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Humans have already increased the risk
of major disruptions to Pacific rainfall
Scott B. Power1, François P.D. Delage1, Christine T.Y. Chung1, Hua Ye1 & Bradley F. Murphy1

Intermittent disruptions to rainfall patterns and intensity over the Pacific Ocean lasting up to

B 1 year have major impacts on severe weather, agricultural production, ecosystems, and

disease within the Pacific, and in many countries beyond. The frequency with which major

disruptions to Pacific rainfall occur has been projected to increase over the 21st century, in

response to global warming caused by large 21st century greenhouse gas emissions. Here we

use the latest generation of climate models to show that humans may have contributed to the

major disruption that occurred in the real world during the late 20th century. We demonstrate

that although marked and sustained reductions in 21st century anthropogenic greenhouse gas

emissions can greatly moderate the likelihood of major disruption, elevated risk of occurrence

appears locked in now, and for at least the remainder of the 21st century.
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Y
ear-to-year disruptions to seasonal rainfall patterns and
rainfall amounts over the Pacific Ocean are primarily
driven by the El Niño-Southern Oscillation (ENSO),

which is a naturally occurring phenomenon centred in the
tropical Pacific1,2. These disruptions have major impacts on
severe weather, agricultural production, ecosystems, and disease
in the Pacific, and in many countries beyond1,3–13. Recent
research14–16 concluded that the frequency of disruptions to
Pacific rainfall over the 21st century associated with ENSO will
be much larger than it was during the 20th century. These
studies focused on changes over the entire 21st century relative to
the entire 20th century, under high greenhouse gas scenarios
(SRES A2) (ref. 17), RCP8.5 (refs 18,19)).

Two important questions which have not been addressed
previously are: ‘‘Has the risk (that is, likelihood) of major
disruption driven by year-to-year rainfall variability already
increased?’’, and ‘‘Can the projected 21st century increase in risk
be avoided or moderated by substantial and sustained reductions in
global greenhouse gas emissions?’’ The first question is partially
motivated by recent research indicating that the atmosphere
overlying the Pacific Ocean has already warmed to levels that are
unprecedented in the historical record20. The second question
arises because governments from around the world have recently
agreed to markedly reduce global greenhouse gas emissions over
coming decades. But will these cuts be sufficient to prevent a
human-forced increase in the risk of major disruption?

To address these questions, we examine disruption in an
ensemble of CMIP5 models spanning the pre-industrial era to the
late 21st century. We find that the risk of major rainfall
disruptions has already increased, and that the risk will remain
elevated for the remainder of the 21st century, even if marked and
sustained reductions in global greenhouse gas emissions are
made. The increase in disruption risk is caused by anthropogenic
warming that drives an increase in the frequency of ENSO events
and an intensification of ENSO-driven rainfall anomalies in the
central-eastern equatorial Pacific.

Results
Measuring disruptions. We define direct measures of disruption
to precipitation over the entire region of interest (that is, 140� E–
240� E, 25�S–15� N). This contrasts with a previous study that
used a proxy measure of disruption based on rainfall amount at a
single location14. We will use two different measures of
disruption: the spatial correlation coefficient (R); and the root-
mean-squared difference (D), between seasonal (December–
January–Februrary) and long-term (multi-decadal) average
rainfall patterns. R in any given year is equal to the (spatial)
correlation coefficient between average seasonal rainfall in that
year with average seasonal rainfall over all years in the multi-
decadal period in which that year falls. R is therefore a measure of
the degree to which the spatial pattern of rainfall in individual
years deviates from the climatological pattern. In a similar
fashion, D is a measure of the magnitude of rainfall anomalies in
individual years, relative to the climatological pattern over the
same region. In the following we will refer to OR, OD and O,
where OR is the frequency of major disruption defined in terms of
R, OD is the frequency of major disruption defined in terms of D,
and O is used to refer to OR and OD collectively.

Fourteen multi-decadal periods are considered: 10 during the
pre-industrial period, and one each during the early 20th century
(E20C), the late 20th century (L20C), the early 21st century
(E21C) and the late 21st century (L21C). Furter details on why
these periods are chosen is given in ‘Methods’ section.

Major disruptions. The relationship between R2 and NINO3.4
sea-surface temperature (SST) anomalies is presented in Fig. 1a
for the observations21,22, coupled climate models23 under 20th
century forcing, and an atmospheric general circulation model
(AGCM)24–26 forced using SSTs observed from 1951 to 2013 (see
‘Methods’ section). The results indicate that the frequency and
strength of disruptions tends to increase as the magnitude of
NINO3.4 anomalies increase, and that major disruptions (defined
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Figure 1 | Scatter plots showing measures of disruption versus the NINO3.4 SSTanomaly. (a) R2 and (b) D. R is the correlation coefficient between the

rainfall map in a given year with the map of rainfall averaged over a longer reference period in which the individual year falls. D is the root-mean-squared

difference between seasonal and long-term (multi-decadal) average rainfall patterns. R and D are calculated over the domain 140� E–240� E, 25� S–15� N.
Observations (unfilled red circles21,22), with reference period 1979–2013. The coupled climate models (small filled mustard-coloured dots), with reference

period L20C (that is, 1957–1992). AGCM (unfilled blue circles) with reference period 1951–2013. AGCM values given are the averages of values in a 10-

member ensemble. Quadratics-of-best-fit are also shown using the same colour scheme. Note that El Niño events have positive NINO3.4 SST anomalies,

and so they appear to the right of the y axis in both panels, while La Niña events appear to the left. The greater the disruption the smaller R becomes, and

the larger D becomes. All values are for December–February.
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here to occur when R2o0.5) can occur during both El Niño and
La Niña years—the two extreme phases of ENSO. Under this
definition the observations exhibited major disturbances during
the El Niño years of 1991/92, 1982/1983 and 1997/98, and during
the La Niña years of 1988/1989, 2000/2001 and 2010/2011.
Similar results are obtained if we define major disruption in terms
of D (Fig. 1b, D43.1mmday� 1, which is chosen so that OD and
OR have a similar value in the pre-industrial period (1.1 events
per decade)). These thresholds are based on an analysis of
the 24 CMIP5 models selected which had at least 500 years
available under pre-industrial forcing (identified in Supple-
mentary Table 1). The strong asymmetry evident in
observational, coupled model and AGCM data indicates that
much greater disruption can occur during El Niño years than
during La Niña years.

When a major disturbance occurs during El Niño years
(Supplementary Fig. 1a), rainfall tends to extend further east
along the equator, there tends to be a reduction in rainfall in the
western Pacific, and both the Intertropical Convergence Zone

and the South Pacific Convergence Zone tend to move equator-
ward6–7,24,26–29. While major disturbances during La Niña years
tend to exhibit the opposite of these features6–7,25,27–29 asym-
metries in rainfall anomalies are clearly evident23 (Supplementary
Fig. 1b). The models (Supplementary Fig. 1c and d) appear to
do a reasonable job in capturing the observed behaviour
(Supplementary Fig. 1a and b).

Changes in the frequency of major disruptions. Relative to the
pre-industrial period, there is a 10% increase in the multi-model
mean (MMM) of OR, MMM(OR), in E20C (Fig. 2a, Supple-
mentary Table 2), that is, a 10% increase in the frequency of
major disruption to the spatial rainfall pattern (when R2 falls
below 0.5). In the E20C period, 14 of the 24 models show an
increase in OR, 9 models show decreases, and one model shows
no change (P value¼ 0.21; Supplementary Table 2). There is also
a 31% increase in MMM(OR) in L20C (Fig. 2a), with 17 increases
and 5 decreases (P value¼ 0.01), a 54% increase in E21C with 19
increases and 4 decreases (P valueo0.01), and a 31% increase in
L21C with 14 increases and 8 decreases (P value¼ 0.15). These
21st century increases occur under the 21st century scenario with
the highest greenhouse gas increases (RCP8.5, Fig. 2a), with the
clearest indication of change occuring for E21C. It is interesting
that the change in E21C is larger than for L21C. We will return to
this issue later.

The corresponding changes in OD are 26, 28, 90 and 126%, for
E20C, L20C, E21C and L21C respectively (Fig. 2a). The associated
P values are 0.03, 0.03, o0.01, and 0.01 respectively
(Supplementary Table 3). The 21st century figures for OD are
larger than the corresponding figures for OR (that is, 54 and 31%).
This indicates that 21st century global warming has a greater
impact on disruptions to the magnitude of year-to-year variability
than it does on the spatial structure of the variability.

Additional analysis indicates that the increases in O arise from
increases in the frequency of major disruptions during both
extreme phases of ENSO. For example, there is a 21% increase in
OR during El Niño years (P value¼ 0.03), and a 91% increase
in La Niña years (P value¼ 0.05), in E21C relative to the
pre-industrial period.

Factors responsible for the increase in major disruptions. We
will show below that the increase in MMM(O) has contributions
from: (i) an increase in the frequency of El Niño and La Niña
events; and (ii) an increase in precipitation anomalies arising
from a nonlinear interaction between unchanged ENSO-driven
SST anomalies and background (global) warming5,24–28. The
positive contributions from nonlinearity can be reinforced or
partially offset in models, depending on what happens to the
magnitude of ENSO-driven SST variability in each model.

Changes in ENSO frequency. There is a tendency for the fre-
quency of both El Niño and La Niña events—defined in terms of
SST variability (see ‘Methods’ section)—to increase. For example,
the MMM frequency of La Niña events during the pre-industrial
period is 2.3 per decade, and this figure increases by 4% during
E20C, 10% during L20C, and by 22% during E21C and 9% during
L21C under the RCP8.5 scenario. The MMM frequency of El
Niño events during the pre-industrial period is 2.2 per decade,
and this figure increases by 2% in E20C, 12% in L20C, and by 22
and 7% in E21C and L21C, respectively (both under RCP8.5).
Note that only the increases in L20C and E21C are statistically
significant.

Precipitation anomaly increases. A useful and important indi-
cator of rainfall variability and disruption in the Pacific is the
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Figure 2 | Percentage change in the frequency of major disruptions in the

twentieth and twenty-first centuries. E20C, L20C, E21C and L21C

frequency changes relative to the pre-industrial period. (a) Twenty-first

century values under RCP8.5 only. 24 models. (b) As in a but twenty-first

century percentage changes are provided for three different scenarios:

RCP2.6 (blue), RCP4.5 (orange) and RCP8.5 (red). The results in b are

based on changes obtained from the 20 models that were forced with all

three scenarios (see ‘Methods’). Dashed lines and circles indicate

percentage changes in OD, solid lines and squares indicate percentage

changes in OR, both relative to their pre-industrial values. Filled circles and

squares indicates that Pranko0.1. Bars indicate the 90% confidence interval

of the multi-model mean (MMM) change for L21C.
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amount of rainfall received in the central-eastern equatorial
Pacific5,14. By the end of the 20th century, the magnitude of
precipitation anomalies (relative to a new, background state) in
the central-eastern Pacific during El Niño and La Niña events
tends to increase with time, as the world warms up. This
intensification of ENSO-driven rainfall variability will increase
the likelihood that a given El Niño or La Niña event will cause
major disruption. For example, during La Niña events, 33% of
models show an increase in the magnitude of rainfall anomalies
averaged over the NINO3.4 region during E20C, 62% during
L20C, 71% during E21C and 83% during L21C. The corres-
ponding increase during El Niño events are 54%, 67%, 88% and
71%, respectively.

Modelled changes in the magnitude of NINO3.4 SST anomalies
during ENSO events are varied and do not exhibit the degree of
consistency that the modelled precipitation changes exhibit. For
example, during El Niño events, only 58% of models show an
increase in the magnitude of the NINO3.4 SST anomaly in E20C
under RCP8.5. Correspondingly, in L20C, E21C, and L21C, only
63, 50 and 38% of models show an increase. During La Niña
events 71% of models actually show a decrease in the magnitude
of the NINO3.4 SST anomalies in E20C, while increases of 50, 58,
and 67% are evident for the later periods (with E21C and L21C
values again obtained under the RCP8.5 scenario).

Multiple pieces of evidence support the importance of an
increase in precipitation anomalies arising from a nonlinear
interaction between unchanged ENSO-driven SST anomalies and
background warming. Here, nonlinearity refers to the fact that
exactly the same ENSO SST anomaly, when combined with
background warming, can result in a different precipitation
anomaly (measured relative to a new climatological precipitation

value). The first piece of evidence is given in Fig. 3, which shows
the change in both the SST anomaly (Fig. 3a) and precipi-
tation anomaly (Fig. 3b) during El Niño events, between the
pre-industrial period and L21C. There is little agreement among
all models on the sign of change in SST anomalies (that is, lack of
stippling in Fig. 3a). Despite this there is agreement on an
enhancement of the rainfall signal.

Additional evidence for intensification of rainfall anomalies
through nonlinearity is provided by the similarity between the
patterns of change in precipitation anomalies obtained from the
SST-forced AGCM experiments (Fig. 3c)—in which there is no
change at all in ENSO-driven SST anomalies—and the MMM
pattern of change in the coupled climate models (Fig. 3b).

It is reassuring to note the magnitude of the nonlinear
reinforcement of El Niño-driven rainfall anomalies over the
NINO3.4 region in the coupled models and AGCM have a similar
scale in Fig. 3 (B0.61mmday� 1 (models) and 0.7 mmday� 1

(AGCM)). A breakdown of the moisture budget in the AGCM,
described in ‘Methods’, shows that the changes in rainfall
primarily arise from changes in the mean circulation dynamics
(Supplementary Fig. 2). These changes are partially offset by
contributions from the covariant component comprising tran-
sient eddy and surface terms, and are weakly enhanced by a
contribution from a thermodynamic component which reflects an
increase in the available moisture.

An enhancement of the La Niña-driven rainfall response in the
climate models is also evident (Supplementary Fig. 3b). This
occurs despite there being very little consistency in the change in
La Niña-driven SST variability (Supplementary Fig. 3a). This
is also consistent with the impact of global warming on La
Niña-driven rainfall responses in the AGCM in which there
are no changes in the La Niña-driven SST anomalies at all
(Supplementary Fig. 3c).

Our results are consistent with earlier research5,24–26,30,31,
which collectively indicates that changes in ENSO-driven
precipitation variability can be explained in terms of changes in
four factors: (i) mean-state moisture content, (ii) the amplitude of
ENSO-driven SST variability, (iii) spatially dependent changes in
mean-state SST and (iv) in the structure of ENSO-driven SST
variability. One of these studies31 highlighted the importance of
the contrast between mean-state SST changes in the tropical
Pacific and changes in mean-state SST throughout the tropics.

Estimates of the contribution of nonlinearity to changes in
ENSO rainfall anomalies are given in Fig. 4. Figure 4a (La Niña)
and Fig. 4b (El Niño) give the modelled relative frequency
distributions of changes in NINO3.4 rainfall anomalies, while
Fig. 4c,d give the modelled, relative frequency distributions of the
nonlinear contribution to the change in the corresponding
rainfall anomalies above. The method used to estimate non-
linearity is described in ‘Methods’. Changes arising from internal
variability alone are estimated by differences between each multi-
decadal pre-industrial period with every other multi-decadal
pre-industrial period (grey bars). For El Niño (Fig. 4d),
nonlinearity makes a positive (enhancing) contribution in
all of the 20th and 21st century periods (that is, E20C, L20C,
E21C, L21C). This contribution is largest in the 21st century
(that is, in E21C and L21C), and smallest in E20C. In fact the
change in E20C is very small, and is typically within the range of
internal variability. This is not the case for the other three
periods. Nonlinearity in L20C, E21C and L21C is larger than
E20C, and is beyond the internal variability range depicted. This
indicates that the changes in El Niño rainfall anomalies are at
least partially caused by external forcing during L20C, E21C and
L21C.

For La Niña, the nonlinear contribution tends to be negative
for all 20th and 21st century periods. However, only the 21st
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century changes in nonlinearity (Fig. 4c) are very largely outside
the internal variability range depicted. As rainfall tends to decline
in the NINO3.4 box during pre-industrial La Niña events, the
negative value of the 21st century nonlinear contributions
again indicates that nonlinearity acts to enhance the ENSO-
driven rainfall anomaly. This nonlinear enhancement is consis-
tent with, but extends, earlier research on El Niño-driven rainfall
changes in coupled models5 and ENSO-driven changes in an
AGCM24–26.

One puzzle, which we have not yet addressed, is why there is a
decrease in OR from E21C to L21C under RCP8.5 (Fig. 2a, for
example MMM(DOR)¼ � 0.3 events/decade). This is, at least in
part, due to a decline in the magnitude of El Niño-driven SST
anomalies in most models between these two periods (Supple-
mentary Fig. 5), consistent with earlier research32. Such declines
oppose, and evidently overcome, the nonlinear enhancement of
precipitation anomalies in L21C, relative to E21C (Fig. 4).

Impact of reducing 21st century global emissions. We have so
far restricted the analysis of 21st century changes to those that
occur under the highest 21st emissions scenario—RCP8.5. The
changes in OR and OD, under all three scenarios consi-
dered—RCP2.6, RCP4.5 and RCP8.5—are presented in Fig. 2b
and Supplementary Tables 2 and 3 for the 20 models which have
results for all three scenarios. The frequency of major disruption

increases relative to pre-industrial levels under all three scenarios.
The increases tend to be largest under RCP8.5 and smallest under
RCP2.6. The 21st century increases in OD under RCP2.6 are
consistent with a previous study33 indicating an increase in the
magnitude of variability in precipitation anomalies in the central-
eastern Pacific under this scenario.

Discussion
Four important conclusions can be drawn from the results. First,
the risk of major disruption to rainfall patterns and rainfall
intensity had already increased by the end of the 20th century
(see for example L20C in Fig. 2a or Supplementary Tables 2
and 3). This means, for example, that some of the disruption
actually witnessed in the real world during L20C might have been
partially due to anthropogenic increases in greenhouse gas
concentrations that had already occurred by that time34,35.
Second, the risk is elevated today (for example, Fig. 2, E21C).
Third, further increases in the risk of major disruption during the
remainder of the 21st century can be strongly moderated if major
and sustained cuts to global emissions of greenhouse gases are
made—as they are in RCP2.6. However, the fourth and final
point, is that elevated risk appears locked in for at least the
remainder of the 21st century. This is true even if global action is
successful in restricting future anthropogenic climate change to
RCP2.6 levels—levels which may keep global warming below 2 �C
relative to the latter half of the 19th century34,35.
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Methods
Models and scenarios used. Twenty-four models forced using both historical
forcing (HIST) and forcing under the RCP2.6, RCP4.5 and RCP8.5 scenarios from
the CMIP5 archive23 are used in this investigation. Models were selected when at
least 500 years of pre-industrial runs were available. All coupled climate models
and the observations were re-gridded to a 1.5� latitude/1.5� longitude grid before
analysis. See Supplementary Table 1 for a list of the models used and the forcing
applied. One subset of 20 models is also considered in relation to Fig. 2b: the 20
models for which simulations under RCP2.6 forcing are also available. RCP8.5
represents a scenario in which there are very high greenhouse gas emissions during
the 21st century, RCP2.6 represents a stringent mitigation scenario in which strong
and sustained cuts are made to global greenhouse gas emissions during the 21st
century , while RCP4.5 is an intermediate scenario. RCP2.6 results in global
warming that is likely to be in the range of B0.9–2.3 K (relative to the latter half of
the 19th century) in the late 21st century34,35.

Measuring disruption. R during the E20C, for example, is given by R(t)¼
correl(precip(F,l,t), mE20C(F, l)), where correl is the (spatial) correlation
coefficient between the two variables in brackets, precip(F,l,t) is the precipitation
in an individual season during E20C, mE20C(F,l) is the seasonal average of
precipitation for E20C, F is the latitude, l is the longitude and t is time. Similarly R
during L21C is given by R(t)¼ correl(precip(F,l,t), mL21C(F,l)), where precip
(F,l,t) is the precipitation in an individual season during L21C and mL21C(F, l) is
the seasonal average of precipitation for L21C. Similar formulae apply for D.
The domain used to calculate R and D is 140� E–240� E, 25� S–15� N. For the
observations we use rainfall averaged over the period 1979–2013. For the coupled
climate models we use 10 36-year periods under pre-industrial conditions and four
later periods: E20C (early 20th century); L20C (late 20th century); early 21st
century (E21C); and L20C (late 21st century). The last two were examined under
three different scenarios (RCP2.6, RCP4.5 and RCP8.5). In the AGCM experiments
we use the period 1951–2013. The impact of global warming on the AGCM is
obtained using observed SSTs from the same period, but with global warming
added to the SSTs, in conjunction with increases in atmospheric greenhouse gas
concentrations. See below for additional details on the AGCM.

Defining El Niño and La Niña years. To define ENSO years in the presence of a
mean-state that is changing in response to external forcing, a spectral filter was
used to eliminate climate variability and changes with periods longer than 13
years5. EOF analysis36 was used to extract the first ENSO pattern in the resulting
interannual surface temperature of every model. The EOF analysis of surface air
temperature was performed on June–December averages. The periods used for
filtering are 1–50, 51–100, 101–150, 151–200, 201–250, 251–300, 301–350,
351–400, 401–450, 451–500, 1900–1949, 1950–1999, 2006–2040 and 2050–2099.
Here 1–500 refer to years under pre-industrial forcing, other figures to actual years.
The results presented in this paper are based on these periods, after removing the
first and last seven years from each period to avoid possible near-end issues
associated with spectral filtering.

The magnitude and sign of the time-series associated with EOF1(ST) in each
model, E(t) say, was used to classify years as El Niño, La Niña, or neutral years
using E40.8s, Eo� 0.8s or � 0.8srErþ 0.8s, respectively. Ten 36-year
periods under pre-industrial conditions were used to estimate s for each model.
Here s is the mean s.d. of E(t) in each model and t is time.

Measuring change and internal variability in X. Models with at least 500 years
of pre-industrial simulation were selected and the analysis was performed on
10 36-year periods (Pi), each within a different 50-year period. We then compared
the results to the four 36-year periods of the 20th and 21st centuries (E20C, L20C,
E21C, L21C). To illustrate the method here, we present the computation for the
metric OR, for the pre-industrial (Pi) and early 20th century (E20C) periods only.

For Pi : ORi ¼
X36

ny¼1

corrðPny
i ; �PiÞo0:7: ð1Þ

For E20c : OR ¼
X36

ny¼1

corrðEny
20c; E20cÞo0:7: ð2Þ

Here P is precipitation, ny is the yearly index and Pi is the average precipitation for
the 36-year period of interest.

The internal variability of OR for each model is estimated by the variability
evident between the 10 different pre-industrial segments. The average value of OR

over the pre-industrial period is obtained from averaging over all 10 pre-industrial
sub-periods. The change in OR between the pre-industrial period and E20C is given
relative to the average value over the 10 different pre-industrial sub-periods.
Similar formulae apply for OD, and for the periods L20C, E21C and L21C.

The AGCM. The ACCESS 1.0 AGCM24–26 was forced with observed SSTs over the
period 1951–2013. Ten ensemble members were generated, each with different
initial conditions but the same SSTs. Integrations (10) were then repeated, but with

background warming of SSTs in conjunction with higher greenhouse gas
concentrations. The warming pattern represents the MMM late 21st century
warming of climate models under the SRES A2 scenario24.

Decomposition of precipitation anomaly changes in the AGCM. The pre-
cipitation anomaly changes that occur in response to the imposed warming and
atmospheric composition changes are decomposed into thermodynamic (TH),
dynamic (MCD), covariant (COV) and evaporative (E) components. These terms
are calculated using a simplified version24 of a method described previously37.

Statistical significance. In the figures we use P values based on probabilities from
a Binomial Distribution. To estimate the P values for the change in OR in E20C, for
example, a set of eleven OR values is formed for each model, using the OR value for
E20C and all 10 pre-industrial values. For each model, the rank of the E20C value
in this eleven-member set, RankE20C say, is then determined. If RankE20C is greater
than eight it is considered a success, if not, it is considered a failure. This is
repeated for each model. The resulting P value is then estimated using a binomial
distribution with N¼ 24 models, and p¼ probability of success¼ 3/11. The
resulting P values are given in columns labelled Prank in Supplementary Tables 2
and 3.

As a test on the robustness of the ranking method used in Supplementary
Tables 2 and 3, we use an additional method. This method is also based on a
binomial distribution38. If i models show an increase in O, j models show no
change and k show a decrease, then the P value is estimated by the probability, Pr,
of having M successes with N trials, where N¼ iþ jþ k. If j is even then M¼ iþ j/
2. If j is odd, then the P value is estimated by (Pr1þ Pr2)/2. Here Pr1 is the
probability of M successes with N trials, where N is unchanged and M¼ (j� 1)/2,
and Pr2 is the probability of M successes with N trials, where N is unchanged and
M¼ (jþ 1)/2. The resulting P values are given in columns labelled Psign in
Supplementary Tables 2 and 3.

Estimating nonlinearity in precipitation anomaly changes. The nonlinear
contribution to the changes in El Niño NINO3.4 precipitation anomalies is based
on the relationship between changes in NINO3.4 precipitation and SST changes
relative to the pre-industrial period in each model. The line-of-best-fit for the
changes in all of the models (with precipitation change on the y axis and SST
change on the x axis—see Supplementary Fig. 4) was then determined for each
period (that is, E20C and so on), and each scenario. The y-intercept indicates the
change in precipitation anomaly that occurs in the absence of any change in SST
anomaly. This was repeated using all 10 pre-industrial sub-periods.

Data availability. The CMIP5 data are available at http://cmip-pcmdi.llnl.gov/
cmip5/availability.html.

Code availability. The code associated with this paper is available on request
from S.P.
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