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ELASTODYNAMIC RECIPROCITY RELATIONS FOR WAVE SCATTERING
PROBLEMS IN COMPOSITE PLATES

W. KARUNASENA'

ABSTRACT: Due to the low density, high performance and increased service life, composite
materials are receiving wider attention in civil, mechanical and aerospace engineering applications.
In this paper, we develop elastodynamic reciprocity relations for wave scattering by flaws (such as
cracks and delaminations) when guided waves are allowed to propagate in fibre-reinforced composite
plates. These relations are useful to check the accuracy of the numerical solution for the scattered
wave field. It is well known that scattered wave field provides very useful information for ultrasonic
non-destructive assessment of flaws in composite structures. The classical elastodynamic reciprocity
theorem is used to derive simple reciprocity relations for reflected and transmitted wave amplitudes
and the corresponding energies associated with the wave modes. A hybrid method is used for solving
the wave scattering problem. The hybrid method combines a finite element formulation in the interior
region that consists of the flaw and a finite region of the plate around the flaw with a wave function
expansion representation in the unbounded exterior regions. The analysis is presented for a plate with
an arbitrary stacking sequence where each ply can have an arbitrary fibre direction. The derived
reciprocity relations are used to check the accuracy of the numerical solution for several example
scattering problems.

KEYWORDS: reciprocity relations, wave scattering, composite plates, hybrid method, guided waves,
cracks, delaminations, finite elements, reflection and transmission coefficients,

1. INFRODUCTION

In the last two decades, fiber-reinforced composite materials, specially fiber-reinforced plastics
(abbreviated as FRPs), have been receiving wide attention in aerospace, civil and mechanical
engineering applications due to their useful properties such as light weight, high strength, corrosion
resistance and long term durability. A state-of-the-art-review of FRP composites for construction
applications can be found in [1]. It is well known that structural integrity of facilities made from FRPs
are severely affected by flaws such as cracks and delaminations developed within the FRP part of the
structure. Guided elastic waves in plate-like composite parts possess characteristics that make them
particularly useful for applications -in non-destructive evaluation of flaws in composite structures.
When excited at a particular location in a plate, guided waves can travel long distances along the plate
and when they meet a flaw along their path, the waves start scattering. The scattered wave, which can
travel long distances along the plate, will carry information about the size and location of the flaw,
thus providing an ultrasonic non-destructive means of inspection of an otherwise inaccessible area of
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the structure. Ultrasonic non-destructive evaluation methods heavily rely on the solution to the wave
scattering problem that happens at the flaw.

Obtaining closed-form solutions to even the simplest wave scattering problems in composite plates is
not practical if not impossible. A numerical method for obtaining a solution to the scattered wave ficld
i quite intricate and complicated, and as a result, the accuracy of a numerically obtained solution is
questionable. One way of overcoming this problem is having some indicators based on sound the
to check the accuracy of the numerical solution. The satisfaction of elastodynamic reciprocity rela
serves as one such indicator of the accuracy of the solution for the wave scattering problem.

ories
tions

Chimenti [2] has published a comprehensive review of guided waves in composite plates and their use
for non-destructive material characteristion, Recently, Datta [3] provided a detailed review of the
theory of guided waves in composite plates and shells. Although a vast bedy of work on guided
ultrasonic wave propagation in plates and shells now cxists, relatively few studies have dealt with
scattering of these waves by cracks and delaminations, Moreover, these few studies have been mostly
confined to the problems of horizontally polarized shear (SH) waves and plane strain (two-
dimensional) waves. The author and his co-workers {4] have investigated the two-dimensional wave
scattering by a symmetric normal surface breaking crack in a cross-ply laminated plate by using a
- hybrid method which combines finite element method with wave function expansion procedure.

Recently, author [5] extended the hybrid method to provide a medel analysis of scattering of a guided
wave incident obliquely on a long symmetric surface breaking crack in a composite plate. The solution
to this problem is the first step towards analyzing the general three-dimensional scattering in a
composite plate. In this paper, we present the derivation of elastodynamic reciprocity relations for the
scattering problem of a guided wave incident obliquely on a long flaw in a composite plate. The
analysis is presented for a plate with an arbitrary stacking sequence where each ply can have arbitrary
fiber direction with respect to the global coordinate system. Numerical results for reciprocity relations
are provided for three special cases - (i) scattering by a symmetric normal edge crack in a uni-axially
fiber-reinforced homogeneous graphite-epoxy composite piate, (ii) scattering by a symmetric normal
edge crack in an 8 layer graphite-epoxy cross-ply laminated plate, and (iii) scattering by a thin planar
crack located at the fixed-end of a semi-infinite homogeneous composite plate.

2. FORMULATION

2.1 SCATTERING PROBLEM

Time harmonic wave scattering of a guided plate wave incident obliquely on a flaw in a composite
plate as shown in Figure 1 is considered. The composite material in the plate is uni-axially fibre-
reinforced within each layer (or ply or lamina) and possibly laminated with each ply having an-
arbitrary fibre-direction with respect to the global x-direction. Each layer lies on a plane parallel to x-y
plane. It is assumed that all layers of the plate have equal thickness with transversely isotropic elastic
properties. The flaw is located at x = 0 and is assumed to be very long (in comparison to the plate
thickness} in y-direction. It has a constant cross-section in x-z plane. It is assumed that two faces of the
plate z = 0 and z = H are stress free. Also, the flaw surface is assumed to be open with zero traction.
 Since the direction of the flaw (i.e. y-direction in this case), in general, is not known @ priori, it is not
always possible to excite the incident wave in the x-direction, Therefore, if is necessary to consider the
general case where the incident wave is propagating at an arbitrary angle to x-direction and fibre
direction is also at an arbitrary angle to global x-direction. Let the incident wave be a guided plate

wave mode travelling at a direction making an angle 90° —¢™ with the y-z plane and fibres are at an.
angle 6 to the x-direction.
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When the incident wave mode strikes the flaw, mode conversion will happen and a scattered field
consisting of reflected and transmitted plate wave modes will be generated. The aim of this work is to
numerically quantify this scattered field and derive reciprocity relations applicable to converted modes
for the purpose of checking the accuracy of the numerical solution for the scattered wave field. In
general, the incident and the scattered wave field will have all three displacement components in the x,
Yy, and z directions. Let u(x,y,z.t), v{x,y.z.t), and w(x,y,z\) denote the displacement quantities in x, ¥,
and z directions, respectively. Here t denotes time.

yK' Flaw

vz

B
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A ow
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Interior Region R

Figure 1. Geometry of the Problem

2.2 SOLUTION FOR SCATTERING PROBLEM

The hybrid method described in [4, 5] is adopted for solving this scattering problem. The hybrid
combines finite element formulation in & bounded interior region of the plate with a wave function
expansion representation in the exterior region. The regions are connected along vertical boundaries
B" at x =x", and B at x = X’ as shown in Figure 1. Let « be the wave number of the incident wave in
the direction of propagation. Thus, k should be one of the admissible real roots of the dispersion
equation for off-axis propagation. Since the flaw extends to infinity in y-direction, the scattered field
must have the same wave number in the y-direction as the incident field. Thus, each of the scattered
wave modes will have a constant wave number 1y (=« Sin 4™ ) in the negative y direction. Therefore,
for time-harmonic waves, y and t variation can be factored out as

u{x,y,zt) (x,z)
v(x,¥,2,t) ¢ =< ¥(x,2) pexp[—j(n,y + ot)] (D
w(x,y,2,1) w(x,z)

where o is the circular frequency and j=~/-1.
The procedure for finite element formulation for the interior region R for is very similar to that for the
plane steain case given in [4]. The finite clement representation of the interior region should include

singular elements at crack tips if the flaw considered is a crack or a delamination. The standard
discretization process in the finite element method leads to

8(@} " ISHa} - 5{qy} " (Ps} =0 2)

where

[8]=[K]- @’ [M] )
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in which: [K] and [M] ate, respectively, the global stiffness and mass matric
{q} is the nodal displacement vector

respectively, the nodal displacement ve
boundary nodes. & implies first variation

¢s of the interior region;
corresponding to interior nodes; and {qs} and {Pn} are,

ctor and the interaction force vector corresponding to the
and overbar dehotes complex conjugate.

» there are only a finite number of propagating
ource of excitation or upon scatterin

flaw. However, in order to satisfy the boundary cenditions at the source or at a boundary of
discontinuity it is necessary to include also the non-prepagating modes in the modal representation of
the displacement field, The wave numbers (k) for the propagating and non-propagating modes at g
given frequency of excitation can be found by solving the dispersion equation (4) for the plate. For
€ach wave number k, the corresponding displacement wave function (which is basically a vector
containing x and z direction displacement at each sub-layer level) can be determined using the
propagator matrix for each sub-layer. This has been discussed in the references cited above.

Y imposing the contimity of total (incident plus
tractions on the boundaries. This is achieved by substituting for {qs} and
expansion into equation (2). This leads to a system of linear equations to
soive for the unknown reflected wave amplitudes ( 45, } and transmitted amplitudes ( 4;,). These
amplitudes are then used to obtain boundary nodal displacements and, in turn, to obtain interior nodal

displacements. The reflection coefficient Ry, of the m-th reflected mode and transmission coefficient
Ty, of the m-th transmitted mode, due to the p-th incident wave mode, are given by

. Aw/A}  formzp
R — +/Am, o= : m p ) 5
w = AnlA T, {(A;,"+A;)/A;," for m=p ®

in which, Al is the amplitude of the incident wave mode.
2.3 RECIPROCITY RELATIONS

The reciprocity relations are derived

from the ¢lastodynamic reciprocity theorem (7-8], which may be
written using the ysual tensor notatio

1, in the absence of body forces, as

‘j.(“? o - ule) In,dS =0, k=xyz
S

(©)

where uf and cﬁrrepresent the displacements and stresses corresponding to elastodynamic state A

while u }3 and c}i are ‘the displacements and stresses corresponding fo elastodynamic state B,ina
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region V bounded by a surface S. Wave fields corresponding to both elastodynamic states vary
harmonically in time with cireular frequency « . When writing equation (6), Einstein’s summation
convention of repeated indices has been assumed to hold, and the displacement components u, v, w
have been represented by u,, u,, 1w, respectively. In order to derive reciprocity relations, the
orthogonality relations among the wave modes have to be established first,

For convenience in derivation of orthogonality relations, few notations are introduced first. Let the
wave number pair (k,,(o) denote a admissible wave mode propagating in the first quadrant of x-y plane
in an infinite composite plate with no flaws. Herein, k, represents the positive x direction wave
number and & (which is fixed) represents the positive y direction wave number as opposed to the
definition in of 1 in equation (1). Note that ng= -fo. In a similar manner, let the wave number pairs
(-Kk},5), (ko-Go), and (k| ,-Lo) denote the wave modes comresponding to second, third and fourth
quadrants of the x-y plane, respectively. It should be mentioned here that if (k,,Co)-th wave mode is an
admissible wave mode (of the dispersion relation of the plate), then (-k,,-Co)-th wave mode, which is

propagating in the opposite direction, is also an admissible wave mode. Similarly, if (k:1 »-Lo)-th wave
mode is admissible, then (—k_ ,(o)-th wave mode is also admissible. This point can be explained by

visualising the configuration of the plate with respect to a new coordinate system that is obtained after
rotating the x,y axes by 180° about the z axis. However, when (k..{o}-th wave mode is an admissible
wave mode, (k,,-o)-th wave mode is not necessarily an admissible wave mode. Due to this reason, a
superseript star () has been introduced to the x-direction wave numbers of wave modes corresponding
to second and fourth quadrants of the x-y plane. Note that (kn,-{p)-th wave mode is admissible when
the fibres in each layer are aligned either in x or y directions. This can be visualised by considering the
mirror image of the plate with respect to the x-z plane.

The orthogonality relations are derived by applying the reciprocity theorem to the close region V
bounded by planes z=0, z=H, X =X, X = X3, ¥ = ¥}, and ¥ = y, where x,_ X, v, and y, are coordinates

chosen in such a way that x;>x; and y»>y,. State A is taken to be the field due to (- k: Lorth wave

mode and state B is taken to be the field due to (K., ,-Co)-th wave mode. Then, the wave fields due to
two states can be written as

uft = A% (u’ YexpliCkox +5oy)] (T

of > AL {{Gﬁ"} expli(-k,x +§o¥)] (7b)
folr)

ul — Ay {un Yexplilk % - Goy)] (7c)

T AA;:{{“L‘E"} explik % - {o¥)] (7d)
{Oony}

where A7}, {uly}, {oon} and {c’; }represent the amplitude, dispiacement mode shape vector, mode
shape vector of tractions on x face and the mode shape vector of tractions on y face, respectively, for
the (—k, ,{o)-th wave mode; and ‘A, , {u}, {o-} and {G’n:y} represent the same quantities for the

(k.. ,-to)-th wave mode. Application of elastodynamic reciprocity theorem expressed in mathematical
form in equation {6} to the region V for states A and B defined in equations (7) results in
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texplidk,, -k )x,]1-expfiCk), - k2 )x, LG, o )ik, L)) =0

3)
where the notation I, [(k:11 Lo )i (—k: »Go )1 has been used to I:epresent the integral
H .
[ty oy - T (ot e,
¢
Since x; and x; are arbitrary, equation (8) leads to the orthogonality relation
Lk, 5o )i (K5, 00)]=0  for ki =k, %)

It should be noted that the net co

ntributions from the surface integrals in equation (6) on planes y = Vi
and y =y, amount 1o zero, '

In a similar manner, choosing states A and B as the fields due to (kn,Co)-th and (-kmy-Go)-th wave
modes, respectively, it can be shown that _ :

14[(—km,—co);(kn,<‘;ﬂ)]=0 for k, =k, .

(16)

Adopting a similar approach, the following orthogonality relations can be derived:
14[(k;,~cui;(kn,co)1=o, (1)
LGk Lo (K7, 60)1=0. (12)

In order to derive reciprocity relations, region V is chosen as the region of the
flaw, bounded by the planar surfaces z = 0,z=H, x=x, (x;zx*), x
¥z (where y, and ¥2 are arbitrary, and o>y
can be derived from equation (6) by choosi

plate surrounding the
Xy 2x7),y=y, sandy =
). The reciprocity relations among reflection coefficients
ng state A as the total field due 1o (-k

» ~Col-th incident
wave mode and state B as the total field due to ( k; Go)-th incident wave moda. Let Ry and Tyq denote
the reflection and transmission coefficients, respectively, due to (— k, ,-Go)-th incident wave mode; and

Riomand T, denote the same quantise due to (-k, {)th incident wave mode. In view of

orthogonality relations given in equations (9) to (12}, the reciprocity relations becomes (after some
algebraic manipulations) )

R;ngn = Rnp‘;; (13)
where

y .
S = ({02} (05} - {0} {0k i, (14a)
0 .

) |
R g R B
9
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In equation (14), {u;}, {ul}, {u;'}and' {uf;}denote the displacement mode shape vectors

corresponding to (knGo)-th, (—k, ,-Lo)-th, (k, ,-o)-th and (-k}, JLo)-th wave modes, respectively, in an
infinite plate with no flaw. The corresponding traction mode shape vectors on the x face denoted by
{65}, {67} {o};} and {c}. Tt should be noted that the net contributions to the surface integral

in equation (6) from surfaces y =y and y = y; becomes zero.

Applying the reciprocity theorem to the same region V, with state A as the total field due to (k, .Lo)-th
incident mode and state B as the total field due to -k, ~Co)-th incident mode, the reciprocity relation

among the transmission coefficients can be derived as
TpuSn =TupSp (15)

where ¢, is given by equation (14a) with n replaced by p. When deriving equation (15), it has been

assumed that the flaw geometry is symmetric with respect to the x = 0 plane. It can be shown that,
when the fibres in each layer are either in X or y direction, the reciprocity relation in equation (3
degenerates into

Rpnn =RupSp ‘ : (16)

Let E, bethe proportion of energy of the (-k,,Lo)-th incident wave mode transferred into the n-th

reflected mode during the scattering process. Similarly, let E, be the proportion of incident energy

transferred to the n-th transmitted mode. Then, following the procedure adopted for plane strain
situation in [4], the final form of the reciprocity relations becomes

E;“ = E;P for the reflected field when fibres are aligned with global x,y directions, (17a)

and

En =g, forthe transmitted field for arbitrary fibre directions. (17b)

3. RESULTS AND DISCUSSION

Reciprocity relations derived in the previous section has been used to check the accuracy of three
example scattering problems described below:

Example I: Scattering by a thin symmetric normal edge crack in a uni-axially fibre-reinforced
homogeneous graphite-epoxy plate. The geometry of the crack is as shown in Figure 2a.

Example 2: Scattering by a thin symmetric normal edge crack in an 8 layer graphite-epoxy plate with
the stacking sequence of 0%/90%0%/90°/90°%0°90%0" . The geometry of the crack is same as that shown
in Figure 2a.

Example 3: Scattcﬁng by a thin crack located at the fixed-end of a uni-axially fibre-reinforced
homogeneous graphite-epoxy plate as shown in Figure 2b.
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N

B+
e <

R

(2) Symmetric normal edge crack

Fixed end (b} Fixed end crack

Figure 2. Geometry of the flaws for example problems

The elastic constants (C;;) for the transversely isotropic graphite

Table 1. More information on C;j constants and their relation
eir transformation from fibre direction t

~CPOXY composite material are given in
to the stiffness matrix in equation (3),
0 global x,y directions can be found in

Table 1. Elastic constants of graphite-epoxy lamina (in GPa)

ybrid method for the magnitudes of reflection and transmission
coefficients (IR, and [Teal}, and proportions of reflected a

nd transmitted encrgies (E,, and E}) for
example 1 are presented in Table 2. The resuits correspond to a normalized frequency O
EoH/2./(C,,/ P}, ) where p is the density of the graphite-epoxy composite) of 2.0 and a

normalized crack length (= a/(0.5H)) of 0.1 or 0.5 as given in the table. In this table, p and n denote the
incident and the scattered wave mode numbers, respectively, and all incident modes considered are
Symmetric modes, Note that, due to the symmetry of the problem with Tespect to the mid-plane of the
plate, the scattered wave field consist of only symmetric or anti-symmetric modes depending on

is a symmetric or anti-symmetric one. It can be seen from this table that
ity relations among the proportions of Energy as given in equation (17) are
TTors. Also it is seen that some reflection and transmission coefficients are

ients are also sensitive to the incident
mode frequency. Satistacti f reci i i indi
the scattering results,
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Table 2. Seattering results for example 1 when Q=2
(@) 6=10", ¢" = 45", .= 1.440

P k, [2/(05H)| n E:, E, Rnl {Tonl

0.002 0.993 0.044 0.996
0.001 0.001 0.051 0.048
0.009 0.821 0.095 0.906
0.127 0.042 0.718 0.409
0.001 0.001 0.012 0.012
0.000 0.999 0.011 0.999
0.128 0.041 0.178 0.101
0.070 0.760 0.264 0.872

1 1.440 0.1

0.5

2 0.324 0.1.

0.5

B f IS | e [ 0D e | DO |

() 6=22.5", ¢"" =22.5%, 1= 0.780
P k, | a/(0.5H) n E, E, (R} [Tl

0.000 0.998 0.009 0.999
0.000 0.600 0.062 0.033
0.002 0.833 0.105 0913
0.081 0.082 1.357 0.632
0.000 0.000 0.014 0.007
0.000 1.000 0.009 1.000
0.000 0.082 0.024 0.129
0.075 0.842 0.590 0.918

Note: p and n denote the incident and scattered wave mode numbers, respectively. Symmetric
incident wave modes have been considered.

1 1.882 0.1

0.5

2 0.813 0.1

0.5

DI [ B | it | DD | e | BN e

Table 3. Scattering results for example 2 when (=4, a/(0,.5H)=0.5, 0 for 0° lamina = 0°,
@™ =45, and no=3.362

P k; n E;n E ;m Rl . ol

1 3362 0.706 0.180 0.840 0.424

1
2 0.007 0.108 0.143 0.571
1
2

2 0.662 0.007 0.108 0.047 0.189

0.543 0.340 0.737 0.583

Proportions of reflected energy for scattering by the fixed end crack in example 3 are reported in Table
4. Note that minor modifications to the theory presented in previous section is required for this
problem as the exterior region consists of only one region, which is the reflected field. Reciprocity
relation in equation (17b) does not apply for this example problem. At the frequency considered here
{£2 = 6), the dispersion relation in equation (4) has three symmetric propagating medes (denoted as 1S,
28 and 38 in Table 4) and four anti-symmetric modes (usually denoted as 1A, 2ZA, 3A and 4A). It is
seen from Table 4 that reciprocity relations among the reflected modes as given in equation (17a) are
satisfied with reasonable accuracy for the five different crack lengths considered. In this table, a
normalized crack length of 0.0 and 2.0 represent, respectively, the full reflection by a fixed end and
reflection by a free end (i.e. a crack right through the full thickness of the plate).
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Table 4. Reflected energy proportions E;n for example 3
when 0=6,8=0" ¢ =0°, q,= 0

p.n E;n 3-/(0.5H)

0.0 0.5 1.0 1.5 2.0
p=I=IS,n=2=25 | E, | 0000] 0033] 0001] 0013] oo0id
P=2=2%, n=i=18 " Ej 0.000 0.032 0.001 0.014 0.014
p=1=18, n=3=38 ES 0.014 0.001 0.038 0.006 0.219
P=3=38, n=1=18 E; 0.014 0.001 0.040 0.906 0.224
p=1=18, n=4=1A Ef, 0.000 0.556 0.567 0.506 0.000
P=4=14, n=1=18 Ey 0.000 0.556 0.557 0.513 0.000

Note: § and A denote symmetric and anti-symmetric modes, respectively.

4. CONCLUSION

Simplified forms of elastodynamic reciprocity relations applicable for guided wave scattering by
flaws in fibre-reinforced composite plates have been developed in this work, These relations are useful
to check the accuracy of the numerical solution for the scattered wave field in applications involving
ultrasonic non-destructive assessment of flaws in composite structures. The classical elastodynamic
reciprocity theorem has been used to derive the reciprocity relations for reflected and transmitted wave
ampiitudes and the corresponding energies associated with the wave modes, A hybrid method
combining the finite element method with a wave function expansion procedure has been used to solve
the wave scattering problem. The derivation has been presented for a plate with an arbitrary stacking
sequence where each ply can have an arbitrary fibre direction. Numerical results verifying the derived
reciprocity relations have been presented for three scattering problems — two of them involving
scaltering by a symmetric normal edge crack in a uni-axially fibre-reinforced composite plate and in

an 8-layer cross-ply plate, and other involving 2 fixed-end crack in a uni-axially fiber-reinforced
composite plate, . .
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