1.0709   4.5    4   YYYY 

              F6  0.4290 0.4365 0.8748  0.4377 0.4418 0.8915   2.1    4   YYYY 

              G1  0.3380 0.5175 0.9510  0.3402 0.5275 0.9631   3.6    4   YYYY 

              G2  1.3790 2.5877 6.0697  1.4576 2.7346 6.3985   1.7    4   YYYY 

              G3  0.2789 0.4750 0.9907  0.2796 0.4776 0.9973   1.5    4   YYYY 

              G4  0.3197 0.4917 1.0818  0.3207 0.4946 1.0904   1.6    4   YYYY 

              G5  0.3628 0.4763 0.9705  0.3649 0.4792 0.9803   5.1    4   YYYY 

              G6  0.4195 0.4865 0.8887  0.4281 0.4933 0.9112   4.9    4   YYYY 
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              H1  0.4698 0.6874 1.2485  0.4796 0.7092 1.2720   3.5    4   YYYY 

              H2  0.2949 0.5560 0.9571  0.2964 0.5651 0.9719   4.5    4   YYYY 

              H3  0.3155 0.6907 1.2272  0.3171 0.7090 1.2474   2.1    4   YYYY 

              H4  0.3109 0.5525 0.9299  0.3129 0.5586 0.9448   5.1    4   YYYY 

              H5  0.4541 0.7208 1.2117  0.4604 0.7413 1.2457   2.8    4   YYYY 

              H6  0.4287 0.5560 0.9074  0.4388 0.5660 0.9397   6.1    4   YYYY 

              X1  1.4970 1.4692 5.0936  2.1216 2.0211 7.6230   6.2    4   YYYY 

 

 

                                Summary of                                       Summary of 

                        Limiting STD Error Estimates                     Total STD Error Estimates 

                     X               Y               Z               X               Y               Z 

RMS is     0.5252      0.6059      1.6679         0.5810      0.6554       1.8968 

 

Minimum is  0.2743  0.2914      0.8398       0.2753       0.2938          0.8442 

 at point         A3         C5              C5              B3              C5              B1 

 

Maximum is 1.8086   2.5877     6.0697          2.1216          2.7346          7.6230 

 at point            B5              G2              G2              X1              G2              X1 

 

 

                           Triangulated Object Space Coordinates (XYZ are in mm) 

 

                                                                    Sightings 

                                                              #     List     111111111122222222223 

           Label       X           Y           Z       RMS   Rays   

123456789012345678901234567890 

              A1   1011.3783   1712.2738    150.8390   3.2    4     YYYY 

              A2   1112.0439   1711.7774    100.4227   3.1    4     YYYY 

              A3   1210.0959   1714.0532     50.8644   3.7    4     YYYY 

              A4   1309.9482   1712.2392      0.8039   4.4    4     YYYY 

              A5   1411.3322   1712.1270     99.8485   3.9    3     YNYY 

              A6   1510.5519   1711.4339    145.8114   3.3    3     YNYY 

              B1   1011.2194   1611.9687    150.8164   3.7    4     YYYY 

              B2   1110.7951   1613.1419    101.2311   5.4    4     YYYY 

              B3   1211.6672   1610.6812     50.7142   4.4    4     YYYY 

              B4   1311.4210   1611.7632     50.3983   4.0    4     YYYY 

              B5   1411.4801   1609.7261     -1.6264   1.2    4     YYYY 

              B6   1512.9587   1612.3734     99.9889  11.3    4     YYYY 

              C1   1010.2112   1511.7327     51.2587   5.0    4     YYYY 

              C2   1112.2263   1512.7401      0.8679   4.0    4     YYYY 

              C3   1210.7515   1510.8403    101.2299   3.0    4     YYYY 

              C4   1312.0139   1512.0872      0.2857   3.9    4     YYYY 

              C5   1410.2528   1510.6560    150.5421   6.7    4     YYYY 

              C6   1513.4752   1512.6529     50.4742   4.0    4     YYYY 

              D1   1011.1791   1414.9972      1.1706   3.0    4     YYYY 

              D2   1110.9097   1413.3874    101.7315   3.3    4     YYYY 

              D3   1211.4202   1410.9622     51.7052   4.3    4     YYYY 

              D4   1311.3023   1413.0895     50.4558   4.5    4     YYYY 

              D5   1409.9508   1410.2243     99.5671   6.9    4     YYYY 
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              D6   1511.1047   1411.8392     -0.2930   1.8    4     YYYY 

              E1   1011.1869   1314.0159     51.7520   5.2    4     YYYY 

              E2   1111.8407   1312.3194    150.6501   3.8    4     YYYY 

              E3   1209.9275   1313.4849      1.4785   3.2    4     YYYY 

              E4   1310.3674   1311.5187    150.1894   5.5    4     YYYY 

              E5   1410.2494   1312.5926     -1.1484   4.6    4     YYYY 

              E6   1511.6614   1313.1157     50.2526   1.3    4     YYYY 

              F1   1011.0644   1215.2142    101.3107   2.2    4     YYYY 

              F2   1111.9130   1212.9185     50.9926   1.3    4     YYYY 

              F3   1209.5947   1212.2189      0.2239   1.3    4     YYYY 

              F4   1310.4292   1213.3041     -0.1950   2.3    4     YYYY 

              F5   1410.7916   1213.6279     49.9369   4.5    4     YYYY 

              F6   1512.1375   1211.6500    149.7517   2.1    4     YYYY 

              G1   1010.7045   1114.6164    151.7798   3.6    4     YYYY 

              G2   1112.0814   1112.5242     -2.0833   1.7    4     YYYY 

              G3   1210.6858   1113.4515    100.8072   1.5    4     YYYY 

              G4   1309.6892   1113.9872     50.0884   1.6    4     YYYY 

              G5   1411.5941   1112.0403     98.9060   5.1    4     YYYY 

              G6   1510.2582   1112.6847    151.0154   4.9    4     YYYY 

              H1   1011.0155   1013.8087      1.1017   3.5    4     YYYY 

              H2   1109.8906   1012.2663    149.3401   4.5    4     YYYY 

              H3   1210.4006   1011.4572      0.1729   2.1    4     YYYY 

              H4   1311.8976   1011.6697    148.6562   5.1    4     YYYY 

              H5   1410.0879   1012.6985      0.2239   2.8    4     YYYY 

              H6   1509.6270   1012.1278    150.5631   6.1    4     YYYY 

              X1    467.8873   1439.4265     59.6043   6.2    4     YYYY 

 

 

Image Coordinate Rejections 

 

 

Image Number Image001 

 

Image Number Image002 

 

Image Number Image003 

 

Image Number Image004 

 

Total Rejections   0 
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Australis Bundle Adjustment Results: Camera Parameters 

 

                                         29 February, 2018   22:59:47 

 

Project:  D:\PhD\18-1-2018 test\HSHSHSHSHSHSHSHS\C1\New folder (25)\after 

run bundle 25.aus 

 

Adjustment: Explicit Object Point Control 

Number of Points: 49 

Number of Images: 4 

RMS of Image coords:   69.83 (um) 

 

Results for Camera 1    camera 1      Lens  

 

Sensor Size        Pixel Size (mm) 

  H    1920           0.003 

  V    1080           0.003 

 

  Camera           Initial      Total                       Final        Initial         Final 

 Variable           Value     Adjustment             Value       Std. Error     Std. Error 

    C                 4.5858         0.00000              4.5858       1.0e+003     1.102e-001 (mm) 

   XP              -0.0569         0.00000             -0.0569       1.0e+003     4.980e-002 (mm) 

   YP              -0.0452         0.00000             -0.0452       1.0e+003     4.321e-002 (mm) 

   K1     1.50717e-026   0.000e+000   1.50717e-026       1.0e-016     1.061e-015 

   K2     5.87099e-026   0.000e+000   5.87099e-026       1.0e-016     1.061e-015 

   K3     2.03330e-025   0.000e+000   2.03330e-025       1.0e-016     1.061e-015 

   P1       .92816e-027   0.000e+000   4.92816e-027       1.0e-016     1.061e-015 

   P2    -1.90732e-026   0.000e+000  -1.90732e-026       1.0e-016     1.061e-015 

   B1     4.68734e-027   0.000e+000   4.68734e-027       1.0e-016     1.061e-015 

   B2    1.57275e-027   0.000e+000  -1.57275e-027       1.0e-016     1.061e-015 

 

Results for Camera 2    camera 2      Lens  

 

Sensor Size        Pixel Size (mm) 

  H    1920           0.003 

  V    1080           0.003 

 

  Camera           Initial      Total                Final                 Initial         Final 

 Variable           Value     Adjustment       Value            Std. Error     Std. Error 

    C                  4.3383         0.00000              4.3383      1.0e+003     5.445e-002 (mm) 

   XP                0.0702         0.00000              0.0702      1.0e+003     3.136e-002 (mm) 

   YP                0.0149         0.00000              0.0149      1.0e+003     1.698e-002 (mm) 

   K1     2.49651e-003   0.000e+000    2.49651e-003       1.0e-016     1.061e-015 

   K2    -3.60700e-004   0.000e+000  -3.60700e-004       1.0e-016     1.061e-015 

   K3     6.24184e-005   0.000e+000   6.24184e-005       1.0e-016     1.061e-015 

   P1    -6.97313e-027   0.000e+000  -6.97313e-027       1.0e-016     1.061e-015 

   P2    -3.14540e-026   0.000e+000  -3.14540e-026       1.0e-016     1.061e-015 

   B1     5.27556e-027   0.000e+000   5.27556e-027       1.0e-016     1.061e-015 

   B2    -2.40271e-027   0.000e+000  -2.40271e-027       1.0e-016     1.061e-015 
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Results for Camera 3    camera 3      Lens  

 

Sensor Size        Pixel Size (mm) 

  H    1920           0.003 

  V    1080           0.003 

 

  Camera         Initial             Total               Final        Initial         Final 

 Variable         Value      Adjustment           Value       Std. Error     Std. Error 

    C                4.7348         0.00000             4.7348      1.0e+003     1.002e-001 (mm) 

   XP              0.0234         0.00000              0.0234     1.0e+003     5.605e-002 (mm) 

   YP             -0.0778         0.00000            -0.0778     1.0e+003     2.868e-002 (mm) 

   K1   1.12491e-026   0.000e+000   1.12491e-026     1.0e-016     1.061e-015 

   K2   6.03811e-026   0.000e+000   6.03811e-026     1.0e-016     1.061e-015 

   K3   2.98818e-025   0.000e+000   2.98818e-025     1.0e-016     1.061e-015 

   P1   -4.37766e-027   0.000e+000  -4.37766e-027    1.0e-016     1.061e-015 

   P2   -1.71553e-026   0.000e+000  -1.71553e-026    1.0e-016     1.061e-015 

   B1   4.06085e-027   0.000e+000   4.06085e-027      1.0e-016     1.061e-015 

   B2   3.06112e-028   0.000e+000   3.06112e-028      1.0e-016     1.061e-015 

 

Results for Camera 4    Camera 4      Lens  

 

Sensor Size        Pixel Size (mm) 

  H    1920           0.003 

  V    1080           0.003 

 

  Camera    Initial                 Total                 Final            Initial         Final 

 Variable    Value           Adjustment             Value       Std. Error     Std. Error 

    C               4.7245          0.00000               4.7245      1.0e+003     1.029e-001 (mm) 

   XP              0.2793         0.00000               0.2793      1.0e+003     4.461e-002 (mm) 

   YP            -0.0257          0.00000             -0.0257      1.0e+003     3.004e-002 (mm) 

   K1   8.71764e-027   0.000e+000   8.71764e-027       1.0e-016     1.061e-015 

   K2   2.70215e-026   0.000e+000   2.70215e-026       1.0e-016     1.061e-015 

   K3   7.45787e-026   0.000e+000   7.45787e-026       1.0e-016     1.061e-015 

   P1 -1.41018e-027    0.000e+000  -1.41018e-027       1.0e-016     1.061e-015 

   P2 -1.57898e-026    0.000e+000  -1.57898e-026       1.0e-016     1.061e-015 

   B1   3.92742e-027   0.000e+000   3.92742e-027       1.0e-016     1.061e-015 

   B2 -1.16692e-027    0.000e+000  -1.16692e-027       1.0e-016     1.061e-015 

 

Maximum Observational Radial Distance Encountered:       3.0 mm 

 

Exterior Orientation Summary (Xc, Yc, Zc are in project units, rotations are in 

decimal degrees) 

 

Station       Image         Xc          Yc          Zc       Alpha       Elev.        Roll 

    1        Image001   493.73783  2051.69210  1904.78058 -178.660151  -64.922407 -

179.553377 

    2        Image002 1106.02187  1613.51334  1598.82342  131.212108  -68.420315 -

133.486112 



 

118 

 

    3        Image003  1109.97466  2050.74193  2102.71948  135.027579  -65.633688 -

134.435997 

    4        Image004   532.35866 1682.25214 1669.27416 -168.223621 -76.285393 

174.897834 
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B.3 25 Photos of one step for one subject from one 

camera only. 
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10 Appendix C  

 

C.1 Insole sensors specification  
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C.2 results of 20 subjects left and right legs  

 

Left  

    Insole  Smartphone  
Insole VS 

Smartphone  

Subjects Variable SD Mean SD Mean Preason R 

1 

Step time  0.02 0.73 0.02 0.74 0.69 

stride time 0.05 1.29 0.04 1.31 0.90 

Cadence  0.89 47.47 1.97 46.16 0.72 

Walking time  0.02 0.90 0.01 0.90 0.63 

2 

Step time  0.01 0.75 0.01 0.74 0.87 

stride time 0.02 1.31 0.02 1.30 0.65 

Cadence  0.59 47.10 0.75 45.37 0.66 

Walking time  0.01 0.90 0.02 0.89 0.93 

3 

Step time  0.11 0.71 0.08 0.69 0.96 

stride time 0.14 1.32 0.15 1.33 0.96 

Cadence  6.93 46.69 8.12 49.65 0.90 

Walking time  0.22 1.00 0.16 0.98 0.97 

4 

Step time  0.01 0.74 0.01 0.74 0.79 

stride time 0.03 1.26 0.05 1.27 0.87 

Cadence  1.18 47.56 1.92 47.19 0.85 

Walking time  0.01 0.90 0.03 0.90 0.70 

5 

Step time  0.02 0.70 0.04 0.68 0.91 

stride time 0.05 1.26 0.03 1.27 0.99 

Cadence  1.91 47.60 1.22 47.31 0.99 

Walking time  0.03 0.93 0.05 0.93 0.83 

6 

Step time  0.02 0.71 0.0 0.7 0.65 

stride time 0.01 1.30 0.0 1.3 0.79 

Cadence  2.83 50.07 2.5 47.8 0.68 

Walking time  0.01 0.92 0.01 0.9 0.79 

7 

Step time  0.01 0.71 0.02 0.78 0.76 

stride time 0.01 1.30 0.02 1.31 0.72 

Cadence  0.66 46.58 0.21 46.04 0.80 

Walking time  0.02 0.92 0.01 0.88 0.71 

8 

Step time  0.07 0.76 0.07 0.75 0.97 

stride time 0.19 1.31 0.22 1.25 0.95 

Cadence  6.16 47.38 6.56 50.77 0.87 

Walking time  0.05 0.88 0.06 0.90 0.83 

9 

Step time  0.01 0.75 0.01 0.75 0.87 

stride time 0.00 1.29 0.02 1.31 0.92 

Cadence  0.29 48.24 0.55 47.08 0.84 

Walking time  0.01 0.90 0.01 0.89 0.80 

10 

Step time  0.03 0.68 0.02 0.69 0.93 

stride time 0.02 1.26 0.03 1.27 0.92 

Cadence  1.57 48.10 1.22 47.31 0.97 
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Walking time  0.02 0.95 0.01 0.95 0.96 

11 

Step time  0.03 0.66 0.04 0.63 0.96 

stride time 0.07 1.23 0.06 1.23 0.99 

Cadence  2.53 49.02 2.14 48.86 0.98 

Walking time  0.10 0.99 0.11 0.97 0.59 

12 

Step time  0.01 0.61 0.01 0.62 0.64 

stride time 0.02 1.18 0.01 1.18 0.87 

Cadence  0.41 50.94 0.54 50.70 0.90 

Walking time  0.03 1.10 0.03 1.09 0.71 

13 

Step time  0.03 0.60 0.04 0.61 0.69 

stride time 0.37 1.24 0.36 1.28 0.97 

Cadence  1.24 55.55 1.37 55.88 0.96 

Walking time  0.04 1.23 0.06 1.20 0.77 

14 

Step time  0.01 0.64 0.02 0.66 0.42 

stride time 0.04 1.17 0.03 1.18 0.72 

Cadence  1.75 50.84 0.97 50.30 0.72 

Walking time  0.05 0.97 0.08 0.97 0.73 

15 

Step time  0.03 0.64 0.03 0.61 0.87 

stride time 0.04 1.13 0.03 1.13 0.92 

Cadence  2.02 53.18 1.24 53.18 0.98 

Walking time  0.04 1.17 0.07 1.08 0.95 

16 

Step time  0.02 0.63 0.02 0.63 0.75 

stride time 0.03 1.11 0.02 1.11 0.96 

Cadence  1.56 54.06 1.20 53.96 0.96 

Walking time  0.04 1.22 0.08 1.22 0.68 

17 

Step time  0.02 0.64 0.04 0.58 0.96 

stride time 0.03 1.11 0.02 1.12 0.78 

Cadence  1.20 54.38 0.75 53.84 0.77 

Walking time  0.06 1.17 0.07 1.20 0.86 

18 

Step time  0.02 0.62 0.03 0.63 0.64 

stride time 0.03 1.11 0.02 1.11 0.79 

Cadence  1.45 54.40 1.32 54.64 0.98 

Walking time  0.09 1.15 0.10 1.12 0.76 

19 

Step time  0.02 0.61 0.05 0.56 0.07 

stride time 0.04 1.08 0.06 1.07 0.94 

Cadence  2.03 55.88 2.99 56.32 0.96 

Walking time  0.06 1.14 0.06 1.22 0.68 

20 

Step time  0.01 0.64 0.05 0.57 0.85 

stride time 0.01 1.10 0.03 1.13 0.95 

Cadence  1.17 54.58 1.06 53.96 0.66 

Walking time  0.06 1.34 0.029 1.330 0.91 
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Right  

    Insole Smartphone 

Insole Vs 

Smartphone  

Subjects  Variable SD Mean SD Mean Preason R 

1 

Step time  0.03 0.75 0.02 0.75 0.60 

stride time 0.05 1.30 0.07 1.33 0.90 

Cadence  1.58 46.50 2.08 45.53 0.85 

Walking time  0.02 0.91 0.02 0.91 0.69 

2 

Step time  0.01 0.76 0.01 0.75 0.87 

stride time 0.02 1.31 0.02 1.27 0.76 

Cadence  0.29 45.76 1.89 44.06 0.90 

Walking time  0.02 0.88 0.01 0.88 0.67 

3 

Step time  0.10 0.74 0.11 0.85 0.85 

stride time 0.19 1.31 0.19 1.30 0.98 

Cadence  6.99 46.43 6.88 46.84 0.99 

Walking time  0.12 0.93 0.10 0.87 0.74 

4 

Step time  0.02 0.72 0.01 0.74 0.65 

stride time 0.03 1.28 0.03 1.28 0.93 

Cadence  1.12 46.74 1.24 47.07 0.99 

Walking time  0.01 0.90 0.01 0.91 0.82 

5 

Step time  0.00 0.71 0.01 0.70 0.94 

stride time 0.04 1.25 0.04 1.23 0.95 

Cadence  1.63 48.16 1.36 48.64 0.93 

Walking time  0.03 0.90 0.01 0.93 0.85 

6 

Step time  0.01 0.72 0.05 0.75 0.74 

stride time 0.04 1.29 0.04 1.36 0.93 

Cadence  3.28 50.30 4.59 52.68 0.90 

Walking time  0.01 0.93 0.02 0.92 0.82 

7 

Step time  0.01 0.75 0.01 0.78 0.76 

stride time 0.00 1.30 0.02 1.30 0.87 

Cadence  0.12 46.30 0.45 45.75 0.83 

Walking time  0.02 0.88 0.01 0.89 0.74 

8 

Step time  0.06 0.77 0.09 0.81 0.91 

stride time 0.15 1.33 0.18 1.30 0.97 

Cadence  6.43 47.60 6.11 47.61 0.99 

Walking time  0.04 0.88 0.05 0.91 0.88 

9 

Step time  0.02 0.72 0.01 0.74 0.65 

stride time 0.02 1.29 0.03 1.28 0.89 

Cadence  0.35 47.37 0.91 47.01 0.76 

Walking time  0.01 0.92 0.01 0.90 0.88 

10 

Step time  0.01 0.70 0.01 0.70 0.65 

stride time 0.04 1.26 0.03 1.24 0.97 

Cadence  0.79 48.39 0.89 48.30 0.75 

Walking time  0.01 0.95 0.01 0.95 0.75 

11 
Step time  0.05 0.69 0.05 0.61 0.71 

stride time 0.07 1.22 0.02 1.19 0.74 
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Cadence  2.54 49.25 0.98 50.70 0.72 

Walking time  0.04 1.00 0.06 0.99 0.98 

12 

Step time  0.01 0.62 0.02 0.62 0.65 

stride time 0.02 1.17 0.01 1.17 0.76 

Cadence  1.12 51.24 0.51 51.34 0.84 

Walking time  0.05 1.09 0.03 1.10 0.88 

13 

Step time  0.02 0.59 0.03 0.56 0.81 

stride time 0.15 1.14 0.06 1.10 0.94 

Cadence  1.55 56.29 1.97 56.22 0.97 

Walking time  0.08 1.22 0.05 1.21 0.74 

14 

Step time  0.02 0.65 0.01 0.66 0.82 

stride time 0.05 1.18 0.03 1.18 0.97 

Cadence  1.98 50.74 1.62 50.80 0.98 

Walking time  0.05 0.99 0.04 0.96 0.79 

15 

Step time  0.03 0.62 0.03 0.62 0.81 

stride time 0.04 1.15 0.03 1.14 0.67 

Cadence  1.90 52.76 1.46 52.90 0.68 

Walking time  0.04 1.16 0.08 1.08 0.94 

16 

Step time  0.01 0.64 0.02 0.63 0.90 

stride time 0.04 1.11 0.02 1.10 0.98 

Cadence  1.73 54.28 1.00 54.86 0.92 

Walking time  0.07 1.23 0.08 1.22 0.92 

17 

Step time  0.02 0.64 0.03 0.63 0.72 

stride time 0.02 1.12 0.01 1.13 0.86 

Cadence  0.95 53.80 0.50 53.18 0.87 

Walking time  0.04 1.15 0.05 1.16 0.67 

18 

Step time  0.01 0.62 0.02 0.62 0.73 

stride time 0.02 1.09 0.02 1.12 0.84 

Cadence  0.95 54.92 0.66 54.18 0.78 

Walking time  0.16 1.16 0.16 1.19 0.79 

19 

Step time  0.03 0.62 0.03 0.60 0.79 

stride time 0.04 1.07 0.04 1.07 0.99 

Cadence  2.23 56.32 2.40 55.98 0.98 

Walking time  0.12 1.18 0.08 1.22 0.88 

20 

Step time  0.01 0.63 0.03 0.62 0.79 

stride time 0.01 1.09 0.03 1.10 0.95 

Cadence  0.51 55.44 1.18 54.54 0.82 

Walking time  0.12 1.32 0.03 1.35 0.88 

 


