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Abstract
Neuroinformatics involves replicating and detecting intricate brain activities through com-
putational models, where deep learning plays a foundational role. Our systematic review 
explores quantum deep learning (QDL), an emerging deep learning sub-field, to assess 
whether quantum-based approaches outperform classical approaches in brain data learn-
ing tasks. This review is a pioneering effort to compare these deep learning domains. In 
addition, we survey neuroinformatics and its various subdomains to understand the current 
state of the field and where QDL stands relative to recent advancements. Our statistical 
analysis of tumor classification studies (n = 16) reveals that QDL models achieved a mean 
accuracy of 0.9701 (95% CI 0.9533–0.9868), slightly outperforming classical models with 
a mean accuracy of 0.9650 (95% CI 0.9475–0.9825). We observed similar trends across 
Alzheimer’s diagnosis, stroke lesion detection, cognitive state monitoring, and brain age 
prediction, with QDL demonstrating better performance in metrics such as F1-score, dice 
coefficient, and RMSE. Our findings, paired with prior documented quantum advantages, 
highlight QDL’s promise in healthcare applications as quantum technology evolves. Our 
discussion outlines existing research gaps with the intent of encouraging further investiga-
tion in this developing field.

Keywords  Quantum deep learning · Quantum machine learning · Neuroinformatics · 
PRISMA · Systematic review

1  Introduction

This systematic review aims to evaluate the efficacy of quantum deep learning (QDL) 
models in neuroinformatics, specifically as opposed to classical deep learning approaches. 
Neuroinformatics focuses on neuroscience data and computational frameworks for under-
standing and mimicking neurological activities and conditions (Nayak et al. 2018; Guillén-
Pujadas et al. 2025). On the other hand, QDL, which draws its cues from quantum physics 
and quantum computing, offers speedups and feature representations that could reshape 
deep learning and its application (Biamonte 2017; Cerezo et al. 2022). Our study explores 
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neuroinformatics from the viewpoint of three data modalities: neuroimaging, electrophysio-
logical signals, and cognitive assessments, and attempts to present QDL’s utility in the field.

Neuroinformatics is a multifaceted discipline that seeks to understand the brain’s struc-
ture, functions, and disorders by integrating concepts and technologies from neurosci-
ence, psychology, cognitive science, data science, and artificial intelligence (AI) (Kasabov 
2013). This field involves informatics and data analysis to study the brain’s complexities 
and improve our understanding of neural processes (Dinov 2024). Essentially, neuroinfor-
matics seeks to bridge the gap between the biological mechanisms of the brain and the 
computational tools that can help us understand it (Ascoli and Halavi 2009). Among its 
methodologies, deep learning is a key component, excelling in applications such as diag-
nosing neurological and neurodegenerative diseases (Valliani et al. 2019), brain-computer 
interfacing (Aggarwal and Chugh 2022), connectomics (Anbarasi et al. 2024), mental health 
assessments (Su et  al. 2020), neurofeedback and rehabilitation therapy (Le Franc 2022), 
consciousness and awareness modeling (Lee 2022), and neurocognition (Yin 2023). Despite 
the success of deep learning in this field, there is still room for refinements.

It is no secret that deep learning requires large-scale annotated datasets for optimal out-
comes (Sun et al. 2017). However, acquiring such datasets in the biomedical field poses 
substantial challenges due to the tedious task of data labeling, the scarcity of patients with 
specific conditions, and the ethical complications involved (Sapoval 2022; Salmi et  al. 
2024). Even if there is sufficient data, there is still a risk of overfitting, and even minor, 
undetectable input alterations cause misinterpretation (Chollet 2017). The intricate nature 
of neurological datasets, which are highly variable and susceptible to noise, further com-
plicates this problem (Wei 2021; Davoudi et al. 2023; Yan et al. 2019; Pedroni et al. 2019).

Deep learning remains an active area of research to address these challenges, with one of 
its subfields, QDL, being a promising candidate. First, QDL possesses effective generaliza-
tion properties and robustness against noise (LaRose and Coyle 2020; Cross et al. 2015; Du 
et al. 2021; Caro 2022; Caro et al. 2021; Gil-Fuster et al. 2024), both essential qualities for 
working with neuroscience data. Second, quantum advantages in speedups (Huang 2022; 
Biamonte 2017; Liu et al. 2021b; Saggio 2021; Ciliberto 2018) can help tackle the immense 
computational demands in brain data analysis. Third, utilizing a vast, high-dimensional 
quantum space–the Hilbert space–offers a complex yet effective way to represent features 
(Havlíček 2019; Schuld and Killoran 2019; Goto et al. 2021). This approach can prove criti-
cal for uncovering hidden relationships in neurological data. Finally, QDL’s effectiveness 
in handling complex anatomical regions and organs, such as the heart (Zhang et al. 2024; 
Ovalle-Magallanes et al. 2022), chest (Houssein et al. 2022; Rao et al. 2024), and retina 
(Toledo-Cortés et al. 2022; Landman et al. 2022), suggests it may also be effective with 
intricate brain data. Figure 1 illustrates a perspective on QDL’s workflow in a neuroinfor-
matic medical setting.

In 2022, Maheshwari et al. explored the adoption of quantum machine learning in diverse 
areas, such as bioimaging, biosignals, omics, and medical health record data, in their sys-
tematic review (Maheshwari et al. 2022). Nevertheless, the review did not cover QDL mod-
els that specifically addressed neuroinformatic datasets. Similarly, Rahimi et al. did not 
report any QDL-related neuro-oncology research in their review (Rahimi and Asadi 2023). 
A recent systematic review found several articles on QDL in neuroinformatics (Ullah and 
Garcia-Zapirain 2024). However, there was no discussion of whether these models were 
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better at diagnostic accuracy (or other performance metrics) than well-known and widely 
used classical models.

To the best of our knowledge, no survey or review paper compared the efficacy of QDL 
algorithms against their classical counterparts despite the need. While QDL holds promise 
with speedups and parameter efficiency (Liu 2024; Ciliberto 2018), whether QDL can con-
sistently outperform traditional deep learning in practical scenarios is still an open question. 
It is crucial to assess whether QDL models can meet the demands of modern healthcare, 
where timely interventions, accurate diagnoses, and precise prognoses are paramount. 
Moreover, QDL will only live up to its promise with continued improvements. As such, this 
comparison could spur more focused research efforts, helping to refine existing models or 
inspire new ones.

In light of this, we conducted a systematic review focusing on the applications of QDL 
in neuroinformatics while statistically comparing QDL with classical deep learning across 
a range of data learning tasks like classification, segmentation, and forecasting. For primary 
outcome analysis, our research question was: “When considering task-specific performance 
metrics, how effective are QDL algorithms compared to state-of-the-art classical models 
in publicly available brain-related datasets?” Our secondary objective was to explore: 
“In what practical ways are quantum circuits and simulators currently applied, and what 
advantages or limitations exist for their application in the noisy intermediate-scale quan-
tum (NISQ) era?” The primary contributions of this review are outlined below:

	● This is the first study to survey QDL applications in neuroinformatics, focusing on mul-
tiple brain-related data modalities.

	● Our study is the first to statistically compare the performance of classical and quantum 
models across diverse datasets and studies, offering a cumulative analysis of their ef-
ficacy in data learning tasks.

	● This review discusses existing research gaps in depth, examines QDL’s practical and 
technical implications, and offers a forward-looking perspective on future research di-
rections.

Fig. 1  An example framework of QDL within neuroinformatics. This multimodal framework uses varia-
tional quantum circuits (VQC) to generate timely and accurate inferences, which medical professionals 
subsequently verify. Like classical kernels, the circuits possess learnable parameters that contribute to 
the analysis
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2  Overview of quantum deep learning

Quantum theories and algorithms inspire, enhance, or form the foundation of different 
approaches in QDL. In simpler terms, when a deep learning model with multiple levels or 
layers of data processing has at least one layer that relies on quantum mechanical concepts, 
it can be defined as a QDL model. On the contrary, a quantum circuit itself can sometimes 
emulate a deep neural network, which also falls under the category of QDL. Here, the for-
mer represents a hybrid architecture, combining classical and quantum elements, while the 
latter is purely quantum.

In this section, we will not attempt to discuss every QDL model currently available in the 
literature. Instead, we will focus on the foundational component of QDL: quantum circuits. 
We will examine how these circuits function and how they contribute to different quantum 
neural network architectures. This section aims to help newcomers understand the models 
presented in our systematic review and provide a strong starting point for exploring other 
models and architectures.

Qubits form the basis of quantum computing. Conceptually, qubits resemble binary bits, 
but they differ in that they can exist in a superposition of both |0⟩ and |1⟩ states, enabling 
parallel computation. In addition to superposition, entanglement allows the manipulation of 
multiple qubits simultaneously rather than individually. These quantum phenomena provide 
certain advantages unique to quantum computing over classical approaches, and researchers 
have been working to integrate them into various algorithms, including those in machine 
learning and deep learning (Wittek 2014; Nielsen and Chuang 2010; Cerezo et al. 2022).

Quantum circuits serve as frameworks for quantum computation. In these circuits, wires 
function as qubits, while the gates symbolize operations performed on the corresponding 
wires. In the context of classical data processing, we can divide quantum circuits into three 
key stages: 

i)	 Encoding: This phase involves mapping classical information into a quantum fea-
ture space and preparing the data for quantum processing. The goal of encoding is to 
ensure the data is in a specific format suitable for manipulation by quantum operations. 
The two most common encoding methods are angle encoding and amplitude encod-
ing. Angle encoding represents classical information as angles to the rotational gates 
applied to wires, initializing each wire in the |0⟩ state. This method requires n qubits to 
encode n features. On the other hand, amplitude encoding turns classical data into the 
amplitudes of quantum states. This transformation ensures storing more information 
in a smaller space since n qubits can hold up to 2n classical values. Angle encoding is 
linear, whereas amplitude encoding offers exponential scaling.

ii)	 Operations: This stage involves manipulating the encoded quantum data through various 
quantum gates. The choice of gates depends on the specific task at hand. We commonly 
use the Hadamard gate to create superposition, which places qubits into a state where 
both |0⟩ and |1⟩ are equally probable, thereby facilitating the simultaneous exploration 
of multiple possible solutions. Typically, a controlled-NOT gate establishes strong cor-
relations between qubits after a Hadamard gate, creating entanglement between a pair. 
Entanglement ensures instantaneous discovery of the other state if one of the pair’s 
states is known. We also use phase shift and rotation gates to change or amplify some 
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computational paths. This alteration can cause constructive or destructive interference, 
essential for finding patterns and optimizing solutions.

iii)	 Measurement: The final step involves measuring quantum states to extract classi-
cal information. Following the measurement, we observe the qubit states collapsing 
into classical bits, resulting in 0 or 1. We repeat the process multiple times (known as 
“shots”) to gather sufficient statistics, as quantum measurement is inherently proba-
bilistic. With enough measurements, we can reliably determine the exact or expected 
outcome of the quantum computation.

Figure 2 demonstrates the versatility of a single quantum circuit in forming various deep 
learning architectures. Figure 2a depicts a variational quantum circuit (VQC), consisting of 
unitary blocks that function as deep learning layers and execute quantum operations (Cerezo 
2021; Schuld et al. 2020; Skolik et al. 2021; Cong et al. 2019). Due to learnable rotation 
parameters inside the blocks, researchers often refer to these circuits as parameterized quan-
tum circuits (Benedetti et al. 2019).

In Fig. 2b and Fig. 2c, we show how to integrate the VQC into a hybrid neural network, 
combining quantum and classical components. Positioning the VQC relative to fully con-
nected layers allows it to function either as a component of an autoencoder (refer to Fig. 2c) 
or as an artificial neural network (refer to Fig. 2b) (Schmidhuber 2015; Goodfellow et al. 
2016). In Fig. 2c, VQC acts as the bottleneck of the autoencoder. In such hybrid models, 
careful consideration is required to ensure that both quantum and classical layers’ output 
shapes and data types are compatible.

Figure 2d presents a hybrid convolutional neural network where the VQC acts as a task-
specific head. There is flexibility in designing the base architecture. The baseline may fol-
low a vanilla structure with standard convolution and pooling layers paired with non-linear 
activations, similar to AlexNet (LeCun et al. 1998; Krizhevsky et al. 2012). Alternatively, 

Fig. 2  Overview of various quantum deep learning algorithms using a shared quantum circuit. a Varia-
tional quantum circuit (VQC). b  Hybrid quantum-classical neural network with a VQC output layer. 
c Hybrid quantum-classical autoencoder with a VQC bottleneck. d Hybrid quantum-classical convolu-
tional neural network with a VQC output layer. e Quanvolutional neural network. GAP denotes global 
average pooling
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they may consist of a pre-trained deep learning model, such as ResNet (He et al. 2016), 
Inception (Szegedy et al. 2015), EfficientNet (Szegedy et al. 2015), DenseNet (Huang et al. 
2017), or ViT (Dosovitskiy et al. 2021). Instead of training from scratch, we can also apply 
transfer learning (Zhuang 2020). In this setup, we can repurpose the learned weights of a 
pre-trained model for a new task, either by freezing the baseline or fine-tuning it. Transfer 
learning significantly reduces resource requirements.

Lastly, Fig. 2e showcases a quanvolutional neural network (Henderson et al. 2020). Here, 
the VQC replaces the usual filters in a convolutional layer, transforming it into a quanvolu-
tional layer. After patch extraction via sliding windows, this layer uses the VQC to generate 
feature maps from the input patches. The remaining classical layers in the model process 
these feature maps and draw inferences depending on the task.

3  Methods

3.1  Search strategy and selection criteria

Our systematic review adhered to the guidelines outlined in the Preferred Reporting Items 
for Systematic Reviews and Meta-Analysis (PRISMA) (Page 2021). The PRISMA checklist 
is available in Supplementary Material 1. Before the review, we registered the protocol with 
PROSPERO (CRD42024499193).

Given the lack of QDL studies in prior systematic reviews, we aimed to craft search 
strings that are maximally inclusive. While retaining the common term “quantum,” we 
incorporated various neural network models into our study, including convolutional and 
recurrent neural networks, transformers, and multi-layer perceptrons. Concerning neuro-
informatics, we targeted three data modalities: neuroimaging, electrophysiological signals, 
and cognitive assessments, and used relevant terminologies for retrieving articles (refer to 
Supplementary Material 7). Our thinking behind selecting these modalities stems from the 
viewpoint of data science, where data can be one-dimensional (such as signals and tabular 
data) or two-to-three-dimensional (like images), which cover a significant portion of neuro-
informatics research (French and Pavlidis 2007).

Due to the multidisciplinary nature of our study scope, we conducted searches across 
Scopus and the Web of Science Core Collection. Additionally, we explored health-related 
studies in MEDLINE and Embase while searching computer science studies in the ACM 
Digital Library. We did not limit the search period or language and conducted the final 
search on all of the mentioned databases on July 23, 2024. Supplementary Material 7 con-
tains the final search strings for all databases.

NAO conducted the preliminary search, and MAA and MAM validated the final search 
string. At each stage of the review, NAO and MAA independently assessed the records. 
Three reviewers (NAO, MAA, and MAM) engaged in discussions to resolve conflicts.

3.2  Data analysis

For this review, we retrieved confusion matrices from studies that compared their QDL 
models to conventional ones using the same brain-related datasets for the primary outcome. 
This approach allowed us to compute various classification-related performance metrics, 
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including accuracy, precision, and sensitivity (recall). In cases where confusion matrices 
were unavailable, we selected the highest reported metrics from each study. We obtained 
relevant metrics, such as r-squared, dice score, and mean average precision, for non-clas-
sification studies like forecasting, segmentation, and object detection. For the secondary 
outcome, we collected information about quantum simulators or devices, focusing on the 
number of qubits used and classical-to-quantum data encoding.

Using the MI-CLAIM checklist (Norgeot 2020), we thoroughly assessed the risk of bias 
for all the included studies (refer to Supplementary Material 2, 3). The checklist promotes 
explicit clinical impact evaluation and provides a reproducible research strategy to improve 
transparency and applicability (Norgeot 2020). In addition, we evaluated the certainty of 
outcomes in the reviewed articles based on the four levels of evidence quality defined by 
GRADE (refer to Supplementary Material 4, 5) (Balshem et al. 2011). In the reviewed pub-
lications, a meta-analysis was inconclusive due to diverse methods and outcome measures, 
i.e., high study heterogeneity. Multiple studies also did not provide the essential data needed 
for a meta-analysis. Therefore, we opted for a narrative synthesis approach, following estab-
lished guidelines (Jones 2022). This review presents a descriptive statistical analysis sum-
marizing QDL’s performance in neuroinformatics.

4  Results

Following the search procedure, we exported all returned entries (n = 3510) from five data-
bases and identified 1360 duplicate entries. After screening 2150 non-duplicate records, 93 
that met the selection criteria underwent a full-text review. After excluding 64 irrelevant 
and out-of-scope reports (refer to Supplementary Material 6), we included 29 articles (Amin 
et  al. 2022b; Hasan 2020; Li et  al. 2021; Amin 2022a; Chandra et  al. 2022; Cattan and 
Quemy 2023; Kanimozhi et  al. 2022; Shahwar 2022; Tantawi et  al. 2023; Ajlouni et  al. 
2023; Liu et al. 2023; Choudhuri and Halder 2023; Felefly 2023; Amin et al. 2023; Dong 
2023; Alsharabi et al. 2023; Koike-Akino and Wang 2022; Jeon et al. 2024; Olvera et al. 
2024; Lins 2024; Jenber Belay et al. 2024; De and Gupta 2024; Mazher 2024; Roy and 
Rudra 2024; Singh et al. 2024; Bada et al. 2023; Kim 2023; Ho and Hung 2023; Ahmed 
et al. 2023) eligible for the systematic review and extracted pertinent data.

Figure  3a illustrates the entire study selection process. During the title and abstract 
screening, full-text review, risk of bias and certainty assessment, and data extraction phase, 
two reviewers (NAO and MAA) independently assessed the reports. Any conflicts were dis-
cussed among three reviewers (NAO, MAA, and MAM) until a consensus was reached. In 
addition, Fig. 3b and c illustrate the continuous trend in research focus, particularly address-
ing the diverse study objectives and their interconnections. Furthermore, with the increasing 
accessibility of simulators compared to hardware, a significant portion of the work origi-
nates from lower-middle income countries, as indicated in Fig. 4b.

Table 1 describes the characteristics of the reviewed studies that used QDL to handle 
different neuroimaging modalities. These modalities include structural, functional, and 
diffusion-weighted magnetic resonance imaging (MRI), computed and positron emission 
tomography, ultrasound, spectroscopy, etc. However, our review found that all neuroimag-
ing studies (n = 22) only used MRI. In this NISQ era, real hardware resources are not widely 
accessible, and even the number of feasible simulatable qubits is quite limited. For this rea-
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Fig. 4  Bibliometric analysis based on author affiliations. a Global distribution of author affiliations, with 
country-level counts represented by a color gradient. b Regional percentage distribution of affiliations 
based on the World Bank income level. c Top 8 institutions contributing the highest percentage of affili-
ations relative to the total

 

Fig. 3  a Study selection using PRISMA. b Temporal distribution of study characteristics. Each bar rep-
resents the number of studies conducted in a specific year, providing insights into the research priorities. 
The 2024 data is incomplete because it only includes information until July 23, which was our most recent 
search date. However, it still offers a valuable understanding of current progress and growth. c Keyword 
co-occurrence network. The network reveals recurring themes and concepts across the reviewed studies, 
highlighting the interconnectedness of ideas within this field of research
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Target field(s) Validation Learning 
mechanism

Model 
architecture

Model description

Amin 
et al. 
(2022b)

Brain tumors k-fold CV Supervised Hybrid The classifier is a quantum-clas-
sical NN consisting of classical 
linear layers and a quantum layer 
in the form of a VQC.

Hasan 
(2020)

Brain tumors Train/test 
split

Supervised Hybrid In parallel, the authors used 
quantum calculus-based textural 
features and deep CNN-based 
feature maps.

Li et al. 
(2021)

Brain tumors Train/test 
split

Ensemble Hybrid Initially, the authors replaced the 
classification heads of pre-trained 
ResNet50, VGG16, and AlexNet 
with a quantum-classical NN and 
then ensembled them.

Amin 
(2022a)

Brain tumors Train/test 
split

Transfer Hybrid For classification, the authors 
used pre- trained InceptionV3 
features to train a VQC.

Chandra 
et al. 
(2022)

Brain tumors Train/test 
split

Supervised Hybrid The authors employed a quan-
tum- classical hybrid structure, 
feeding classical linear layers 
with feature maps produced by 
the quanvolutional layer.

Kani-
mozhi 
et al. 
(2022)

Brain tumors Train/test 
split

Transfer Hybrid After using ResNet18 to extract 
features, the authors used a 
quantum-classical NN with clas-
sical linear layers and a VQC.

Shah-
war 
(2022)

Alzheimer’s Train/test 
split

Transfer Hybrid After using ResNet34 to extract 
features, the authors used a 
quantum-classical NN with clas-
sical linear layers and a VQC.

Tantawi 
et al. 
(2023)

Brain tumors Train/test 
split

Supervised Hybrid The architecture is a classical 
CNN with a two-qubit VQC as 
the output layer.

Ajlouni 
et al. 
(2023)

Brain tumors Train/test 
split

Supervised Hybrid In the proposed quantum-
classical CNN architecture, a 
quanvolutional layer precede 
classical convolutional, pooling, 
and linear layers.

Liu 
et al. 
(2023)

Stroke lesions Train/test 
split

Supervised Hybrid The authors proposed a quantum 
mechanics -based bottleneck 
layer for a typical residual U-net 
architecture.

Choud-
huri and 
Halder 
(2023)

Brain tumors k-fold CV Supervised Hybrid The proposed hybrid quantum-
classical CNN layout starts off 
with two successive quanvolu-
tional layers and then transitions 
to conventional layers.

Felefly 
(2023)

Brain tumors Train/test 
split

Supervised Pure The authors extracted radiomic 
features, reduced their dimen-
sions, and then transferred them 
to a VQC for classification.

Table 1  Overview of neuroimaging-based studies
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son, researchers frequently employ quantum-classical hybrid methods, with the premise that 
exploiting both domains and utilizing their synergy can lead to more enhanced and robust 
deep learning models (Mari et al. 2020). A similar trend is also visible in our review, as out 
of the 22 neuroimaging-based studies, 20 (90.9%) embraced hybridization.

Table 2 describes the characteristics of the reviewed studies that used QDL to handle 
different neurophysiological signals, like electroencephalography (EEG) and magnetoen-

Target field(s) Validation Learning 
mechanism

Model 
architecture

Model description

Amin 
et al. 
(2023)

Brain tumors Train/test 
split

Supervised Hybrid In the proposed quantum-
classical CNN architecture, a 
quanvolutional layer precede 
classical convolutional, pooling, 
and linear layers.

Dong 
(2023)

Brain tumors Stratified 
k-fold CV

Supervised Hybrid In the proposed quantum-
classical CNN architecture, a 
quanvolutional layer precede 
classical convolutional, pooling, 
and linear layers.

Alshar-
abi et al. 
(2023)

Alzheimer’s, 
Parkinson

Train/test 
split

Transfer Hybrid The authors modified pre-trained 
AlexNet’s classifier head with a 
VQC and linear layers.

Jeon 
et al. 
(2024)

Brain aging Train/test 
split

Supervised Pure To train a VQC, the authors used 
subcortical and cortical volume 
parcellation data extracted from 
images.

Jenber 
Belay 
et al. 
(2024)

Alzheimer’s Train/test 
split

Ensemble Hybrid To extract features for training 
a quantum SVM model, the 
authors ensembled pre- trained 
VGG16 and ResNet50.

Mazher 
(2024)

Brain tumors, 
Alzheimer’s

DND Supervised Hybrid The authors used a VQC, along-
side classical linear layers, in the 
classification head of a conven-
tional CNN architecture.

Roy and 
Rudra 
(2024)

Brain tumors Train/test 
split

Supervised Hybrid In the proposed quantum-
classical CNN architecture, a 
quanvolutional layer precede 
classical convolutional, pooling, 
and linear layers.

Bada 
et al. 
(2023)

Brain tumors Train/test 
split

Supervised Hybrid The authors utilized a quanvolu-
tional layer as a feature extractor 
and used the features to train a 
classical NN consisting of linear 
layers.

Kim 
(2023)

Alzheimer’s Train/test 
split

Transfer Hybrid The author modified pre-trained 
ResNet18’s classifier head with a 
VQC and linear layers.

Ahmed 
et al. 
(2023)

Brain tumors DND Supervised Hybrid In the proposed quantum-
classical CNN architecture, a 
quanvolutional layer precede 
classical convolutional, pooling, 
and linear layers.

CV cross-validation, VQC  variational quantum circuit, CNN  convolutional neural network, NN  neural 
network, SVM support vector machine DND did not disclose

Table 1  (continued) 
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cephalography. All such studies (n = 7) used EEG. Unlike neuroimaging-based studies, 
Table 2 shows a more balanced mix of pure and hybrid models.

4.1  Primary outcome

We included publications that directly compared their proposed QDL model with state-of-
the-art classical deep learning models for the primary outcome analysis. Deep learning-
related research often comprises several sub-studies with more than one dataset. For clarity, 
regardless of whether a publication uses one or multiple datasets, we treated each dataset 
analysis as a separate study, i.e., we treated these sub-studies as individual samples for the 
statistical analysis.

Table 3 summarizes descriptive statistics for tumor classification studies (n = 16), featur-
ing the mean with a 95% confidence interval (CI) and the median with an interquartile range 
(IQR). Overall, QDL models slightly outperformed classical ones in terms of both mean and 
median, but the narrow margin suggests they are comparably effective. For instance, QDL 
models achieved a mean accuracy of 0.9701 (95% CI 0.9533–0.9868) and a mean F1-score 
of 0.9784 (95% CI 0.9667–0.9901). In contrast, classical deep learning models achieved a 
mean accuracy of 0.9650 (95% CI 0.9475–0.9825) and a mean F1-score of 0.9717 (95% 
CI 0.9614–0.9819). Except for median sensitivity, where classical models are 0.08% better 
than QDL models, QDL outperforms in all other cases.

Table 2  Overview of neurophysiological signal-based studies
Target field(s) Validation Learning 

mechanism
Model 
architecture

Model description

Cattan and 
Quemy 
(2023)

BCI Stratified 
k-fold CV

Supervised Pure After extracting features 
using Riemannian geom-
etry, the authors used a 
VQC classifier.

Koike-
Akino 
and Wang 
(2022)

BCI DND Supervised Hybrid The architecture consists 
of a VQC feature extractor 
and an EEGNet-based 
classifier.

 Olvera 
et al. (2024)

BCI k-fold CV Supervised Hybrid The proposed architecture 
is a hybrid of temporal 
convolution, attention 
mechanism, and a quantum 
layer in the form of a VQC.

 Lins 
(2024)

Cognitive state Train/test 
split

Supervised Pure The authors utilized a VQC 
to handle the manually 
extracted features.

 De and 
Gupta 
(2024)

Cognitive state k-fold CV Supervised Hybrid The proposed architecture 
is a hybrid of convolution, 
the attention mechanism, 
and quantum LSTM.

 Singh et al. 
(2024)

BCI k-fold CV Supervised Pure The authors utilized a VQC 
to handle the manually 
extracted features.

 Ho and 
Hung 
(2023)

Alzheimer’s Train/test 
split

Supervised Pure The authors used a VQC 
classifier.

CV cross-validation, VQC variational quantum circuit, BCI brain-computer interfacing, LSTM long short-
term memory, DND did not disclose
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Beyond tumor classification, studies addressed Alzheimer’s diagnosis, Parkinson’s diag-
nosis, thrombolysis in cerebral infarction grading, brain age prediction, drowsiness mon-
itoring, motor imagery classification, and more. However, most of these studies did not 
benchmark their proposed models against established standards. The number of studies that 
did compare their proposed models with state-of-the-art models was too small to warrant 
meaningful statistical analysis. In particular, the 95% confidence intervals were very wide. 
Furthermore, using quartiles provided minimal insights because of the limited data. As a 
result, we summarized the findings from these investigations in Table 4 instead of a statisti-
cal comparison. Table 4 shows an evenly split performance between the two domains in the 
classification tasks, with QDL outperforming in half of the cases and classical deep learning 
leading in the others. In contrast, QDL outperforms in both the object detection task with 
better metric values and the forecasting task with lower error values.

4.2  Secondary outcome

For the secondary outcome analysis, we selectively included publications (n = 26) that 
adopted a quantum circuit-based approach in their models. We conducted this analysis 

Table 3  Outcome measures for tumor classification studies (n = 16)
Accuracy F1-score Precision Sensitivity
Quantum Classical Quantum Classical Quantum Classical Quantum Classical

Mean 
(95% 
CI)

0.9701 
(0.9533–
0.9868)

0.9650 
(0.9475–
0.9825)

0.9784 
(0.9667–
0.9901)

0.9717 
(0.9614–
0.9819)

0.9791 
(0.9669–
0.9912)

0 9668 (0
9562–0 9774)

0.9786 
(0.9669–
0.9902)

0.9769 
(0.9628–
0.9910)

Median 
(IQR)

0.9844 
(0.9541–
0.9915)

0.9804 
(0.9442–
0.9865)

0.9824 
(0.9643–
0.9940)

0.9753 
(0.9605–
0.9836)

0.9813 
(0.9647–
1)

0.9642 
(0.9586–0.9818)

0.9800 
(0.9640–
1)

0.9808 
(0.9600–
0.9978)

Sample 
size

16 14 14 14

CI confidence interval, IQR interquartile range; Unequal sample sizes suggest that certain studies did not 
provide the metric or offer the required confusion matrices for revisions.

Table 4  Outcome measures for studies other than tumor classification (n = 6)
Accuracy F1-score Precision Sensitivity
Quantum Classical Quantum Classical Quantum Classical Quantum Classical

Alzheimer’s diagnosis 0.8131 0.9762 0.8077 0.955 0.84 0.9525 0.7778 0.9575
Alzheimer’s diagnosis 0.9538 0.9523 0.9557 0.955 0.9667 0.96 0.945 0.95
Alzheimer’s diagnosis 0.9989 0.993 0.9925 0.995 0.9925 0.995 0.9923 0.995
Drowsiness monitoring 0.986 0.9042 0.9865 0.9351 0.987 0.9203 0.986 0.9505

Accuracy AUC Dice coefficient ASSD
Quantum Classical Quantum Classical Quantum Classical Quantum Classical

Stroke lesions 
detection

0.8678 0.8517 0.9086 0.8978 70.98 68.90 8.64 9.13

R-squared RMSE MSE MAE
Quantum Classical Quantum Classical Quantum Classical Quantum Classical

Brain age prediction 0.425 0.3 4.083 4.28 16.675 18.28 3.302 3.31
RMSE root mean squared error, MSE mean squared error, MAE mean absolute error, AUC area under the 
curve, ASSD average symmetric surface distance
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to explore how researchers simulate quantum computations in this NISQ era. Figure  5a 
depicts a timeline showing the progression of qubit usage next to data representation in 
quantum circuits. In Fig. 5a, it is evident that researchers prefer angle embedding to ampli-
tude embedding. Also, we found that researchers could utilize up to 17 qubits, highlighting 
the increasing scalability of QDL. Figure 5b portrays the percentage distribution of studies 
based on the source of simulators used. A total of 70% of the studies specified the simulator 
they utilized. Within this subset, 36.7% of studies opted for simulators from the PennyLane 
library (Bergholm et al. 2022), whereas 26.7% chose simulators from IBM’s Qiskit library 
(Aleksandrowicz 2019). 3.33% of the studies use the TensorCircuit (Zhang et al. 2023) and 
Cirq (Developers 2024) libraries, respectively.

5  Discussion

We systematically reviewed QDL algorithms designed to address neuroinformatics, empha-
sizing how QDL differs from conventional deep learning. The core findings of our study 
indicate that QDL models exhibit similar performance, if not a slight advantage over their 
classical counterparts, across all tasks. The combination of such precision, well-documented 
speedups (Huang 2022; Biamonte 2017; Liu et al. 2021b; Saggio 2021; Ciliberto 2018), 
robustness (LaRose and Coyle 2020; Cross et al. 2015; Du et al. 2021), generalization abil-
ity (Caro 2022; Caro et  al. 2021; Gil-Fuster et  al. 2024), and parameter efficiency (Liu 
2024; Caro 2022; Cherrat et al. 2024; Kharsa et al. 2023) establishes the potential of QDL. 
As QDL is still in its earliest phases, it is complicated to assess its practicality in healthcare, 
considering hardware requirements, noise sensitivity, and computing resources (Cerezo 
et al. 2022; Peral-García et al. 2024). Still, quantum machine learning (and, by extension, 
QDL) is a thriving field. As quantum computers continue to advance, we can anticipate the 
integration of various algorithms into healthcare. However, their application is likely to be 
limited to specific challenges that require the unique computational power of quantum sys-
tems or to address unsolvable problems of traditional computing methods.

Fig. 5  Outcome measures for studies utilizing quantum circuits (n = 26). a Temporal distribution of fea-
ture mapping and qubit utilization. b Simulator preferences within the reviewed QDL literature. DND is 
an acronym for ‘did not disclose.’ This designation indicates that certain studies did not report informa-
tion regarding the specific quantum simulator or the number of qubits used in their experiments. Note: 
Some studies validated their models using more than one simulator
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5.1  Limitations of the review

Despite our commitment to adhering to the PRISMA guidelines at every stage of our study, 
it remains a possibility that we overlooked essential reports. Nevertheless, we are confident 
that the potential oversights will not compromise the review’s overall substance and valid-
ity. Moreover, as highlighted in Tables 1 and 2, the approaches adopted by the studies were 
diverse, with diverse target domains. Validation techniques ranged from simple data split-
ting to more elaborated cross-validation methodologies. While the diversity of approaches 
reflected the field’s richness, this heterogeneous nature posed a challenge in employing a 
meta-analysis. As a result, a meta-analysis that could have established a robust empirical 
foundation for QDL was not possible. Finally, this review does not cover molecular-level 
analyses, such as the protein and gene structures of the human brain, which we plan to 
address in a future study.

5.2  Limitations of the reviewed articles

Evidence certainty assessments reveal that only a small number of studies (n = 6) provide 
high certainty evidence, whereas others fall into the low (n = 8) and very low (n = 5) catego-
ries. Hence, our confidence in the effect estimate is limited, primarily due to poor method-
ological descriptions. For example, several studies withheld crucial details like the number 
of qubits, circuit depths, and simulators. While the former two are essential for reproducible 
results, understanding the practical realizability of the model requires the latter informa-
tion. Three studies failed to report the total sample sizes of the datasets considered in their 
experiments. Moreover, we noticed that some studies did not conduct inferences on unseen 
data, a critical aspect for assessing the overall generalizability of the proposed models. Fur-
thermore, some studies did not provide specific performance metrics, which led to omitting 
some data points from our statistical analysis. In light of these limitations, we encourage 
readers to interpret our findings with due consideration.

5.3  Identified research gaps and pathways

Notwithstanding the above limitations, we aimed to offer a holistic representation of the 
current progress in this domain. Our goal was not necessarily to establish QDL as the new 
state-of-the-art; instead, we wanted to highlight the progress in neuroinformatics, show 
where QDL models currently stand, and explore what might be achievable as we progress 
toward fault-tolerant quantum computing (FTQC) (Katabarwa et al. 2024). Above all, we 
have identified research gaps that, once addressed, would benefit neuroinformatics (and 
healthcare) and facilitate advancements in QDL.

5.3.1  Efficient data encoding

In QDL, the initial step in the processing pipeline–and one of its most critical stages–is data 
encoding. This step involves transforming classical data into a format suitable for quan-
tum systems. Angle embedding is the most commonly used encoding method due to its 
minimal complexity. Its primary advantage lies in the straightforward, linear mapping it 
provides between the input data and the qubits, mirroring the behavior of conventional neu-

1 3

134  Page 14 of 24



Quantum deep learning in neuroinformatics: a systematic review

ral networks. However, as data complexity and size grow, the method becomes inefficient. 
For example, encoding 256 data points would require a circuit with 256 qubits, which is 
impractical for even the most advanced supercomputers to simulate, let alone implement in 
practice in this NISQ era. On the other hand, amplitude embedding offers a more scalable 
solution. It can encode the same 256 features using just 8 qubits, achieving logarithmic scal-
ing and a more compact representation. Yet, this approach comes with its own challenges, 
particularly in the setup phase. Issues such as state preparation errors and the significant 
increase in circuit depth make implementation difficult. As such, we need more efficient 
encoding schemes. This requirement is even more critical in neuroinformatics, where data 
types are inherently complex. For example, time-series data, such as EEG, present unique 
challenges due to properties like autocorrelation and periodicity (Karlsen Kivedal 2024), 
which demand careful mapping.

5.3.2  Task-specific circuit design

When addressing challenges such as barren plateaus or the vanishing gradient problem 
(McClean et al. 2018), carefully selecting the circuit architecture is paramount. While many 
studies rely on pre-existing architectures available in quantum computing libraries, others 
neglect to detail their choice of ansatz or parameterized circuit, limiting reproducibility and 
insight. For neuroinformatics tasks, it is crucial to find out if the quantum operations within 
the ansatz offer any benefits in terms of being more robust, generalized, and regularized. 
Based on our analysis, we identified two key areas: (i) Researchers must prioritize task-
specific architectures, recognizing that no single design guarantees optimal performance. 
This is crucial given the interplay between barren plateaus, local minima, and the circuit 
structure. (ii) In the current NISQ era, achieving the appropriate circuit depth is challenging. 
We need to strike a balance; circuits must remain shallow enough to mitigate computational 
cost and error propagation while maintaining sufficient expressivity to solve required tasks 
effectively.

5.3.3  Real-world applicability

Although QDL models hold promise, their practical implementation on real quantum hard-
ware remains challenging due to noise, limited coherence times, and gate fidelity issues. 
Our review of recent literature and studies suggests that the effectiveness of these models on 
real hardware still needs to be explored. Therefore, we urge researchers to test their models 
in practical scenarios. We acknowledge that accessing real quantum hardware can be dif-
ficult currently. However, to emulate realistic conditions, high-quality simulators are widely 
accessible (Altman 2021). For simulation-based approaches, researchers must incorporate 
noise and errors prevalent in quantum computers. For example, instead of relying on ana-
lytical expectation values during measurement, researchers should simulate finite shots to 
account for the probabilistic nature of quantum operations. Real-life quantum experiments 
require multiple repetitions to approximate accurate results, reflecting the stochastic behav-
ior in quantum mechanics.
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5.3.4  Noise: a disguised blessing

While noise is generally considered detrimental to deep learning due to its impact on train-
ing stability, interpretability, and performance, controlled noise injection has proven to aid 
in regularization and generalization (Lowd and Meek 2005; Qian et al. 2022). In quantum 
machine learning, the inherent noise of quantum operations (e.g., bit and phase flips, ampli-
tude damping, and stochastic measurements) poses a challenge but may also offer opportu-
nities. Using quantum noise as a regularization mechanism could improve the generalization 
and robustness of QDL models in a way similar to classical techniques. Additionally, the 
stochastic nature of quantum systems may internally promote adversarial learning as a natu-
ral byproduct of quantum computations. However, in neuroinformatics, such an exploration 
remains uncharted.

5.3.5  Quantum-aware optimizers

By far, the most prevalent approach in QDL is quantum-classical hybridization. In this 
approach, neural networks integrate traditional classical layers with quantum layers, such as 
quanvolution or VQCs. The loss calculation and parameter updates are typically performed 
on classical computers using well-established optimizers like Adam (Kingma and Ba 2015). 
However, optimizing the parameters of quantum layers is not straightforward. These param-
eters operate in the complex, high-dimensional Hilbert space, presenting challenges such as 
barren plateaus and noise sensitivity. As such, it may be beneficial for optimizers to be quan-
tum-informed–aware of the quantum operations and properties like superposition, entangle-
ment, and interference. Such optimizers could enable more informed gradient updates and 
mitigate challenges like vanishing or exploding gradients. Above all, quantum-aware opti-
mizers can potentially enhance both convergence speed and model accuracy.

5.3.6  Ablation studies

In deep learning, an ablation study involves systematically removing parts of a neural net-
work to determine which components are most influential in achieving the desired perfor-
mance. Simply put, this debugging tool helps identify and eliminate unnecessary complexity, 
leading to lighter, more interpretable models. For pure quantum neural networks like VQCs, 
researchers must explain how certain unitary operations or a group of unitary layers inside 
the circuit affect the whole network. In hybrid quantum-classical models, it is crucial for 
researchers to rationalize placing a quantum layer at any specific position among classical 
layers and to explore the quantum layer’s performance with positional shifts. By providing 
these justifications while conducting ablation studies, quantum models can become less 
enigmatic and more user-friendly.

5.3.7  Shortcomings of quantum convolution

Quantum convolution is gaining popularity in computer vision, with two main variants 
discussed in the literature: circuit-based and kernel-based. The circuit-based approach rei-
magines a convolutional neural network as a VQC, where quantum operations emulate tradi-
tional convolution and pooling layers (Cong et al. 2019). In contrast, kernel-based quantum 
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convolution, often referred to as “quanvolution," employs a VQC as a convolutional filter 
or kernel (Henderson et  al. 2020). Both methods face significant scalability challenges. 
For example, in the circuit-based approach, flattening high-resolution images with multiple 
channels for input into the circuit is infeasible in this NISQ era. The quanvolution method 
attempts to address this by processing image patches individually. However, it, too, has sev-
eral limitations, such as a lack of flexibility in choosing kernel sizes, generating a fixed and 
limited number of feature maps, and an inability to handle data with arbitrary dimensions–
tasks that classical convolution performs seamlessly. These shortcomings highlight the need 
for a substantial overhaul in designing and implementing quantum convolution techniques.

5.3.8  Interpretability

The importance of explainable AI (XAI) (Minh et  al. 2022), particularly in biomedical 
applications, cannot be overstated. Incorporating XAI is crucial for achieving high inter-
pretability, which can help reduce skepticism among clinical professionals regarding model 
outcomes. XAI approaches can shed light on how quantum features and enhancements con-
tribute to a model’s ability to identify clinically relevant patterns. These approaches not 
only clarify the internal workings of these models or layers but also assess the role of differ-
ent quantum unitaries in inferencing. As such, prioritizing interpretability in designing and 
evaluating QDL systems is essential for building trust in healthcare and neuroinformatics 
applications. However, the use of such methods in QDL has been very limited.

5.3.9  Domain diversity

Neuroinformatics is an expansive and multifaceted field with numerous application areas. 
However, QDL in neuroinformatics has been limited and focused, primarily exploring a few 
areas, like tumor classification with MRI. We encourage researchers to broaden the scope 
of QDL’s application. This could involve integrating diverse neuroinformatic modalities, 
such as neuropsychological assessments (Vieira et al. 2022) related to perception, attention, 
and memory, where QDL’s potential remains largely unexplored. Moreover, QDL remains 
uncharted in areas like connectomics (Anbarasi et al. 2024), a key domain in neuroinfor-
matics. In addition to traditional supervised learning, there is potential for using reinforce-
ment learning (François-Lavet 2018), which can capture how the brain adapts to changes in 
the environment, and self-supervised learning (Liu 2021a), which can make models more 
robust and generalizable. Also, with recent advancements in generative AI (GenAI) (Sengar 
et al. 2024), it is important to explore tasks like image reconstruction, cross-modality syn-
thesis, and disease progression modeling, all of which can help us better understand how 
the brain works.

5.4  Concluding remarks

To wrap up our review, we offer a set of both short-term and future-oriented recommenda-
tions for advancing QDL in neuroinformatics.
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5.4.1  Immediate actions

	● Model validation: Any model must be validated with real hardware or, at the very least, 
a realistic simulator to ensure its practical viability.

	● NISQ vs efficiency: We must account for NISQ-related constraints and focus on build-
ing efficient models accordingly.

	● Resources for newcomers: There is a strong need for more open-source codes and tuto-
rials that facilitate learning and experimentation to support newcomers.

	● Interdisciplinary collaboration: Quantum physicists, computer scientists, and neurosci-
entists must collaborate across disciplines to fully realize the potential of QDL in neu-
roinformatics.

	● Reporting standards: We strongly encourage researchers to adopt transparent and repro-
ducible reporting practices while maintaining ethical and privacy considerations when 
handling sensitive medical data.

5.4.2  Long-term plans

	● Policies and Resources: As interest in quantum machine learning grows, we need clear 
guidelines and tools for infrastructure, training, and legal concerns.

	● Pure Models: While hybrid models are effective given current quantum computing chal-
lenges, the transition to FTQC will necessitate purely quantum models to achieve the 
true “quantum advantage.”

	● Exploring New Areas: We must expand QDL into new fields related to neuroimaging, 
neurophysiological signals, and neuropsychological assessments. Relevant resources 
include HCP (Van Essen 2013), the ABCD study (Casey 2018), UK Biobank (Miller 
2016), OpenNeuro (Markiewicz 2021), PREDICT (Cavanagh et  al. 2017), NEMAR 
(Delorme et al. 2022), Physionet (Goldberger 2000), and the TUH-EEG corpus (Obeid 
and Picone 2016).

	● Diverse Learning Strategies: Effective QDL requires integrating strategies like semi-
supervised (Yang et  al. 2022), self-supervised (Liu 2021a), reinforcement (François-
Lavet 2018), and few-shot learning (Wang et al. 2020).

	● Integration with Advanced Computing: Investigating how QDL can merge with para-
digms like neuromorphic (Marković et al. 2020) and neuro-symbolic (Sheth et al. 2023) 
systems may advance neuroinformatics.
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